Model help:DepDistTotLoadCalc: Difference between revisions

From CSDMS
No edit summary
No edit summary
Line 17: Line 17:


==Model introduction==
==Model introduction==
This program calculates the same parameters as WPHydResAMBL, as well as calculating the Entrainment, Chézy coefficient, bedload ratios, and various other parameters.
This model is a Depth-Discharge and Total Load calculator, uses:
This model is a Depth-Discharge and Total Load calculator, uses:
1. Wright-Parker formulation for flow resistance,
1. Wright-Parker formulation for flow resistance,
Line 60: Line 62:
|}
|}
::::{|
::::{|
|width=500px|<math>U = 8.32 sqrt \left (g H_{s} S \right ) \left ( {\frac{H_{s}}{k_{s}}} \right ) ^ \left ( {\frac{1}{6}} \right ) </math>
|width=500px|<math>U = 8.32 \sqrt {g H_{s} S } \left ( {\frac{H_{s}}{k_{s}}} \right ) ^ \left ( {\frac{1}{6}} \right ) </math>
|width=50px align="right"|(2)
|width=50px align="right"|(2)
|}
|}
::::{|
::::{|
|width=500px|<math>H = \left ( \Gamma {\frac{R D_{s50}}{S}} \left ( {\frac{sqrt \left ( g \right )}{U}} \right ) ^ \left ( 0.7 \right ) \right ) ^ \left ( {\frac{20}{13}} \right ) </math>
|width=500px|<math>H = \left ( \Gamma {\frac{R D_{s50}}{S}} \left ( {\frac{\sqrt { g }}{U}} \right ) ^ \left ( 0.7 \right ) \right ) ^ \left ( {\frac{20}{13}} \right ) </math>
|width=50px align="right"|(3)
|width=50px align="right"|(3)
|}
|}
Line 76: Line 78:
|}
|}
::::{|
::::{|
|width=500px|<math>F_{r}= {\frac{U}{sqrt \left ( g H \right )}} </math>
|width=500px|<math>F_{r}= {\frac{U}{\sqrt { g H }}} </math>
|width=50px align="right"|(6)
|width=50px align="right"|(6)
|}
|}
::::{|
::::{|
|width=500px|<math>u_{*} = sqrt \left ( g H S \right ) </math>
|width=500px|<math>u_{*} = \sqrt { g H S } </math>
|width=50px align="right"|(7)
|width=50px align="right"|(7)
|}
|}
::::{|
::::{|
|width=500px|<math>u_{*s} = sqrt \left ( g H_{s} S \right ) </math>
|width=500px|<math>u_{*s} = \sqrt { g H_{s} S } </math>
|width=50px align="right"|(8)
|width=50px align="right"|(8)
|}
|}
::::{|
::::{|
|width=500px|<math>q_{b} = sqrt \left ( R g D_{50} \right ) D_{50} \left ( \tau _{s} ^* -0.05 \right ) \left ( sqrt \left ( \tau _{s} ^*  \right ) -  sqrt \left ( 0.05 \right ) \right ) </math>
|width=500px|<math>q_{b} = \sqrt { R g D_{50}} D_{50} \left ( \tau _{s} ^* -0.05 \right ) \left ( \sqrt { \tau _{s} ^*  } \sqrt { 0.05 } \right ) </math>
|width=50px align="right"|(9)
|width=50px align="right"|(9)
|}
|}
Line 100: Line 102:
|}
|}
::::{|
::::{|
|width=500px|<math>Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) S \left ( 0.07 \right ) </math>
|width=500px|<math>Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) S ^ \left ( 0.07 \right ) </math>
|width=50px align="right"|(12)
|width=50px align="right"|(12)
|}
|}
Line 116: Line 118:
|}
|}
::::{|
::::{|
|width=500px|<math>I = \Sigma \left ( {\frac{\left ( 1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta _{b} \right ) / \zeta_{b}}} \right ) ^ {\frac{V_{s}}{\kappa u_{*}}} ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right ) d \zeta </math>
|width=500px|<math>I = \int _{\zeta _{b}} ^ 1 [ {\frac{\left ( 1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta _{b} \right ) / \zeta_{b}}} ] ^ {\frac{V_{s}}{\kappa u_{*}}} ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right ) d \zeta </math>
|width=50px align="right"|(16)
|width=50px align="right"|(16)
|}
|}
Line 153: Line 155:
| factor such that k<sub>s</sub> = n<sub>k</sub> D<sub>s90</sub>
| factor such that k<sub>s</sub> = n<sub>k</sub> D<sub>s90</sub>
| kg/m<sup>3</sup>
| kg/m<sup>3</sup>
|-
| Re<sub>p</sub>
|
|
|-
| R<sub>f</sub>
|
| -
|-
|-
| v<sub>s</sub>
| v<sub>s</sub>
Line 222: Line 216:
| -
| -
|-
|-
| F<sup>r</sup>
| F<sub>r</sub>
| Froude number
| Froude number
| -
| -
|-
|-
| u<sup>*</sup>
| u<sub>*</sub>
| shear velocity
| shear velocity
| m / s
| m / s
|-
|-
| u<sup>*s</sup>
| u<sub>*s</sub>
| shear velocity due to skin friction
| shear velocity due to skin friction
| m / s
| m / s
|-
|-
| q<sup>b</sup>
| q<sub>b</sub>
| volume bedload transport rate per unit width
| volume bedload transport rate per unit width
| m<sup>2</sup> / s
| m<sup>2</sup> / s
|-
|-
| q<sup>b</sup>
| C<sub>z</sub>
| volume bedload transport rate per unit width
| m<sup>2</sup> / s
|-
| C<sup>z</sup>
| dimensionless Chezy resistance coefficient
| dimensionless Chezy resistance coefficient
| -
| -
|-
|-
| k<sup>c</sup>
| k<sub>c</sub>
| composite roughness height associated with both skin friction and form drag
| composite roughness height associated with both skin friction and form drag
| -
| -
Line 255: Line 245:
|-
|-
| I
| I
|  
| results of the integral
|  
|  
|-
|-
| q<sup>s</sup>
| q<sub>s</sub>
| volume suspended load transport rate per unit width
| volume suspended load transport rate per unit width
| m <sup>2</sup> / s
| m <sup>2</sup> / s
|-
|-
| q<sup>t</sup>
| q<sub>t</sub>
| volume total bed material transport rate per unit width
| volume total bed material transport rate per unit width
| m<sup>2</sup> / s
| m<sup>2</sup> / s
Line 268: Line 258:
| ζ
| ζ
| dimensionless upward normal coordinate
| dimensionless upward normal coordinate
| -
|-
| Re<sub>p</sub>
|
|
|-
| R<sub>f</sub>
|
| -
|-
| Γ
| parameter with no physical meaning (used in calculations of H)
| -
|-
| D<sub>s50</sub>
|
| -
|-
| τ<sub>s</sub> <sup>*</sup>
|
| -
|-
| k
|
| -
|-
| z<sub>u</sub>
| parameter has no physical meaning
| -
|-
| q<sub>t</sub>
|
| -
|-
| S<sub>b</sub>
|
| -
|-
| τ<sub>g</sub>
|
| -
|-
| τ
|
| -
|-
| s
| step size for water depth due to skin friction
| m
|-
| d
| median sediment diameter
| mm
|-
| D
| diameter such that 90% of the distribution is finer
| mm
|-
| n
| factor in the roughness height calculation
| -
|-
| N
| number of steps to make
| -
|-
| a
| factor for stratification (if not included it will be assumed 1)
| -
| -
|-
|-
Line 276: Line 334:
</div>
</div>
==Notes==
==Notes==
<span class="remove_this_tag">Any notes, comments, you want to share with the user</span>
* Note on model running
 
The program shares the notes that are expressed in WPHydResAMBL.
<span class="remove_this_tag">Numerical scheme</span>


The integration carried out in this program is performed with the trapezoidal rule.


==Examples==
==Examples==

Revision as of 20:23, 25 April 2011

The CSDMS Help System
The CSDMS Help System

DepDistTotLoadCalc

This is an illustration of calculation of depth-discharge relation, bed load transport, suspended load transport and total bed material load for a large, low-slope sand-bed river.

Model introduction

This program calculates the same parameters as WPHydResAMBL, as well as calculating the Entrainment, Chézy coefficient, bedload ratios, and various other parameters.

This model is a Depth-Discharge and Total Load calculator, uses: 1. Wright-Parker formulation for flow resistance, 2. Ashida-Michiue formulation for bedload transport, 3. Wright-Parker formulation (without stratification) for suspended load.

Model parameters

Parameter Description Unit
First parameter Description parameter [Units]
Parameter Description Unit
First parameter Description parameter [Units]

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

<math>\tau_{s} ^* = {\frac{H_{s} S}{R D_{50}}} </math> (1)
<math>U = 8.32 \sqrt {g H_{s} S } \left ( {\frac{H_{s}}{k_{s}}} \right ) ^ \left ( {\frac{1}{6}} \right ) </math> (2)
<math>H = \left ( \Gamma {\frac{R D_{s50}}{S}} \left ( {\frac{\sqrt { g }}{U}} \right ) ^ \left ( 0.7 \right ) \right ) ^ \left ( {\frac{20}{13}} \right ) </math> (3)
<math>\Gamma = \left ( {\frac{\tau_{s} ^* - 0.05}{0.7}} \right ) ^ \left ( {\frac{5}{4}} \right ) </math> (4)
<math>\tau^* = {\frac {H S}{R D_{50}}} </math> (5)
<math>F_{r}= {\frac{U}{\sqrt { g H }}} </math> (6)
<math>u_{*} = \sqrt { g H S } </math> (7)
<math>u_{*s} = \sqrt { g H_{s} S } </math> (8)
<math>q_{b} = \sqrt { R g D_{50}} D_{50} \left ( \tau _{s} ^* -0.05 \right ) \left ( \sqrt { \tau _{s} ^* } - \sqrt { 0.05 } \right ) </math> (9)
<math>C_{z} = {\frac{U}{u_{*}}} </math> (10)
<math>k_{c} = {\frac{11H}{e^ \left ( \kappa C_{z} \right )}} </math> (11)
<math>Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) S ^ \left ( 0.07 \right ) </math> (12)
<math>E = {\frac{5.7 * 10^\left ( -7 \right ) Z_{u} ^5}{1 + {\frac{5.7 * 10^\left ( -7 \right )}{0.3}} Z_{u} ^5}} </math> (13)
<math>q_{s} = {\frac{u_{*} E H}{\kappa}} I </math> (14)
<math>q_{t} = q_{s} + q_{b} </math> (15)
<math>I = \int _{\zeta _{b}} ^ 1 [ {\frac{\left ( 1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta _{b} \right ) / \zeta_{b}}} ] ^ {\frac{V_{s}}{\kappa u_{*}}} ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right ) d \zeta </math> (16)

Notes

  • Note on model running

The program shares the notes that are expressed in WPHydResAMBL.

The integration carried out in this program is performed with the trapezoidal rule.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

Key papers

Links