Model help:Acronym1R: Difference between revisions

From CSDMS
No edit summary
No edit summary
Line 17: Line 17:


==Model introduction==
==Model introduction==
“Acronym1_R” is used for computing the volume bedload transport rate per unit width and bedload grain size distribution from a specified surface grain size distribution (with sand removed) (D<sub>b,i</sub>, F<sub>f,i</sub>), i = 1..N+1, a specific gravity of the sediment (here equal to R + 1), a water discharge Q, a channel width B and a streamwise bed slope S.
This program works the same way as Acronym1, except that it calculates the flow velocity with the user inputted parameters, and it outputs the water depth, H, and shear velocity, u*, in addition to what Acronym1 outputs.


<div id=CMT_MODEL_PARAMETERS>
<div id=CMT_MODEL_PARAMETERS>
Line 52: Line 52:


==Main equations==
==Main equations==
* Grain Size:
* Characteristic grain size for the ith grain size range (spans (D<sub>b,i</sub>, D<sub>b,i+1</sub>)) (for i=1...N)
::::{|
::::{|
|width=500px|<math>\Psi= LN_{2}\left (D\right) = {\frac{log_{10}\left (D\right)}{log_{10}\left (2\right)}} </math>
|width=530px|<math>D_{i}= \sqrt{ D_{b, i} D_{b, i+1} }   </math>
|width=50px align="right"|(1)
|width=50p=x align="right"|(1)
|}
|}
* Fraction in the surface layer F<sub>i</sub> for the ith grain size range (for i=1...N)
::::{|
::::{|
|width=500px|<math>\Psi_{i}= LN_{2}\left ( D_{i}\right) = {\frac{log_{10}\left (D_{i}\right)}{log_{10}\left (2\right)}} </math>
|width=530px|<math>F_{i}= \left ( F_{f, i} - F_{f, i+1} \right ) / 100  </math>
|width=50px align="right"|(2)
|width=50p=x align="right"|(2)
|}
|}
* Grain Size on the base-2 logarithmic scale:
::::{|
::::{|
|width=530px|<math>D_{i}= Sqrt \left (D_{b, i} D_{b, i+1} \right )   </math>
|width=500px|<math>\Psi= LN_{2}\left (D\right) = {\frac{log_{10}\left (D\right)}{log_{10}\left (2\right)}} </math>
|width=50p=x align="right"|(3)
|width=50px align="right"|(3)
|}
|}
* Geometric mean size of the surface material
::::{|
::::{|
|width=530px|<math>F_{i}= \left ( F_{f, i} - F_{f, i+1} \right ) / 100  </math>
|width=500px|<math>D_{sg}=2^\left (\bar\Psi_{s} \right ) </math>
|width=50p=x align="right"|(4)
|width=50px align="right"|(4)
|}
|}
::::{|
::::{|
|width=500px|<math>D_{sg}=2^\Psi_{s} </math>
|width=500px|<math>\bar\Psi_{s}= \sum\limits_{i=1}^N \Psi_{i} F{i} </math>
|width=50px align="right"|(5)
|width=50px align="right"|(5)
|}
|}
* The geometric standard deviations
::::{|
::::{|
|width=500px|<math>\Psi_{s}= \Sigma \Psi_{i} F{i} </math>
|width=500px|<math>\sigma_{sg}= 2 ^\sigma </math>
|width=50px align="right"|(6)
|width=50px align="right"|(6)
|}
|}
* the arithmetic standard deviations
::::{|
::::{|
|width=500px|<math>\sigma_{sg}= 2 ^\sigma </math>
|width=500px|<math>\sigma ^2= \sum\limits_{i=1}^N \left (\Psi_{i} - \bar\Psi \right )^2 F_{i}  </math>
|width=50px align="right"|(7)
|width=50px align="right"|(7)
|}
|}
* The transport relation
::::{|
::::{|
|width=500px|<math>\sigma ^2= \Sigma \left (\Psi_{i} - \Psi \right )^2 F_{i} </math>
|width=530px|<math>W_{i}^*= {\frac{Rgq_{bi}}{F_{i}u_{*} ^3}}= 0.00218 G \left (\Phi \right )  </math>
|width=50px align="right"|(8)
|width=50p=x align="right"|(8)
|}
|}
::::{|
::::{|
|width=530px|<math>W_{i}^*= {\frac{Rgq_{bi}}{F_{i}u_{*} ^3}}= 0.00218 G \left (\Phi \right )  </math>
|width=530px|<math>\phi= \omega \Phi_{sgo} \left ( {\frac{D_{i}} {D_{sg}}} \right )^ \left (-0.0951 \right )  </math>
|width=50p=x align="right"|(9)
|width=50p=x align="right"|(9)
|}
|}
::::{|
::::{|
|width=530px|<math>\phi= \omega \phi_{sgo} \left ( {\frac{D_{i}} {D_{sg}}} \right )^ \left (-0.0951 \right )  </math>
|width=530px|<math> \Phi_{sgo}= {\frac{\tau_{sg} ^*}{\tau_{ssrg} ^*}}   </math>
|width=50p=x align="right"|(10)
|width=50p=x align="right"|(10)
|}
|}
::::{|
::::{|
|width=530px|<math> \Phi= {\frac{\tau_{sg} ^*}{\tau_{ssrg} ^*}}  </math>
|width=530px|<math>\tau_{sg} ^*={\frac{u_{*} ^2}{R g D_{sg}}}  </math>
|width=50p=x align="right"|(11)
|width=50p=x align="right"|(11)
|}
|}
* φ> 1.59
::::{|
::::{|
|width=530px|<math>\tau_{sg} ^*={\frac{u_{*} ^2}{Rg D_{sg}}</math>
|width=530px|<math> G \left ( \Phi \right )= 5474 \left ( 1 - {\frac{0.853}{\Phi}} \right ) ^ \left (4.5 \right )  </math>
|width=50p=x align="right"|(12)
|width=50p=x align="right"|(12)
|}
|}
* φ> 1.59
* 1<=φ<=1.59
::::{|
::::{|
|width=530px|<math> G \left ( \Phi \right )= 5474 \left ( 1 - {\frac{0.853}{\Phi}} \right ) ^ \left (4.5 \right )  </math>
|width=530px|<math> G\left (\Phi \right )= exp[ 14.2\left ( \Phi - 1\right ) - 9.28 \left ( \Phi - 1 \right )^2  ] </math>
|width=50p=x align="right"|(13)
|width=50p=x align="right"|(13)
|}
|}
* 1<=φ<=1.59
* φ< 1
::::{|
::::{|
|width=530px|<math> G\left (\Phi \right )= exp\left ( 14.2\left ( \Phi - 1\right ) - 9.28 \left ( \Phi - 1 \right )^2  \right )  </math>
|width=530px|<math> G\left (\Phi \right )= \Phi ^\left (14.2 \right )  </math>
|width=50p=x align="right"|(14)
|width=50p=x align="right"|(14)
|}
|}
* φ< 1
::::{|
::::{|
|width=530px|<math> G\left (\Phi \right )= \Phi ^\left (14.2 \right )  </math>
|width=530px|<math>\omega= 1 + {\frac{\sigma}{\sigma_{O} \left ( \Phi_{sgo} \right ) }} [ \omega_{O} \left ( \Phi_{sgo} \right ) - 1 ] </math>
|width=50p=x align="right"|(15)
|width=50p=x align="right"|(15)
|}
|}
* total volume gravel bedload transport rate per unit width summed over all sizes
::::{|
::::{|
|width=530px|<math>\omega= 1 + {\frac{\sigma}{\sigma_{O} \left ( \Phi_{sgo} \right ) }} \left ( \omega_{O} \left ( \Phi_{sgo} \right ) - 1 \right )  </math>
|width=530px|<math>q_{bT}= \sum\limits_{i=1}^N q_{bi}   </math>
|width=50p=x align="right"|(16)
|width=50p=x align="right"|(16)
|}
|}
* fraction of gravel bedload in the ith grain size range
::::{|
::::{|
|width=530px|<math>q_{bT}= \Sigma q_{bi}  </math>
|width=530px|<math>p_{i}= {\frac{q_{bi}}{q_{bT}}}  </math>
|width=50p=x align="right"|(17)
|width=50p=x align="right"|(17)
|}
|}
* Geometric mean of the bedload
::::{|
::::{|
|width=530px|<math>p_{i}= {\frac{q_{bi}}{q_{bT}}}  </math>
|width=530px|<math>D_{lg}= 2 ^\left (\bar\psi_{l} \right )   </math>
|width=50p=x align="right"|(18)
|width=50p=x align="right"|(18)
|}
|}
::::{|
::::{|
|width=530px|<math>D_{lg}= 2 ^\left (\psi_{l} \right )  </math>
|width=530px|<math>\Psi_{l}= \sum\limits_{i=1}^\left (Np \right ) \Psi_{i} p_{i} </math>
|width=50p=x align="right"|(19)
|width=50p=x align="right"|(19)
|}
|}
* Geometric standard deviation of the bedload
::::{|
::::{|
|width=530px|<math>\Psi_{l}= \Sigma \Psi_{i} p_{i}  </math>
|width=530px|<math>\delta_{lg}= 2 ^\left ( \delta_{l} \right ) </math>
|width=50p=x align="right"|(20)
|width=50p=x align="right"|(20)
|}
|}
::::{|
::::{|
|width=530px|<math>\delta_{lg}= 2 ^\left ( \delta_{l} \right ) </math>
|width=530px|<math>\delta_{l} ^2= \sum\limits_{i=1}^\left (Np \right ) \left ( \Psi_{i} - \bar\Psi_{l} \right )^2 p_{i}  </math>
|width=50p=x align="right"|(21)
|width=50p=x align="right"|(21)
|}
|}
* Grain sizes in the bedload material
::::{|
::::{|
|width=530px|<math>\delta_{l} ^2= \Sigma \left ( \Psi_{i} - \Psi_{l} \right )^2 p_{i}   </math>
|width=530px|<math>D_{lx}= 2 ^\left (\Psi_{lx} \right )  </math>
|width=50p=x align="right"|(22)
|width=50p=x align="right"|(22)
|}
|}
::::{|
::::{|
|width=530px|<math>D_{lx}= 2 ^\left (\Psi_{lx} \right )   </math>
|width=530px|<math>\Psi_{lx}= \Psi_{b, i+1} + {\frac{\Psi_{b, j} - \Psi_{b, i+1}}{p_{f, i} - p_{f, i+1}}}\left ( x - p_{f, i+1} \right ) </math>
|width=50p=x align="right"|(23)
|width=50p=x align="right"|(23)
|}
|}
::::{|
::::{|
|width=530px|<math>\Psi_{lx}= \Psi_{b, i+1} + {\frac{\Psi_{b, j} - \Psi_{b, i+1}}{p_{f, i} - p_{f, i+1}}}\left ( x - p_{f, i+1} \right ) </math>
|width=530px|<math>\Psi_{b, i}= Ln_{2} \left ( D_{b, j} \right )   </math>
|width=50p=x align="right"|(24)
|width=50p=x align="right"|(24)
|}
|}
::::{|
::::{|
|width=530px|<math>\Psi_{b, i}= Ln_{2} \left ( D_{b, j} \right )   </math>
|width=530px|<math>\tau_{b} B = \rho u_{*} ^2 B = \rho g S \left ( H B - H ^2 \right ) </math>
|width=50p=x align="right"|(25)
|width=50p=x align="right"|(25)
|}
|}
::::{|
::::{|
|width=530px|<math>\tau_{b} B = \rho u_{*} ^2 B = \rho g S \left ( H B - H ^2 \right ) </math>
|width=530px|<math>{\frac{U}{u_{*}}} = \alpha _{r} \left ( {\frac{H}{k_{s}}} \right )^ {\frac{1}{6}} </math>
|width=50p=x align="right"|(26)
|width=50p=x align="right"|(26)
|}
|}
::::{|
::::{|
|width=530px|<math>{\frac{U}{u_{*}}} = \alpha _{r} \left ( {\frac{H}{k_{s}}} \right )^ {\frac{1}{6}} </math>
|width=530px|<math>U = {\frac{Q}{BH}} </math>
|width=50p=x align="right"|(27)
|width=50p=x align="right"|(27)
|}
|}
::::{|
::::{|
|width=530px|<math>U = {\frac{Q}{BH}} </math>
|width=530px|<math>H = \left ({\frac{k_{s} ^ {\frac{1}{3}} Q ^2}{\alpha_{r} ^2 g B^2 S}} \right )^ {\frac{3}{10}} c_{1} </math>
|width=50p=x align="right"|(28)
|width=50p=x align="right"|(28)
|}
|}
::::{|
::::{|
|width=530px|<math>H = \left ({\frac{k_{s} ^ {\frac{1}{3}} Q ^2}{\alpha_{r} ^2 g B^2 S}} \right )^ {\frac{3}{10}} c_{1} </math>
|width=530px|<math>c_{1}= \left ( 1 - {\frac{H}{B}} \right ) ^ \left ({\frac{-3}{10}}\right ) </math>
|width=50p=x align="right"|(29)
|width=50p=x align="right"|(29)
|}
|}
::::{|
::::{|
|width=530px|<math>c_{1}= \left ( 1 - {\frac{H}{B}} \right ) ^ \left ({\frac{-3}{10}}\right ) </math>
|width=530px|<math>k_{s} = n_{k} D_{s90} </math>
|width=50p=x align="right"|(30)
|width=50p=x align="right"|(30)
|}
::::{|
|width=530px|<math>k_{s} = n_{k} D_{s90} </math>
|width=50p=x align="right"|(31)
|}
|}


Line 186: Line 193:
{| {{Prettytable}} class="wikitable sortable"
{| {{Prettytable}} class="wikitable sortable"
!Symbol!!Description!!Unit
!Symbol!!Description!!Unit
|-
| D
| grain size
| mm
|-
|-
| D<sub>i</sub>
| D<sub>i</sub>
| characteristic grain size (for i =1~N)
| characteristic grain size for the ith grain size range (i=1...N)
| mm
| mm
|-
|-
| F<sub>i</sub>
| F<sub>i</sub>
| surface layer (for i =1~N)
| fraction in surface layer for the ith grain size range(for i =1~N)
| -
|-
| τ<sub>ssrg</sub> <sup>*</sup>
| equals to 0.0386
| -
| -
|-
|-
| ψ
| ψ
| grain sizes  
| grain sizes on the base-2 logarithmic ψscale
| mm
|  
|-
|-
| D<sub>sg</sub>
| D<sub>sg</sub>
Line 204: Line 219:
|-
|-
| σ<sub>sg</sub>
| σ<sub>sg</sub>
| geometric standard deviations
| geometric standard deviations of the surface materials
| -
| -
|-
|-
| σ
| σ
| arithmetic standard deviations
| arithmetic standard deviations of the surface materials
| -
| -
|-
|-
Line 220: Line 235:
|-
|-
| R
| R
| submerged specific gravity, R + 1
| submerged specific density of sediment, equals to (ρ<sub>s</sub> /ρ-1)
| -
| -
|-
| u
| shear velocity of flow
| m / s
|-
|-
| g
| g
Line 231: Line 250:
| kg / (m s)
| kg / (m s)
|-
|-
| u
| u<sub>*</sub>
| shear velocity on the bed
| shear velocity on the bed, equals to
| m / s
| m / s
|-
|-
Line 239: Line 258:
| m <sup>2</sup>
| m <sup>2</sup>
|-
|-
| u<sub>*</sub>
| p<sub>i</sub>
| shear velocity
| fraction of gravel bedload in the ith grain size range
| m / s
| mm
|-
|-
| D<sub>lg</sub>
| D<sub>lg</sub>
Line 252: Line 271:
|-   
|-   
| D<sub>sx</sub>
| D<sub>sx</sub>
| size in the surface material, such that x percentage of the material is finer
| grain size in the surface material, such that x percentage of the material is finer
| mm
| mm
|-
|-
| D<sub>lx</sub>
| D<sub>lx</sub>
| size in the bedload material, such that x percentage of the material is finer
| grain size in the bedload material, such that x percentage of the material is finer
| - 
|-
| ψ<sub>s</sub>
| equals to τ<sub>bs</sub> / τ<sub>b</sub>
|
|-
| W<sub>i</sub> <sup>*</sup>
| dimensionless bedload transport rate for ith grain size
| -
| -
|-   
|-   
| D<sub>sx</sub>
| ω
| size in the surface material, such that x percentage of the material is finer
| straining relation in Parker (1990a,b) bedload relation for mixtures
| mm
|
|-
| τ<sub>sg</sub> <sup>*</sup>
| Shields number based on surface geometric mean size
| -
|- 
| G(Φ)
| function in Parker (1990a, b) and Wilcock and Crowe (2003) bedload relation for gravel mixture; the function is different in each case
|
|-
| ω<sub>0</sub>
| function relation in Parker (1990a, b) bedload relation for mixture
| -
|-
|-
| Q
| Q
| water discharge
| flow discharge
| m<sup>3</sup>
| m<sup>3</sup> / s
|-
|-
| S
| bed slope
| -
|-
| B
| B
| channel width
| channel width
| m
| m
|-
| n
| roughness factor
| -
|- 
| Φ
|
|
|-
|-
| S
| Φ<sub>sgo</sub>
| a streamwise bed slope
|  
| -
| -
|- 
| τ<sub>sgo</sub>
|
|
|-
|-
| n
| ψ<sub>l</sub>
| roughness factor
|  
| -
| -
|- 
| σ<sub>l</sub>
|
|
|-
|-
| ψ<sub>lx</sub>
|
| -
|- 
|}
|}


Line 286: Line 349:
|-
|-
| q<sub>bT</sub>
| q<sub>bT</sub>
| total volume gravel bedload transport rate per unit width summed over all sizes
| volume bedload transport per unit width
| -
| m<sup>2</sup> / s
|-
| τ<sub>g<sub>
| shields number
| -
|-
| H
| water depth
| m
|-
| u<sub>*</sub>
| shear velocity
| m / s
|-
|-
| D<sub>g</sub>
| D<sub>g</sub>
| geometric mean
| geometric mean
| mm
| mm
|-
| τ<sub>g</sub> <sup>*</sup>
| shields number based on surface geometric mean size
| kg / (m s)
|-
|-
| σ<sub>g</sub>
| σ<sub>g</sub>
Line 312: Line 367:
| diameter such that x% of the distribution is finer
| diameter such that x% of the distribution is finer
| mm
| mm
|-
| H
| water depth
| m
|-
| u<sup>*</sup>
| shear velocity
| m / s
|-
|-
|}
|}
Line 318: Line 381:


==Notes==
==Notes==
* Note on the program
It is used for computing the volume bedload transport rate per unit width and bedload grain size distribution from a specified surface grain size distribution (with sand removed) (D<sub>b,i</sub>, F<sub>f,i</sub>), i = 1..N+1, a specific gravity of the sediment (here equal to R + 1), a water discharge Q, a channel width B and a streamwise bed slope S. The output includes the value of q<sub>bT</sub>, the Shields stress τ<sub>sg</sub> <sup>∗</sup> based on the surface geometric mean size, the flow depth H, the shear velocity u<sup>∗</sup>, the bedload grain size distribution (D<sub>d,i</sub>, p<sub>f,i</sub>) and the values D<sub>lg</sub>, σ<sub>lg</sub>, D<sub>l90</sub>, D<sub>l70</sub>, D<sub>l50</sub> and D<sub>l30</sub> for the bedload, as well as the corresponding values for the surface ,material, D<sub>sg</sub>, σ<sub>sg</sub>, D<sub>s90</sub>, D<sub>s70</sub>, D<sub>s50</sub> and D<sub>s30</sub>.
The channel is assumed to be rectangular, with the vertical sidewalls having the same roughness as the bed.  The roughness height k<sub>s</sub> is computed using equation 31. Here n<sub>k</sub> is a user-specified dimensionless roughness factor.  The author suggests a value of 2 for n<sub>k</sub>. 
Depth is computed according to the relation for momentum balance in the bed region using equation 25 applicable to normal (steady, streamwise uniform) flow.  Flow resistance on the bed region is computed using a Manning-Strickler resistance relation (equation 26).
Equation 28, 29 is solved iteratively for H in the code.  Once H is known, the shear velocity u<sub>∗</sub> is computed from equation 25, and the calculation proceeds using the same algorithm as “Acronym1”.  It is implicitly assumed in the calculation that all of the boundary shear stress consists of skin friction, with form drag neglected.
* Note on equations
* Note on equations
In order to implement the equations 10~16, it is necessary to specify a) the surface grain size distribution (D<sub>f</sub>,i, F<sub>f</sub>,i) and b) the shear velocity u<sub>∗</sub>.  This results in a predicted values of q<sub>bi</sub>.
In order to implement the equations 9~15, it is necessary to specify a) the surface grain size distribution (D<sub>f</sub>,i, F<sub>f</sub>,i) and b) the shear velocity u<sub>∗</sub>.  This results in a predicted values of q<sub>bi</sub>.


If the boundary shear stress at the bed includes a component of form drag, the component must be removed before computing u<sub>∗</sub>.
If the boundary shear stress at the bed includes a component of form drag, the component must be removed before computing u<sub>∗</sub>.


Once the parameters q<sub>bi</sub> are known the total volume bedload transport rate per unit width q<sub>bT</sub> and the fractions pi in the bedload can be calculated as equations 17, 18.
Once the parameters q<sub>bi</sub> are known the total volume bedload transport rate per unit width q<sub>bT</sub> and the fractions pi in the bedload can be calculated as equations 16, 17.


The results are presented in terms of q<sub>bT</sub> and the grain size distribution of the bedload, which is computed from the values of pi.  These same fractions pi are used to compute the geometric mean and geometric standard deviation of the bedload D<sub>lg</sub> and σ<sub>lg</sub>, respectively, from the relations of equations 19, 20, 21, 22.
The results are presented in terms of q<sub>bT</sub> and the grain size distribution of the bedload, which is computed from the values of pi.  These same fractions pi are used to compute the geometric mean and geometric standard deviation of the bedload D<sub>lg</sub> and σ<sub>lg</sub>, respectively, from the relations of equations 18, 19, 20, 21.


The percent finer in the bedload p<sub>f,i</sub> for the grain size D<sub>f,i</sub> is obtained from the fractions p<sub>i</sub> as follows:
The percent finer in the bedload p<sub>f,i</sub> for the grain size D<sub>f,i</sub> is obtained from the fractions p<sub>i</sub> as follows:
Line 331: Line 403:
p<sub>f,i</sub> = p<sub>f,i-1</sub> - 100 p<sub>i-1</sub> (i=2~N+1)
p<sub>f,i</sub> = p<sub>f,i-1</sub> - 100 p<sub>i-1</sub> (i=2~N+1)


Let D<sub>sx</sub> and D<sub>lx</sub> denote sizes in the surface and bedload material, respectively, such that x percent of the material is finer.  For example, if x = 50 then Ds50 and D<sub>l50</sub> denote the median sizes of the surface and bedload material, respectively.  Once F<sub>f,i</sub> is specified (p<sub>f</sub>,i is computed) the value D<sub>sx</sub> (D<sub>lx</sub>) can be computed by interpolation.  The interpolation should be done using a logarithmic scale for grain size.  For example, consider the computation of Dlx where p<sub>f,i</sub> ≤ x ≤ p<sub>f,i+1</sub>.  Then we got equation 23, 24, using equation 25.
Let D<sub>sx</sub> and D<sub>lx</sub> denote sizes in the surface and bedload material, respectively, such that x percent of the material is finer.  For example, if x = 50 then Ds50 and D<sub>l50</sub> denote the median sizes of the surface and bedload material, respectively.  Once F<sub>f,i</sub> is specified (p<sub>f</sub>,i is computed) the value D<sub>sx</sub> (D<sub>lx</sub>) can be computed by interpolation.  The interpolation should be done using a logarithmic scale for grain size.  For example, consider the computation of Dlx where p<sub>f,i</sub> ≤ x ≤ p<sub>f,i+1</sub>.  Then we got equation 22, 23, using equation 24.
 
The channel is assumed to be rectangular, with the vertical sidewalls having the same roughness as the bed.  The roughness height k<sub>s</sub> is computed using equation 31. Here n<sub>k</sub> is a user-specified dimensionless roughness factor.  The author suggests a value of 2 for n<sub>k</sub>. 
 
Depth is computed according to the relation for momentum balance in the bed region using equation 26 applicable to normal (steady, streamwise uniform) flow.  Flow resistance on the bed region is computed using a Manning-Strickler resistance relation (equation 27).
 
Equation 29, 30 is solved iteratively for H in the code.  Once H is known, the shear velocity u<sub>∗</sub> is computed from equation 26, and the calculation proceeds using the same algorithm as “Acronym1”.  It is implicitly assumed in the calculation that all of the boundary shear stress consists of skin friction, with form drag neglected.


==Examples==
==Examples==

Revision as of 19:09, 20 April 2011

The CSDMS Help System

Acronym1R

"Acronym1_R” combines Acronym1 scheme with a Manning-Strickler relation for flow resistance. It first computes a value of u from specified values of the water discharge Qw, the channel width B and the bed slope H. It then implements the same code as “Acronym1”.

Model introduction

This program works the same way as Acronym1, except that it calculates the flow velocity with the user inputted parameters, and it outputs the water depth, H, and shear velocity, u*, in addition to what Acronym1 outputs.

Model parameters

Parameter Description Unit
First parameter Description parameter [Units]
Parameter Description Unit
First parameter Description parameter [Units]

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • Characteristic grain size for the ith grain size range (spans (Db,i, Db,i+1)) (for i=1...N)
[math]\displaystyle{ D_{i}= \sqrt{ D_{b, i} D_{b, i+1} } }[/math] (1)
  • Fraction in the surface layer Fi for the ith grain size range (for i=1...N)
[math]\displaystyle{ F_{i}= \left ( F_{f, i} - F_{f, i+1} \right ) / 100 }[/math] (2)
  • Grain Size on the base-2 logarithmic scale:
[math]\displaystyle{ \Psi= LN_{2}\left (D\right) = {\frac{log_{10}\left (D\right)}{log_{10}\left (2\right)}} }[/math] (3)
  • Geometric mean size of the surface material
[math]\displaystyle{ D_{sg}=2^\left (\bar\Psi_{s} \right ) }[/math] (4)
[math]\displaystyle{ \bar\Psi_{s}= \sum\limits_{i=1}^N \Psi_{i} F{i} }[/math] (5)
  • The geometric standard deviations
[math]\displaystyle{ \sigma_{sg}= 2 ^\sigma }[/math] (6)
  • the arithmetic standard deviations
[math]\displaystyle{ \sigma ^2= \sum\limits_{i=1}^N \left (\Psi_{i} - \bar\Psi \right )^2 F_{i} }[/math] (7)
  • The transport relation
[math]\displaystyle{ W_{i}^*= {\frac{Rgq_{bi}}{F_{i}u_{*} ^3}}= 0.00218 G \left (\Phi \right ) }[/math] (8)
[math]\displaystyle{ \phi= \omega \Phi_{sgo} \left ( {\frac{D_{i}} {D_{sg}}} \right )^ \left (-0.0951 \right ) }[/math] (9)
[math]\displaystyle{ \Phi_{sgo}= {\frac{\tau_{sg} ^*}{\tau_{ssrg} ^*}} }[/math] (10)
[math]\displaystyle{ \tau_{sg} ^*={\frac{u_{*} ^2}{R g D_{sg}}} }[/math] (11)
  • φ> 1.59
[math]\displaystyle{ G \left ( \Phi \right )= 5474 \left ( 1 - {\frac{0.853}{\Phi}} \right ) ^ \left (4.5 \right ) }[/math] (12)
  • 1<=φ<=1.59
[math]\displaystyle{ G\left (\Phi \right )= exp[ 14.2\left ( \Phi - 1\right ) - 9.28 \left ( \Phi - 1 \right )^2 ] }[/math] (13)
  • φ< 1
[math]\displaystyle{ G\left (\Phi \right )= \Phi ^\left (14.2 \right ) }[/math] (14)
[math]\displaystyle{ \omega= 1 + {\frac{\sigma}{\sigma_{O} \left ( \Phi_{sgo} \right ) }} [ \omega_{O} \left ( \Phi_{sgo} \right ) - 1 ] }[/math] (15)
  • total volume gravel bedload transport rate per unit width summed over all sizes
[math]\displaystyle{ q_{bT}= \sum\limits_{i=1}^N q_{bi} }[/math] (16)
  • fraction of gravel bedload in the ith grain size range
[math]\displaystyle{ p_{i}= {\frac{q_{bi}}{q_{bT}}} }[/math] (17)
  • Geometric mean of the bedload
[math]\displaystyle{ D_{lg}= 2 ^\left (\bar\psi_{l} \right ) }[/math] (18)
[math]\displaystyle{ \Psi_{l}= \sum\limits_{i=1}^\left (Np \right ) \Psi_{i} p_{i} }[/math] (19)
  • Geometric standard deviation of the bedload
[math]\displaystyle{ \delta_{lg}= 2 ^\left ( \delta_{l} \right ) }[/math] (20)
[math]\displaystyle{ \delta_{l} ^2= \sum\limits_{i=1}^\left (Np \right ) \left ( \Psi_{i} - \bar\Psi_{l} \right )^2 p_{i} }[/math] (21)
  • Grain sizes in the bedload material
[math]\displaystyle{ D_{lx}= 2 ^\left (\Psi_{lx} \right ) }[/math] (22)
[math]\displaystyle{ \Psi_{lx}= \Psi_{b, i+1} + {\frac{\Psi_{b, j} - \Psi_{b, i+1}}{p_{f, i} - p_{f, i+1}}}\left ( x - p_{f, i+1} \right ) }[/math] (23)
[math]\displaystyle{ \Psi_{b, i}= Ln_{2} \left ( D_{b, j} \right ) }[/math] (24)
[math]\displaystyle{ \tau_{b} B = \rho u_{*} ^2 B = \rho g S \left ( H B - H ^2 \right ) }[/math] (25)
[math]\displaystyle{ {\frac{U}{u_{*}}} = \alpha _{r} \left ( {\frac{H}{k_{s}}} \right )^ {\frac{1}{6}} }[/math] (26)
[math]\displaystyle{ U = {\frac{Q}{BH}} }[/math] (27)
[math]\displaystyle{ H = \left ({\frac{k_{s} ^ {\frac{1}{3}} Q ^2}{\alpha_{r} ^2 g B^2 S}} \right )^ {\frac{3}{10}} c_{1} }[/math] (28)
[math]\displaystyle{ c_{1}= \left ( 1 - {\frac{H}{B}} \right ) ^ \left ({\frac{-3}{10}}\right ) }[/math] (29)
[math]\displaystyle{ k_{s} = n_{k} D_{s90} }[/math] (30)

Notes

  • Note on the program

It is used for computing the volume bedload transport rate per unit width and bedload grain size distribution from a specified surface grain size distribution (with sand removed) (Db,i, Ff,i), i = 1..N+1, a specific gravity of the sediment (here equal to R + 1), a water discharge Q, a channel width B and a streamwise bed slope S. The output includes the value of qbT, the Shields stress τsg based on the surface geometric mean size, the flow depth H, the shear velocity u, the bedload grain size distribution (Dd,i, pf,i) and the values Dlg, σlg, Dl90, Dl70, Dl50 and Dl30 for the bedload, as well as the corresponding values for the surface ,material, Dsg, σsg, Ds90, Ds70, Ds50 and Ds30.

The channel is assumed to be rectangular, with the vertical sidewalls having the same roughness as the bed. The roughness height ks is computed using equation 31. Here nk is a user-specified dimensionless roughness factor. The author suggests a value of 2 for nk.

Depth is computed according to the relation for momentum balance in the bed region using equation 25 applicable to normal (steady, streamwise uniform) flow. Flow resistance on the bed region is computed using a Manning-Strickler resistance relation (equation 26).

Equation 28, 29 is solved iteratively for H in the code. Once H is known, the shear velocity u is computed from equation 25, and the calculation proceeds using the same algorithm as “Acronym1”. It is implicitly assumed in the calculation that all of the boundary shear stress consists of skin friction, with form drag neglected.

  • Note on equations

In order to implement the equations 9~15, it is necessary to specify a) the surface grain size distribution (Df,i, Ff,i) and b) the shear velocity u. This results in a predicted values of qbi.

If the boundary shear stress at the bed includes a component of form drag, the component must be removed before computing u.

Once the parameters qbi are known the total volume bedload transport rate per unit width qbT and the fractions pi in the bedload can be calculated as equations 16, 17.

The results are presented in terms of qbT and the grain size distribution of the bedload, which is computed from the values of pi. These same fractions pi are used to compute the geometric mean and geometric standard deviation of the bedload Dlg and σlg, respectively, from the relations of equations 18, 19, 20, 21.

The percent finer in the bedload pf,i for the grain size Df,i is obtained from the fractions pi as follows: pf,1 = 100 pf,i = pf,i-1 - 100 pi-1 (i=2~N+1)

Let Dsx and Dlx denote sizes in the surface and bedload material, respectively, such that x percent of the material is finer. For example, if x = 50 then Ds50 and Dl50 denote the median sizes of the surface and bedload material, respectively. Once Ff,i is specified (pf,i is computed) the value Dsx (Dlx) can be computed by interpolation. The interpolation should be done using a logarithmic scale for grain size. For example, consider the computation of Dlx where pf,i ≤ x ≤ pf,i+1. Then we got equation 22, 23, using equation 24.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Parker, G. 1990a Surface based bedload transport relation for gravel rivers. Journal of Hydraulic Research, 28(4), 417 436.
  • Parker, G. 1990b The "ACRONYM" series of Pascal programs for computing bedload transport in gravel rivers. External Memorandum M 220, St. Anthony Falls Hydraulic Laboratory, University of Minnesota.

Links