Model help:SteadyStateAg

From CSDMS
Revision as of 15:30, 26 May 2011 by Happyfei (talk | contribs)
The CSDMS Help System
The CSDMS Help System

SteadyStateAg

This model is a calculator for approach to equilibrium in recirculating and feed flumes

Model introduction

This program implements the calculation for steady-state aggradation of a sand-bed river in response to sea level rise at a constant rate.

Model parameters

Parameter Description Unit
Input directory path to input files
Site prefix Site prefix for Input/Output files
Case prefix Case prefix for Input/Output files
Parameter Description Unit
Mean annual bed material sediment feed rate Mt / yr
Reach length (downchannel distance) km
Rate of sea level rise mm / yr
Bankfull water discharge m3 / s
Floodplain width km
Grain size grain diameter mm
Fraction wash load deposited per unit bed material deposited -
Channel-forming Shield number -
Coefficient in Engelund-Hansen bed material load relation -
Bed porosity -
Flood intermittence -
Chezy resistance coefficient -
Channel sinuosity -
Submerged specific gravity of seidment -
Initial water surface elevation m
Time interval for plotting yr
Number of prints desired -
Parameter Description Unit
Model name name of the model -
Author name name of the model author -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

<math>S_{u}= {\frac{R C_{f} ^ \left ( {\frac{1}{2}}\right )} {\alpha _{EH} \tau _{form} ^*}} {\frac{Q_{tbf,feed}}{Q_{bf}}} </math> (1)
<math>{\frac{S}{S_{u}}} = \left ( 1 - \beta \hat{x}\right ) </math> (2)
<math>\hat{\eta} = {\frac{\eta_{dev}}{L}} </math> (3)
<math>\hat{x} = {\frac{x}{L}} </math> (4)
<math>\beta = {\frac{ \left (1 - \lambda _{p} \right ) B_{f} \dot{\xi} _{d} L}{I_{f} \Omega \left ( 1 + \Lambda \right ) Q_{tbf,feed}}} </math> (5)
<math>\hat{\eta} = S_{u} [ \left ( 1 - {\frac{1}{2}} \beta \right ) - \hat{x} + {\frac{1}{2}} \beta \hat{x} ^2 ] </math> (6)
<math>\eta = \xi _{do} + \dot{\xi} _{d} t + \eta _{dev} \left ( x \right ) </math> (7)
<math>{\frac{B_{bf}}{D}} = {\frac{C_{f}}{\alpha _{EH} \left ( \tau _{form} ^* \right ) ^ \left ( 2.5 \right ) }} {\frac{Q_{tbf}}{\sqrt { R g D } D^2}} </math> (8)
<math>{\frac{H}{D}} = {\frac{\alpha _{EH} \left ( \tau _{form} ^* \right ) ^2}{C_{f} ^ \left ({\frac{1}{2}} \right )}} {\frac{Q_{bf}}{Q_{tbf}}} </math> (9)
<math>{\frac{Q_{tbf}}{Q_{tbf,feed}}} = 1 - \beta \hat{x} </math> (10)

Notes

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

Key papers

Links

Any link, eg. to the model questionnaire, etc.