Model help:SuspSedDensityStrat: Difference between revisions

From CSDMS
No edit summary
No edit summary
Line 19: Line 19:
The model is the calculation of Density Stratification Effects Associated with Suspended Sediment in Open Channels.
The model is the calculation of Density Stratification Effects Associated with Suspended Sediment in Open Channels.


This program calculates the effect of sediment self-stratification on the streamwise velocity and suspended sediment concentration profiles in open-channel flow. Two options are given. Either the near-bed reference concentration Cr can be specified by the user, or the user can specify a shear velocity due to skin friction u*s and compute Cr from the Garcia-Parker sediment entrainment relation.  
This program calculates the effect of sediment self-stratification on the streamwise velocity and suspended sediment concentration profiles in open-channel flow. Two options are given. Either the near-bed reference concentration Cr can be specified by the user, or the user can specify a shear velocity due to skin friction u<sub>*s</sub> and compute Cr from the Garcia-Parker sediment entrainment relation.  


<div id=CMT_MODEL_PARAMETERS>
<div id=CMT_MODEL_PARAMETERS>
Line 68: Line 68:
|}
|}
::::{|
::::{|
|width=500px|<math>Re_{p} = {\frac{sqrt \left ( R g D \right ) D}{\nu}} </math>
|width=500px|<math>Re_{p} = {\frac{\sqrt {R g D } D}{\nu}} </math>
|width=50px align="right"|(4)
|width=50px align="right"|(4)
|}
|}
Line 76: Line 76:
|}
|}
::::{|
::::{|
|width=500px|<math>R_{f} = {\frac{v_{s}}{sqrt \left ( R g D \right )}} </math>
|width=500px|<math>R_{f} = {\frac{v_{s}}{\sqrt { R g D }}} </math>
|width=50px align="right"|(6)
|width=50px align="right"|(6)
|}
|}
* Basic forms
* Basic forms
::::{|
::::{|
|width=500px|<math>\nu _{t} {\frac{du^*}{dz}} = u_{*} ^2 \left ( 1 - {\frac{z}{H}} \right ) </math>
|width=500px|<math>\nu _{t} {\frac{d \bar{u}}{dz}} = u_{*} ^2 \left ( 1 - {\frac{z}{H}} \right ) </math>
|width=50px align="right"|(7)
|width=50px align="right"|(7)
|}
|}
::::{|
::::{|
|width=500px|<math>v_{s} c^* + \nu _{t} {\frac {dc^*}{dz}} = 0 </math>
|width=500px|<math>v_{s} \bar{c} + \nu _{t} {\frac {d \bar{c}}{dz}} = 0 </math>
|width=50px align="right"|(8)
|width=50px align="right"|(8)
|}
|}
Line 101: Line 101:
|}
|}
::::{|
::::{|
|width=500px|<math>{\frac{u^* |_{\zeta_{t}}}{u_{*}}} = {\frac{1}{\kappa}} ln \left ( 30 \zeta _{r} {\frac{H}{k_{c}}} \right ) </math>
|width=500px|<math>{\frac{\bar{u} |_{\zeta_{t}}}{u_{*}}} = {\frac{1}{\kappa}} ln \left ( 30 \zeta _{r} {\frac{H}{k_{c}}} \right ) </math>
|width=50px align="right"|(12)
|width=50px align="right"|(12)
|}
|}
* Dimensionless forms
* Dimensionless forms
::::{|
::::{|
|width=500px|<math>u={\frac{u^*}{u_{*}}} </math>
|width=500px|<math>u={\frac{\bar{u}}{u_{*}}} </math>
|width=50px align="right"|(13)
|width=50px align="right"|(13)
|}
|}
::::{|
::::{|
|width=500px|<math>c = {\frac{c^*}{c_{r} ^*}} </math>
|width=500px|<math>c = {\frac{\bar{c}}{\bar{c} _{r} ^*}} </math>
|width=50px align="right"|(14)
|width=50px align="right"|(14)
|}
|}
Line 118: Line 118:
|}
|}
::::{|
::::{|
|width=500px|<math>{\frac{dc}{d \zeta}} = {\frac{1}{\kappa u_{*r}}} {\frac{1}{F{1} \left ( \zeta \right ) F_{2} \left ( Ri \right ) }} c </math>
|width=500px|<math>{\frac{dc}{d \zeta}} = {\frac{1}{\kappa u_{*r}}} {\frac{1}{F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right ) }} c </math>
|width=50px align="right"|(16)
|width=50px align="right"|(16)
|}
|}
Line 130: Line 130:
|}
|}
::::{|
::::{|
|width=500px|<math>Ri_{*} = {\frac{R g H c_{r} ^*}{u_{*} ^2}} </math>
|width=500px|<math>Ri_{*} = {\frac{R g H \bar{c} _{r} ^*}{u_{*} ^2}} </math>
|width=50px align="right"|(19)
|width=50px align="right"|(19)
|}
|}
Line 170: Line 170:
* Form for near-bed concentration
* Form for near-bed concentration
::::{|
::::{|
|width=500px|<math> c_{r} ^* = {\frac{A X_{e} ^*}{1 + {\frac{A}{0.3} X_{e} ^5}}}</math>
|width=500px|<math> \bar{c} _{r} ^* = {\frac{A X_{e} ^*}{1 + {\frac{A}{0.3} X_{e} ^5}}}</math>
|width=50px align="right"|(27)
|width=50px align="right"|(27)
|}
|}
Line 206: Line 206:
|-
|-
| H
| H
| depth
| water depth
| m
| m
|-
|-
Line 241: Line 241:
| kg / m<sup>3</sup>
| kg / m<sup>3</sup>
|-
|-
| v</sub>s</sub>
| v<sub>s</sub>
| fall velocity
| fall velocity
| m / s
| m / s
Line 272: Line 272:
| size in the surface material, such that x percentage of the material is finer
| size in the surface material, such that x percentage of the material is finer
| mm
| mm
|-
| R
| submerged specific gravity
| -
|-
| D
| grain diameter
| mm
|-
| k
| composite roughness height (includes bedform effects)
| mm
|-
| C
| shear velocity due to skin friction
| cm / s
|-
| η
| height above bed surface relative to the water surface height
| -
|-
| u<sub>no</sub>
| normalized velocity without stratification
| -
|-
| c<sub>no</sub>
| normalized concentration without stratification
| -
|-
| u<sub>n</sub>
| normalized velocity with stratification
| -
|-
| c<sub>n</sub>
| normalized concentration with stratification
| -
|-
| Ri
| gradient Richardson number
| -
|-
|-
|}
|}
Line 279: Line 319:


==Notes==
==Notes==
<span class="remove_this_tag">Any notes, comments, you want to share with the user</span>  
The C value in the inputs can be one of two things: either it is the Shear Velocity due to Skin Friction, OR it is the Reference Volume Concentration; the user should input the value that they want to use, and the program will prompt the user, what they want this value to be (either use Garcia-Parker to find the Reference Concentration, or user-inputted).
 
The program will run through however many iterations it takes (up to 200) for the error on all the c<sub>n</sub> and u<sub>n</sub> values to be less than 0.001 to account for the stratification effects.


<span class="remove_this_tag">Numerical scheme</span>
The reference height is set at 0.05H, the number of intervals is set at 50, the constant of Von Korman, κ, is given a value of 0.4.


There is no GetData function for this program, because there is no time loop for which values may need to be retrieved.


==Examples==
==Examples==

Revision as of 14:43, 2 May 2011

The CSDMS Help System

SuspSedDensityStrat

This model is used for calculating the effect of density stratification on the vertical profiles of velocity and suspended sediment.

Model introduction

The model is the calculation of Density Stratification Effects Associated with Suspended Sediment in Open Channels.

This program calculates the effect of sediment self-stratification on the streamwise velocity and suspended sediment concentration profiles in open-channel flow. Two options are given. Either the near-bed reference concentration Cr can be specified by the user, or the user can specify a shear velocity due to skin friction u*s and compute Cr from the Garcia-Parker sediment entrainment relation.

Model parameters

Parameter Description Unit
First parameter Description parameter [Units]
Parameter Description Unit
First parameter Description parameter [Units]

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • definitions
[math]\displaystyle{ k_{c} = {\frac{11 H}{e^ \left ( \kappa C z \right ) }} }[/math] (1)
[math]\displaystyle{ Cz = C_{f} ^ \left ( {\frac{-1}{2}} \right ) ={\frac{U}{u_{*}}} }[/math] (2)
[math]\displaystyle{ R = {\frac{\rho _{s}}{\rho}} - 1 }[/math] (3)
[math]\displaystyle{ Re_{p} = {\frac{\sqrt {R g D } D}{\nu}} }[/math] (4)
[math]\displaystyle{ R_{f} = f \left ( Re_{p} \right ) }[/math] (5)
[math]\displaystyle{ R_{f} = {\frac{v_{s}}{\sqrt { R g D }}} }[/math] (6)
  • Basic forms
[math]\displaystyle{ \nu _{t} {\frac{d \bar{u}}{dz}} = u_{*} ^2 \left ( 1 - {\frac{z}{H}} \right ) }[/math] (7)
[math]\displaystyle{ v_{s} \bar{c} + \nu _{t} {\frac {d \bar{c}}{dz}} = 0 }[/math] (8)
[math]\displaystyle{ \nu_{t} = \kappa u_{*} H F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right ) }[/math] (9)
[math]\displaystyle{ \zeta = {\frac{z}{H}} }[/math] (10)
[math]\displaystyle{ Ri = -Rg {\frac{{\frac{dc^*}{dz}}}{\left ( {\frac{du^*}{dz}} \right ) ^2}} }[/math] (11)
[math]\displaystyle{ {\frac{\bar{u} |_{\zeta_{t}}}{u_{*}}} = {\frac{1}{\kappa}} ln \left ( 30 \zeta _{r} {\frac{H}{k_{c}}} \right ) }[/math] (12)
  • Dimensionless forms
[math]\displaystyle{ u={\frac{\bar{u}}{u_{*}}} }[/math] (13)
[math]\displaystyle{ c = {\frac{\bar{c}}{\bar{c} _{r} ^*}} }[/math] (14)
[math]\displaystyle{ {\frac{du}{d\zeta}} = {\frac{\left ( 1 - \zeta \right )}{\kappa F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right )}} }[/math] (15)
[math]\displaystyle{ {\frac{dc}{d \zeta}} = {\frac{1}{\kappa u_{*r}}} {\frac{1}{F_{1} \left ( \zeta \right ) F_{2} \left ( Ri \right ) }} c }[/math] (16)
[math]\displaystyle{ Ri = - Ri_{*} {\frac{{\frac{dc}{d \zeta}}}{\left ( {\frac{du}{d \zeta}} \right ) ^2 }} }[/math] (17)
[math]\displaystyle{ u | _{*r} = {\frac{u_{*}}{v_{s}}} }[/math] (18)
[math]\displaystyle{ Ri_{*} = {\frac{R g H \bar{c} _{r} ^*}{u_{*} ^2}} }[/math] (19)
  • Forms for the functions F_{1} and F{2}
[math]\displaystyle{ F{1} = \zeta \left ( 1 - \zeta \right ) }[/math] (20)
  • Simth and McLean (1977)

ζ_{r} <= ζ < 0.3

[math]\displaystyle{ F_{1} = \zeta + 1.32892 \zeta ^2 - 16.8632 \zeta ^3 + 25.22663 \zeta ^4 }[/math] (21)

0.3 <= ζ <= 1

[math]\displaystyle{ F{1} = 0.160552 +0.075605 \zeta -0.1305618 \zeta ^2 - 0.1055945 \zeta ^3 }[/math] (22)

Gelfenbaum and Smith (1986)

[math]\displaystyle{ F_{1} = \zeta exp \left ( - \zeta - 3.2 \zeta ^2 + {\frac{2}{3}} \zeta ^2 \right ) }[/math] (23)

Smith and McLean (1977)

[math]\displaystyle{ F{2} = 1 - 4.7 Ri }[/math] (24)

Gelfenbaum and Smith (1986)

[math]\displaystyle{ F_{2} = {\frac{1}{1 + 10.0 X}} }[/math] (25)
[math]\displaystyle{ X = {\frac{1.35 Ri}{1 + 1.35 Ri}} }[/math] (26)
  • Form for near-bed concentration
[math]\displaystyle{ \bar{c} _{r} ^* = {\frac{A X_{e} ^*}{1 + {\frac{A}{0.3} X_{e} ^5}}} }[/math] (27)
[math]\displaystyle{ X_{e} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) }[/math] (28)
  • Solution equation
[math]\displaystyle{ u = {\frac{1}{\kappa}} ln \left ( 30 {\frac{H}{k_{s}}} \right ) }[/math] (29)
[math]\displaystyle{ c = \left ( {\frac{\left ( 1 - \zeta \right ) / \zeta }{\left ( 1 - \zeta _{r} \right ) \zeta _{r}}}\right ) ^ \left ( {\frac{1}{\kappa u_{*r}}} \right ) }[/math] (30)
[math]\displaystyle{ Ri =Ri_{*} {\frac{\kappa \zeta F_{2}}{u_{*r} \left ( 1 - \zeta \right ) }} c }[/math] (31)

Notes

The C value in the inputs can be one of two things: either it is the Shear Velocity due to Skin Friction, OR it is the Reference Volume Concentration; the user should input the value that they want to use, and the program will prompt the user, what they want this value to be (either use Garcia-Parker to find the Reference Concentration, or user-inputted).

The program will run through however many iterations it takes (up to 200) for the error on all the cn and un values to be less than 0.001 to account for the stratification effects.

The reference height is set at 0.05H, the number of intervals is set at 50, the constant of Von Korman, κ, is given a value of 0.4.

There is no GetData function for this program, because there is no time loop for which values may need to be retrieved.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

Dietrich, W. E. 1982 Settling velocity of natural particles. Water Resources Research, 18(6), 1615-1626.

Garcia, M. and Parker, G. 1991 Entrainment of bed sediment into suspension. J. Hydraul. Engrg., ASCE, 117(4), 414-435.

Gelfenbaum, G. and Smith, J. D. 1986 Experimental evaluation of a generalized suspended-sediment transport theory. In Shelf and Sandstones, Canadian Society of Petroleum Geologists Memoir II, Knight, R. J. and McLean, J. R., eds., 133 – 144.

Smith, J. D. and McLean, S. R. 1977 Spatially averaged flow over a wavy surface. J. Geophys. Res., 82(2), 1735-1746.

Links

[Model:SuspSedDensityStrat]