Model help:DepDistTotLoadCalc: Difference between revisions

From CSDMS
No edit summary
No edit summary
Line 47: Line 47:


= Etc. tab header =
= Etc. tab header =
{|{{Prettytable}} class = "wikitable unsortable"  cellspacing="0"  cellpadding="0" style="margin:0em 0em 0em 0;"
|-
!Parameter!!Description!!Unit
|-valign="top"
|width="20%"|<span class="remove_this_tag">First parameter</span>
|width="60%"|<span class="remove_this_tag">Description parameter</span>
|width="20%"|<span class="remove_this_tag">[Units]</span>
|}
<headertabs/>
<headertabs/>
</div>


==Uses ports==
==Uses ports==
Line 246: Line 253:
| I
| I
| results of the integral
| results of the integral
|  
| -
|-
|-
| q<sub>s</sub>
| q<sub>s</sub>
Line 262: Line 269:
| Re<sub>p</sub>
| Re<sub>p</sub>
|  
|  
|  
| -
|-
|-
| R<sub>f</sub>
| R<sub>f</sub>

Revision as of 20:24, 25 April 2011

The CSDMS Help System
The CSDMS Help System

DepDistTotLoadCalc

This is an illustration of calculation of depth-discharge relation, bed load transport, suspended load transport and total bed material load for a large, low-slope sand-bed river.

Model introduction

This program calculates the same parameters as WPHydResAMBL, as well as calculating the Entrainment, Chézy coefficient, bedload ratios, and various other parameters.

This model is a Depth-Discharge and Total Load calculator, uses: 1. Wright-Parker formulation for flow resistance, 2. Ashida-Michiue formulation for bedload transport, 3. Wright-Parker formulation (without stratification) for suspended load.

Model parameters

Parameter Description Unit
First parameter Description parameter [Units]
Parameter Description Unit
First parameter Description parameter [Units]
Parameter Description Unit
First parameter Description parameter [Units]

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

<math>\tau_{s} ^* = {\frac{H_{s} S}{R D_{50}}} </math> (1)
<math>U = 8.32 \sqrt {g H_{s} S } \left ( {\frac{H_{s}}{k_{s}}} \right ) ^ \left ( {\frac{1}{6}} \right ) </math> (2)
<math>H = \left ( \Gamma {\frac{R D_{s50}}{S}} \left ( {\frac{\sqrt { g }}{U}} \right ) ^ \left ( 0.7 \right ) \right ) ^ \left ( {\frac{20}{13}} \right ) </math> (3)
<math>\Gamma = \left ( {\frac{\tau_{s} ^* - 0.05}{0.7}} \right ) ^ \left ( {\frac{5}{4}} \right ) </math> (4)
<math>\tau^* = {\frac {H S}{R D_{50}}} </math> (5)
<math>F_{r}= {\frac{U}{\sqrt { g H }}} </math> (6)
<math>u_{*} = \sqrt { g H S } </math> (7)
<math>u_{*s} = \sqrt { g H_{s} S } </math> (8)
<math>q_{b} = \sqrt { R g D_{50}} D_{50} \left ( \tau _{s} ^* -0.05 \right ) \left ( \sqrt { \tau _{s} ^* } - \sqrt { 0.05 } \right ) </math> (9)
<math>C_{z} = {\frac{U}{u_{*}}} </math> (10)
<math>k_{c} = {\frac{11H}{e^ \left ( \kappa C_{z} \right )}} </math> (11)
<math>Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) S ^ \left ( 0.07 \right ) </math> (12)
<math>E = {\frac{5.7 * 10^\left ( -7 \right ) Z_{u} ^5}{1 + {\frac{5.7 * 10^\left ( -7 \right )}{0.3}} Z_{u} ^5}} </math> (13)
<math>q_{s} = {\frac{u_{*} E H}{\kappa}} I </math> (14)
<math>q_{t} = q_{s} + q_{b} </math> (15)
<math>I = \int _{\zeta _{b}} ^ 1 [ {\frac{\left ( 1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta _{b} \right ) / \zeta_{b}}} ] ^ {\frac{V_{s}}{\kappa u_{*}}} ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right ) d \zeta </math> (16)

Notes

  • Note on model running

The program shares the notes that are expressed in WPHydResAMBL.

The integration carried out in this program is performed with the trapezoidal rule.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

Key papers

Links