Model help:DepDistTotLoadCalc: Difference between revisions

From CSDMS
No edit summary
No edit summary
Line 189: Line 189:
| median sediment size
| median sediment size
| mm
| mm
|-
| g
| acceleration due to gravity
|m / s<sup>2</sup>
|-
|-
| D<sub>90</sub>
| D<sub>90</sub>
Line 213: Line 217:
| fall velocity of size D<sub>s50</sub>
| fall velocity of size D<sub>s50</sub>
| cm / s
| cm / s
|-
| τ<sub>b</sub>
| boundary shear stress on the bed
| kg / (m s)
|-
| u
| shear velocity on the bed
| m / s
|-
| q<sub>bi</sub>
| volume gravel bedload transport per unit width of grains in the ith size range
| m <sup>2</sup>
|-
| u<sub>*</sub>
| shear velocity
| m / s
|-
| D<sub>lg</sub>
| geometric mean of the bedload
| mm
|-
| σ<sub>lg</sub>
| geometric standard deviation of the bedload
| -
|- 
| D<sub>sx</sub>
| size in the surface material, such that x percentage of the material is finer
| mm
|-
| D<sub>lx</sub>
| size in the bedload material, such that x percentage of the material is finer
| -
|- 
| D<sub>sx</sub>
| size in the surface material, such that x percentage of the material is finer
| mm
|-
|-
| H<sub>s</sub>
| H<sub>s</sub>
Line 254: Line 222:
| m
| m
|-
|-
| U
| g
| depth- or cross sectionally-averaged flow velocity or layer-average velocity (turbidity current)
| acceleration due to gravity
| m / s
| m / s<sup>2</sup>
|-
| H
| cross-sectionally averaged flow depth (river) or flow thickness (turbidity current)
| m
|-
| q<sub>w</sub>
| water discharge per unit width
| m<sup>2</sup> / s
|-
| τ<sup>*</sup>
| Shields number
| -
|-
| F<sub>r</sub>
| Froude number
| -
|-
| u<sub>*</sub>
| shear velocity
| m / s
|-
|-
| u<sub>*s</sub>
| u<sub>*s</sub>
| shear velocity due to skin friction
| shear velocity due to skin friction
| m / s
| m / s
|-
| q<sub>b</sub>
| volume bedload transport rate per unit width
| m<sup>2</sup> / s
|-
|-
| C<sub>z</sub>
| C<sub>z</sub>
Line 296: Line 240:
| E
| E
| dimensionless rate of entrainment of bed sediment into suspension
| dimensionless rate of entrainment of bed sediment into suspension
| m<sup>2</sup> / s
|-
| I
| results of the integral
| -
| -
|-
| q<sub>s</sub>
| volume suspended load transport rate per unit width
| m <sup>2</sup> / s
|-
| q<sub>t</sub>
| volume total bed material transport rate per unit width
| m<sup>2</sup> / s
|-
|-
| ζ
| ζ
Line 314: Line 246:
| -
| -
|-
|-
| Γ
| ζ<sub>b</sub>
| parameter with no physical meaning (used in calculations of H)
| equals to 0.05
| -
| -
|-
|-
Line 333: Line 265:
| diameter such that 90% of the distribution is finer
| diameter such that 90% of the distribution is finer
| mm
| mm
|-
| κ
| Von Karmen coefficient, equals to 0.4
| -
|-
|-
| n
| n
Line 347: Line 283:
|-
|-
| Re<sub>p</sub>
| Re<sub>p</sub>
|  
| explicit particle Reynolds number
| -
| -
|-
|-
| R<sub>f</sub>
| D<sub>s50</sub>
|  
| median sediment size of the surface layer sediment
| -
| -
|-
|-
| D<sub>s50</sub>
| U
|  
| depth- or cross sectionally-averaged flow velocity or layer-average velocity (turbidity current)
| m / s
|-
| F<sub>r</sub>
| Froude number
| -
| -
|-
|-
| τ<sub>s</sub> <sup>*</sup>
| u<sub>*</sub>
|  
| shear velocity
| m / s
|-
| H
| cross-sectionally averaged flow depth (river) or flow thickness (turbidity current)
| m
|-
| τ<sup>*</sup>
| actual shields stress
| N / m<sup>2</sup>
|-
| τ<sub>s</sub><sup>*</sup>
|Shields stress due to skin friction
| N / m<sup>2</sup>
|-
| Γ
| parameter with no physical meaning (used in calculations of H)
| -
| -
|-
|-
| k
|}
|  
'''Output'''
{| {{Prettytable}} class="wikitable sortable"
!Symbol!!Description!!Unit
|-
| I
| results of the integral
| -
| -
|-
| q<sub>s</sub>
| volume suspended load transport rate per unit width
| m <sup>2</sup> / s
|-
|-
| q<sub>t</sub>
| q<sub>t</sub>
|  
| volume total bed material transport rate per unit width
| -
| m<sup>2</sup> / s
|-
|-
| S<sub>b</sub>
| q<sub>w</sub>
|  
| water discharge per unit width
| -
| m<sup>2</sup> / s
|-
|-
| τ<sub>g</sub>
| q<sub>b</sub>
|  
| volume bedload transport rate per unit width
| -
| m<sup>2</sup> / s
|-
| τ
|
| -
|-
|-
|}
|}


   </div>
   </div>
Line 406: Line 366:


==References==
==References==
<span class="remove_this_tag">Key papers</span>
* Wright, S. and Parker, G., 2004, Flow resistance and suspended load in sand-bed rivers: simplified stratification model, Journal of Hydraulic Engineering.
 
* Ashida, K. and M. Michiue, 1972, Study on hydraulic resistance and bedload transport rate in alluvial streams, Transactions, Japan Society of Civil


==Links==
==Links==
* [[http://csdms.colorado.edu/wiki/Model:DepDistTotLoadCalc Model:DepDistTotLoadCalc]]
* [[http://csdms.colorado.edu/wiki/Model:DepDistTotLoadCalc Model:DepDistTotLoadCalc]]
* [[http://csdms.colorado.edu/wiki/Model_help:WPHydResAMBL Model_help:WPHydResAMBL]]


[[Category:Utility components]]
[[Category:Utility components]]

Revision as of 10:43, 12 May 2011

The CSDMS Help System
The CSDMS Help System

DepDistTotLoadCalc

This is an illustration of calculation of depth-discharge relation, bed load transport, suspended load transport and total bed material load for a large, low-slope sand-bed river.

Model introduction

This program calculates the same parameters as WPHydResAMBL, as well as calculating the Entrainment, Chézy coefficient, bedload ratios, and various other parameters.

This model is a Depth-Discharge and Total Load calculator, uses: 1. Wright-Parker formulation for flow resistance, 2. Ashida-Michiue formulation for bedload transport, 3. Wright-Parker formulation (without stratification) for suspended load.

Model parameters

Parameter Description Unit
Input directory path to input files
Site prefix Site prefix for Input/Output files
Case prefix Case prefix for Input/Output files
Parameter Description Unit
bed slope (S) -
median sediment size (D50) mm
90% passing sediment size (D90) diameter such that 90% of the distribution is finer mm
factor such that ks = n*D90 -
submerged specific gravity of sediment (R) -
kinematic viscosity of water (v) m2 / s
low end value of Hs low end value of water depth due to skin friction m
step size for Hs step size for water depth due to skin friction m
number of steps to make for Hs m
Parameter Description Unit
Model name name of the model -
Author name name of the model author -

Uses ports

This will be something that the CSDMS facility will add

Provides ports

This will be something that the CSDMS facility will add

Main equations

<math>\tau_{s} ^* = {\frac{H_{s} S}{R D_{50}}} </math> (1)
<math>U = 8.32 \sqrt {g H_{s} S } \left ( {\frac{H_{s}}{k_{s}}} \right ) ^ \left ( {\frac{1}{6}} \right ) </math> (2)
<math>H = \left ( \Gamma {\frac{R D_{s50}}{S}} \left ( {\frac{\sqrt { g }}{U}} \right ) ^ \left ( 0.7 \right ) \right ) ^ \left ( {\frac{20}{13}} \right ) </math> (3)
<math>\Gamma = \left ( {\frac{\tau_{s} ^* - 0.05}{0.7}} \right ) ^ \left ( {\frac{5}{4}} \right ) </math> (4)
<math>\tau^* = {\frac {H S}{R D_{50}}} </math> (5)
<math>F_{r}= {\frac{U}{\sqrt { g H }}} </math> (6)
<math>u_{*} = \sqrt { g H S } </math> (7)
<math>u_{*s} = \sqrt { g H_{s} S } </math> (8)
<math>q_{b} = \sqrt { R g D_{50}} D_{50} \left ( \tau _{s} ^* -0.05 \right ) \left ( \sqrt { \tau _{s} ^* } - \sqrt { 0.05 } \right ) </math> (9)
<math>C_{z} = {\frac{U}{u_{*}}} </math> (10)
<math>k_{c} = {\frac{11H}{e^ \left ( \kappa C_{z} \right )}} </math> (11)
<math>Z_{u} = {\frac{u_{*s}}{v_{s}}} Re_{p} ^ \left ( 0.6 \right ) S ^ \left ( 0.07 \right ) </math> (12)
<math>E = {\frac{5.7 * 10^\left ( -7 \right ) Z_{u} ^5}{1 + {\frac{5.7 * 10^\left ( -7 \right )}{0.3}} Z_{u} ^5}} </math> (13)
<math>q_{s} = {\frac{u_{*} E H}{\kappa}} I </math> (14)
<math>q_{t} = q_{s} + q_{b} </math> (15)
<math>I = \int _{\zeta _{b}} ^ 1 [ {\frac{\left ( 1 - \zeta \right ) / \zeta}{\left ( 1 - \zeta _{b} \right ) / \zeta_{b}}} ] ^ {\frac{V_{s}}{\kappa u_{*}}} ln \left ( 30 {\frac{H}{k_{c}}} \zeta \right ) d \zeta </math> (16)

Notes

  • Note on model running

The program shares the notes that are expressed in WPHydResAMBL.

The integration carried out in this program is performed with the trapezoidal rule.

Examples

An example run with input parameters, BLD files, as well as a figure / movie of the output

Follow the next steps to include images / movies of simulations:

See also: Help:Images or Help:Movies

Developer(s)

Gary Parker

References

  • Wright, S. and Parker, G., 2004, Flow resistance and suspended load in sand-bed rivers: simplified stratification model, Journal of Hydraulic Engineering.
  • Ashida, K. and M. Michiue, 1972, Study on hydraulic resistance and bedload transport rate in alluvial streams, Transactions, Japan Society of Civil

Links