Model help:BackwaterWrightParker: Difference between revisions

From CSDMS
mNo edit summary
No edit summary
Line 110: Line 110:


==Main equations==
==Main equations==
<span class="remove_this_tag">A list of the key equations. HTML format is supported; latex format will be supported in the future</span>
* Exner equation of sediment continuity
::::{|
|width=800px|<math> \left ( 1 - \lambda_{p} \right ) = - I_{f} {\frac{\partial q_{t}}{\partial x}} = - I_{f}{\frac{\partial q_{b}}{\partial x}} - I_{f} {\frac{\partial q_{s}}{\partial x}}  </math>
|width=50p=x align="right"|(1)
|}
* Bedload transport in sand-bed streams
::::{|
|width=800px|<math> \tau_{s}^* = {\frac{\tau_{bs}}{\rho R g D_{s50}}}  </math>
|width=50p=x align="right"|(2)
|}
::::{|
|width=800px|<math> q_{b}^* = {\frac{q_{b}}{\sqrt{R g D_{s50} D_{s50}}}} = 17 \left ( \tau_{s}^* - \tau_{c}^* \right ) \left ( \sqrt{\tau_{s}^*} - \sqrt{\tau_{c}^*} \right ) </math>
|width=50p=x align="right"|(3)
|}
* Entrainment of sand into suspension
::::{|
|width=800px|<math> E = {\frac{A Z_{u}^5}{1 + {\frac{A}{0.3}} Z_{u}^5}} </math>
|width=50p=x align="right"|(4)
|}
::::{|
|width=800px|<math> Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p}^\left (0.6\right ) S_{f}^ \left (0.07\right ) </math>
|width=50p=x align="right"|(5)
|}
::::{|
|width=800px|<math> u_{*s} = \sqrt{{\frac{\tau_{bs}}{\rho}}} </math>
|width=50p=x align="right"|(6)
|}
::::{|
|width=800px|<math> Re_{p} = {\frac{\sqrt{R g D_{s50}} D_{s50}}{\nu}} </math>
|width=50p=x align="right"|(7)
|}
* Suspended sediment transport rate
::::{|
|width=800px|<math> u_{*} = \left ( g H S_{f} \right )^ \left ({\frac{1}{2}}\right ) </math>
|width=50p=x align="right"|(8)
|}
::::{|
|width=800px|<math> u_{*s} = \left ( g H_{s} S_{f} \right )^ \left ({\frac{1}{2}}\right ) </math>
|width=50p=x align="right"|(9)
|}
::::{|
|width=800px|<math> C_{z} = {\frac{U}{u_{*}}} </math>
|width=50p=x align="right"|(10)
|}
::::{|
|width=800px|<math> k_{c} = 11 {\frac{H}{exp \left ( \kappa C_{z} \right )}} </math>
|width=50p=x align="right"|(11)
|}
::::{|
|width=800px|<math> q_{s} = {\frac{E u_{*} H}{\kappa}} I </math>
|width=50p=x align="right"|(12)
|}
::::{|
|width=800px|<math> I \left ( {\frac{u_{*}}{v_{s}}}, {\frac{H}{k_{c}}}, \zeta_{b} \right ) = \int_{\zeta_{b}}^1 [{\frac{\left (1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta_{b}\right ) / \zeta_{b}}}]^ \left ({\frac{v_{s}}{\kappa u_{*}}} \right ) ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right) d \zeta </math>
|width=50p=x align="right"|(13)
|}
* Gradually varied flow in sand-bed rivers including the effect of bedforms
1) Backwater equation
::::{|
|width=800px|<math> {\frac{dH}{dx}} = {\frac{S - S_{f}}{1 - Fr^2}} </math>
|width=50p=x align="right"|(14)
|}
2) Froude number
::::{|
|width=800px|<math> Fr = {\frac{q_{w}}{g^ \left ({\frac{1}{2}}\right ) H^ \left ( {\frac{3}{2}}\right )}} </math>
|width=50p=x align="right"|(15)
|}
3) Friction slope
::::{|
|width=800px|<math> S_{f} = C_{f} {\frac{U^2}{g H}} = {\frac{\tau_{b}}{\rho g H}} = \phi_{s}^ \left ({\frac{-4}{3}}\right ) S_{nom}</math>
|width=50p=x align="right"|(16)
|}
4) boundary shear stress in a sand-bed river
::::{|
|width=800px|<math> \tau_{b} = \tau_{bs} + \tau_{bf} = \rho \left ( C_{fs} + C_{ff} \right ) U^2 </math>
|width=50p=x align="right"|(17)
|}
5) boundary depth in a sand-bed river
::::{|
|width=800px|<math> H = H_{s} + H_{f} </math>
|width=50p=x align="right"|(18)
|}
6)
::::{|
|width=800px|<math> C_{fs}^ \left ({\frac{-1}{2}}\right ) = {\frac{q_{w}}{H \sqrt{g H_{s} S_{f}}}} = 8.32 \left ({\frac{H_{s}}{3D_{s90}}}\right )^ \left ({\frac{1}{6}}\right ) </math>
|width=50p=x align="right"|(19)
|}
7)
::::{|
|width=800px|<math> \tau_{s}^* = {\frac{H_{s} S_{f}}{R D_{50}}} = \left\{\begin{matrix} 0.05 + 0.7 \left (\tau^* Fr^ \left (0.7\right ) \right )^ \left (0.8\right ) & \tau^* >= \tau_{min}^* \\ \tau^* & \tau^* < \tau_{min}^*\end{matrix}\right. </math>
|width=50p=x align="right"|(20)
|}
8)
::::{|
|width=800px|<math> \tau^* = {\frac{H S_{f}}{R D_{s50}}} </math>
|width=50p=x align="right"|(21)
|}
* Bed shear stress due to skin friction to total bed shear stress
::::{|
|width=800px|<math> \phi = \left\{\begin{matrix} {\frac{0.05 + 0.7 \left ( \tau^* Fr ^ \left (0.7\right ) \right ) ^ \left (0.8\right )}{\tau^*}} & \tau^* >=\tau_{min}^* \\ 1 & \tau^* < \tau_{min}^* \end{matrix}\right. </math>
|width=50p=x align="right"|(22)
|}
* Minimum Shields number
::::{|
|width=800px|<math> \tau_{min}^* = 0.05 + 0.7 \left ( \tau_{min}^* Fr^ \left (0.7\right ) \right ) ^ \left (0.8\right ) </math>
|width=50p=x align="right"|(23)
|}
::::{|
|width=800px|<math> F \left (\phi_{s} \right ) = \left\{\begin{matrix} \phi_{s} - [{\frac{\phi_{s}^ \left ({\frac{-1}{3}}\right ) \tau_{nom}^* - 0.05}{0.7 \left ( \tau_{nom}^* \right ) ^ \left ({\frac{4}{5}}\right ) Fr^ \left ({\frac{14}{25}}\right )}}]^ \left ({\frac{-15}{16}}\right ) & \phi_{s} <= \left (\tau_{nom}^* / \tau_{min}^* \right )^ \left ({\frac{3}{4}}\right ) \\ \tau_{s} - 1 & \tau_{s} > \left ( \tau_{nom}^* / \tau_{min}^* \right) ^ \left ({\frac{3}{4}}\right )\end{matrix}\right. = 0 </math>
|width=50p=x align="right"|(24)
|}
* Calculation of the normal flow condition prevailing in the absence of the dredge slot
::::{|
|width=800px|<math> S_{f} = S </math>
|width=50p=x align="right"|(25)
|}
::::{|
|width=800px|<math> F_{N} \left (H\right ) = \left\{\begin{matrix} H \phi_{s} \left (H\right ) - {\frac{R D_{50}}{S}}[0.05 + 0.7 \left ({\frac{H S}{R D_{s50}}}\right )^ \left ({\frac{4}{5}}\right )\left ({\frac{q_{w}}{\sqrt{g}H^ \left ({\frac{3}{2}}\right )}}\right )^ \left ({\frac{14}{25}}\right )] & H >= {\frac{R D_{50} \tau_{min}^*}{S}} \\ H \phi_{s} \left (H\right ) - H & H < {\frac{R D_{50} \tau_{min}^*}{S}} \end{matrix}\right. = 0  </math>
|width=50p=x align="right"|(26)
|}


<div class="NavFrame collapsed" style="text-align:left">
<div class="NavFrame collapsed" style="text-align:left">
Line 157: Line 276:
| downstream Froude number
| downstream Froude number
| m
| m
|-
| λ<sub>p</sub>
| sediment porosity
| -
|-
| I<sub>f</sub>
| flood intermittency
| -
|-
| q<sub>t</sub>
| total volume bed material load transport rate per unit width
| L<sup>2</sup> / T
|-
| q<sub>b</sub>
| total volume bedload transport rate per unit width
| L<sup>2</sup> / T
|-
| q<sub>s</sub>
| volume bed material suspended load transport rate per unit width
| L<sup>2</sup> / T
|-
| τ<sub>s</sub> <sup>*</sup>
|
| -
|-
| τ<sub>bs</sub>
| boundary shear stress due to skin friction
| -
|-
| ρ
| water density
| M / L<sup>3</sup>
|-
| g
| acceleration due to gravity
| L / T<sup>2</sup>
|-
| D<sub>s50</sub>
| median size of surface layer sediment
| L
|-
| q<sub>b</sub> <sup>*</sup>
|
| -
|-
| τ<sub>c</sub> <sup>*</sup>
| critical Shields number at the threshold of motion, equals to 0.05
| -
|-
| E
| volume rate of entrainment of bed particles into bedload transport per unit bed area per unit time
| -
|-
| Z<sub>u</sub>
|
| -
|-
| A
|
| -
|-
| u<sub>*s</sub>
| shear velocity due to skin friction
| L / T
|-
| v<sub>s</sub>
| particle terminal fall velocity in quiescent water
| L / T
|-
|-
|}
|}
Line 211: Line 398:


==References==
==References==
* Ashida, K. and M. Michiue, 1972, Study on hydraulic resistance and bedload transport rate in alluvial streams, Transactions, Japan Society of Civil Engineering, 206: 59-69 (in Japanese).
* Wright, S. and G. Parker, 2004, Flow resistance and suspended load in sand-bed rivers: simplified stratification model, Journal of Hydraulic Engineering, 130(8), 796-805.
* Wright, S. and G. Parker, 2004, Flow resistance and suspended load in sand-bed rivers: simplified stratification model, Journal of Hydraulic Engineering, 130(8), 796-805.



Revision as of 18:08, 25 May 2011

The CSDMS Help System

BackwaterWrightParker

This is used to calculate backwater curves in sand-bed streams, including the effects of both skin friction and form drag due to skin friction.

Model introduction

This program calculates backwater curves over a sand-bed stream with a specified spatially constant bed slope S. The calculation uses the hydraulic resistance formulation of Wright and Parker (2004) (without the flow stratification correction), as well as calculating the normal depth.

Model parameters

Parameter Description Unit
Input directory Path to input file
Site prefix site prefix for Input/Output files -
Case prefix Case prefix for Input/Output files -
Parameter Description Unit
bed slope -
Submerged specific gravity of sediment -
Median grain size (D50) -
Grain size such that 90% passes (D90) grain diameter such that 90% of the distribution is finer mm
channel width (B) m
flow discharge (Q) m3 / s
downstream water surface elevation (k) m
reach length (L) m
number of spatial nodes (max of 99) -
Parameter Description Unit
Model name name of the model -
Author name Name of the model author -
Median grain size (D50) -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • Exner equation of sediment continuity
[math]\displaystyle{ \left ( 1 - \lambda_{p} \right ) = - I_{f} {\frac{\partial q_{t}}{\partial x}} = - I_{f}{\frac{\partial q_{b}}{\partial x}} - I_{f} {\frac{\partial q_{s}}{\partial x}} }[/math] (1)
  • Bedload transport in sand-bed streams
[math]\displaystyle{ \tau_{s}^* = {\frac{\tau_{bs}}{\rho R g D_{s50}}} }[/math] (2)
[math]\displaystyle{ q_{b}^* = {\frac{q_{b}}{\sqrt{R g D_{s50} D_{s50}}}} = 17 \left ( \tau_{s}^* - \tau_{c}^* \right ) \left ( \sqrt{\tau_{s}^*} - \sqrt{\tau_{c}^*} \right ) }[/math] (3)
  • Entrainment of sand into suspension
[math]\displaystyle{ E = {\frac{A Z_{u}^5}{1 + {\frac{A}{0.3}} Z_{u}^5}} }[/math] (4)
[math]\displaystyle{ Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p}^\left (0.6\right ) S_{f}^ \left (0.07\right ) }[/math] (5)
[math]\displaystyle{ u_{*s} = \sqrt{{\frac{\tau_{bs}}{\rho}}} }[/math] (6)
[math]\displaystyle{ Re_{p} = {\frac{\sqrt{R g D_{s50}} D_{s50}}{\nu}} }[/math] (7)
  • Suspended sediment transport rate
[math]\displaystyle{ u_{*} = \left ( g H S_{f} \right )^ \left ({\frac{1}{2}}\right ) }[/math] (8)
[math]\displaystyle{ u_{*s} = \left ( g H_{s} S_{f} \right )^ \left ({\frac{1}{2}}\right ) }[/math] (9)
[math]\displaystyle{ C_{z} = {\frac{U}{u_{*}}} }[/math] (10)
[math]\displaystyle{ k_{c} = 11 {\frac{H}{exp \left ( \kappa C_{z} \right )}} }[/math] (11)
[math]\displaystyle{ q_{s} = {\frac{E u_{*} H}{\kappa}} I }[/math] (12)
[math]\displaystyle{ I \left ( {\frac{u_{*}}{v_{s}}}, {\frac{H}{k_{c}}}, \zeta_{b} \right ) = \int_{\zeta_{b}}^1 [{\frac{\left (1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta_{b}\right ) / \zeta_{b}}}]^ \left ({\frac{v_{s}}{\kappa u_{*}}} \right ) ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right) d \zeta }[/math] (13)
  • Gradually varied flow in sand-bed rivers including the effect of bedforms

1) Backwater equation

[math]\displaystyle{ {\frac{dH}{dx}} = {\frac{S - S_{f}}{1 - Fr^2}} }[/math] (14)

2) Froude number

[math]\displaystyle{ Fr = {\frac{q_{w}}{g^ \left ({\frac{1}{2}}\right ) H^ \left ( {\frac{3}{2}}\right )}} }[/math] (15)

3) Friction slope

[math]\displaystyle{ S_{f} = C_{f} {\frac{U^2}{g H}} = {\frac{\tau_{b}}{\rho g H}} = \phi_{s}^ \left ({\frac{-4}{3}}\right ) S_{nom} }[/math] (16)

4) boundary shear stress in a sand-bed river

[math]\displaystyle{ \tau_{b} = \tau_{bs} + \tau_{bf} = \rho \left ( C_{fs} + C_{ff} \right ) U^2 }[/math] (17)

5) boundary depth in a sand-bed river

[math]\displaystyle{ H = H_{s} + H_{f} }[/math] (18)

6)

[math]\displaystyle{ C_{fs}^ \left ({\frac{-1}{2}}\right ) = {\frac{q_{w}}{H \sqrt{g H_{s} S_{f}}}} = 8.32 \left ({\frac{H_{s}}{3D_{s90}}}\right )^ \left ({\frac{1}{6}}\right ) }[/math] (19)

7)

[math]\displaystyle{ \tau_{s}^* = {\frac{H_{s} S_{f}}{R D_{50}}} = \left\{\begin{matrix} 0.05 + 0.7 \left (\tau^* Fr^ \left (0.7\right ) \right )^ \left (0.8\right ) & \tau^* \gt = \tau_{min}^* \\ \tau^* & \tau^* \lt \tau_{min}^*\end{matrix}\right. }[/math] (20)

8)

[math]\displaystyle{ \tau^* = {\frac{H S_{f}}{R D_{s50}}} }[/math] (21)
  • Bed shear stress due to skin friction to total bed shear stress
[math]\displaystyle{ \phi = \left\{\begin{matrix} {\frac{0.05 + 0.7 \left ( \tau^* Fr ^ \left (0.7\right ) \right ) ^ \left (0.8\right )}{\tau^*}} & \tau^* \gt =\tau_{min}^* \\ 1 & \tau^* \lt \tau_{min}^* \end{matrix}\right. }[/math] (22)
  • Minimum Shields number
[math]\displaystyle{ \tau_{min}^* = 0.05 + 0.7 \left ( \tau_{min}^* Fr^ \left (0.7\right ) \right ) ^ \left (0.8\right ) }[/math] (23)
[math]\displaystyle{ F \left (\phi_{s} \right ) = \left\{\begin{matrix} \phi_{s} - [{\frac{\phi_{s}^ \left ({\frac{-1}{3}}\right ) \tau_{nom}^* - 0.05}{0.7 \left ( \tau_{nom}^* \right ) ^ \left ({\frac{4}{5}}\right ) Fr^ \left ({\frac{14}{25}}\right )}}]^ \left ({\frac{-15}{16}}\right ) & \phi_{s} \lt = \left (\tau_{nom}^* / \tau_{min}^* \right )^ \left ({\frac{3}{4}}\right ) \\ \tau_{s} - 1 & \tau_{s} \gt \left ( \tau_{nom}^* / \tau_{min}^* \right) ^ \left ({\frac{3}{4}}\right )\end{matrix}\right. = 0 }[/math] (24)
  • Calculation of the normal flow condition prevailing in the absence of the dredge slot
[math]\displaystyle{ S_{f} = S }[/math] (25)
[math]\displaystyle{ F_{N} \left (H\right ) = \left\{\begin{matrix} H \phi_{s} \left (H\right ) - {\frac{R D_{50}}{S}}[0.05 + 0.7 \left ({\frac{H S}{R D_{s50}}}\right )^ \left ({\frac{4}{5}}\right )\left ({\frac{q_{w}}{\sqrt{g}H^ \left ({\frac{3}{2}}\right )}}\right )^ \left ({\frac{14}{25}}\right )] & H \gt = {\frac{R D_{50} \tau_{min}^*}{S}} \\ H \phi_{s} \left (H\right ) - H & H \lt {\frac{R D_{50} \tau_{min}^*}{S}} \end{matrix}\right. = 0 }[/math] (26)

Notes

  • Note on input parameters:

If the minimum shear stress due to skin friction τs,min, calculation bombs at any point the program will end.

If the height due to skin friction Hs, calculation bombs, the program will assign the last value in the calculations to Hs.

If the Hnorm calculation bombs, the value for Hnorm is not outputted, but this does not affect the other values that are calculated.

This program requires a given downstream water water elevation, ξd, such that Frd < 1, because the flow is assumed subcritical, and the program will alert the user and quit if the condition is not met.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Ashida, K. and M. Michiue, 1972, Study on hydraulic resistance and bedload transport rate in alluvial streams, Transactions, Japan Society of Civil Engineering, 206: 59-69 (in Japanese).
  • Wright, S. and G. Parker, 2004, Flow resistance and suspended load in sand-bed rivers: simplified stratification model, Journal of Hydraulic Engineering, 130(8), 796-805.

Links