Web-based Interactive Landform Simulation Model (WILSIM)

Wei Luo
Dept. of Geography
Northern Illinois University, DeKalb, IL 60115

Project Funded by NSF CCLI (2002-2004)
Collaborators: Kirk Duffin, Jay Stravers, Edit Peronja

http://www.niu.edu/landform
Outline

• My background
• Purposes of WILSIM
• WILSIM Model (how it works, linear, nonlinear versions)
• Graphical User Interface
• Example results from different scenarios
• Summary
My Background

• Current position
 – Associate Professor, Dept. of Geography, NIU

• Research Interests
 – Geomorphology and Hydrology
 • Martian drainage patterns and paleoclimate implications
 • Quantitative analysis of DEM data
 • Computer simulation of landform evolution
 • Basin morphometry and hydrologic response
 – GIS applications
 – Web-based technology in enhancing teaching and learning

http://www.niu.edu/landform
Introduction

• Landform evolution: an important aspect of earth sciences
 – involves multiple processes over long geologic time
• Ideal topic to train students about systems approach
• Long-term landform evolution cannot be observed directly
• Computer simulation is an ideal tool to teach
• Usually requires special programs or visualization software that is not easily accessible to students

http://www.niu.edu/landform
Purposes of WILSIM

• To provide an easily accessible tool that can improve learning through interactive exploring

• It should
 – simulate first order features resulted from multiple processes
 – be interactive, dynamic, visual, and fun
 – allow for exploration (what-if scenarios)
 – be accessible anywhere anytime, no installation
Visualization and Animation

• Need to see the landform change over time in 3D
• Options:
 – The Virtual Reality Markup Language (VRML)
 • Dynamic changes of complex scene geometry not allowed
 – Java 3D
 • Not available for all computing environments
 – Java Applet
 • Platform independent (write once, run anywhere)
 • 2D
• Choose Java Applet
 – custom renderer to show 3D animation
WILSIM: how it works
(cellular automata algorithm)

- Drop storm event (precipiton) randomly onto a cell of a topographic grid (#1)
- Cause local diffusion at its 4 direct neighboring cells (#3, #5, #7, and #9)
- Erode material from current cell (#1) and move to lowest neighbor (#2)
- Continue to move to the lowest neighboring cell and erode along the way until it reaches the edge of the grid, lands in a pit or its carrying capacity is exceeded
- Start a new precipiton and iterate hundreds of thousands of times

(Figure adapted after Chase, 1992)
WILSIM: linear version

- Amount of erosion is proportional to local slope and erodibility
 \[P_e = c \times e \times s \]
 where \(P_e \) is the maximum possible erosion;
 \(c \) is proportional constant;
 \(e \) is the erodibility of material in current cell;
 \(s \) is local slope of current cell;

- Precipitons are independent of each other
WILSIM: non-linear version

• Amount of erosion

\[P_e = c \times e \times a^{n-1} \times s^m \] \hspace{1cm} (2)

where \(P_e \) is the maximum possible erosion;
\(c \) is proportional constant;
\(e \) is the erodibility of material in current cell;
\(a \) is contributing area to current cell;
\(s \) is local slope of current cell;
\(m \) and \(n \) are exponent coefficients.

• When \(m=n=1 \), Eq. (2) becomes Eq. (1)
WILSIM: non-linear version (cont’d)

• Contributing Area a
 – Run D8 algorithm before each iteration

<table>
<thead>
<tr>
<th>12</th>
<th>13</th>
<th>13</th>
<th>12</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>12</td>
<td>14</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>10</td>
<td>7</td>
<td>9</td>
</tr>
</tbody>
</table>

- elevation

| ≤ | } | } | } | ≤ |
| | | | | |

- flow direction

<table>
<thead>
<tr>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
</tbody>
</table>

- contributing area

• Precipitons are now inter-related
 – Previous erosion leads to larger a
 – Precipitons tend to follow previous path (ants)

http://www.niu.edu/landform
Graphical User Interface

Total Iterations:
iterations processed:

Initial Conditions

- **Grid Size:**
 - \(x_{\text{max}} = 60 \)
 - \(y_{\text{max}} = 100 \)

- **End Time:**
 - \# of iterations = 100000

- **Topography:**
 - slope = 0.01

Advanced Options

- **Profiles**
- **Hypsometric**
- **Fractal**

Initial Conditions Parameters

Select the change you want to make and you will see a horizontal summary joining the radio button and the slider on the right. Use the slider to choose new values:

1. **Grid Size,**
 - This option is used to change the size of the topographic grid
 - a. select \(x_{\text{max}} \) for changing the width of the grid (number of columns).
 - default: 60 minimum: 10 maximum: 100
 - b. select \(y_{\text{max}} \) for changing the length of the grid (number of rows).
 - default: 100 minimum: 100 maximum: 200

2. **End Time,**
 - This option is used to choose number of iterations desired
 - default: 100,000 minimum: 100,000 maximum: 1,000,000
Graphical User Interface (cont’d)

ERODIBILITY PARAMETERS

Select the change you want to make and you will see a horizontal joining the radio button and the slider on the right. Use the slider to choose new values:

1. Uniform,
 This option is used to set a uniform erosion value for the whole topographic grid.
 default: 0.05 minimum: 0.01 maximum: 0.05

2. Break at x,
 This option is used to choose a break point at a certain column
 default: 0 minimum: 0 maximum: max # of columns
 Then, choose the erodibility value for the grid cells on the left and right side of the break point.
 default: 0.05 minimum: 0.01 maximum: 0.05
Graphical User Interface (cont’d)

Select the change you want to make and you will see a horizontal green line joining the radio button and the slider on the right. Use the slider to choose new values:

1. Constant,
 - This option is used to set a constant rainfall rate for the whole duration of the simulation
 - default: 0.10 minimum: 0.05 maximum: 0.15

2. Increasing,
 - This option is used to set the rainfall rate to increase linearly (from minimum to maximum) with time (iterations)
 - A low value should be set:
 - default: 0.05 minimum: 0.05 maximum: 0.14
 - A high value should be set:
 - default: 0.06 minimum: 0.06 maximum: 0.15

HIGH value should be greater than LOW value
Graphical User Interface (cont’d)

Select the change you want to make and you will see a horizontal joining the radio button and the slider on the right. Use the slider to choose new values:

1. **Fixed at 0**, This option is used to set uplift rate as 0, i.e., no uplift
2. **Break at x**, This option is used to choose a break point at a certain column

 default: 0 minimum: 0 maximum: max # of columns

 Then, choose an uplift rate for grid cells either on the left side or the right side of the break point.

 default: 0.0000 minimum: 0.0000 maximum: 0.0003

3. **Break at y**, This option is used to choose a break point at a certain row.

 default: 0 minimum: 0 maximum: max # of rows
Graphical User Interface (cont’d)
Graphical User Interface (cont’d)

(Hypsometric curve of the whole simulation grid)
Graphical User Interface (cont’d)
Constant Erodibility, Constant Climate & No Tectonic Uplift

Linear Model

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Snapshots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image will display after 25% iterations</td>
<td>Image will display after 50% iterations</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PARAMETERS:</td>
<td>PARAMETERS:</td>
</tr>
<tr>
<td>Grid Size: 100 rows, 60 cols</td>
<td>Grid Size: 100 rows, 60 cols</td>
</tr>
<tr>
<td>Init Slope: 1.0%</td>
<td>Init Slope: 1.0%</td>
</tr>
<tr>
<td>Exp. Coeff.: n=1.0, m=1.0</td>
<td>Exp. Coeff.: n=1.0, m=1.0</td>
</tr>
<tr>
<td>Erodibility: uniform: 0.05</td>
<td>Erodibility: uniform: 0.05</td>
</tr>
<tr>
<td>Rainfall: constant: 0.1</td>
<td>Rainfall: constant: 0.1</td>
</tr>
<tr>
<td>Tect. uplift: no uplift</td>
<td>Tect. uplift: no uplift</td>
</tr>
</tbody>
</table>

Image will display after 75% iterations	Image will display after 100% iterations
![Elevation Map](image3)	![Elevation Map](image4)
PARAMETERS:	**PARAMETERS:**
Grid Size: 100 rows, 60 cols	Grid Size: 100 rows, 60 cols
Init Slope: 1.0%	Init Slope: 1.0%
Exp. Coeff.: n=1.0, m=1.0	Exp. Coeff.: n=1.0, m=1.0
Erodibility: uniform: 0.05	Erodibility: uniform: 0.05
Rainfall: constant: 0.1	Rainfall: constant: 0.1
Tect. uplift: no uplift	Tect. uplift: no uplift
Constant Erodibility, Constant Climate & No Tectonic Uplift

Non-Linear Model

PARAMETERS:
- Grid Size:
 - rows: 100
 - cols: 60
- Init Slope: 1.0%
- Exp. Coeff.:
 - n: 1.2
 - m: 1.2
- Erodibility: uniform 0.05
- Rainfall: constant 0.1
- Tect. uplift: no uplift

PARAMETERS:
- Grid Size:
 - rows: 100
 - cols: 60
- Init Slope: 1.0%
- Exp. Coeff.:
 - n: 1.2
 - m: 1.2
- Erodibility: uniform 0.05
- Rainfall: constant 0.1
- Tect. uplift: no uplift
Constant Erodibility, Constant Climate & Tectonic Uplift

Linear Model

Image will display after 25% iterations

Image will display after 50% iterations

Image will display after 75% iterations

Image will display after 100% iterations
Different Erodibility, Constant Climate & Tectonic Uplift
Linear Model

Image will display after 25% iterations

Image will display after 50% iterations

Grid Size:
rows: 100
cols: 50
Init Slope:
1.0%
Exp. Coeff.:
n: 1.0
m: 1.0
Erodibility:
break at x:
L: 0.01
R: 0.05
Rainfall:
constant: 0.1
Tect. uplift:
T: 1.0E-4

Image will display after 75% iterations

Image will display after 100% iterations

Grid Size:
rows: 100
cols: 50
Init Slope:
1.0%
Exp. Coeff.:
n: 1.0
m: 1.0
Erodibility:
break at x:
L: 0.01
R: 0.05
Rainfall:
constant: 0.1
Tect. uplift:
T: 1.0E-4
Different Erodibility, Constant Climate & Tectonic Uplift
Non-Linear Model

Image will display after 25% iterations

Image will display after 50% iterations

Image will display after 75% iterations

Image will display after 100% iterations

Grid Size:
rows: 100
cols: 50
Init Slope:
1.0%
Exp. Coeff.:
n: 1.2
m: 1.2
Erodibility:
break at x:
L: 0.01
R: 0.05
Rainfall:
constant: 0.1
Tect. uplift:
T: 1.0E-4
Constant Erodibility, Increasingly Drier Climate & Tectonic Uplift

Linear Model
Constant Erodibility, Increasingly Drier Climate & Tectonic Uplift
Non-Linear Model

<table>
<thead>
<tr>
<th>Simulation</th>
<th>Snapshots</th>
</tr>
</thead>
<tbody>
<tr>
<td>Image will display after 25% iterations</td>
<td>Image will display after 50% iterations</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Grid Size: rows: 100, cols: 50</td>
<td>Grid Size: rows: 100, cols: 50</td>
</tr>
<tr>
<td>Init Slope: 1.0%</td>
<td>Init Slope: 1.0%</td>
</tr>
<tr>
<td>Exp. Coeff.: n: 1.2, m: 1.2</td>
<td>Exp. Coeff.: n: 1.2, m: 1.2</td>
</tr>
<tr>
<td>Erodibility: uniform: 0.05</td>
<td>Erodibility: uniform: 0.05</td>
</tr>
<tr>
<td>Rainfall: decreasing: lo: 0.05, hi: 0.15</td>
<td>Rainfall: decreasing: lo: 0.05, hi: 0.15</td>
</tr>
<tr>
<td>Tect. uplift: T: 1.0E-4</td>
<td>Tect. uplift: T: 1.0E-4</td>
</tr>
</tbody>
</table>

Image will display after 75% iterations	**Image will display after 100% iterations**
![Image](http://www.niu.edu/landform)	![Image](http://www.niu.edu/landform)
Grid Size: rows: 100, cols: 50	Grid Size: rows: 100, cols: 50
Init Slope: 1.0%	Init Slope: 1.0%
Exp. Coeff.: n: 1.2, m: 1.2	Exp. Coeff.: n: 1.2, m: 1.2
Erodibility: uniform: 0.05	Erodibility: uniform: 0.05
Rainfall: decreasing: lo: 0.05, hi: 0.15	Rainfall: decreasing: lo: 0.05, hi: 0.15
Tect. uplift: T: 1.0E-4	Tect. uplift: T: 1.0E-4
Summary

• Comparing with the linear version, the nonlinear version of WILSIM more faithfully simulates natural erosion processes
 – Results look more realistic:
 – More integrated drainage networks and extending further upstream
 – More incision in valleys in the uplifting block and more escarpment retreat
 – Rougher surface (higher fractal dimension)
• WILSIM can help enhance the learning of landform evolution processes and concepts through its visualization and exploration capability
• Accessible anywhere, easy to use, no installation
• Limitations
 – Simplified model of real world
 – Scale (spatial, temporal) needs to be calibrated

http://www.niu.edu/landform