Model help:RecircFeed: Difference between revisions

From CSDMS
mNo edit summary
No edit summary
Line 122: Line 122:


==Main equations==
==Main equations==
<span class="remove_this_tag">A list of the key equations. HTML format is supported; latex format will be supported in the future</span>
* Backwater equation
1) water discharge per unit width
::::{|
|width=500px|<math>  q_{w} = U H </math>
|width=50p=x align="right"|(1)
|}
2)
::::{|
|width=500px|<math>  {\frac{\partial H}{\partial x}} = {\frac{S - S_{f}}{1 - Fr^2}} </math>
|width=50p=x align="right"|(2)
|}
::::{|
|width=500px|<math>  S_{f} = C_{f} Fr^2 </math>
|width=50p=x align="right"|(3)
|}
::::{|
|width=500px|<math> Fr^2 = {\frac{q_{w}^2}{g H^3}} = {\frac{U^2}{g H}} </math>
|width=50p=x align="right"|(4)
|}
* bed shear stress
::::{|
|width=500px|<math>  \tau_{b} = \rho g H S </math>
|width=50p=x align="right"|(5)
|}
* Friction relations
::::{|
|width=500px|<math>  \tau_{b} = \rho C_{f} U^2 </math>
|width=50p=x align="right"|(6)
|}
::::{|
|width=500px|<math> C_{f}^ \left ({\frac{-1}{2}}\right ) = \alpha_{r} \left ({\frac{H}{k_{c}}}\right ) ^ \left ({\frac{1}{6}}\right )  </math>
|width=50p=x align="right"|(7)
|}
* Total bed material load
::::{|
|width=500px|<math> {\frac{q_{t}}{\sqrt{R g D} D}} = \alpha _{t} \left ({\frac{\tau _{b}}{\rho R g D} - \tau_{c}^*} \right ) ^ \left (n_{t} \right )  </math>
|width=50p=x align="right"|(8)
|}
* Sediment transport relation
::::{|
|width=500px|<math> q_{t}^* = {\frac{q_{t}}{\sqrt{R g D}D}} = \left\{\begin{matrix} 0 & if \tau^* < \tau_{c}^* \\ \alpha_{t} \left ( \tau^* - \tau_{c}^* \right ) ^ \left (n_{t}\right ) & if \tau^* > \tau_{c}^* \end{matrix}\right. </math>
|width=50p=x align="right"|(9)
|}
::::{|
|width=500px|<math> \tau^* = {\frac{\tau_{b}}{\rho R g D}}  </math>
|width=50p=x align="right"|(10)
|}
* Mobile-bed equilibrium
1)
::::{|
|width=500px|<math> U{\frac{\partial U}{\partial x}} = -g {\frac{\partial H}{\partial x}} - g{\frac{\partial \eta}{\partial x}} - C_{f}{\frac{U^2}{H}}  </math>
|width=50p=x align="right"|(11)
|}
2)
::::{|
|width=500px|<math> {\frac{q_{t}}{\sqrt{R g D}D}} = \left\{\begin{matrix} 0 if {\frac{C_{f} U^2}{R g D}} < \tau_{c}^* \\ \alpha_{L} \left ({\frac{C_{f} U^2}{R g D}} - \tau_{c}^* \right ) ^ \left (N_{L} \right ) & if {\frac{C_{f} U^2}{R g D}} > \tau_{c}^*\end{matrix}\right.</math>
|width=50p=x align="right"|(12)
|}
* Dimensionless parameters
1)
::::{|
|width=500px|<math> H = H_{o} \tilde{H} </math>
|width=50p=x align="right"|(13)
|}
2)
::::{|
|width=500px|<math> q_{t} = q_{to} \tilde{q} </math>
|width=50p=x align="right"|(14)
|}
3)
::::{|
|width=500px|<math> x = L \hat{x} </math>
|width=50p=x align="right"|(15)
|}
4)
::::{|
|width=500px|<math> t = \left ( 1 - \lambda_{p} \right ) {\frac{S_{o} L^2}{q_{to}}} \hat{t} </math>
|width=50p=x align="right"|(16)
|}
5)
::::{|
|width=500px|<math> \eta = \bar{\eta} + \eta _{d} </math>
|width=50p=x align="right"|(17)
|}
6)
::::{|
|width=500px|<math> \bar{\eta} = H_{o} \tilde{\eta}_{a} \left ( \hat{t} \right ) </math>
|width=50p=x align="right"|(18)
|}
7)
::::{|
|width=500px|<math> \eta_{d} = S_{o} L \hat{\eta}_{d} \left ( \hat{x},\hat{t} \right ) </math>
|width=50p=x align="right"|(19)
|}
8) Backwater relation
::::{|
|width=500px|<math> FI {\frac{\partial \tilde{H}}{\partial \hat{x}}} = {\frac{-{\frac{\partial \hat{\eta}_{d}}{\partial \hat{x}}} - \tilde{H}^ \left (-3\right )}{1 - Fr_{o}^2 \tilde{H}^ \left (-3\right )}} </math>
|width=50p=x align="right"|(20)
|}
::::{|
|width=500px|<math> Fr_{o} = \left ({\frac{q_{w}^2}{g H_{o}^3}}\right )^ \left ({\frac{1}{2}}\right ) </math>
|width=50p=x align="right"|(21)
|}
* Relation for sediment conservation
::::{|
|width=500px|<math> FI {\frac{d \tilde{\eta}_{a}}{d \hat{t}}} = \tilde{q}|_{\hat{x} = 0} - \tilde{q}|_{\hat{x} = 1} </math>
|width=50p=x align="right"|(22)
|}
::::{|
|width=500px|<math> {\frac{\partial \hat{\eta}_{d}}{\partial \hat{t}}} = - {\frac{\partial \tilde{q}}{\partial \hat{x}}} - \left ( \tilde{q}|_{\hat{x} = 0 } - \tilde{q}_{\hat{x} = 1} \right ) </math>
|width=50p=x align="right"|(23)
|}
* Sediment transport relation
::::{|
|width=500px|<math> \tilde{q} = \left\{\begin{matrix} 0 & \tilde{H}^ \left (-2 \right ) < \left (\tau_{r}^*\right )^ \left (-1\right ) \\  \left ({\frac{\tilde{H}^\left (-2\right ) - \left (\tau_{r}^* \right )^ \left (-1\right )}{1 - \left (\tau_{r}^*\right )^\left (-1\right )}} \right )^ \left (N_{L}\right ) & \tilde{H}^\left (-2\right ) > \left (\tau_{r}^* \right )^ \left(-1\right )\end{matrix}\right. </math>
|width=50p=x align="right"|(24)
|}
::::{|
|width=500px|<math> \tau_{r}^* = {\frac{\tau_{o}^*}{\tau_{c}^*}} </math>
|width=50p=x align="right"|(25)
|}
::::{|
|width=500px|<math> \tau_{o}^* = {\frac{C_{f} U_{o}^2}{R g D}} = {\frac{C_{f}q_{w}^2}{R g D H_{o}^2}}</math>
|width=50p=x align="right"|(26)
|}
* Boundary condition for a feed flume
::::{|
|width=500px|<math> \tilde{q}|_{\hat{x} = 0 } = 1 </math>
|width=50p=x align="right"|(27)
|}
::::{|
|width=500px|<math> \tilde{H}|_{\hat{x} = 1} = 1 - \tilde{\eta}_{a} - {\frac{1}{FL}}\left ({\frac{1}{2}} + \hat{\eta}_{d}|_{\hat{x} = 1} \right ) </math>
|width=50p=x align="right"|(28)
|}
::::{|
|width=500px|<math> \tilde{H}|_{\hat{x} = 1} = 1 - \tilde{\eta}_{a} - {\frac{1}{FL}}\left ({\frac{1}{2}} + \hat{\eta}_{d}|_{\hat{x} = 1} \right ) </math>
|width=50p=x align="right"|(29)
|}
* Initial condition for a feed flume
::::{|
|width=500px|<math> \tilde{\eta}_{a}|_{\hat{t} = 0} = \tilde{\eta}_{al} </math>
|width=50p=x align="right"|(30)
|}
::::{|
|width=500px|<math> \eta_{d}|_{\hat{t} = 0} = {\frac{S_{l}}{S_{o}}} \left ({\frac{1}{2}} - \hat{x} \right ) </math>
|width=50p=x align="right"|(31)
|}
* Boundary condition for a recirculating flume
::::{|
|width=500px|<math> \tilde{q}|_{\hat{x} = 0} = \tilde{q}|_{\hat{x} = 1} </math>
|width=50p=x align="right"|(32)
|}
::::{|
|width=500px|<math> \int _{0}^1 \tilde{H} d \hat{x} = 1 </math>
|width=50p=x align="right"|(33)
|}
* Initial condition for a recirculating flume
::::{|
|width=500px|<math> \hat{\eta}_{d}|_{\hat{t} = 0} = {\frac{S_{l}}{S_{o}}} \left ({\frac{1}{2}} - \hat{x} \right ) </math>
|width=50p=x align="right"|(34)
|}


<div class="NavFrame collapsed" style="text-align:left">
<div class="NavFrame collapsed" style="text-align:left">
Line 130: Line 290:
!Symbol!!Description!!Unit
!Symbol!!Description!!Unit
|-
|-
| Fro
| Fr<sub>o</sub>
| Froude number at normal mobile-bed equilibrium
| Froude number at normal mobile-bed equilibrium
| -
|-
| nt
| exponent in the sediment transport relation
| -
| -
|-
|-
Line 183: Line 339:
|-
|-
| S
| S
| initial normalized slope
| bed slope
| -
| -
|-
|-
Line 203: Line 359:
|-
|-
| η
| η
| dimensionless bed elevation
| bed elevation
| -
| -
|-
|-
Line 215: Line 371:
|-
|-
| H
| H
| dimensionless water depth
| flow depth
| -
| -
|-
|-
Line 224: Line 380:
| SNdown
| SNdown
| downstream end normalized slope
| downstream end normalized slope
| -
|-
| U
| depth-averaged flow velocity
| L / T
|-
| g
| gravitational acceleration
| L / T<sup>2</sup>
|-
| q<sub>t</sub>
| volume bed material sediment transport rate per unit width
| L<sup>2</sup> / T
|-
| q<sub>w</sub>
| water discharge per unit width
| L<sup>2</sup> / T
|-
| τ<sub>b</sub>
| boundary shear stress at bed
| -
|-
| L
| flume length
| L
|-
| B
| flume width
| L
|-
| D
| sediment size
| L
|-
| λ<sub>p</sub>
| porosity of bed deposit of sediment
| -
|-
| S
| down-channel bed slope
| -
|-
| S<sub>f</sub>
| down-channel bed slope
| -
|-
| Fr
| Froude number
| -
|-
| C<sub>f</sub>
| bed friction coefficient
| -
|-
| D
| grain size
| L
|-
| ρ<sub>s</sub>
| sediment density
| M / L<sup>3</sup>
|-
| R
| sediment submerged specific gravity
| -
|-
| q<sub>t</sub> <sup>*</sup>
| Einstein number for total bed material load
| -
|-
| τ<sup>*</sup>
| Shields number
| -
|-
| τ<sub>c</sub> <sup>*</sup>
| critical Shields number at the threshold of motion
| -
|-
| α<sub>t</sub>
| coefficient in generic relation for total bed material load
| -
|-
| n<sub>t</sub>
|exponent in the sediment transport relation
| -
|-
| N<sub>L</sub>
|
| -
|-
| H<sub>o</sub>
| constant channel depth of the unperturbed base flow
| -
|-
| H~
| dimensionless depth
| -
|-
| q<sub>to</sub>
| unperturbed value of qt at base equilibrium
| -
|-
| x^
| dimensionless downstream coordinate
| -
|-
| t^
| dimensionless time
| -
|-
| S<sub>o</sub>
| unperturbed value of bed slope S of base equilibrium
| -
|-
| FI
| the dimensionless flume number, equals to H<sub>o</sub> / S<sub>o</sub> L
| -
|-
| U<sub>o</sub>
| value of U of unperturbed base flow
| -
|-
| η~<sub>a</sub>
| flume-averaged bed elevation
| -
|-
| η~<sub>al</sub>
| initial value for flume-averaged bed elevation
| -
|-
| η~<sub>d</sub>
| equals to S<sub>l</sub> L [0.5 - (x/L)]
| -
|-
| S<sub>l</sub>
| initial bed slope
| -
| -
|-
|-
Line 232: Line 524:
==Notes==
==Notes==
This program is meant for use with laboratory flumes, and allows the user to choose either a recirculating flume or a feed flume.
This program is meant for use with laboratory flumes, and allows the user to choose either a recirculating flume or a feed flume.
* Constraints on a recirculating flume
a) Water discharge q<sub>w</sub> is set by the pump.
b) The total amount of water in the flume is conserved.
With constant width, constant storage in the return line and negligible storage in the entrance and exit regions. At final equilibrium, when H = H<sub>o</sub>, the constraint reduces to H<sub>o</sub>L = C<sub>1</sub>, according to which H<sub>o</sub> is set by the total amount of water.
c) The total amount of sediment in the flume is conserved.
* Constraints on a feed flume
a) Water discharge q<sub>w</sub> is set by the pump.
b) The upstream sediment discharge is set by the feeder.
Where q<sub>tf</sub> is the sediment feed rate: q<sub>t</sub>|_{x = 0} = q<sub>tf</sub>.
c) Let ξ = η + H denote water surface elevation. The downstream water surface elevation ξ<sub>d</sub> is set by the tailgate.
d) The long-term equilibrium approached in a recirculating flume (without lumps) should be dynamically equivalent to that obtained in a sediment-feed flume.


The inputted Froude number must be less than 1 (i.e. the flow is assumed to be subcritical); if it is not the program will alert the user and automatically quit.
The inputted Froude number must be less than 1 (i.e. the flow is assumed to be subcritical); if it is not the program will alert the user and automatically quit.
Line 252: Line 564:


==References==
==References==
<span class="remove_this_tag">Key papers</span>
* Hills, R., 1987, Sediment sorting in meandering rivers, M.S. thesis, University of Minnesota, 73 p.
 
* Parker, G., 2003, Persistence of sediment lumps in approach to equilibrium in sediment-recirculating flumes, Proceedings, XXX Congress, International Association of Hydraulic Research, Thessaloniki, Greece, August 24-29, downloadable at http://cee.uiuc.edu/people/parkerg/conference_reprints.htm .
 
* Parker, G. and Wilcock, P., 1993,  Sediment feed and recirculating flumes: a fundamental difference, Journal of Hydraulic Engineering, 119(11), 1192‑1204.


==Links==
==Links==

Revision as of 15:20, 25 May 2011

The CSDMS Help System

RecircFeed

This provide a calculator for approach to equilibrium in recirculating and feed flumes

Model introduction

This program provides two modules for studying the approach to mobile-bed normal equilibrium in recirculating and sediment-feed flumes containing uniform sediment.

The module "Recirc" implements a calculation for the case of a flume that recirculates water and sediment. The module "Feed" implements a calculation for the case of flume which receives water and sediment feed.

Model parameters

Parameter Description Unit
Input directory path to input files
Site prefix Site prefix for Input/Output files
Case prefix Case prefix for Input/Output files
Parameter Description Unit
Feed-1 or Recirculate -2
Parameter Description Unit
Equilibrium Froude number (must be < 1) (F) -
Exponent in load relation (n) -
Backwater number (f) -
Initial dimensionless mean bed elevation (e) -
Ratio of normal to critical Shields stress (T) -
Initial normalized slope (S) -
Number of spatial intervals desired (MA) -
Dimensionless time step (t) -
Number of prints desired (p) -
Number of iterations desired -
Parameter Description Unit
Model name name of the model -
Author name name of the model author -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • Backwater equation

1) water discharge per unit width

[math]\displaystyle{ q_{w} = U H }[/math] (1)

2)

[math]\displaystyle{ {\frac{\partial H}{\partial x}} = {\frac{S - S_{f}}{1 - Fr^2}} }[/math] (2)
[math]\displaystyle{ S_{f} = C_{f} Fr^2 }[/math] (3)
[math]\displaystyle{ Fr^2 = {\frac{q_{w}^2}{g H^3}} = {\frac{U^2}{g H}} }[/math] (4)
  • bed shear stress
[math]\displaystyle{ \tau_{b} = \rho g H S }[/math] (5)
  • Friction relations
[math]\displaystyle{ \tau_{b} = \rho C_{f} U^2 }[/math] (6)
[math]\displaystyle{ C_{f}^ \left ({\frac{-1}{2}}\right ) = \alpha_{r} \left ({\frac{H}{k_{c}}}\right ) ^ \left ({\frac{1}{6}}\right ) }[/math] (7)
  • Total bed material load
[math]\displaystyle{ {\frac{q_{t}}{\sqrt{R g D} D}} = \alpha _{t} \left ({\frac{\tau _{b}}{\rho R g D} - \tau_{c}^*} \right ) ^ \left (n_{t} \right ) }[/math] (8)
  • Sediment transport relation
[math]\displaystyle{ q_{t}^* = {\frac{q_{t}}{\sqrt{R g D}D}} = \left\{\begin{matrix} 0 & if \tau^* \lt \tau_{c}^* \\ \alpha_{t} \left ( \tau^* - \tau_{c}^* \right ) ^ \left (n_{t}\right ) & if \tau^* \gt \tau_{c}^* \end{matrix}\right. }[/math] (9)
[math]\displaystyle{ \tau^* = {\frac{\tau_{b}}{\rho R g D}} }[/math] (10)
  • Mobile-bed equilibrium

1)

[math]\displaystyle{ U{\frac{\partial U}{\partial x}} = -g {\frac{\partial H}{\partial x}} - g{\frac{\partial \eta}{\partial x}} - C_{f}{\frac{U^2}{H}} }[/math] (11)

2)

[math]\displaystyle{ {\frac{q_{t}}{\sqrt{R g D}D}} = \left\{\begin{matrix} 0 if {\frac{C_{f} U^2}{R g D}} \lt \tau_{c}^* \\ \alpha_{L} \left ({\frac{C_{f} U^2}{R g D}} - \tau_{c}^* \right ) ^ \left (N_{L} \right ) & if {\frac{C_{f} U^2}{R g D}} \gt \tau_{c}^*\end{matrix}\right. }[/math] (12)
  • Dimensionless parameters

1)

[math]\displaystyle{ H = H_{o} \tilde{H} }[/math] (13)

2)

[math]\displaystyle{ q_{t} = q_{to} \tilde{q} }[/math] (14)

3)

[math]\displaystyle{ x = L \hat{x} }[/math] (15)

4)

[math]\displaystyle{ t = \left ( 1 - \lambda_{p} \right ) {\frac{S_{o} L^2}{q_{to}}} \hat{t} }[/math] (16)

5)

[math]\displaystyle{ \eta = \bar{\eta} + \eta _{d} }[/math] (17)

6)

[math]\displaystyle{ \bar{\eta} = H_{o} \tilde{\eta}_{a} \left ( \hat{t} \right ) }[/math] (18)

7)

[math]\displaystyle{ \eta_{d} = S_{o} L \hat{\eta}_{d} \left ( \hat{x},\hat{t} \right ) }[/math] (19)

8) Backwater relation

[math]\displaystyle{ FI {\frac{\partial \tilde{H}}{\partial \hat{x}}} = {\frac{-{\frac{\partial \hat{\eta}_{d}}{\partial \hat{x}}} - \tilde{H}^ \left (-3\right )}{1 - Fr_{o}^2 \tilde{H}^ \left (-3\right )}} }[/math] (20)
[math]\displaystyle{ Fr_{o} = \left ({\frac{q_{w}^2}{g H_{o}^3}}\right )^ \left ({\frac{1}{2}}\right ) }[/math] (21)
  • Relation for sediment conservation
[math]\displaystyle{ FI {\frac{d \tilde{\eta}_{a}}{d \hat{t}}} = \tilde{q}|_{\hat{x} = 0} - \tilde{q}|_{\hat{x} = 1} }[/math] (22)
[math]\displaystyle{ {\frac{\partial \hat{\eta}_{d}}{\partial \hat{t}}} = - {\frac{\partial \tilde{q}}{\partial \hat{x}}} - \left ( \tilde{q}|_{\hat{x} = 0 } - \tilde{q}_{\hat{x} = 1} \right ) }[/math] (23)
  • Sediment transport relation
[math]\displaystyle{ \tilde{q} = \left\{\begin{matrix} 0 & \tilde{H}^ \left (-2 \right ) \lt \left (\tau_{r}^*\right )^ \left (-1\right ) \\ \left ({\frac{\tilde{H}^\left (-2\right ) - \left (\tau_{r}^* \right )^ \left (-1\right )}{1 - \left (\tau_{r}^*\right )^\left (-1\right )}} \right )^ \left (N_{L}\right ) & \tilde{H}^\left (-2\right ) \gt \left (\tau_{r}^* \right )^ \left(-1\right )\end{matrix}\right. }[/math] (24)
[math]\displaystyle{ \tau_{r}^* = {\frac{\tau_{o}^*}{\tau_{c}^*}} }[/math] (25)
[math]\displaystyle{ \tau_{o}^* = {\frac{C_{f} U_{o}^2}{R g D}} = {\frac{C_{f}q_{w}^2}{R g D H_{o}^2}} }[/math] (26)
  • Boundary condition for a feed flume
[math]\displaystyle{ \tilde{q}|_{\hat{x} = 0 } = 1 }[/math] (27)
[math]\displaystyle{ \tilde{H}|_{\hat{x} = 1} = 1 - \tilde{\eta}_{a} - {\frac{1}{FL}}\left ({\frac{1}{2}} + \hat{\eta}_{d}|_{\hat{x} = 1} \right ) }[/math] (28)
[math]\displaystyle{ \tilde{H}|_{\hat{x} = 1} = 1 - \tilde{\eta}_{a} - {\frac{1}{FL}}\left ({\frac{1}{2}} + \hat{\eta}_{d}|_{\hat{x} = 1} \right ) }[/math] (29)
  • Initial condition for a feed flume
[math]\displaystyle{ \tilde{\eta}_{a}|_{\hat{t} = 0} = \tilde{\eta}_{al} }[/math] (30)
[math]\displaystyle{ \eta_{d}|_{\hat{t} = 0} = {\frac{S_{l}}{S_{o}}} \left ({\frac{1}{2}} - \hat{x} \right ) }[/math] (31)
  • Boundary condition for a recirculating flume
[math]\displaystyle{ \tilde{q}|_{\hat{x} = 0} = \tilde{q}|_{\hat{x} = 1} }[/math] (32)
[math]\displaystyle{ \int _{0}^1 \tilde{H} d \hat{x} = 1 }[/math] (33)
  • Initial condition for a recirculating flume
[math]\displaystyle{ \hat{\eta}_{d}|_{\hat{t} = 0} = {\frac{S_{l}}{S_{o}}} \left ({\frac{1}{2}} - \hat{x} \right ) }[/math] (34)

Notes

This program is meant for use with laboratory flumes, and allows the user to choose either a recirculating flume or a feed flume.

  • Constraints on a recirculating flume

a) Water discharge qw is set by the pump.

b) The total amount of water in the flume is conserved. With constant width, constant storage in the return line and negligible storage in the entrance and exit regions. At final equilibrium, when H = Ho, the constraint reduces to HoL = C1, according to which Ho is set by the total amount of water.

c) The total amount of sediment in the flume is conserved.

  • Constraints on a feed flume

a) Water discharge qw is set by the pump.

b) The upstream sediment discharge is set by the feeder. Where qtf is the sediment feed rate: qt|_{x = 0} = qtf.

c) Let ξ = η + H denote water surface elevation. The downstream water surface elevation ξd is set by the tailgate.

d) The long-term equilibrium approached in a recirculating flume (without lumps) should be dynamically equivalent to that obtained in a sediment-feed flume.

The inputted Froude number must be less than 1 (i.e. the flow is assumed to be subcritical); if it is not the program will alert the user and automatically quit.

In the outputs file, the normalized slopes upstream and downstream are below the dimensionless eta values, scroll down to find them.

At equilibrium the ratio between the bed slope and the slope at normal flow will both equal 1

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Hills, R., 1987, Sediment sorting in meandering rivers, M.S. thesis, University of Minnesota, 73 p.
  • Parker, G., 2003, Persistence of sediment lumps in approach to equilibrium in sediment-recirculating flumes, Proceedings, XXX Congress, International Association of Hydraulic Research, Thessaloniki, Greece, August 24-29, downloadable at http://cee.uiuc.edu/people/parkerg/conference_reprints.htm .
  • Parker, G. and Wilcock, P., 1993, Sediment feed and recirculating flumes: a fundamental difference, Journal of Hydraulic Engineering, 119(11), 1192‑1204.

Links

Model:RecircFeed