Model help:DepDistTotLoadCalc

From CSDMS
Revision as of 16:05, 13 April 2011 by Happyfei (talk | contribs) (Created page with "<!-- How to create a new "Model help" page: 1) Log in to the wiki 2) Create a new page for each model, by using the following URL: * http://csdms.colorado.edu/wiki/Model help:...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
The CSDMS Help System
The CSDMS Help System

DepDistTotLoadCalc

This is an illustration of calculation of depth-discharge relation, bed load transport, suspended load transport and total bed material load for a large, low-slope sand-bed river.

Model introduction

This model is a Depth-Discharge and Total Load calculator, uses:

  1. Wright-Parker formulation for flow resistance,
  2. Ashida-Michiue formulation for bedload transport,
  3. Wright-Parker formulation (without stratification) for suspended load. 

Model parameters

Parameter Description Unit
First parameter Description parameter [Units]
Parameter Description Unit
First parameter Description parameter [Units]

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

<math>\tau_{s} ^* = {\frac{H_{s} S}{R D_{50}}} </math> (1)
<math>U = 8.32 sqrt \left (g H_{s} S \right ) \left ( {\frac{H_{s}}{k_{s}}} \right ) ^ \left ( {\frac{1}{6}} \right ) </math> (2)
<math>H = \left ( \Gamma {\frac{R D_{s50}}{S}} \left ( {\frac{sqrt \left ( g \right )}{U}} \right ) ^ \left ( 0.7 \right ) \right ) ^ \left ( {\frac{20}{13}} \right ) </math> (3)
<math>\Gamma = \left ( {\frac{\tau_{s} ^* - 0.05}{0.7}} \right ) ^ \left ( {\frac{5}{4}} \right ) </math> (4)
<math>\tau^* = {\frac {H S}{R D_{50}}} </math> (5)
<math>F_{r}= {\frac{U}{sqrt \left ( g H \right )}} </math> (6)
<math>u_{*} = sqrt \left ( g H S \right ) </math> (7)
<math>u_{*s} = sqrt \left ( g H_{s} S \right ) </math> (8)
<math>q_{b} = sqrt \left ( R g D_{50} \right ) D_{50} \left ( \tau _{s} ^* -0.05 \right ) \left ( sqrt \left ( \tau _{s} ^* \right ) - sqrt \left ( 0.05 \right ) \right ) </math> (9)
<math>C_{z} = {\frac{U}{u_{*}}} </math> (10)
<math>k_{c} = {\frac{11H}{e^ \left ( \kappa C_{z} \right )}} </math> (11)
<math>Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) S \left ( 0.07 \right ) </math> (12)
<math>E = {\frac{5.7 * 10^\left ( -7 \right ) Z_{u} ^5}{1 + {\frac{5.7 * 10^\left ( -7 \right )}{0.3}} Z_{u} ^5}} </math> (13)
<math>q_{s} = {\frac{u_{*} E H}{\kappa}} I </math> (14)
<math>q_{t} = q_{s} + q_{b} </math> (15)
<math>I = \Sigma \left ( {\frac{\left ( 1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta _{b} \right ) / \zeta_{b}}} \right ) ^ {\frac{V_{s}}{\kappa u_{*}}} ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right ) d \zeta </math> (16)

Notes

Any notes, comments, you want to share with the user

Numerical scheme


Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

Key papers

Links