Model Solution Library: Difference between revisions
From CSDMS
Line 10: | Line 10: | ||
: Burgers' vortex | : Burgers' vortex | ||
: Rankine vortex (not a solution, though) | : Rankine vortex (not a solution, though) | ||
: Taylor-Couette flow (and Taylor-Dean flow ??) | |||
: | |||
< | <br/> | ||
<!-- ============================================= --> | |||
== {{ Bar Heading| text=Shallow Water Equations}} == | |||
: Inclined plane solution | : Inclined plane solution | ||
: Dam Break Characteristic Solution | : Dam Break Characteristic Solution | ||
: Similarity solutions | : Similarity solutions | ||
: | : | ||
<br/> | |||
< | <!-- ============================================= --> | ||
== {{ Bar Heading| text=Glacier Flow Equations}} == | |||
: Halfar (1983) radially-symmetric (Glen Law) similarity solution | : Halfar (1983) radially-symmetric (Glen Law) similarity solution | ||
: Bueler et al. (****) similarity solution | : Bueler et al. (****) similarity solution | ||
: | : | ||
: | : | ||
< | <br/> | ||
<!-- ============================================= --> | |||
== {{ Bar Heading| text=2D Potential Flow}} == | |||
: Flow around a semi-infinite plate (power-law conformal map: n=1/2) | : Flow around a semi-infinite plate (power-law conformal map: n=1/2) | ||
: Flow around a right-angle corner (power-law conformal map: n=2/3) | : Flow around a right-angle corner (power-law conformal map: n=2/3) | ||
Line 37: | Line 41: | ||
: Darcy flow solutions | : Darcy flow solutions | ||
: | : | ||
< | <br/> | ||
<!-- ============================================= --> | |||
== {{ Bar Heading| text='Jet, Wake and Mixing Layer Solutions}} == | |||
: | : | ||
: | : | ||
< | <br/> | ||
<!-- ============================================= --> | |||
== {{ Bar Heading| text=Channel and Pipe Flow Solutions}} == | |||
: Poisseuille Flow | : Poisseuille Flow | ||
: | : | ||
: | : | ||
< | <br/> | ||
<!-- ============================================= --> | |||
== {{ Bar Heading| text=Driven Cavity Solutions}} == | |||
< | |||
: Numeric solution | : Numeric solution | ||
: Analytic solution | : Analytic solution | ||
: | : | ||
< | <br/> | ||
<!-- ============================================= --> | |||
== {{ Bar Heading| text=Boundary Layer Equation}} == | |||
: Blasius | : Blasius | ||
: Falkners-Skan solution | : Falkners-Skan solution | ||
Line 65: | Line 68: | ||
: | : | ||
: | : | ||
< | <br/> | ||
<!-- ============================================= --> | |||
== {{ Bar Heading| text=Stokes Settling Solutions}} == | |||
: | : | ||
: | : | ||
< | <br/> | ||
<!-- ============================================= --> | |||
== {{ Bar Heading| text=Ekman Spiral Solution}} == | |||
: | : | ||
: | : | ||
<br/> | |||
< | <!-- ============================================= --> | ||
== {{ Bar Heading| text=Minimal Surface Equation}} == | |||
: Inclined plane solution | : Inclined plane solution | ||
: Helicoid solution (Meusnier, 1776) | : Helicoid solution (Meusnier, 1776) | ||
Line 85: | Line 89: | ||
: | : | ||
: | : | ||
<br/> | |||
< | <!-- ============================================= --> | ||
== {{ Bar Heading| text=Landscape Evolution Equations}} == | |||
: Steady-state, slope vs. area solution | : Steady-state, slope vs. area solution | ||
: Terry Smith longitudinal profile solutions | : Terry Smith longitudinal profile solutions | ||
Line 93: | Line 97: | ||
: | : | ||
: | : | ||
< | <br/> | ||
<!-- ============================================= --> | |||
== {{ Bar Heading| text=Infiltration Theory}} == | |||
: Broadsbent-Hammersley Solution | : Broadsbent-Hammersley Solution | ||
: | : | ||
: | : | ||
: | : | ||
< | <br/> | ||
<!-- ============================================= --> | |||
== {{ Bar Heading| text=Heat Equation}} == | |||
: Gaussian, radially-symmetric similarity solution | : Gaussian, radially-symmetric similarity solution | ||
: | : | ||
: | : | ||
<br/> | |||
<!-- ============================================= --> | |||
< | == {{ Bar Heading| text=Burgers' Equation}} == | ||
: many, via Cole-Hopf transformation to Heat Equation | |||
: via Cole-Hopf transformation | |||
: | : | ||
: | : | ||
: | : |
Revision as of 15:59, 21 May 2014
CSDMS Model Solution Library
- This is a collection of analytic or closed-form solutions to a variety of different mathematical models in the realm of surface process dynamics.
- Lamb vortex
- Burgers' vortex
- Rankine vortex (not a solution, though)
- Taylor-Couette flow (and Taylor-Dean flow ??)
Shallow Water Equations
- Inclined plane solution
- Dam Break Characteristic Solution
- Similarity solutions
Glacier Flow Equations
- Halfar (1983) radially-symmetric (Glen Law) similarity solution
- Bueler et al. (****) similarity solution
2D Potential Flow
- Flow around a semi-infinite plate (power-law conformal map: n=1/2)
- Flow around a right-angle corner (power-law conformal map: n=2/3)
- Uniform flow (power-law conformal map: n = 1)
- Power-law conformal map: n=3/2
- Flow through a right-angle corner or at a stagnation point (power-law conformal map: n=2)
- Flow into a 60-degree corner (power-law conformal map: n=3)
- Doublet solution (source-sink pair; power-law conformal map: n=-1)
- Quadrupole solution (power-law conformal map: n=-2)
- Joukowski airfoil solution
- Darcy flow solutions
'Jet, Wake and Mixing Layer Solutions
Channel and Pipe Flow Solutions
- Poisseuille Flow
Driven Cavity Solutions
- Numeric solution
- Analytic solution
Boundary Layer Equation
- Blasius
- Falkners-Skan solution
- Stokes First Problem
- Stokes Second Problem
Stokes Settling Solutions
Ekman Spiral Solution
Minimal Surface Equation
- Inclined plane solution
- Helicoid solution (Meusnier, 1776)
- Catenoid solution (Meusnier, 1776)
- Scherk's first surface solution (Scherk, 1834)
- Scherk's second surface solution (Scherk, 1834)
- Costa surface solution (Costa, 1984)
Landscape Evolution Equations
- Steady-state, slope vs. area solution
- Terry Smith longitudinal profile solutions
- Peckham steady-state "ideal landform equation" solutions
Infiltration Theory
- Broadsbent-Hammersley Solution
Heat Equation
- Gaussian, radially-symmetric similarity solution
Burgers' Equation
- many, via Cole-Hopf transformation to Heat Equation