Model help:BackwaterWrightParker: Difference between revisions

From CSDMS
No edit summary
No edit summary
Line 115: Line 115:
|width=50p=x align="right"|(1)
|width=50p=x align="right"|(1)
|}
|}
* Bedload transport in sand-bed streams
* Bedload transport in sand-bed streams (Ashida and Michiue, 1972)
::::{|
::::{|
|width=800px|<math> \tau_{s}^* = {\frac{\tau_{bs}}{\rho R g D_{s50}}}  </math>
|width=800px|<math> \tau_{s}^* = {\frac{\tau_{bs}}{\rho R g D_{s50}}}  </math>
Line 124: Line 124:
|width=50p=x align="right"|(3)
|width=50p=x align="right"|(3)
|}
|}
* Entrainment of sand into suspension
* Entrainment of sand into suspension (Wright and Parker, 2004)
::::{|
::::{|
|width=800px|<math> E = {\frac{A Z_{u}^5}{1 + {\frac{A}{0.3}} Z_{u}^5}} </math>
|width=800px|<math> E = {\frac{A Z_{u}^5}{1 + {\frac{A}{0.3}} Z_{u}^5}} </math>
Line 141: Line 141:
|width=50p=x align="right"|(7)
|width=50p=x align="right"|(7)
|}
|}
* Suspended sediment transport rate
* Suspended sediment transport rate (Wright-Parker formulation)
::::{|
::::{|
|width=800px|<math> u_{*} = \left ( g H S_{f} \right )^ \left ({\frac{1}{2}}\right ) </math>
|width=800px|<math> u_{*} = \left ( g H S_{f} \right )^ \left ({\frac{1}{2}}\right ) </math>
Line 192: Line 192:
|width=50p=x align="right"|(18)
|width=50p=x align="right"|(18)
|}
|}
6)  
6) friction coefficient due to skin friction
::::{|
::::{|
|width=800px|<math> C_{fs}^ \left ({\frac{-1}{2}}\right ) = {\frac{q_{w}}{H \sqrt{g H_{s} S_{f}}}} = 8.32 \left ({\frac{H_{s}}{3D_{s90}}}\right )^ \left ({\frac{1}{6}}\right ) </math>
|width=800px|<math> C_{fs}^ \left ({\frac{-1}{2}}\right ) = {\frac{q_{w}}{H \sqrt{g H_{s} S_{f}}}} = 8.32 \left ({\frac{H_{s}}{3D_{s90}}}\right )^ \left ({\frac{1}{6}}\right ) </math>
|width=50p=x align="right"|(19)
|width=50p=x align="right"|(19)
|}
|}
7)
7) Shields number due to form drag
::::{|
::::{|
|width=800px|<math> \tau_{s}^* = {\frac{H_{s} S_{f}}{R D_{50}}} = \left\{\begin{matrix} 0.05 + 0.7 \left (\tau^* Fr^ \left (0.7\right ) \right )^ \left (0.8\right ) & \tau^* >= \tau_{min}^* \\ \tau^* & \tau^* < \tau_{min}^*\end{matrix}\right. </math>
|width=800px|<math> \tau_{s}^* = {\frac{H_{s} S_{f}}{R D_{50}}} = \left\{\begin{matrix} 0.05 + 0.7 \left (\tau^* Fr^ \left (0.7\right ) \right )^ \left (0.8\right ) & \tau^* >= \tau_{min}^* \\ \tau^* & \tau^* < \tau_{min}^*\end{matrix}\right. </math>
|width=50p=x align="right"|(20)
|width=50p=x align="right"|(20)
|}
|}
8)
8) Shields number
::::{|
::::{|
|width=800px|<math> \tau^* = {\frac{H S_{f}}{R D_{s50}}} </math>
|width=800px|<math> \tau^* = {\frac{H S_{f}}{R D_{s50}}} </math>
Line 217: Line 217:
|width=50p=x align="right"|(23)
|width=50p=x align="right"|(23)
|}
|}
* Calculation of H<sub>s</sub> and S<sub>f</sub> from known depth H
::::{|
::::{|
|width=800px|<math> F \left (\phi_{s} \right ) = \left\{\begin{matrix} \phi_{s} - [{\frac{\phi_{s}^ \left ({\frac{-1}{3}}\right ) \tau_{nom}^* - 0.05}{0.7 \left ( \tau_{nom}^* \right ) ^ \left ({\frac{4}{5}}\right ) Fr^ \left ({\frac{14}{25}}\right )}}]^ \left ({\frac{-15}{16}}\right ) & \phi_{s} <= \left (\tau_{nom}^* / \tau_{min}^* \right )^ \left ({\frac{3}{4}}\right ) \\ \tau_{s} - 1 & \tau_{s} > \left ( \tau_{nom}^* / \tau_{min}^* \right) ^ \left ({\frac{3}{4}}\right )\end{matrix}\right. = 0 </math>
|width=800px|<math> F \left (\phi_{s} \right ) = \left\{\begin{matrix} \phi_{s} - [{\frac{\phi_{s}^ \left ({\frac{-1}{3}}\right ) \tau_{nom}^* - 0.05}{0.7 \left ( \tau_{nom}^* \right ) ^ \left ({\frac{4}{5}}\right ) Fr^ \left ({\frac{14}{25}}\right )}}]^ \left ({\frac{-15}{16}}\right ) & \phi_{s} <= \left (\tau_{nom}^* / \tau_{min}^* \right )^ \left ({\frac{3}{4}}\right ) \\ \tau_{s} - 1 & \tau_{s} > \left ( \tau_{nom}^* / \tau_{min}^* \right) ^ \left ({\frac{3}{4}}\right )\end{matrix}\right. = 0 </math>
Line 298: Line 299:
|-
|-
| τ<sub>s</sub> <sup>*</sup>
| τ<sub>s</sub> <sup>*</sup>
|  
| Shields number due to form drag
| -
| -
|-
|-
Line 316: Line 317:
| median size of surface layer sediment  
| median size of surface layer sediment  
| L
| L
|-
| R
| sediment submerged specific gravity
| -
|-
|-
| q<sub>b</sub> <sup>*</sup>
| q<sub>b</sub> <sup>*</sup>
Line 334: Line 339:
|-
|-
| A
| A
|
| equals to 5.7 * 10<sup>-7</sup>
| -
| -
|-
|-
Line 345: Line 350:
| L / T
| L / T
|-
|-
|}
| ν
 
| kinematic viscosity of water
'''Output'''
| L<sup>2</sup> / T
{| {{Prettytable}} class="wikitable sortable"
|-
!Symbol!!Description!!Unit
| S<sub>f</sub>
| down-channel friction slope
| -
|-
| Re<sub>p</sub>
|
| -
|-
| u<sup>*</sup>
| shear velocity
| L / T
|-
| C<sub>z</sub>
| dimensionless Chezy resistance coefficient
| -
|-
| U
| depth-averaged flow velocity
| L / T
|-
| k<sub>c</sub>
| composite roughness height associated with both skin friction and form drag
| L
|-
| κ
| Von Karman constant in logarithmic velocity profile
| -
|-
| H<sub>s</sub>
| depth associated with skin friction
| L
|-
| ζ<sub>b</sub>
| equals to 0.05, in Wright-Parker formulation
| -
|-
| S
| bed slope
| -
|-
| Fr
| Froude number
| -
|-
| τ<sub>b</sub>
| boundary shear stress
| -
|-
| τ<sub>bf</sub>
| boundary shear stress due to dunes
| -
|-
| H<sub>f</sub>
| depth associated with dunes
| L
|-
| C<sub>fs</sub>
| friction coefficient due to skin friction
| -
|-
| D<sub>s90</sub>
| sediment size such that 90 % of the material in the surface layer is finer
| -
|-
| τ<sup>*</sup>
| Shields number
| -
|-
| τ<sub>min</sub> <sup>*</sup>
| minimum Shields number
| -
|-
| φ<sup>s</sup>
| ratio of bed shear stress due to skin friction to total bed shear stress
| -
|-
| S<sub>nom</sub>
| equals to S<sub>f</sub> φ<sub>s</sub><sup>-4/3</sup>
| -
|-
| τ<sub>nom</sub> <sup>*</sup>
| equals to H S<sub>nom</sub> / R D<sub>s50</sub>
| -
|-
|-
| x
| x
| downstream coordinate
| downstream coordinate
| m
| L
|-
|-
| ξ<sub>d</sub>
| ξ<sub>d</sub>
| downstream water surface elevation, must be larger than the beginning point water surface elevation
| downstream water surface elevation, must be larger than the beginning point water surface elevation
| m
| L
|-
|-
| η
| η
| bed surface elevation
| bed surface elevation
| m
| L
|-
|-
| H
| H
Line 369: Line 456:
| H<sub>s</sub>
| H<sub>s</sub>
| flow depth due to skin friction
| flow depth due to skin friction
| m
| L
|-
|-
|}
|}
Line 375: Line 462:
</div>
</div>
==Notes==
==Notes==
The program generates a plot of bed and water surface elevations η and ξ versus streamwise distance, as well as a plot of depth H and depth due to skin friction H<sub>s</sub> versus streamwise distance.
In the calculation of φ<sub>s</sub>, a Newton-Raphson iterative scheme solution is implemented. The solution is initiated with some guess φ<sub>s,1</sub>.  The calculation is continued until the relative error is under some acceptable limit. There always seems to be a first guess of φ<sub>s</sub> for which the Newton-Raphson scheme converges.  When τ<sub>nom</sub> <sup>*</sup> is only slightly greater than τ<sub>min</sub> <sup>*</sup> (in which case φ<sub>s</sub> is only slightly less than 1), however, the right initial guess is sometimes hard to find.  For example, the scheme may bounce back and forth between two values of φ<sub>s</sub> without converging, or may yield at some point a negative value of φ<sub>s</sub>. The following technique was adopted to overcome these difficulties:
a) The initial guess for φ<sub>s</sub> is set equal to 0.9.
b) Whenever the iterative scheme yields a negative value of φ<sub>s</sub>, φ<sub>s</sub> is reset to 1.02 and the iterative calculation recommenced.
c) Whenever the calculation does not converge, it is assumed that φ<sub>s</sub> is so close to 1 that it can be set equal to 1.
* Note on input parameters:
* Note on input parameters:


Line 384: Line 481:


This program requires a given downstream water water elevation, ξ<sub>d</sub>, such that Fr<sub>d</sub> < 1, because the flow is assumed subcritical, and the program will alert the user and quit if the condition is not met.
This program requires a given downstream water water elevation, ξ<sub>d</sub>, such that Fr<sub>d</sub> < 1, because the flow is assumed subcritical, and the program will alert the user and quit if the condition is not met.
Downstream bed elevation is set equal to 0, so that at normal conditions the downstream water surface elevation ξ<sub>d</sub> = H<sub>n</sub>. The user may then specify a value of ξ<sub>d</sub> that differs from H<sub>n</sub> (as long as the corresponding downstream Froude number is less than unity), and compute the resulting backwater curve.


==Examples==
==Examples==

Revision as of 11:06, 26 May 2011

The CSDMS Help System

BackwaterWrightParker

This is used to calculate backwater curves in sand-bed streams, including the effects of both skin friction and form drag due to skin friction.

Model introduction

This program calculates backwater curves over a sand-bed stream with a specified spatially constant bed slope S. The calculation uses the hydraulic resistance formulation of Wright and Parker (2004) (without the flow stratification correction), as well as calculating the normal depth.

Model parameters

Parameter Description Unit
Input directory Path to input file
Site prefix site prefix for Input/Output files -
Case prefix Case prefix for Input/Output files -
Parameter Description Unit
bed slope -
Submerged specific gravity of sediment -
Median grain size (D50) -
Grain size such that 90% passes (D90) grain diameter such that 90% of the distribution is finer mm
channel width (B) m
flow discharge (Q) m3 / s
downstream water surface elevation (k) m
reach length (L) m
number of spatial nodes (max of 99) -
Parameter Description Unit
Model name name of the model -
Author name Name of the model author -
Median grain size (D50) -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • Exner equation of sediment continuity
[math]\displaystyle{ \left ( 1 - \lambda_{p} \right ) = - I_{f} {\frac{\partial q_{t}}{\partial x}} = - I_{f}{\frac{\partial q_{b}}{\partial x}} - I_{f} {\frac{\partial q_{s}}{\partial x}} }[/math] (1)
  • Bedload transport in sand-bed streams (Ashida and Michiue, 1972)
[math]\displaystyle{ \tau_{s}^* = {\frac{\tau_{bs}}{\rho R g D_{s50}}} }[/math] (2)
[math]\displaystyle{ q_{b}^* = {\frac{q_{b}}{\sqrt{R g D_{s50} D_{s50}}}} = 17 \left ( \tau_{s}^* - \tau_{c}^* \right ) \left ( \sqrt{\tau_{s}^*} - \sqrt{\tau_{c}^*} \right ) }[/math] (3)
  • Entrainment of sand into suspension (Wright and Parker, 2004)
[math]\displaystyle{ E = {\frac{A Z_{u}^5}{1 + {\frac{A}{0.3}} Z_{u}^5}} }[/math] (4)
[math]\displaystyle{ Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p}^\left (0.6\right ) S_{f}^ \left (0.07\right ) }[/math] (5)
[math]\displaystyle{ u_{*s} = \sqrt{{\frac{\tau_{bs}}{\rho}}} }[/math] (6)
[math]\displaystyle{ Re_{p} = {\frac{\sqrt{R g D_{s50}} D_{s50}}{\nu}} }[/math] (7)
  • Suspended sediment transport rate (Wright-Parker formulation)
[math]\displaystyle{ u_{*} = \left ( g H S_{f} \right )^ \left ({\frac{1}{2}}\right ) }[/math] (8)
[math]\displaystyle{ u_{*s} = \left ( g H_{s} S_{f} \right )^ \left ({\frac{1}{2}}\right ) }[/math] (9)
[math]\displaystyle{ C_{z} = {\frac{U}{u_{*}}} }[/math] (10)
[math]\displaystyle{ k_{c} = 11 {\frac{H}{exp \left ( \kappa C_{z} \right )}} }[/math] (11)
[math]\displaystyle{ q_{s} = {\frac{E u_{*} H}{\kappa}} I }[/math] (12)
[math]\displaystyle{ I \left ( {\frac{u_{*}}{v_{s}}}, {\frac{H}{k_{c}}}, \zeta_{b} \right ) = \int_{\zeta_{b}}^1 [{\frac{\left (1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta_{b}\right ) / \zeta_{b}}}]^ \left ({\frac{v_{s}}{\kappa u_{*}}} \right ) ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right) d \zeta }[/math] (13)
  • Gradually varied flow in sand-bed rivers including the effect of bedforms

1) Backwater equation

[math]\displaystyle{ {\frac{dH}{dx}} = {\frac{S - S_{f}}{1 - Fr^2}} }[/math] (14)

2) Froude number

[math]\displaystyle{ Fr = {\frac{q_{w}}{g^ \left ({\frac{1}{2}}\right ) H^ \left ( {\frac{3}{2}}\right )}} }[/math] (15)

3) Friction slope

[math]\displaystyle{ S_{f} = C_{f} {\frac{U^2}{g H}} = {\frac{\tau_{b}}{\rho g H}} = \phi_{s}^ \left ({\frac{-4}{3}}\right ) S_{nom} }[/math] (16)

4) boundary shear stress in a sand-bed river

[math]\displaystyle{ \tau_{b} = \tau_{bs} + \tau_{bf} = \rho \left ( C_{fs} + C_{ff} \right ) U^2 }[/math] (17)

5) boundary depth in a sand-bed river

[math]\displaystyle{ H = H_{s} + H_{f} }[/math] (18)

6) friction coefficient due to skin friction

[math]\displaystyle{ C_{fs}^ \left ({\frac{-1}{2}}\right ) = {\frac{q_{w}}{H \sqrt{g H_{s} S_{f}}}} = 8.32 \left ({\frac{H_{s}}{3D_{s90}}}\right )^ \left ({\frac{1}{6}}\right ) }[/math] (19)

7) Shields number due to form drag

[math]\displaystyle{ \tau_{s}^* = {\frac{H_{s} S_{f}}{R D_{50}}} = \left\{\begin{matrix} 0.05 + 0.7 \left (\tau^* Fr^ \left (0.7\right ) \right )^ \left (0.8\right ) & \tau^* \gt = \tau_{min}^* \\ \tau^* & \tau^* \lt \tau_{min}^*\end{matrix}\right. }[/math] (20)

8) Shields number

[math]\displaystyle{ \tau^* = {\frac{H S_{f}}{R D_{s50}}} }[/math] (21)
  • Bed shear stress due to skin friction to total bed shear stress
[math]\displaystyle{ \phi = \left\{\begin{matrix} {\frac{0.05 + 0.7 \left ( \tau^* Fr ^ \left (0.7\right ) \right ) ^ \left (0.8\right )}{\tau^*}} & \tau^* \gt =\tau_{min}^* \\ 1 & \tau^* \lt \tau_{min}^* \end{matrix}\right. }[/math] (22)
  • Minimum Shields number
[math]\displaystyle{ \tau_{min}^* = 0.05 + 0.7 \left ( \tau_{min}^* Fr^ \left (0.7\right ) \right ) ^ \left (0.8\right ) }[/math] (23)
  • Calculation of Hs and Sf from known depth H
[math]\displaystyle{ F \left (\phi_{s} \right ) = \left\{\begin{matrix} \phi_{s} - [{\frac{\phi_{s}^ \left ({\frac{-1}{3}}\right ) \tau_{nom}^* - 0.05}{0.7 \left ( \tau_{nom}^* \right ) ^ \left ({\frac{4}{5}}\right ) Fr^ \left ({\frac{14}{25}}\right )}}]^ \left ({\frac{-15}{16}}\right ) & \phi_{s} \lt = \left (\tau_{nom}^* / \tau_{min}^* \right )^ \left ({\frac{3}{4}}\right ) \\ \tau_{s} - 1 & \tau_{s} \gt \left ( \tau_{nom}^* / \tau_{min}^* \right) ^ \left ({\frac{3}{4}}\right )\end{matrix}\right. = 0 }[/math] (24)
  • Calculation of the normal flow condition prevailing in the absence of the dredge slot
[math]\displaystyle{ S_{f} = S }[/math] (25)
[math]\displaystyle{ F_{N} \left (H\right ) = \left\{\begin{matrix} H \phi_{s} \left (H\right ) - {\frac{R D_{50}}{S}}[0.05 + 0.7 \left ({\frac{H S}{R D_{s50}}}\right )^ \left ({\frac{4}{5}}\right )\left ({\frac{q_{w}}{\sqrt{g}H^ \left ({\frac{3}{2}}\right )}}\right )^ \left ({\frac{14}{25}}\right )] & H \gt = {\frac{R D_{50} \tau_{min}^*}{S}} \\ H \phi_{s} \left (H\right ) - H & H \lt {\frac{R D_{50} \tau_{min}^*}{S}} \end{matrix}\right. = 0 }[/math] (26)

Notes

The program generates a plot of bed and water surface elevations η and ξ versus streamwise distance, as well as a plot of depth H and depth due to skin friction Hs versus streamwise distance.

In the calculation of φs, a Newton-Raphson iterative scheme solution is implemented. The solution is initiated with some guess φs,1. The calculation is continued until the relative error is under some acceptable limit. There always seems to be a first guess of φs for which the Newton-Raphson scheme converges. When τnom * is only slightly greater than τmin * (in which case φs is only slightly less than 1), however, the right initial guess is sometimes hard to find. For example, the scheme may bounce back and forth between two values of φs without converging, or may yield at some point a negative value of φs. The following technique was adopted to overcome these difficulties:

a) The initial guess for φs is set equal to 0.9.

b) Whenever the iterative scheme yields a negative value of φs, φs is reset to 1.02 and the iterative calculation recommenced.

c) Whenever the calculation does not converge, it is assumed that φs is so close to 1 that it can be set equal to 1.

  • Note on input parameters:

If the minimum shear stress due to skin friction τs,min, calculation bombs at any point the program will end.

If the height due to skin friction Hs, calculation bombs, the program will assign the last value in the calculations to Hs.

If the Hnorm calculation bombs, the value for Hnorm is not outputted, but this does not affect the other values that are calculated.

This program requires a given downstream water water elevation, ξd, such that Frd < 1, because the flow is assumed subcritical, and the program will alert the user and quit if the condition is not met.

Downstream bed elevation is set equal to 0, so that at normal conditions the downstream water surface elevation ξd = Hn. The user may then specify a value of ξd that differs from Hn (as long as the corresponding downstream Froude number is less than unity), and compute the resulting backwater curve.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Ashida, K. and M. Michiue, 1972, Study on hydraulic resistance and bedload transport rate in alluvial streams, Transactions, Japan Society of Civil Engineering, 206: 59-69 (in Japanese).
  • Wright, S. and G. Parker, 2004, Flow resistance and suspended load in sand-bed rivers: simplified stratification model, Journal of Hydraulic Engineering, 130(8), 796-805.

Links