Model help:AgDegNormal: Difference between revisions

From CSDMS
No edit summary
No edit summary
Line 20: Line 20:


By modifying the sediment feed rate (G<sub>tf</sub>) at the upstream end, the river can be forced to aggrade or degrade to a new equilibrium. The module computes this evolution.
By modifying the sediment feed rate (G<sub>tf</sub>) at the upstream end, the river can be forced to aggrade or degrade to a new equilibrium. The module computes this evolution.


==Model parameters==
==Model parameters==
Line 150: Line 149:


==Main equations==
==Main equations==
* Manning-Strickler formulation
* Flow in the channel (using Manning-Strickler formulation)
::::{|
::::{|
|width=500px|<math>C_{f}^\left ( {\frac{-1}{2}} \right )=\alpha _{r}\left ( \frac{H}{K_{c}} \right )^{\frac{1}{6}}</math>
|width=500px|<math>C_{z}={\frac{U}{u_{*}}}=\alpha _{r}\left ( \frac{H}{K_{c}} \right )^{\frac{1}{6}}</math>
|width=50px align="right"|(1)
|width=50px align="right"|(1)
|}
|}
* Total bed material load per unit width
* grain roughness (Used as roughness height when bedforms are absent)
::::{|
|width=500px|<math>k_{s} = n_{k} D </math>
|width=50px align="right"|(2)
|}
* water conservation for a quasi-steady flow
::::{|
|width=500px|<math> Q = q<sub>w</sub> B = U B H </math>
|width=50px align="right"|(3)
|}
* Boundary shear stress
::::{|
|width=500px|<math> \tau _{b} = \rho u_{*} ^2 = \rho g H S </math>
|width=50px align="right"|(4)
|}
* Shields number (Shields stress)
::::{|
|width=500px|<math> \tau ^* = {\frac{\tau _{b}}{\rho R g D}} = {\frac{H S}{R D}} </math>
|width=50px align="right"|(5)
|}
* Submerged specific gravity
::::{|
|width=500px|<math> R = {\frac{\rho _{s}}{\rho}} - 1 </math>
|width=50px align="right"|(6)
|}
* Water depth
::::{|
|width=500px|<math> H = [{\frac{\left (k_{c} \right ) ^{\frac{1}{3}} Q_{w}^2}{\alpha _{r} g B^2 S}}]^{\frac{3}{10}} </math>
|width=50px align="right"|(7)
|}
* Computation of the sediment transport (Meyer-Peter and Muller equation )
1) τ<sup>*</sup> > τ<sub>c</sub> <sup>*</sup>
::::{|
|width=500px|<math>q_{t} ^* = \alpha_{t} \left ( \varphi_{s} \tau ^2 - \tau_{c} ^* \right ) ^ \left ( n_{t} \right ) </math>
|width=50px align="right"|(8)
|}
2) τ<sup>*</sup> <= τ<sub>c</sub> <sup>*</sup>
::::{|
|width=500px|<math>q_{t} ^* = 0 </math>
|width=50px align="right"|(9)
|}
* Einstein number
::::{|
|width=500px|<math>q_{t} ^* = {\frac {q_{t}}{\sqrt{R g D} D}}  </math>
|width=50px align="right"|(10)
|}
* Cumulative time of the river has been in flood
::::{|
|width=500px|<math>t_{f} = I_{f} t </math>
|width=50px align="right"|(11)
|}
* Equilibrium  (graded) states
* Annual sediment yield with a graded state at this slope
::::{|
|width=500px|<math>G_{t} = \rho_{s} q_{t} Bl_{f} t_{a} </math>
|width=50px align="right"|(12)
|}
* Volume sediment transport rate per unit width obtained at the graded state
::::{|
::::{|
|width=500px|<math>\frac{q_{t}}{{\sqrt{RgD}D}}=\alpha_{t}\left ( \frac{\varphi_{s}\tau _{b}}{\rho RgD} -\tau_{c}^* \right )^{n_{t}}</math>
|width=500px|<math>q_{t} = {\frac{G_{tf}}{\rho_{s}Bl_{f} t_{a}}} </math>
|width=50px align=right|(2)
|width=50px align="right"|(13)
|}
|}
* Exner equation
* Computation of bed variation
* Exner equation of sediment continuity (assume that q<sub>t</sub> is zero for most of the time)
::::{|
::::{|
|width=500px|<math>\left ( 1-\lambda_{p} \right )\frac{\partial \eta }{\partial t}=-I_{f}\frac{\partial q_{t}}{\partial X}</math>
|width=500px|<math>\left ( 1 - \lambda_{p} \right ) {\frac{\partial\eta}{\partial t}} = - {\frac{\partial q_{t}}{\partial x}} </math>
|width=50px align=right|(3)
|width=50px align="right"|(14)
|}
|}
* Discretized Exner equation
* Exner equation of sediment continuity (average over many floods)
::::{|
::::{|
|width=500px|<math>\eta \left| _{i,t+\Delta t}=\eta  \right |_{i,t}-\frac{I_{f}}{1-\lambda _{p}}\frac{\Delta q_{t,i}}{\Delta X}\Delta t</math>
|width=500px|<math> \left ( 1 - \lambda_{p} \right ) {\frac{\partial \eta}{\partial t}}= - {\frac{\partial l_{f} q_{t}}{\partial x}} </math>
|width=50px align=right|(4)
|width=50px align="right"|(15)
|}
|}
* Spatial derivative of the total bed material load per unit width
* Spatial derivative of the total bed material load per unit width
::::{|
::::{|
|width=500px|<math>\frac{\Delta q_{t,i}}{\Delta X}=a_{u}\frac{q_{t,i}-q_{t,i-1}}{\Delta X}+\left ( 1-a_{u} \right )\frac{q_{t,i+1}-q_{t,i}}{\Delta X}</math>
|width=500px|<math>\frac{\Delta q_{t,i}}{\Delta X}=a_{u}\frac{q_{t,i}-q_{t,i-1}}{\Delta X}+\left ( 1-a_{u} \right )\frac{q_{t,i+1}-q_{t,i}}{\Delta X}</math>
|width=50px align=right|(5)
|width=50px align=right|(16)
|}
|}
* Bed slope is computed in each node
* Bed slope computed in each node
::::{|
::::{|
|width=500px|<math>S=\left\{\begin{matrix}
|width=500px|<math>S=\left\{\begin{matrix}
Line 182: Line 239:
\frac{\eta _{M} - \eta _{M+1}}{\Delta X} & i=M+1
\frac{\eta _{M} - \eta _{M+1}}{\Delta X} & i=M+1
\end{matrix}\right.</math>  
\end{matrix}\right.</math>  
|width=50px align=right|(6)
|width=50px align=right|(17)
|}
|}
* Initial profile
* Initial bed elevation
::::{|
::::{|
|width=500px|<math>\eta \left ( x,t \right ) | _{t=0}=\eta _{Id}+S_{I}\left ( L-x \right )</math>
|width=500px|<math>\eta_{i}=S \left ( L - x_{i} \right )</math>
|width=50px align=right|(7)
|width=50px align=right|(18)
|}
|}
* non-dimensional total shear stress
* non-dimensional total shear stress
::::{|
::::{|
|width=500px|<math> \tau _{b} ^* = {\frac{\tau _{b}}{\left ( \rho _{s} - \rho \right ) g D}} </math>
|width=500px|<math> \tau _{b} ^* = {\frac{\tau _{b}}{\left ( \rho _{s} - \rho \right ) g D}} </math>
|width=50px align=right|(8)
|width=50px align=right|(19)
|}
|}



Revision as of 16:49, 9 May 2011

The CSDMS Help System

AgDegNormal

This module calculates a) the equilibrium sediment transport rate and b) the morphodynamic evolution of a reach due to a change in sediment input rate.

Model introduction

The module computes variation in river bed level η(x, t), where x denotes a streamwise coordinate and t denotes time, in a river with constant width B. The bed sediment is characterized in terms of a single grain size D and submerged specific gravity R. The reach under consideration has length L. Bed elevation at the downstream end is assumed to be fixed. The model is based on total bed material load. The model is 1D, assumes a rectangular channel and neglects wall effects.

By modifying the sediment feed rate (Gtf) at the upstream end, the river can be forced to aggrade or degrade to a new equilibrium. The module computes this evolution.

Model parameters

Parameter Description Unit
Input directory Determine if you want to use the "GUI" interface to provide input parameter values or use a text file with the input parameters by providing the location of the file on the server. [-]
Site prefix Part of the input and output file name e.g. the name of the geographic location, or project [-]
Case prefix Part of the input and output file name that provides you the opportunity to do different scenario simulations for e.g. the same location, or project [-]
Parameter Description Unit
Flood discharge [m2/s]
Intermittency [-]
Channel width [m]
Grain size [mm]
Bed porosity [-]
Roughness height [mm]
Ambient Bed Slope [-]
Imposed Annual sediment transport rate from upstream [tons/year]
Length of reach [m]
Time step [days]
Number of time steps per printout [-]
Number of printouts [-]
intervals [-]
Upwinding coefficient (1 = full upwind, 0.5 = central difference) [-]
Coefficient in Manning-Strickler resistance relation [-]
Coefficient in sediment transport relation [-]
Exponent in sediment tranpsort relation [-]
Critical Shields stress [-]
Fraction of bed shear stress that is a skin friction Fraction of bed shear stress that is a skin friction [-]
Submerged specific gravity of sediment [-]
Parameter Description Unit
Model name The name of the model [-]
Author name The developer of the model [-]

Uses ports

This component has no uses ports.

Provides ports

  • Model: Provides IRF functionality.

Main equations

  • Flow in the channel (using Manning-Strickler formulation)
[math]\displaystyle{ C_{z}={\frac{U}{u_{*}}}=\alpha _{r}\left ( \frac{H}{K_{c}} \right )^{\frac{1}{6}} }[/math] (1)
  • grain roughness (Used as roughness height when bedforms are absent)
[math]\displaystyle{ k_{s} = n_{k} D }[/math] (2)
  • water conservation for a quasi-steady flow
[math]\displaystyle{ Q = q\lt sub\gt w\lt /sub\gt B = U B H }[/math] (3)
  • Boundary shear stress
[math]\displaystyle{ \tau _{b} = \rho u_{*} ^2 = \rho g H S }[/math] (4)
  • Shields number (Shields stress)
[math]\displaystyle{ \tau ^* = {\frac{\tau _{b}}{\rho R g D}} = {\frac{H S}{R D}} }[/math] (5)
  • Submerged specific gravity
[math]\displaystyle{ R = {\frac{\rho _{s}}{\rho}} - 1 }[/math] (6)
  • Water depth
[math]\displaystyle{ H = [{\frac{\left (k_{c} \right ) ^{\frac{1}{3}} Q_{w}^2}{\alpha _{r} g B^2 S}}]^{\frac{3}{10}} }[/math] (7)
  • Computation of the sediment transport (Meyer-Peter and Muller equation )

1) τ* > τc *

[math]\displaystyle{ q_{t} ^* = \alpha_{t} \left ( \varphi_{s} \tau ^2 - \tau_{c} ^* \right ) ^ \left ( n_{t} \right ) }[/math] (8)

2) τ* <= τc *

[math]\displaystyle{ q_{t} ^* = 0 }[/math] (9)
  • Einstein number
[math]\displaystyle{ q_{t} ^* = {\frac {q_{t}}{\sqrt{R g D} D}} }[/math] (10)
  • Cumulative time of the river has been in flood
[math]\displaystyle{ t_{f} = I_{f} t }[/math] (11)
  • Equilibrium (graded) states
  • Annual sediment yield with a graded state at this slope
[math]\displaystyle{ G_{t} = \rho_{s} q_{t} Bl_{f} t_{a} }[/math] (12)
  • Volume sediment transport rate per unit width obtained at the graded state
[math]\displaystyle{ q_{t} = {\frac{G_{tf}}{\rho_{s}Bl_{f} t_{a}}} }[/math] (13)
  • Computation of bed variation
  • Exner equation of sediment continuity (assume that qt is zero for most of the time)
[math]\displaystyle{ \left ( 1 - \lambda_{p} \right ) {\frac{\partial\eta}{\partial t}} = - {\frac{\partial q_{t}}{\partial x}} }[/math] (14)
  • Exner equation of sediment continuity (average over many floods)
[math]\displaystyle{ \left ( 1 - \lambda_{p} \right ) {\frac{\partial \eta}{\partial t}}= - {\frac{\partial l_{f} q_{t}}{\partial x}} }[/math] (15)
  • Spatial derivative of the total bed material load per unit width
[math]\displaystyle{ \frac{\Delta q_{t,i}}{\Delta X}=a_{u}\frac{q_{t,i}-q_{t,i-1}}{\Delta X}+\left ( 1-a_{u} \right )\frac{q_{t,i+1}-q_{t,i}}{\Delta X} }[/math] (16)
  • Bed slope computed in each node
[math]\displaystyle{ S=\left\{\begin{matrix} \frac{\eta _{1}-\eta _{2}} {\Delta x} & i=1\\ \frac{\eta _{i-1}- \eta _{i+1}} {2\Delta X} & i=2...M \\ \frac{\eta _{M} - \eta _{M+1}}{\Delta X} & i=M+1 \end{matrix}\right. }[/math] (17)
  • Initial bed elevation
[math]\displaystyle{ \eta_{i}=S \left ( L - x_{i} \right ) }[/math] (18)
  • non-dimensional total shear stress
[math]\displaystyle{ \tau _{b} ^* = {\frac{\tau _{b}}{\left ( \rho _{s} - \rho \right ) g D}} }[/math] (19)

Notes

  • The maximum number of computational nodes, M, is 99 (this is the case for all of the AgDeg functions).
  • The model calculates the water depth with a Chezy formulation, if only the Chézy coefficient is specified in the input file. The code uses a Manning-Strickler formulation, when only the roughness height, kc, and the coefficient αr are given in the input text file. If all these parameters are in the text file, the program will ask the user which formulation he would like to use
  • The model prompts user whether he would like to append some of the characteristic values for the initial and final equilibrium state to the output file, or write them in a separate file.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Paola, C., Heller, P.L., and Angevine, C.L., 1992. The large-scale dynamics of grain-size variation in alluvial basins. 1: Theory. Basin Research, 4, 73-90.
  • Meyer-Peter, E., and Müller, R., 1948. Formulas for bed-load transport Proceedings, 2nd Congress International Association for Hydraulic Research, Rotterdam, the Netherlands, 39-64.

Links