

Community Sediment Model Working Group 4

Modules - philosophy

- Modules are defined here as distinct sets of processes that require specific sets of modeling rules/equations; modules can have shared tools
- These are process-modules, not method-modules
- Morphology has to emerge rather than be imposed (e.g., we don't propose an explicit delta model)
- The idea is that there is a "Manager" that will decide what processes apply where; the manager also deals with timestep disparities

Modules - philosophy

- Time scales... the Paola-trilogy proposes three basic timescales that have to be recognized at an early stage
 - Deterministic small scale
 - Chaotic mesoscale
 - Deterministic large scale
- Modules may differ depending on whether the model used is 1D vs. 3D, length scales 10⁻¹ vs. 10⁶ m, and widely differing time scales

Venndiagram

Coupling

- Atmosphere, ocean, lithosphere are the large external drivers
- For ocean and atmosphere, input either from other models or by means of crude parameterization
- Atmosphere (weather/climate)
 - Temperature
 - Precipitation
 - Wind
 - Relative humidity
 - Chemistry

Coupling

Ocean

- Sea level
- SST
- Tides
- Waves
- Currents
- Chemistry
- ♦ Lithosphere
 - Tectonics (events)
 - Flexure/Isostasy
 - Thermal/Heat flow
 - Compaction
 - Sediment deformation (e.g., growth faults)

- General actors
 - Eolian [3-4]
 - Glacial [1] (ice dynamics linked to sed transport)
 - Erosion [1]
 - Entrainment into ice [0]
 - Transport [3]
 - Deposition [1]
 - Volcanism [3]
 - Diagenesis [2-3]
 - Humans [1]
 - Biota influencing all surface mechanics
 - Bioturbation [2]
 - Pelletization [1-2]
 - Strength properties [1-2]

Modules that are currently not well understood

- 0 we are clueless
- ♦ 1 empirical understanding
- ♦ 2 some physically based equations
- ♦ 3 some calibration, but work needed
- 4 ready to go

- General actors (pan-marine)
 - Evaporites [3]
 - Carbonate environments
 - Sediment production [2-3]
 - Cementation [2-3]

- We used the Source-to-Sink framework as a vehicle to present the following modules:
- Terrestrial
 - Hydrologic processes (surface/subsurface) [3-4]
 - Sediment production [1-2]
 - Solute loss [1]
 - Soil formation [2-3]
 - Mass wasting
 - Ravel (talus processes) [0-1]
 - Soil/colluvium mass transport [2-3]
 - Soil/colluvium landsliding [1-2]
 - Bedrock landsliding [1]
 - Periglacial processes [2-3]
 - Surface wash (rain splash) [2-3]
 - Debris flow (sed transport and bedrock scour) [1-3]

- Terrestrial (contd)
 - Fluvial processes
 - Sediment transport [3-4]
 - Bedrock incision [1-2]
 - Channel formation [1]
 - Channel dynamics [3-4]
 - Floodplain [1-2]
 - Peats [3]
 - Lacustrine [2-3]
- ♦ Coastal
 - Surf-zone sediment transport [2]
 - Tidal sediment transport [3]
 - Estuaries/stratified flow transport [2]
 - Plumes [3]

- Shelf
 - Wave & current transport [2-3]
 - Fluidized muds [2]
- Slope
 - Internal waves [1]
 - Turbidity currents [3, once in motion]
 - Debris flows [2-3]
 - Slumps [1]
- ♦ Abyss
 - Geostrophic sediment transport [3]
 - Pelagic deposition [3]