Model help:RouseVanoniEquilibrium: Difference between revisions

From CSDMS
mNo edit summary
mNo edit summary
Line 109: Line 109:
| H
| H
| water depth
| water depth
| -
| L
|-
|-
| ζ
| ζ
| vertical coordinate in the cross section, ζ = 0 on the bed surface and ζ = H on the water surface
| vertical coordinate in the cross section, ζ = 0 on the bed surface and ζ = H on the water surface
| -
| L
|-
|-
| ζ<sub>b</sub>
| ζ<sub>b</sub>
| position near the bed surface where the volumetric concentration of suspended sediment is equal to C<sub>b</sub>
| position near the bed surface where the volumetric concentration of suspended sediment is equal to C<sub>b</sub>
| -
| L
|-
|-
| u<sup>*</sup>
| u<sup>*</sup>
| shear velocity
| shear velocity
| -
| L / T
|-
|-
| v<sub>s</sub>
| v<sub>s</sub>
| particle settling velocity computed with the formulation presented by Dietrich (1982)
| particle settling velocity computed with the formulation presented by Dietrich (1982)
| -
| L / T
|-
|-
| c
| c
| concentration of suspended sediment in the water column at elevation ζ averaged over turbulence.
| concentration of suspended sediment in the water column at elevation ζ averaged over turbulence.
| -
| M / L<sup>3</sup>
|-
|-
| κ
| κ
Line 166: Line 166:
|-
|-
|}
|}
   </div>
   </div>
</div>
</div>
==Notes==
==Notes==
To compute the equilibrium profile the user can choose between:
To compute the equilibrium profile the user can choose between:

Revision as of 15:09, 26 May 2011

The CSDMS Help System
The CSDMS Help System

RouseVanoniEquilibrium

This Program is used to calculate the Rouse-Vanoni profile of suspended sediment.

Model introduction

This model is working as a profile calculator for Rouse-Vanoni Equilibrium Suspended Sediment.

Model parameters

Parameter Description Unit
Input directory path to input files
Site prefix Site prefix for Input/Output files
Case prefix Case prefix for Input/Output files
Parameter Description Unit
non-dimensional distance from the bed non-dimensional height in the water column -
vs settling velocity settling velocity of the particles cm / s
u* shear velocity m / s
Parameter Description Unit
Model name name of the model -
Author name name of the model author -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

  • Non-dimensional expression of the Rouse-Vanoni profile
<math>{\frac{c}{c_{b}}} = \left ( {\frac{\left ( 1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta \right ) / \zeta _{b} }}\right ) ^ {\frac{V_{s}}{\kappa u_{*}}} </math> (1)
  • Vertical coordinate in the cross section
<math>\zeta = {\frac{z}{H}} </math> (2)
  • Position near the bed surface where the volume concentration of suspended sediment is equals to cb
<math>\zeta _{b} = {\frac{b}{H}} </math> (3)
  • Concentration of suspended sediment in the water column at ζ=ζb averaged over turbulence
<math>c_{b} = E </math> (4)

Notes

To compute the equilibrium profile the user can choose between:

a) the grid of the excel workbook RTe-bookRouseSpreadsheetFun.xls. This grid has 22 points in the vertical direction. The lowest 19 are equally spaced between z = b and z = b + 18(1-b)/19. The upper three points are located at z = 0.98, z = 0.995 and z = 1, where the concentration of suspended sediment goes to zero.

b) an equally spaced grid with a user specified number of points in the vertical.


Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

Dietrich, E. W., 1982, Settling velocity of natural particles, Water Resources Research, 18 (6), 1626-1982.

Links

Model:RouseVanoniEquilibrium