Describe key physical parameters and equations
|
[[Describe key physical parameters::We solve the PDE for lithospheric flexure in 2 dimensions:
<math> \nabla^2\left(D(x,y)\nabla^2 w \right) + \Delta \rho g w = q(x,y) </math>
Here, $D$ is the flexural rigidity, $w$ is the vertical displacement at each $(x,y)$, $\Delta \rho$ is the mantle density minus the density of infilling material, $g$ is gravitational acceleration, and $q$ is the applied load. We follow Wees and Cloetingh (1994) in acknowledging that flexural rigidity is a tensor property:
<math>
D = \frac{E T_e^3}{12\left(1-\nu^2\right)}
\left[ \begin{array}{ccc}
1 & \nu & 0 \\
\nu & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2} \end{array} \right]
</math>]]
|