Model help:Sedflux: Difference between revisions

From CSDMS
No edit summary
No edit summary
Line 460: Line 460:
|width=50p=x align="right"|(49)
|width=50p=x align="right"|(49)
|}
|}
<div class="NavFrame collapsed" style="text-align:left">
  <div class="NavHead">Nomenclature</div>
  <div class="NavContent">
{| {{Prettytable}} class="wikitable sortable"
!Symbol!!Description!!Unit
|-
|Q<sub>0</sub>
|water discharge from the river
| m<sup>3</sup> / s
|-
|u<sub>0</sub>
|mean river mouth flow velocity
| m / s
|-
|b<sub>0</sub>
|channel width
| m
|-
|h<sub>0</sub>
|channel depth
| m
|-
|-
|Q<sub>s0</sub>
|mean suspended load entering the ocean basin
| kg / s
|-
C<sub>si</sub>
|concentration of the ith grain size intervals
| kg / m<sup>3</sup>
|-
|Q<sub>b</sub>
|bedload at the river mouth
| kg / s
|-
|Q<sub>c</sub>
|critical discharge below which no bedload transport occurs
| kg / s
|-
|ρ<sub>s</sub>
|grain density
| kg / m<sup>3</sup>
|-
|fluid density
| kg / m<sup>3</sup>
|-
|g
|acceleration due to gravity
| m / s<sup>2</sup>
|-
|bedload rating term
| -
|-
|s
|slope of the riverbed
| -
|-
|e<sub>b</sub>
|bedload efficiency
| -
|-
|f
|limiting angle of repose of sediment grains lying on a river bed
| -
|-
|X
| river distributary
| -
|-
| anglar position of X distributary
| -
|-
|D (in bedload dumping)
| sedimentation rate of bedload
| m / s
|-
|x
| longitudinal or axial direction
| -
|-
|y
| lateral direction
| -
|-
|u
| longitudinal velocity
| m / s
|-
|v
| lateral velocity
| m / s
|-
|I
| sediment inventory of the plume
| -
|-
| first-order removal rate constant for each grain size (take marine flocculation into account)
| -
|-
|K
| sediment diffusivity driven by turbulence (assumed equal to the turbulent diffusivity and the eddy viscosity)
| -
|-
|Fr
| Froude number
| -
|-
|v<sub>0</sub>
| ambient coastal current velocity
| m / s
|-
|C<sub>1</sub>
| empirically derived and found to be 0.109
| -
|-
|C<sub>0</sub>
|
| -
|-
|u<sub>c</sub>
|
| -
|-
|q<sub>s</sub>
| amount of bottom sediments that can be reworked by resuspension and diffusion (resuspended sediment)
| kg / s
|-
|k
| diffusion coefficient
| -
|-
|t
| time
| s
|-
|z
| water depth
| m
|-
|D (in diffusion of seafloor sediments)
| grain size
| mm
|-
|β<sub>i</sub>  (in diffusion of seafloor sediments)
| user-defined index (between 0 and 1), reflect the ability of resuspension to move the ith grain size
| -
|-
|b
| width of a slice of near-shore sediment
| m
|-
|c
| cohension of near-shore sediment
| -
|-
|W
| linear weight of the sediment
| -
|-
|u (in sediment failure)
| excess pore pressure
| -
|-
| sediment friction angle
| -
|-
| the slope of the failure surface
| -
|-
|F<sub>total</sub>
| factor of safety for the entire failure
| -
|-
|γ'
| submerged specific weight of the sediment, equals to (γ - γ<sub>f</sub>)g
| -
|-
|z
| depth of the failure plane with respect to the seafloor
| -
|-
|a
|
| -
|-
|T
|
| -
|-
|m
| sediment rate
| -
|-
|C<sub>v</sub>
| consolidation coefficient for the sediment
| -
|-
|g<sub>0</sub>
| reduced gravity
| -
|-
|u (in River mouth turbidity currents)
| downslope velocity
| -
|-
|α (in River mouth turbidity currents)
| slope
| -
|-
|E (in River mouth turbidity currents)
| entrainment coefficient that controls the rate seawater dilutes the gravity flow
| -
|-
|C<sub>D</sub> (in River mouth turbidity currents)
| drag coefficient
| -
|-
|h (in River mouth turbidity currents)
| flow thickness
| -
|-
|ρ (in River mouth turbidity currents)
| ambient fluid density
| -
|-
|ρ<sub>f</sub> (in River mouth turbidity currents)
| density of the flow
| -
|-
|ρ<sub>s</sub> (in River mouth turbidity currents)
| grain density
| -
|-
|C (in River mouth turbidity currents)
| bulk volume concentration of sediment in the flow
| -
|-
|C<sub>i</sub> (in River mouth turbidity currents)
| volume concentration of the ith grain size in the flow
| -
|-
|n (in River mouth turbidity currents)
| number of discrete grain sizes carried by the flow
| -
|-
|W (in River mouth turbidity currents)
| width of the canyon or basin floor
| -
|-
|Q (in River mouth turbidity currents)
| volume discharge
| -
|-
|J<sub>i</sub> (in River mouth turbidity currents)
|
| -
|-
|E<sub>Ri</sub> (in River mouth turbidity currents)
| the rate of erosion of the ith grain size of the seafloor by the current
| -
|-
|day (in River mouth turbidity currents)
| 86400 s
| -
|-
|δ<sub>a</sub> (in River mouth turbidity currents)
| gradient in the shear strength of the seafloor sediment
| -
|-
|δ<sub>b</sub> (in River mouth turbidity currents)
| shear strength of the sediment at the seafloor
| -
|-
|D<sub>Ri</sub> (in River mouth turbidity currents)
| rate of deposition of the ith grain size in the flow
| -
|-
|u<sub>cr</sub> (in River mouth turbidity currents)
| critical velocity for deposition
| -
|-
|h<sub>f</sub> (in River mouth turbidity currents)
| flow thickness
| -
|-
|E<sub>w</sub> (in River mouth turbidity currents)
| water entrainment coefficient
| -
|-
|S (in River mouth turbidity currents)
| bottom slope gradient
| -
|-
|C<sub>d</sub> (in River mouth turbidity currents)
| drag coefficient, equals to 0.004
| -
|-
| (in River mouth turbidity currents)
| drag coefficient, equals to 0.004
| -
|-


==Notes==
==Notes==

Revision as of 17:56, 18 May 2011

The CSDMS Help System

Sedflux

SEDFLUX is a basin-fill model, written in ANSI-standard C, able to simulate the delivery of sediment and their accumulation over time scales of tens of thousands of years. It simulates the dynamics of strata formation of continental margins fuse information from the atmosphere, ocean and regional geology, and it can provide information for areas and times for which actual measurements are not available, or for when purely statistical estimates are not adequate by themselves.

Model introduction

Sedflux combines individual process-response models into one fully interactive model, delivering a multi-sized sediment load onto and across a continental margin. The model allows for the deposit to compact, to undergo tectonic processes and isostatic subsidence from the sediment load. The new version, Sedflux 2.0 introduces a series of new process models, and is able to operate in one of two models to track the evolution of stratigraphy in either 2D or 3D. Additions to the 2D mode include the addition of models that simulate (1) erosion and deposition of sediment along a riverbed, (2) cross-shore transport due to ocean waves, and (3) turbidity currents and hyperpycnal flows. New processes in the 3D mode include (1) river channel avulsion, (2) two-dimensional diffusion due to ocean storms, and (3) two-dimensional flexure due to sediment loading. The spatial resolution of the architecture is typically 1–25 cm in the vertical and 10–100 m in the horizontal when operating in 2D mode. In 3D mode, the horizontal resolution usually extends to kilometers. In addition to fixed time steps (from days to hundreds of years), Sedflux 2.0 offers event-based time stepping as a way to conduct long-term simulations while still modeling low-frequency but high-energy events.

Model parameters

Parameter Description Unit
Input directory path to input files -
Site prefix site prefix for Input/Output files -
Case prefix case prefix for Input/Output files -
Parameter Description Unit
Water discharge port use the water discharge provides port -
Erosion port Use the erosion provides port -
Parameter Description Unit
Run duration simulation run time years
Grid resolution in x-direction m
Grid resolution in y-direction m
Grid resolution in z-direction m
Parameter Description Unit
Avulsion standard deviation degrees
Minimum river angle degrees
Maximum river angle degrees
Row position of river hinge point -
Column position of river hinge point -
Velocity of coastal current m / s
Suspended load concentration pre-grain suspended sediment concentration -
Distance to dump bedload -
Bed load flux bed load flux at river mouth kg / s
Parameter Description Unit
Output directory path to output grid files -
Interval between output files -
SeaFloorDepth file output file prefix for variable -
SeaFloorSlope file output file prefix for variable -
SeaFloorElevation file output file prefix for variable -
SeaFloor Thickness file output file prefix for variable -
SeaFloorGrain file output file prefix for variable -
SeaFloorAge file output file prefix for variable -
SeaFloorSand file output file prefix for variable -
SeaFloorSilt file output file prefix for variable -
SeaFloorClay file output file prefix for variable -
SeaFloorMud file output file prefix for variable -
SeaFloorFacies file output file prefix for variable -
SeaFloorDensity file output file prefix for variable -
SeaFloorPorosity file output file prefix for variable -
SeaFloorPermeability file output file prefix for variable -
SeaFloorBasement file output file prefix for variable -
SeaFloorRiver_mouth file output file prefix for variable -
Parameter Description Unit
Model name name of the model -
Author name name of the model author m

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • River dynamics (using HydroTrend model)

1) Water discharge

[math]\displaystyle{ Q_{0}=u_{0}b_{0}h_{0} }[/math] (1)

2) Mean suspended load entering the ocean basin

[math]\displaystyle{ Q_{s0}= Q_{0} \sum\limits_{i=1}^N Cs_{i} }[/math] (2)

3) Bedload equation by Bagnold (1966)

[math]\displaystyle{ Q_{b}={\frac{\rho _{s}}{\rho _{s} - \rho}}{\frac{\rho g Q_{0}^ \beta s e_{b}}{g tan f}} }[/math] (3)
  • Channel avulsion (using Avulsion model)
[math]\displaystyle{ \Theta _{n+1}=\Theta_{n} + X_{n} }[/math] (4)
  • Bedload dumpling (not hyperpycnal flow)
[math]\displaystyle{ D={\frac{Q_{b}}{W_{d}L \rho}} }[/math] (5)
  • River plumes

1) Advection-diffusion equation

[math]\displaystyle{ {\frac{\partial u I}{\partial x}} + {\frac{\partial v I}{\partial y}} + \lambda I = {\frac{\partial}{\partial y}} \left ( K {\frac{\partial I}{\partial y}}\right ) + {\frac{\partial}{\partial x}} \left (K {\frac{\partial I}{\partial x}}\right ) }[/math] (6)

2) Froude number

[math]\displaystyle{ Fr = {\frac{u_{0}}{\sqrt{g h_{0}}}} }[/math] (7)

3) Plume's centerline

[math]\displaystyle{ {\frac{x}{b_{0}}}=1.53 + 0.90 \left ({\frac{u_{0}}{v_{0}}}\right ) \left ({\frac{y}{b_{0}}}\right )^\left (0.37\right ) }[/math] (8)

4) Non-conservative concentration along and surrounding the centerline position

[math]\displaystyle{ C\left (x,y\right ) = C_{0}exp\left (-\lambda t \right ) \sqrt{{\frac{b_{0}}{\sqrt{\pi}C_{1} x}}} exp [-\left ({\frac{y}{\sqrt{2} C_{1} x}}\right )^2] }[/math] (9)
[math]\displaystyle{ t\left (x,y\right ) = {\frac{u_{0} + u_{c}\left (x\right ) + 7u\left (x,y\right )}{9}} }[/math] (10)
[math]\displaystyle{ u_{c}\left (x\right ) = u_{0} \sqrt{{\frac{b_{0}}{\sqrt{\pi} C_{1} x}}} }[/math] (11)
[math]\displaystyle{ u\left (x,y\right ) = u_{0} \sqrt{{\frac{b_{0}}{\sqrt{\pi} C_{1} x }}} exp [-\left ({\frac{y}{\sqrt{2} C_{1} x}}\right )^2] }[/math] (12)
  • Diffusion of seafloor sediments

1) Amount of bottom sediments that can be reworked by resuspension and diffusion

[math]\displaystyle{ q_{s} = k\left (t,z,D\right ) \bigtriangledown z = k \left ( {\frac{\partial z}{\partial x}}\hat{i} + {\frac{\partial z}{\partial y}} \hat{j} \right ) }[/math] (13)

2) Amount and direction of transport of the ith grain size

[math]\displaystyle{ q_{si} = \beta _{i} q_{s} }[/math] (14)
  • Sediment failure

1) Stability of a possible failure plane

[math]\displaystyle{ F_{total} = {\frac{ \sum\limits_{i=0}^N[b_{i}\left ( c_{i} + \left ( {\frac{W_{i}}{b_{i}}} - u_{i} \right ) tan \phi _{i} \right ) {\frac{sec \alpha _{i}}{1 + {\frac{tan \alpha _{i} tan \phi _{i}}{F_{total}}}}}]}{\sum\limits_{i=0}^N W_{i} sin \alpha _{i}}} }[/math] (15)

2) excess pore pressure using Gibson's graphical approximation (1958)

[math]\displaystyle{ u_{i} = {\frac{\gamma' z_{i}}{a_{i}}} }[/math] (16)
[math]\displaystyle{ a \equiv 6.4 \left ( 1 - {\frac{T}{16}} \right )^\left (17\right ) + 1 }[/math] (17)
[math]\displaystyle{ T \equiv {\frac{m^2 t}{c_{v}}} }[/math] (18)
  • River mouth turbidity currents
[math]\displaystyle{ {\frac{\partial u}{\partial t}} = g_{0} sin \alpha C - {\frac{E + C_{d}}{h}}u^2 - g_{0} \left ({\frac{e^C - 1}{e - 1}}\right ) cos \alpha C tan \gamma }[/math] (19)
[math]\displaystyle{ C = \sum\limits_{i=1}^N C_{i} = {\frac{\rho _{f} - \rho}{\rho _{s} - \rho}} }[/math] (20)

Fluid continuity equation 1) one dimensional steady-state turbidity current model INFLO

[math]\displaystyle{ {\frac{\partial Q}{\partial x}} = E u W }[/math] (21)

Continuity equation for the ith grain size of the flow's suspeneded load

[math]\displaystyle{ {\frac{\partial J_{i}}{\partial x}} = E_{Ri} - D_{Ri} }[/math] (22)

The rate of erosion of the ith grain size of the seafloor by the current

[math]\displaystyle{ E_{R} = \left ({\frac{C_{D} \rho _{f} u^2 - \delta _{b}}{\delta _{a}}} \right ) {\frac{\varphi _{i} W}{day}} }[/math] (23)

Rate of deposition of the ith grain size in the flow

[math]\displaystyle{ D_{Ri} = \left\{\begin{matrix} 0 & if u \gt u_{cr} \\ {\frac{\lambda _{i} J_{i}}{u}} \left ( 1 - {\frac{u^2}{u_{cr}^2}}\right ) & if u \lt = u_{cr} \end{matrix}\right. }[/math] (24)

Critical velocity for deposition

[math]\displaystyle{ u_{cr} = {\frac{w_{s}}{\sqrt{C_{D}}}} }[/math] (25)

2) turbidity current model Sakura Governing equation

[math]\displaystyle{ {\frac{\partial h}{\partial t}} + {\frac{\partial}{\partial x}} \left (u h_{f} \right ) = E_{w} u }[/math] (26)
[math]\displaystyle{ {\frac{\partial}{\partial t}} \left (u h_{f} \right ) + {\frac{\partial}{\partial x}}\left (u^2 h_{f}\right ) = -{\frac{\left ( \rho _{s} - \rho _{w} \right ) g}{2 \rho_{w}}}{\frac{\partial}{\partial x}} \left (Ch_{f}^2 \right ) + {\frac{\left (\rho _{s} - \rho _{w} \right ) g h_{f} C S}{\rho_{w}}} - C_{d} \left ( 1 + \alpha \right ) u^2 }[/math] (27)
[math]\displaystyle{ {\frac{\partial}{\partial t}} \left ( Ch_{f} \right ) + {\frac{\partial}{\partial x}}\left ( u Ch_{f}\right ) = - F_{d} + F }[/math] (28)
[math]\displaystyle{ E_{w} = {\frac{0.00153}{0.0204 + Ri}} }[/math] (29)
[math]\displaystyle{ Ri = {\frac{\left (\rho_{s} - \rho_{w}\right ) g h_{f}C}{\rho_{w}u^2}} }[/math] (30)
[math]\displaystyle{ F_{d} = \left\{\begin{matrix} w_{s} C \left (2 - 1/p_{z} \right ) & p_{z} \lt 0.5 // 0 & p_{z} \gt = 0.5 \end{matrix}\right. }[/math] (31)
[math]\displaystyle{ F_{e} = \left ( \left (C_{d} \rho_{f} u^2 - b \right ) / \left ( a 86400 \right ) \right ) }[/math] (32)
[math]\displaystyle{ |log p_{z}|^\left (1/4 \right ) \cong 0.124 log_{2} Z_{0} + 1.2 }[/math] (33)
[math]\displaystyle{ Z_{0} \equiv w_{s}/ \left (\kappa u_{*} \right ) }[/math] (34)
  • Debris flows

1) Depth-averaged debris flow equations (Continuity)

[math]\displaystyle{ {\frac{\partial D}{\partial t}} + {\frac{\partial}{\partial x}} [U_{p}D_{p} + {\frac{2}{3}}U_{p}D_{s}] = 0 }[/math] (35)

2) Depth-averaged debris flow equations (Momentum (shear layer))

[math]\displaystyle{ {\frac{2}{3}} {\frac{\partial}{\partial t}} \left (U_{p}U_{s} \right ) - U_{p} {\frac{\partial D_{s}}{\partial t}} + {\frac{8}{15}}{\frac{\partial}{\partial x}} \left ( U_{p}^2 D_{s} \right ) {\frac{2}{3}} U_{p} {\frac{\partial}{\partial x}} \left (U_{p} D_{s} \right ) = D_{s} g \left ( 1 - {\frac{\rho_{w}}{\rho_{\rho_{m}}}}\right ) S - D_{s} g {\frac{\partial D}{\partial x}} - 2 {\frac{\mu U_{p}}{\rho_{m} D_{s}}} }[/math] (36)

3) Depth-averaged debris flow equations (Momentum (plug flow layer))

[math]\displaystyle{ {\frac{\partial}{\partial t}} \left ( U_{p} D_{p}\right ) + {\frac{\partial}{\partial x}} \left (U_{p}^2 D_{p} \right ) + U_{p}{\frac{\partial D_{s}}{\partial t}} + {\frac{2}{3}}U_{p}{\frac{\partial}{\partial x}} \left (U_{p} D_{s} \right ) = D_{p} g \left ( 1 - {\frac{\rho_{w}}{\rho_{m}}} \right ) S - D_{p} g {\frac{\partial D}{\partial x}} - {\frac{\tau_{y}}{\rho_{m}}} }[/math] (37)
  • Subsidence

1) Isostatic subsidence

[math]\displaystyle{ w \left (x\right ) = {\frac{p\left (x\right ) \alpha ^3}{8D}}exp \left( -{\frac{|x|}{\alpha}}\right ) + sin \left ({\frac{|x|}{\alpha}}\right ) }[/math] (38)
[math]\displaystyle{ \alpha \equiv ^4 \sqrt{{\frac{4D}{\rho_{m}g}}} }[/math] (39)
[math]\displaystyle{ W \left (x\right ) = \sum\limits_{i=-\propto}^\left (\propto\right ) w \left ( x - x_{i} \right ) }[/math] (40)
  • Compaction
[math]\displaystyle{ {\frac{\partial \phi}{\partial \delta}} = - c \left ( \phi - \phi_{0}\right ) }[/math] (41)
  • Subaerial erosion and deposition by river
[math]\displaystyle{ {\frac{\partial \eta}{\partial t}} = \nu {\frac{\partial ^2 \eta}{\partial x^2}} }[/math] (42)

Diffusion coefficient

[math]\displaystyle{ \nu \equiv {\frac{-8 \lt q\gt A \sqrt{c_{f}}}{C_{0}\left ( s - 1 \right )}} }[/math] (43)
  • Cross-shore transport due to ocean storms

1) Closure depth

[math]\displaystyle{ h_{c} = 2.28 H_{ss} - 6.85 \left ({\frac{H_{ss}^2}{g T^2}}\right ) }[/math] (44)

2) Sediment flux for the outer shelf (depth greater than hc)

[math]\displaystyle{ q_{s} = {\frac{16}{3\pi}}{\frac{\rho}{\rho_{s} - \rho}}{\frac{C_{fs}\varepsilon _{ss}}{g}}I_{s}{\frac{U_{om}^3}{w_{s}}}\left ( v_{0} + {\frac{U_{om}^2}{5 w_{s}}}{\frac{\partial h}{\partial x}}\right ) }[/math] (45)

3) Equation for shoaling waves

[math]\displaystyle{ U_{om} \left (h\right ) = {\frac{\gamma b}{2}} \sqrt{g b_{b}} \left ({\frac{h}{h_{b}}}\right )^\left ({\frac{-3}{4}}\right ) }[/math] (46)

4) Komar's (1998) equation for the threshold of sediment motion

[math]\displaystyle{ {\frac{\rho u_{t}^2}{\left ( \rho_{s} - \rho \right ) g d}} = \left\{\begin{matrix} 0.21 \left ({\frac{d_{0}}{d}}\right )^ \left ({\frac{1}{2}}\right ) & for D \lt = 0.5 mm \\ 0.46 \pi \left ({\frac{d_{0}}{d}}\right )^\left ({\frac{1}{4}}\right ) & for D \gt 0.5 mm \end{matrix}\right. }[/math] (47)

5) Near-bottom threshold velocity

[math]\displaystyle{ u_{t} = {\frac{\pi d_{0}}{T}} = {\frac{\pi H}{T sinh \left (2 \pi h / L \right )}} }[/math] (48)

6) Sediment flux within the near-shore zone (depth less than hc)

[math]\displaystyle{ q_{s} = k_{c} \underline{x}^ \left ( 1 - m \right ) {\frac{dh}{dx}} }[/math] (49)