Model help:AgDegBW: Difference between revisions

From CSDMS
No edit summary
No edit summary
Line 330: Line 330:
| Q<sub>f</sub>
| Q<sub>f</sub>
| sediment transport rate during flood discharge
| sediment transport rate during flood discharge
|-
|}
'''Output'''
{| {{Prettytable}} class="wikitable sortable"
!Symbol!!Description!!Unit
|-
| x
| downstream coordinate
| m
|-
| η
| bed surface elevatioon
| m
|-
| Sl
| slope of the bed surfacew
| -
|-
| H
| water depth
| m
|-
| τ
| shear stress on bed surface
| N / m<sup>2</sup>
|-
| q<sub>b</sub>
| bed material load
| tons / year
|-
|-
|}
|}

Revision as of 16:17, 15 April 2011

The CSDMS Help System

AgDegBW

It is the Calculator for aggradation and degradation of a river reach using a backwater formulation. This program computes 1D bed variation in rivers due to differential sediment transport. The sediment is assumed to be uniform with size D. All sediment transport is assumed to occur in a specified fraction of time during which the river is in flood, specified by an intermittency. A Manning-Strickler relation is used for bed resistance. A generic Meyer-Peter Muller relation is used for sediment transport. The flow is computed using a backwater formulation for gradually varied flow.

Model introduction

The model computes variation in river bed level η(x, t), where x denotes a streamwise coordinate and t denotes time, in a river with constant width B. The bed sediment is characterized in terms of a single grain size D and submerged specific gravity R. The reach under consideration has length L. Water surface elevation at the downstream end is prescribed. The model is based on a calculation of total bed material load. The model is 1D, assumes a rectangular channel and neglects wall or bank effects.

By modifying the upstream sediment feed rate Gtf and/or the downstream water surface elevation ξd, the river can be forced to aggrade or degrade to a new equilibrium. The program computes this evolution.


Model parameters

Parameter Description Unit
First parameter Description parameter [Units]
Parameter Description Unit
First parameter Description parameter [Units]

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • Computation of the flow

The backwater equation

[math]\displaystyle{ {\frac{dH}{dx}} = {\frac{S - S_{f}}{1 - F_{r} ^2}} }[/math] (1)
[math]\displaystyle{ S_{f} = C_{f} F_{r} ^2 }[/math] (2)
[math]\displaystyle{ F_{r} ^2 = {\frac{U^2}{g H}} = {\frac{q_{w} ^2}{g H^3}} }[/math] (3)
[math]\displaystyle{ U = {\frac{q_{w}}{H}} }[/math] (4)
  • Manninbg-Strickler resistance
[math]\displaystyle{ C_f ^ \left ( {\frac{-1}{2}} \right ) = C_{z} = \alpha_{r} \left ( {\frac{H}{k_{c}}} \right ) ^{\frac{1}{6}} }[/math] (5)
[math]\displaystyle{ k_{s} = n_{k} D }[/math] (6)
[math]\displaystyle{ S = -{\frac{\eta}{x}} }[/math] (7)
[math]\displaystyle{ \epsilon = \eta + H }[/math] (8)
  • Shields number
[math]\displaystyle{ \tau^* = {\frac{\tau_{b}}{\rho R g D}} = {\frac{C_{f} U^2}{R g D}} = {\frac{C_{f} {\frac{q_{w} ^2}{H^2}}}{R g D}} }[/math] (9)
[math]\displaystyle{ \tau_{b} = \rho C_{f} U^2 }[/math] (10)
[math]\displaystyle{ R = {\frac{\rho_{s}}{\rho}} - 1 }[/math] (11)
  • Computation of the sediment transport

equation of the type of Meyer-Peter and Muller

  • τ* > τc *
[math]\displaystyle{ q_{t} ^* = \alpha_{t} \left ( \phi_{s} \tau ^2 - \tau_{c} ^* \right ) ^ \left ( n_{t} \right ) }[/math] (12)
  • τ* <= τc *
[math]\displaystyle{ q_{t} ^* = 0 }[/math] (13)
[math]\displaystyle{ G_{t} = \rho_{s} q_{t} Bl_{f} t_{a} }[/math] (14)
[math]\displaystyle{ q_{t} = {\frac{G_{tf}}{\rho_{s}Bl_{f} t_{a}}} }[/math] (15)
  • Computation of bed variation

Exner equation

[math]\displaystyle{ \left ( 1 - \lambda_{p} \right ) {\frac{\eta}{t}} = - {\frac{q_{t}}{x}} }[/math] (16)
[math]\displaystyle{ \left ( 1 - \lambda_{p} \right ) {\frac{\eta}{t}}= - {\frac{l_{f} q_{t}}{x}} }[/math] (17)

Notes

Actual rivers tend to be morphologically active only during floods. That is, most of the time they are not doing much to modify their morphology. The simplest way to take this into account is to assume an intermittency If such that the river is in flood a fraction I of the time, during which Q = Qf and qt is the sediment transport rate at this discharge (Paola et al., 1992). For the other (1 – If) fraction of time the river is assumed not to be moving sediment.

Output is controlled by the parameters Ntoprint and Nprint. The code will implement Ntoprint time steps. In addition to output pertaining to the initial state, the code implements Nprint outputs, to that the total number of time steps executed is equal to Nprint x Ntoprint.


Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Paola, C., Heller, P. L. & Angevine, C. L. 1992 The large-scale dynamics of grain-size variation in alluvial basins. I: Theory. Basin Research, 4, 73-90.
  • Meyer-Peter, E., and Müller, R. 1948 Formulas for bed-load transport. Proceedings, 2nd Congress International Association for Hydraulic Research, Rotterdam, the Netherlands, 39-64.


Links