Presenters-0547
From CSDMS
CSDMS 2021: Changing Landscapes and Seascapes: Modeling for Discovery, Decision Making, and Communication
Modeling transient Ecosystem Response to Climate Variability since Late Pleistocene using Landlab
Abstract
Ecosystems are in transition globally with critical societal consequences. Global warming, growing climatic extremes, land degradation, human-introduced herbivores, and climate-related disturbances (e.g., wildfires) drive rapid changes in ecosystem productivity and structure, with complex feedbacks in watershed hydrology, geomorphology, and biogeochemistry. There is a need to develop models that can represent ecosystem changes by incorporating the role of individual plant patches. We developed ecohydrologic components in Landlab that can be coupled to create models to simulate local soil moisture dynamics and plant dynamics with spatially-explicit cellular automaton plant establishment, mortality, fires, and grazing. In this talk, I will present a model developed to explore the interplay between ecosystem state, change in climate, resultant grass connectivity, fire frequency, and topography. A transition from a cool-wet climate to a warm-dry climate leads to shrub expansion due to drought-induced loss of grass connectivity. Shrubs dominate the ecosystem if dry conditions persist longer. The transition back to a tree or grass-dominated ecosystem from a shrub-dominated ecosystem can only happen when climate shifts from dry to wet. The importance of the length of dry or wet spells on ecosystem structure is highlighted. Aspect plays a critical role in providing topographical refugia for trees during dry periods and influences the rate of ecosystem transitions during climate change.
Please acknowledge the original contributors when you are using this material. If there are any copyright issues, please let us know (CSDMSweb@colorado.edu) and we will respond as soon as possible.
Of interest for: