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 EXECUTIVE SUMMARY 

 
1 INTRODUCTION 
 
This report presents the development of a numerical model simulating density-dependent water flow, 
thermal transport, and salinity transport and sediment and water quality transport in watershed 
systems of WAterSHed Systems of 1-D Stream-River Network, 2-D Overland Regime, and 3-D 
Subsurface Media (WASH123D).  WASH123D is an integrated multimedia, multi-processes, 
physics-based computational model of various spatial-temporal scales:   
 

• Integrated Multimedia 
– Dentric Streams/Rivers/Canal/Open Channel, 
– Overland Regime (Land Surface), 
– Subsurface Media (Vadose and Saturated Zones), and 
– Ponds, Lakes/Reservoirs (Small/Shallow)  

 

• Control Structures 
– Weirs, Gates, Culverts, Pumps, Levees, and Storage Ponds 

 
• Management:  Operational Rules for Pumps and Control Structures  

 

• Integrated Multi-processes 
– Hydrological Cycles (Evaporation, Evapotranspiration, Infiltration, and 

Recharges); 
– Fluid Flow (Surface Runoff in Land Surface, Hydraulics and Hydrodynamics 

in River/Stream/Canal Networks, Interflow in Vadose Zones, and 
Groundwater Flow in Saturated Zones); 

– Salinity Transport and Thermal Transport (in Surface Waters and 
Groundwater); 

– Sediment Transport (in Surface Waters); 
– Water Quality Transport (Any Number of Reactive Constituents); 
– Biogeochemical Cycles (Nitrogen, Phosphorous, Carbon, Oxygen, etc.); and   
– Biota Kinetics (Algae, Phyotoplankton, Zooplakton, Caliform, Bacteria, 

Plants, etc.)  
 
 
2 THEORETICAL BASES 
 
Theoretical bases of WASH123D are the conservation laws of fluids, energy, mass, and 
biogeochemical reaction principles with physics-based constitutional relationships.  The governing 
equations and particular features of WASH123D are given as follows: 
 

• Fluid Flows 
– 1D St Venant Equations for River Networks: kinematic, diffusive, and fully 

dynamic (MOC) waves 
– 2D St Venant Equations for Overland Regime: kinematic, diffusive, and fully 

dynamic (MOC) waves, as well as Lumped Models such as SCS 
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– 3D Richard Equation for Subsurface Media (both Vadose and Saturated 
Zones): Saturated-unsaturated conditions 

 

• Salinity, Thermal, and Sediment Transport 
– Modified Advection-Dispersion Equations with phenomenological 

approaches for erosion and deposition 
 

• Water Quality Transport 
– Advection-Dispersion-Reaction Equations with reaction-based mechanistic 

approaches to water quality modeling - a general paradigm 
 
 
3 TYPES OF BOUNDARY CONDITIONS 
 
To enable the simulation of as wide a range of problems as possible, many types of boundary 
conditions including many particular features that can be anticipated in real-world problems are 
provided.  These include global boundaries, internal boundaries and internal sources/sinks, and 
media interfaces:   
 

• Global Boundaries 
– Flows 

• For subsurface flow - specify pressure head, fluxes, pressure gradients, 
radiation conditions or variable boundary conditions 

• For surface flow - specify water depth, flow rate, or rating curve. 
– Salinity, Sediment, and Reactive chemical Transport 

• Specify concentration, flux, concentration gradient or variable 
boundary conditions. 

–  Thermal Transport 
• Specify temperature, heat flux, temperature gradient or variable 

boundary conditions, and heat and mass budgets at the air-media 
interface. 

 

• Internal Sources/sinks and Internal Boundary Conditions 
– Pumps and Operational Rules 
– Junctions - explicitly enforced mass balance 
– Control Structures - weirs, gates, culverts, levees, and storage ponds. 

 

• Media Interfaces 
– Continuity of Fluxes Across Media Interfaces 
– Continuity of State Variables Across Media Interfaces or 
– Linkage Terms for Special Cases. 

 
 
4 OPTIONAL NUMERICAL METHODS AND STRATEGIES 
 
To provide robust and efficient numerical solutions of the governing equations, many options and 
strategies are provided in WASH123D so a wide range of application-depending circumstances can 
be simulated.  These options, strategies, and particular features are stated as follows: 
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• Discretization 
– Flows 

• For subsurface flow:  Use Galerkin Finite Element Methods (FEM) 
• For surface flow:  Use Particle Tracking Methods for the kinematic 

wave approaches;  Use Finite Element Methods or Particle Tracking 
Methods for the diffusive wave approaches; Use Lagrangian-Eluerian 
Finite Element Methods or FEM for the fully dynamic wave 
approaches. 

– Salinity, Thermal, Sediment, and Reaction-Based Water Quality Transport 
• Use Finite Element Methods or Particle Tracking Methods 

 

• Solvers 
– Direct Band Matrix; Basic Point Iterations Methods; Basic Line Iterations; 

Preconditioned Preconditioned Conjugate Gradient Methods with Point 
Iterations, Incomplete Cholesky Decomposition, and Line Iterations as 
Preconditioners; Multigrid Methods 

 
• Coupling Strategies between Transport and Reactive Chemistry 

– Fully Implicit Method 
– Mixed Prediction/Corrector (on kinetic reaction rates) and Operator-Splitting 

Method (on accumulation rates of immobile species) 
– Operator-Splitting Methods. 

 
In order not to introduce non-physics parameters, on the media interfaces, rigorous coupling of 
continuity of fluxes and continuity of state variables or formulations of fluxes when state variables 
are discontinuous are imposed: 
 

• Continuous of Fluxes 
• Continuous of State Variables or Formulation of Fluxes 

 
To handle vast differences of flow and transport scales in system components of river/stream/canal 
networks, overland regime, and subsurface media, different time-step sizes are used. 
 
 
5 DESIGN CAPABILITY OF WASH123D 
 
The code consisted of eight modules to deal with multiple media: 
 

(1) 1-D River/Stream Networks, 
(2) 2-D Overland Regime, 
(3) 3-D Subsurface Media (both Vadose and Saturated Zones); 

 

(4) Coupled 1-D River/Stream Network and 2-D Overland Regime, 
(5) Coupled 2-D Overland Regime and 3-D Subsurface, 
(6) Coupled 3-D Subsurface and 1-D River Systems; 

 

(7) Coupled 3-D Subsurface Media, 2-D Overland, and 1-D River Network; and 
 

 v 



(8) Coupled 0-D Shallow Water Bodies and 1-D Canal Network. 
 

For any of the above eight modules, flow only, transport only, or coupled flow and transport 
simulations can be carried out using WASH123D.  
 
 
6 EXAMPLE PROBLEMS 
 
A total of 17 flow problems and 15 water quality transport problems are presented in WASH123D.  
These example problems can serve as templates for users to apply WASH123D to research problems 
or practical field-scale problems.  For the 17 flow examples, the following objectives are achieved: 
 

• Seven to demonstrate the design capability of WASH123D using seven different flow 
modules; 

• Four to show the needs of various approaches to simulate various types of flow 
(critical, subcritical, and supercritical) in river networks and overland regime; and 

• Five to illustrate some realistic problems using WASH123D 
 
For the 13 water quality transport problems:  six examples for one-dimensional transport, four 
examples for two-dimensional transport, and three examples for three-dimensional transport.   These 
examples are used to achieve the following objectives: 
 

• verify the correctness of computer implementation, 
• demonstrate the need of various numerical options and coupling strategies between 

transport and biogeochemical processes for application-depending circumstances, 
• illustrate how the generality of the water quality modeling paradigm embodies the 

widely used water quality models as specific examples; and 
• validate the capability of the models to simulate laboratory experiments, and indicate 

its potential applications to field problems. 
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1 INTRODUCTION 

 
 
This report is to present a numerical model designed to simulate density-dependent water flow, 
thermal and salinity transport, and sediment and water quality transport in watershed systems of 
river/stream/canal networks, overland regime, and subsurface media.  WASH123D is an integrated 
multimedia, multi-processes, physics-based computational model of various spatial-temporal scales. 
 The model is developed to have design capability to simulate flow and transport processes in 
various component systems or combinations of component systems of a watershed.  It can simulate 
problems of various spatial and temporal scales as long as the assumptions of continuum are valid.  
 
 
1.1 Multimedia 
 
WASH123D was developed to cover dentric river/stream/canal networks and overland regime (land 
surface) (top plate of Fig. 1.1-1) and subsurface media including vadose and saturated (groundwater) 
zones (bottom plate of Fig. 1.1-1).  It incorporates natural junctions and control structures such as 
weirs, gates, culverts, levees, and pumps in river/stream/canal networks (Fig. 1.1-2).  It also includes 
management structures such as storage ponds, pumping stations, culverts, and levees in the overland 
regime.   In the subsurface media, management devices such as pumping/injecting wells, drainage 
pipes, and drainage channels are also included.  Numerous management rules of these control 
structures and pumping operations have been implemented. 

Lakes/
Reservoirs Land Surface

Land Surface

Vadose Zone

Vadose Zone
Saturated Zone(Groundwater)

Bay/EstuariesOcean

River Network

 
 

Fig. 1.1-1.  Multimedia Included in WASH123D 
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Fig. 1.1-2.   Various Types of Control Structures Handled in WASH123D 
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1.2 Multi-Processes 
 
WASH123D is designed to deal with physics-based multi-processes occurring in watersheds.  These 
include density dependent flow and thermal and salinity transport over the entire hydrologic cycle 
(Fig. 1.2-1).  The processes include (1) evaporation from surface waters (rivers, lakes, reservoirs, 
ponds, etc) in the terrestrial environment; (2) evportransipiration from plants, grass, and forest from 
the land surface; (3) infiltration to vadose zone through land surface and recharges (percolations) to 
groundwater through water tables; (4) overland flow and thermal and salinity transport in surface 
runoff; (5) hydraulics and hydrodynamics and thermal and salinity transport in densdric river 
networks; and (6) subsurface flow and thermal and salinity transport in both vadose and saturated 
zones. 
 

 
Fig. 1.2-1.  Flow and Thermal and Salinity Transport Processes  

of Hydrologic Cycles in WASH123D 
 
 
To enable the modeling of any number of water qualities including sediments, a general paradigm of 
reaction-based approaches is taken in WASH123D.  As a result of this generic approach, 
WASH123D can easily be employed to model bigogeochemical cycles (including nitrogen, oxygen, 
phosphorous, and carbon cycles, etc. as shown in Fig. 1.2-2 and biota kinetics (including Algae, 
Phyotoplankton, Zooplakton, Caliform, Bacteria, Plants, etc.).   In fact, once one’s ability to 
transform biogeochemical processes into reaction networks and come up with rate equations for 
every reaction is achieved,  one can employ WASH123D to model his/her system of reactive 
transport in surface runoff, surface water, and  subsurface flows on watershed scales. 
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Fig. 1.2-2.   Biogeochemical Cycles and Reactive Transport Included in WASH123D. 

 
 
 
1.3 Theoretical Bases in WASH123D 
 
The theoretical bases of fluid flows and transport processes built in WASH123D are based on the 
conservation laws of fluid, momentum, energy, and mass with associated constitution relationships 
between fluxes and state variables and appropriately formulated equations for source/sink terms.  
Various types of boundary conditions based on physics reasoning are essential to supplement the 
governing equations.  Adequate initial conditions are either obtained from measurements or with 
simulations of steady-state versions of the governing equations.  
 
 
1.3.1 Governing Equations 
 
For fluid flows in river/stream/canal networks, one-dimensional St Venant Equations modified to 
include the effects of density due to temperature and salinity are employed, which are in fact the 
cross-section area averaged Navier-Stokes equations.  For surface runoff over the land surfaces, two-
dimensional St Venant Equations modified to take into account the effects of temperature- and 
salinity-dependent density.  The two-dimensional St Venant Equations are in fact the vertically 
averaged Navier-Stokes equations.   
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The particular features in WASH123D are the inclusion of three approaches to model surface flow in 
a watershed system: the kinematic, diffusive, and dynamic wave models. The dynamic wave models 
completely describe water flow but they are very difficult to solve under some conditions (e.g., when 
the slope of ground surface is steep), regardless of what numerical approach is employed.  On the 
other hand, the diffusion and/or kinematic models can handle a wide range of flow problems but are 
inaccurate when the inertial terms play significant roles.  Thus, three options are provided in this 
report: the kinematic wave model, the diffusion wave model, and the dynamic wave model to 
accurately compute water flow over a wide range of conditions. 
 
The subsurface flow is described with the modified Richards equation.  The modification 
incorporates the effect of density due to temperature and salinity effects.  The governing equation is 
derived based on continuity of fluid, continuity of solid mass, incompressibility of solids, and 
Darcy’s law. 
 
The principles of mass balance were employed to derive the modified advective-dispersive/diffusion 
transport equations governing the temporal-spatial distribution of salinity, water quality, suspended 
sediment, and bed sediment.  For sediment transport, phenomenological equations for erosions and 
depositions are used.  For biogeochemical transport, reaction rate equations can be provided based 
on mechanisms (pathways) or based on empirical formulations using experimental data for every 
slow reaction.  Examples of mechanisms-based reaction rates includes forward-backward rate 
equations based on the collision theory, Monod-type rate equations based on the enzymatic kinetic 
theory (Segel, 1975), etc.  Empirical rate equations include zero-order, first order, n-th order, 
Freundlich kinetics, etc.   For every fast reaction, either the mass action equation based on the 
thermodynamic approach or user’s defined algebraic equation can be used. 
 
 
1.3.2 Boundary Conditions 
 
To enable the simulation of as wide a range of problems as possible, many types of boundary 
conditions that can be anticipated in real-world problems are provided.  These include global 
boundaries, internal boundaries and internal sources/sinks, and media interfaces.  On global 
boundaries, five types of boundary conditions can be prescribed for subsurface flows:  (1) specified  
pressure head, (2) specified flux, (3) specified pressure gradient, (4) variable conditions in which the 
model will iteratively determine head or flux conditions (this type of boundary conditions is 
normally specified at the atmospheric boundary), and (5) radiation conditions where the flux is 
proportional to the difference in head between the media and surface waters such as rivers or 
lakes/reservoirs/ponds.  For surface water flows, three types of boundary conditions can be 
prescribed: (1) specified water depth, (2) specified flow rates, and (3) rating curves relating 
discharges to water depth.  For scalor transport, four types of boundary conditions can be prescribed: 
(1) specified state variables (concentrations or temperature), (2) specified fluxes of state variables, 
(3) specified gradient fluxes of state variables, and (4) variable conditions in which fluxes are 
specified when the flow is coming into the region or the mass/energy is transported out of the region 
by advection when the flow is going out of the region.  In addition, at the atmosphere-media 
interface, heat and mass budget balance must be satisfied for thermal transport. 
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On internal boundaries such as natural junctions and control structures of weirs, gates, culverts, 
levees, mass or energy balance is explicitly enforced by solving a set of flux continuity and state 
variable continuity (or flux) equations.   For the internal sources/sinks, pumping and operation rules 
are simulated to ensure mass conservation.  
 
On the media interfaces, continuity of fluxes and continuity of state variables or formulations of 
fluxes when state variables are discontinuous are imposed.  
 
 
1.3.3 Numerical Methods 
 
To provide robust and efficient numerical solutions of the governing equations, many options and 
strategies are provided in WASH123D so a wide range of application-depending circumstances can 
be simulated.  For surface flow problems, the semi-Lagrangian method (backward particle tracking) 
was used to solve kinematic wave equations.  The diffusion wave models were numerically 
approximated with the Galerkin finite element method or the semi-Lagrangian method.  The 
dynamic model was first mathematically transformed into characteristic wave equations. Then it was 
numerically solved with the Lagrangian-Eulerian method.  The subsurface flow-governing equations 
were discretized with the Galerkin finite element method.  The dynamic wave model for surface 
water flows in conservative forms will be discretized with finite element methods in future update of 
WASH123D. 
 
For scalor transport equations including thermal, salinity, sediment, and reactive chemical transport, 
either finite element methods or hybrid Lagrangian-Eulerian methods were used to approximate the 
governing equations.  Three strategies were employed to handle the coupling between transport and 
biogeochemical reactions:  (1) fully implicit scheme, (2) mixed predictor-corrector and operator-
splitting methods, and (3) operator-splitting schemes.   For the fully implicit scheme, one iteratively 
solves the transport equations and reaction equations.   For the mixed predictor-corrector and 
operator-splitting method, the advection-dispersion transport equation is solved with the source/sink 
term evaluated at the previous time in the predictor step.  The implicit finite difference was used to 
solve the system of ordinary equations governing the chemical kinetic and equilibrium reactions in 
the corrector step.   The nonlinearity in flow and sediment transport equations is handled with the 
Picard method, while the nonlinear chemical system is solved using the Newton-Raphson method. 
 
Several matrix solvers are provided to efficiently solve the system of linear algebraic equations 
resulting from the discretization of the governing equations and the incorporation of boundary 
conditions.  These include direct band matrix solvers; basic point iteration solvers such as Gauss-
Seidel iteration or successive over relaxation; basic line iteration solvers; preconditioned conjugate 
gradient methods with point iterations, incomplete Cholesky decomposition, and line iterations as 
preconditioners; and multigrid methods. 
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1.4 Design Capability of WASH123D 
 
WASH123D includes seven modules: (1) one-dimensional river/stream network module, (2) two-
dimensional overland module,  (3) three-dimensional subsurface module, (4) coupled 1D and 2D 
module, (5) coupled 2D and 3D module, (6) coupled 3D and 1D module, and (7) coupled 1D, 2D, 
and 3D module.  Each module can be used to simulate flows alone, sediment transport alone, water 
quality transport alone, or flow and sediment and water quality transport simultaneously.  When both 
flow and transport are simulated, the flow fields are computed first. Then the transport is calculated 
using the computed flow fields at respective times.  Temperature- and salinity-dependent flow is 
considered.  A slightly different version of WASH123D also included 0-dimensional water, energy, 
and mass budget to simulate the change of stages, temperature, and concentrations of sediment and 
any biogeochemical species for well mixed surface water bodies such as small lakes, reservoirs, 
storage ponds, etc.  This 0D module has been coupled to one-dimensional canal networks and it 
could be coupled with two-dimensional overland regime or three-dimensional subsurface media. 
 
 
 
1.5 Organization of this Report 
 
Chapter 2 provides a heuristic derivation of the governing equations and statements of boundary and 
initial conditions for flow in river/stream network (Section 2.1), surface runoff in the overland 
regime (Section 2.2), flow in the subsurface (Section 2.3) rigorous coupling of flows among various 
media (Section 2.4), sediment and water quality transport in river/stream network (Section 2.5), 
sediment and water quality transport in the overland regime (Section 2.6), water quality transport in 
the subsurface (Section 2.7), and coupling of transport among various media (Section 2.8). 
 
Chapter 3 includes numerical approaches to solve governing equations for flows in the river/stream 
network (Section 3.1), overland (Section 3.2), and subsurface systems (Section 3.3).  Numerical 
approximations of dynamic, diffusive, and kinematic wave models are thoroughly explored for 
solving flow problems in surface water.  Numerical implementations of rigorously coupling fluid 
flow between media interfaces are addressed in Section 3.4.   This chapter also describes the 
numerical approximation to solve both sediment and chemical transport in river/stream network 
(Section 3.5) and overland regimes (Section 3.6), and chemical transport in the subsurface (Section 
3.7).   Section 3.8 deals with detail coupling strategies in handling water quality (both sediments and 
biogeochemical constituents) transport problems across media interfaces.  Section 3.9 presents detail 
computational structures of using different time-step sizes to deal with vastly different time scales of 
flow and transport problems in river/stream/canal networks, surface runoffs, and subsurface media.  
 
Chapter 4 gives a total of 17 flow examples which could serve as templates for users in applying 
WASH123D to either research problems or real-world field applications. These examples are 
presented to demonstrate the design capability of WASH123D, to show the needs of various 
approaches to simulate flow in river networks and overland flow problems, and to illustrate some 
realistic problems using WASH123D.  
 
Chapter 5 contains a total of 13 water quality transport problems:  six examples for one-dimensional 
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problems, four examples for two-dimensional problems, and three examples for three-dimensional 
problems.   These examples are used to (1) verify the correctness of computer implementation, (2) 
demonstrate the need of various numerical options and coupling between transport and 
biogeochemical processes depending on application circumstances, (3) show the generality of the 
water quality modeling paradigm that embodies the widely used water quality models as specific 
examples, (4) validate the capability of the models to simulate laboratory experiments, and indicate 
its potential applications to field problems. 
 
Summary conclusions and recommendations for further research in the development of 
computational models for watersheds are addressed in Chapter 6.   
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2 MATHEMATICAL BASIS 

 
In this section, we are to give governing equations, initial conditions, and boundary conditions for 
simulating water flow and chemical and sediment transport in watershed systems. 
 
 
2.1 Water Flow in One-Dimensional River/Stream/Canal Network 

 
The governing equations of water flow in one-dimensional river/stream/canal can be derived based 
on the conservation law of water mass and linear momentum (Singh, 1996), and can be written as 
follows. 
 
The continuity equation: 
 

1 2S R E I
A Q S S S S S S
t x

∂ ∂
+ = + − + + +

∂ ∂
 (2.1.1) 

 

where t is time [t]; x is the axis along the river/stream/canal direction [L]; A is cross-sectional area of 
the river/stream [L2]; Q is flow rate of the river/stream/canal [L3/t]; SS is the man-induced source 
[L3/t/L]; SR is the source due to rainfall [L3/t/L]; SE is the sink due to evapotranspiration [L3/t/L]; SI 
is the source due to exfiltration from the subsurface media [L3//t/L]; S1 and S2 are the source terms 
contributed from overland flow [L3/t/L]. 
 
The momentum equation: 
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where h is water depth [L]; V is river/stream/canal velocity [L/t]; g is gravity [L/t2]; Zo is bottom 
elevation [L]; Δρ = ρ - ρo is the density deviation [M/L3] from the reference density (ρo), which is a 
function of temperature and salinity as well as other chemical concentrations; c is the shape factor of 
the cross-sectional area; Fx is the momentum flux due to eddy viscosity [L4/t2]; MS is the external 
momentum-impulse from artificial sources/sinks [L3/t2]; MR is the momentum-impulse gained from 
rainfall [L3/t2]; ME is the momentum-impulse lost to evapotranspiration [L3/t2]; MI is the momentum-
impulse gained from the subsurface due to exfiltration [L3/t2]; M1 and M2 are the momentum-impulse 
gained from the overland flow [L3/t2]; ρ is the water density [M/L3]; B is the top width of the cross-
section [L]; τs is the surface shear stress [M/t2/L]; P is the wet perimeter [L]; and τb is the bottom 
shear stress [M/t2/L], which can be assumed proportional to the flow rate as τb/ρ = κV2 where κ = 
gn2/R1/3 and R is the hydraulic radius (L) and n is the Manning’s roughness. 
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2.1.1 Fully Dynamic Wave Approaches 
 
Equations (2.1.1) and (2.1.2) written in the conservative form are the governing equations for one-
dimensional flow in river/stream/canals.  Depending on the simplification of the momentum 
equation, one can have three approaches: fully dynamic wave, diffusive wave, and kinematic wave.  
For the fully dynamic wave approach, all terms in Eq. (2.1.2) are retained.  Under such 
circumstances, the conservative form of the governing equations may be used or they may be cast in 
the advection form or in the characteristic form.   In this report the characteristic form of the fully 
dynamic approach will be used as the main option because it is the most natural way and amenable 
to the advective numerical methods, e.g., the upstream approximation or the Lagrangian-Eulerian 
method. 
 
For a non-prismatic river/stream/canal network, the cross-sectional area is a function not only of the 
water depth but also of the river distance, i.e., 
 

( ) ( )#, ( , ),A x t A h x t x=  (2.1.3) 
 

where A# is a function of the water depth h(x,t) and the axis along the river/stream/canal direction x.  
Differentiating Eq. (2.1.3) with respect to x and t, respectively, we have 
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where B(x,t) = B#(h,x) = ∂A#/∂h is the top width of the cross-section, [L]. 
 
Substituting Q = VA and Eqs. (2.1.4) and (2.1.5) into Eqs. (2.1.1) and (2.1.2), we obtain 
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Equations (2.1.6) and (2.1.7) can be written in matrix form as 
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where 
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where ε  is the eddy viscosity. 
 
The eigenvalues and eigenvectors of A are 
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where L and L-1, respectively, are the right and left eigenmatrices, respectively, of the matrix A.  Set 
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where W is a characteristic wave variable.  Equation (2.1.16) transforms the primitive variable E = 
{h, V}T to the characteristic variable W = {W1, W2}T. 
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Multiplying both side of Eq. (2.1.8) by L-1 yields  
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Since by definition ∂W = L-1∂E and L-1AL is a diagonal matrix whose entries are the eigenvalues of 
A, we have 
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Substituting L-1 (L-1 is defined by Eq. (2.1.15)) into the right hand side of Eq. (2.1.18) and 
making an integral transformation so that (g/c)∂h = ∂ω, we obtain 
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where c is the wave speed and ω is the transformed wave speed.  Equation (2.1.19) simply states that 
the positive gravity wave (V + ω) is advected by the speed (V + c) while Equation (2.1.20) states that 
the negative gravity wave (V - ω) is advected by the speed (V - c). 
 
For transient simulations, the water depth (or water stage) and the cross-sectionally averaged 
velocity must be given as the initial condition.  In addition, appropriate boundary conditions need to 
be specified to match the corresponding physical system. 
 
The system of Eqs. (2.1.19) and (2.1.20) are identical to the system of Eqs. (2.1.1) and (2.1.2) on the 
differential level.  They offer advantages in their amenability to innovative advective numerical 
methods such as the upstream finite difference, upwind finite element, or semi-Lagrangian scheme.  
Furthermore, the implementation of boundary conditions is very straightforward.  Only when the 
wave is coming into the region of interest, the boundary condition is required.  For the wave that is 
going out of the region of interest, there is no need to specify a boundary condition. 
 
Open upstream boundary condition: 
 
The boundary condition at an upstream point depends on flow conditions.  If the flow is 
supercritical, both waves are transported into the region and two boundary conditions are needed.  
The water depth and velocity at the boundary are determined entirely by the flow condition that 
prevails at the upstream. The governing equations for this case can be set up based on the continuity 
of mass as well as momentum between the boundary and the upstream as follows  
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up up up c up up up upc up upVA V A Q and VAV gh A V A V gh A Mρ ρ ρ ρ= = + = + =  (2.1.22)
 

where Vup is the cross-sectional averaged velocity from the incoming upstream fluid, Aup is the cross-
sectional area in the upstream, Qup is the flow rate of the incoming fluid from the upstream, hc is the 
water depth to the centroid of the cross-sectional area of the boundary, hupc is the water depth to the 
centroid of the upstream cross-sectional area, and Mup is the momentum-impulse of the incoming 
fluid from the upstream.  It should be noted that both the water depth and velocity in the upstream 
must be measured to provide values of Qup and Mup.  If the flow is critical, the positive wave is 
transported into the region from upstream and the negative wave is immobile.  The water depth and 
velocity at the boundary are determined by the flow conditions prevail at the upstream and by the 
condition of critical flow.  The governing equations for this case may be set up based on the 
continuity of mass and the requirement of critical flow condition as 
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If the flow is subcritical, while the positive wave is transported into the region, the negative wave is 
transported out of the region.  The water depth and velocity are determined by the flow condition 
prevail at upstream and by flow dynamics in the region.  The governing equations are set up based 
on the continuity of mass between the boundary and the upstream, and on flow dynamics in the 
region  
 

( ) 0, == − hVFandQVA up  (2.1.24)
 

where F-(V, h), a function of velocity and water depth, is the negative wave boundary function. 
 
In summary, the boundary condition at an open upstream boundary point is given by Eqs. (2.1.22), 
(2.1.23), and (2.1.24), respectively, for the case of supercritical, critical, and subcritical flows, 
respectively. 
 
Open downstream boundary condition: 
 
If the flow is supercritical on an open downstream boundary point, both waves are transported out of 
region.  Under such circumstances, no boundary conditions are needed.  The water depth and 
velocity on the boundary are determined by flow dynamics in the region.  The governing equations 
for V and h are 
 

( ) ( ) 0,0, ==
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where F+(V, h), a function of V and h, is the positive wave boundary function.  If the flow is critical, 
the water depth and velocity at the boundary are determined by flow dynamics in the region and by 
the condition of critical flow.  Thus, the governing equations for critical flow are given by 
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If the flow is subcritical, while the positive wave is transported out of the region, the negative wave 
is transported into the region.  The water depth and velocity are determined by flow dynamics in the 
region and by what is the control on the boundary.  The governing equations may be given by 
 

( ) ( ) ( ) ( )thhandhVForhQVAandhVF dndn ==== ++ 0,0,  (2.1.27)
 

where Qdn(h), a function of h, is the rating curve function for the downstream boundary and hdn(t), a 
function of t, is the water depth at the downstream boundary.  The adaptation of Eq. (2.1.27) 
depends on the physical configuration at the boundary. 
 
In summary, the boundary condition at an open downstream boundary is given by Eqs. (2.1.25), 
(2.1.26), and (2.1.27), respectively, for the case of supercritical flow, critical flow, and subcritical 
flows, respectively. 
 
Closed upstream boundary condition: 
 
At the closed upstream boundary, physically all flow conditions can occur. When the supercritical 
flow happens, both positive and negative waves are transported into the region.  Two boundary 
condition equations are needed.  Because the boundary is closed, it is impermeable.  The governing 
equations can be obtained by simply substituting Qup = 0 and Mup = 0 into Eq. (2.1.22) to yield 
 

0 0cVA and VAV gh Aρ ρ= + =  (2.1.28)
 

The solutions for Eq. (2.1.28) are not unique.  One possible solution is V = 0 and h = 0. 
 
For the critical flow, the velocity is equal to the wave speed, V = c, the negative wave is immobile. 
On the other hand, the positive wave is transported into the region of interest, one boundary-
condition equation is needed.  Because the closed boundary is impermeable, the governing equations 
may be set up by imposing zero flow rate and the condition of critical flow as 
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When the flow is subcritical, the positive wave is transported into the region of interest while the 
negative wave is transported out of the region of interest.   Only the boundary condition for the 
positive wave is needed.  Since no fluid from the outside world is transported into the region via the 
boundary, the boundary condition for the positive wave can be stated with Q = VA =0.  The 
governing equations for V and h are thus given by 
 

( ) 0,0 == − hVFandVA  (2.1.30)
 
In summary, the boundary condition at a closed upstream point is given by Eqs. (2.1.28), (2.1.29), 
and (2.1.30), respectively, for the case of supercritical flow, critical flow, and subcritical flows, 
respectively. 
 
Closed downstream boundary condition: 
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At the closed downstream boundary, physical condition dictates that the velocity at the boundary is 
zero.  Since the velocity is zero, supercritical flow cannot occur at the closed boundary point because 
the water depth is greater or equal to zero.  Therefore, the flow can only be either critical or 
subcritical.  For critical flow, c = V = 0, which is very unlikely.   Therefore, it is highly unlikely that 
critical flow will occur at the closed downstream boundary. 
 
For the subcritical flow, the positive wave is transported out of the region and no boundary condition 
is needed for this wave.  On the other hand, the negative wave is transported into the region of 
interest.  The governing equations for V and h are 
 

( ) 00, ==+ VandhVF  (2.1.31)
 
which is based on the physics that V = 0 and the water depth is governed by internal flow dynamics. 
 
In summary, supercritical flow cannot occur at a closed downstream point.  The boundary condition 
at a closed downstream boundary point is either V = 0 and h = 0 for critical flow or is given by Eq. 
(2.1.31) for subcritical flow. 
 
Natural internal boundary condition at junctions: 
 
For the junction node J (Figure 2.1-1), we have one unknown:  the water surface elevation or the 
stage, HJ.  The governing equation for this junction is obtained as 
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for the case when the storage effect of the junction is accounted for, or 
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for the case when the storage effect of the junction is not included. 
 

 

J

1J 2J

3J

 
Fig. 2.1-1.  Schematic of a Junction 

 
In Eqs. (2.1.32) and (2.1.33), JV is the volume of the junction J; hJ is the water depth of the junction 
J; QIJ is the flow rate of the Ith reach to the Jth junction; I is the identification number of 
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river/stream/canal reach; NJ is the total number of river/stream/canal reaches that are connected to 
the junction J (it is 3 in the case shown); VIJ and AIJ are the velocity and cross sectional area, 
respectively, of the Ith reach at the location entering the Jth junction. 
 
The node IJ located at the boundary between the Ith reach and the Jth junction is termed the natural 
internal boundary of reach I.  The governing equations for the internal boundary node IJ depend on 
whether this node is a downstream or an upstream node in reference to the reach I.  Let us say that 
node IJ is a downstream point if the flow is from the reach I toward the junction J.  On the other 
hand, we say that the node IJ is an upstream point if the flow is from the junction J toward the reach 
I.   With this definition, we can generate equations for any internal boundary node IJ, which will be 
stated in the following. 
 
If IJ is a downstream internal boundary, we have three cases to consider: subcritical flow, critical 
flow, and supercritical flow.   For the case of subcritical flow, the positive wave is going out of the 
reach and no boundary condition for this wave is needed.  On the other hand, the negative wave is 
going into the region and its boundary condition is obtained by the assumption that no loss in energy 
between the junction and node IJ.  The governing equations for node IJ are given as 
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where F+(VIJ,hIJ), a function of the velocity VIJ (velocity at node IJ) and hIJ (water depth at node IJ), 
is the positive wave boundary function; EIJ is the energy line at node IJ,  ZoIJ is the bottom elevation 
at node IJ; and HJ is the water surface elevation of the junction J.  The second equation of Eq. 
(2.1.34) is obtained from the assumption that the total energy is constant from the junction to the 
node IJ.  In the case of critical flow, the positive wave is going out of the reach and there is no need 
of a boundary condition for this wave.  The negative wave is immobile and its boundary condition is 
given by the condition of critical flow.  The governing equations for node IJ under critical flow are 
given by 
 

( ) 10, 3

2

==+
IJ

IJIJ
IJIJ gA

BQandhVF  (2.1.35)

 

where BIJ is the top width of the cross-section of the I-th reach at node IJ and AIJ is the cross-section 
area of the I-th reach at node IJ.  In the case of supercritical flow, both positive and negative waves 
are going out of the reach, therefore no boundary conditions are needed and the governing equations 
for node IJ under supercritical flow are given by 
 

( ) ( ) 0,0, == −+ IJIJIJIJ hVFandhVF  (2.1.36)
 

where ( )IJIJ hVF ,− , a function of the velocity VIJ and hIJ, is the negative wave boundary function. 
 
If IJ is an upstream point, we have also three cases to consider: subcritical, critical, and supercritical 
flows.  For the case of subcritical flow, the positive wave is going into the reach and its boundary 
condition is obtained with the assumption that the specific energy is constant between the junction J 
and the node IJ.  With this assumption, the governing equations for node IJ are given by 
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( ) 0,
2

2

=++= − IJIJoIJIJ
IJ

J hVFandZh
g

VH  (2.1.37)

 
In the case of critical flow, the positive wave is going into the reach from the junction and its 
boundary condition is obtained with the assumption of constant energy line between the junction and 
the node IJ, and the negative wave is immobile and its boundary condition is obtained from the 
condition of critical flow.  The governing equations for node IJ under critical flow are given by 
 

1
2 3

22

=++=
IJ

IJIJ
oIJIJ

IJ
J gA

BQandZh
g

VH  (2.1.38)

 
In the case of supercritical flow, both positive and negative waves are going into the region from the 
junction J to the reach I.  Two boundary conditions are required for this case.  One of the boundary 
conditions is obtained with the assumption of constant energy line between the junction J and the 
node IJ.  The other boundary condition is obtained with the assumption that the supercritical flow at 
node IJ will become a critical flow in a very short distance (so short that it can be conceptually 
considered to locate at IJ).  With these assumptions the governing equations for node IJ under 
supercritical flow is given by Eq. (2.1.38). 
 
In summary, the governing equations at a natural internal boundary node of a reach connecting to 
junctions are given by one of Eq. (2.1.34) through (2.1.38) depending on whether the node IJ is a 
downstream or an upstream point and whether the flow is supercritical, critical, or subcritical. 
 
Controlled internal boundary condition at control structures: 
 
For any structure, S (which may be a weir, a gate, or a culvert), there are two river/stream/canal 
reaches connecting to the structure.  The node 1S located at the upstream of the structure is termed 
the controlled-internal boundary of the first reach while the Node 2S located at the downstream of 
the structure is called the controlled-internal boundary of the second reach (Fig. 2.1-2).  The 
specification of boundary conditions for the internal boundaries separated by a structure requires 
elaboration. 
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h2S
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V1S

FS V2S
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Distribution
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Zo1S

Zo2S

V1S
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2/2g

hLS

H1S

H2S

Energy Line

 
Fig. 2.1-2.  The control volume (red outline) between Nodes 1S and 2S 
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The flow configuration around a structure and its surrounding reaches may be very dynamic under 
transient flows.  Governing equations of flow at Nodes 1S and 2S depend on the changing dynamics 
of water stages around the structure.  When both stages are below the height of the structure, the two 
reaches connecting the structure are decoupled.  When at least one of the stages is above the 
structure, two reaches are either sequentially coupled or fully coupled via the structure.  Here for 
sake of simplicity of discussions, we assume that the flow direction is from Reach 1 to Reach 2.  In 
other words, Reach 1 is an upstream reach and Reach 2 is a downstream reach.  If the flow direction 
is reversed, we can have the boundary condition similarly prescribed. 
 
There are five unknowns, V1S (velocity of the upstream reach Node 1S), h1S (the water depth of the 
upstream Node 1S), Q (the flow rate through the internal-boundary complex), V2S (the velocity of the 
downstream reach Node 2S), and h2S (the water depth of the downstream Node 2S); five equations 
must be set up for this internal-boundary complex consisting of a upstream reach node, a structure, 
and a downstream node. The governing equations for these five unknowns can be obtained 
depending on the flow conditions at the upstream and downstream reaches separated by the internal 
boundary structure.  The flow condition can be supercritical, critical, or subcritical at Node 1S and 
Node 2S. 
 
Node 1S is a downstream point relative to the first reach or is the upstream point relative to the 
structure. The positive wave is transported out of Reach 1 over the structure to Reach 2, and there is 
no need of a boundary condition for this wave.  As for the negative wave, if the flow is supercritical, 
it is transported out of the reach, and there is no need to prescribe a boundary condition for this 
wave.  Thus, the governing equations for Node 1S under supercritical flow are given by 
 

( ) ( ) SSSSSS AVQandhVFhVF 111111 ,0,,0, === −+  (2.1.39)
 

where F+(V1S,h1S), a function of V1S and h1S, is the positive wave boundary function; and F-(V1S,h1S), 
a function of V1S and h1S, is the negative wave boundary function. 
 
If the flow is critical, the negative wave is immobile and its governing equation must satisfy the 
condition of critical flow.  Thus, the two governing equations for Node 1S under critical flow are 
given by 
 

( ) SS
S

S
SS AVQand

gA
BQhVF 113
1

1
2

11 ,1,0, ===+  (2.1.40)

 

where B1S and A1S, respectively, are the top width and the area, respectively, of the cross-section at 
Node 1S. 
 
If the flow is subcritical, the negative wave is transported into the reach from the downstream reach 
via the structure, and its boundary condition is obtained by equating the flow rates at Nodes 1S and 
2S.  Thus the governing equations for Node 1S under subcritical flow are given by 
 

( ) SSSSSSSS AVQandAVAVhVF 11221111 ,,0, ===+  (2.1.41)
 
A comment is in order here.  When the flow at Note 1S is supercritical or critical, the flow in the 
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upstream reach is decouple from the flow in the downstream reach.  Under such conditions, Eq. 
(2.1.39) or (2.1.40) is used to solve to the values of V1S and h1S, which then yield the flow rate Q, the 
energy level H1S at Node 1S, or the momentum-impulse M1S at Node 1S.  These quantities (Q, H1S, 
and M1S) may serve as the boundary conditions for Node 2S.  As to which of these quantities is 
needed for the internal boundary Node 2S depends on the flow condition at Node 2S.  This point will 
be taken up when the boundary conditions for Node 2S are addressed. When the flow at Node 1S is 
subcritical, then the flows in the upstream and downstream reaches are coupled via the second 
equation in Eq. (2.1.41).  
 
On the other hand, Node 2S is an upstream point relative to the second reach or a downstream point 
relative to the structure.  If the flow is supercritical at Node 2S, both the positive and the negative 
waves are coming into the reach from the upstream reach via the structure, and two boundary 
conditions are needed.  These two boundary conditions can be obtained by the principle of mass 
continuity and the principle of momentum/impulse or the Bernoulli’s equation between Nodes 1S 
and 2S.  The structure between Nodes 1S and 2S will exert reaction force, FS, on the fluid between 
two nodes or it induces energy loss, hLS, between two nodes (Fig. 2.1-2).  Thus, the governing 
equations for Node 2S are 
 

SSS

SSSSSS

SLSS

MFM
orandAVAVAVQ

HhH

12

112211

12

,,
=+

==
=+

 (2.1.42)

 

where FS is the force exerted by the structure on the fluid; hLS is the energy loss between Nodes 1 
and 2; H2S and H1S (defined in Fig. 2.1-2), respectively, are the energy level at Nodes 2S and 1S, 
respectively; and M2S (= ρV2SA2SV2S + ρg h2ScA2S) and M1S (= ρV1SA1SV1S + ρg h1ScA1S), respectively, 
are the momentum-impulse at Nodes 2S and 1S, respectively (where ρ is the fluid density, g is the 
gravity constant, h2Sc is the water depth to the centroid of the cross-sectional area at Node 2, and h1Sc 
is the water depth to the centroid of the cross-sectional area at Node 1). 
 
If the flow at Node 2S is critical, one of the two boundary equations is obtained by the requirement 
of critical conditions while the other is obtained by the principle of mass continuity and the principle 
of  momentum/impulse or the Bernoulli’s equation between Nodes 1S and 2S.  Thus, the governing 
conditions for Node 2S are given as follows 
 

SSS

SSSSSS
S

S

SLSS

SSSSSS
S

S

MFM

orandAVQAVAV
gA

BQ

HhHor

AVQAVAV
gA

BQ

112

1111223
2

2
2

12

1111223
2

2
2

,,,1

,,1

=+

===

=+

===

 (2.1.43)

 
If the flow at Node 2S is subcritical, the positive wave is transported into the reach from the 
upstream reach via the structure while the negative wave is transport out of the reach.  The boundary 
condition for the positive wave is obtained by the principle of mass continuity and the principle of 
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momentum/impulse or the Bernoulli’s equation between Nodes 1S and 2S.  Thus the two governing 
equations for Node 2S under subcritical flow are given as follows 
 

( )

2 2 2 2 1 1 1 1

2 1

2 2 2 2 1 1 1 1

2 1 1

( , ) 0, ,

, 0, , ,

S S S S S S S S

S LS S

S S S S S S S S

S S S

F V h V A V A Q V A
or H h H
F V h V A V A Q V A and or

M F M

−

−

= = =
+ =

= = =

+ =

 (2.1.44)

 
In summary, the governing equations for internal boundary nodes separated by a structure are 
given by any combination of Eq. (2.1.39), (2.1.40), or (2.1.41) and Eq. (2.1.42), (2.1.43), or 
(2.1.44).  All combinations provide five governing equations for five unknowns (V1S, h1S, Q, V2S, 
and h2S), except for one combination. 

 
The combination of Eq. (2.1.41) and Eq. (2.1.42) only generates four equations; one more equation 
is needed.  This combination represents the situation that flow in the upstream reach is subcritical 
and in the downstream reach is supercritical.  For this situation to occur, flow must under go a 
transitional state of critical flow over the structure, and the critical flow condition on the structure 
must be satisfied.  Thus, the following additional governing equations can be set up by applying the 
principle of mass continuity and the principle of momentum-impulse or the Bernoulli equation to a 
control volume between Node 1S and the structure (Fig. 2.1-3) as  
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Fig. 2.1-3.  The control volume (red outline) between Node 1S and structure. 
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 (2.1.45)

 

where AS, BS, and VS, are the area, top width, and velocity of the cross-sectional area over the 
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structure; hL1S is head loss between Node 1S and the structure; F1S is the force the structure exerts 
on the fluid between Node 1S and the structure, HS is the total head over the structure (Fig. 2.1-3); 
and MS (= ρVSASVS + g hScAS) is the momentum-impulse at the structure (where hSc is the water 
depth to the centroid of the cross-sectional area at the structure).   Now, Eq. (2.1.41), (2.1.42), and 
(2.1.45) give seven equations for seven unknowns (V1S, h1S, Q, V2S, h2S, VS, and hS). 
 
The theoretical presentation about the governing equations for the internal-boundary complex is 
valid for any structure including weirs, gates, and culverts.  The differences among various 
structures are characterized by the formulation of the head loss functions, hLS(Q, h1S, h2S) and hL1S 
(Q, h1S, hS), which depend on the flow rate Q and the water depth h1S, and h2S. 
 
2.1.2 Diffusive Wave Approaches 
 
In a diffusive approach, the inertia terms in the momentum equation is assumed negligible when 
compared with the other terms.  By further assuming negligible eddy viscosity and MS = MR = ME = 
MI = M1 = M2 = 0, we approximate the river/stream/canal velocity with the following equation 
(Hergarten and Neugebauer, 1995). 
 

2 / 3

2
1

1

S

S
o

a R H h BV
n x c x AgZ H h B

x x c x Ag

⎡ ⎤
⎢ ⎥ ⎛ ⎞− ∂ ∂Δρ τ⎢ ⎥= + −⎜ ⎟∂ ρ ∂ ρ⎢ ⎥∂⎛ ⎞ ⎝ ⎠∂ ∂Δρ τ+ − − +⎢ ⎥⎜ ⎟∂⎝ ⎠ ∂ ρ ∂ ρ⎣ ⎦

 (2.1.46)

 

where n is Manning’s roughness [tL-1/3], a is a unit-dependent factor (a = 1 for SI units and a = 1.49 
for U.S. Customary units) to make the Manning’s roughness unit-independent, R is the hydraulic 
radius [L], and H = h + Zo is the water stage. 
 
Using the definition Q = VA and substituting Eq. (2.1.46) into Eq. (2.1.1), we obtain 
 

1 2

S

S R E I
H H h BB K S S S S S S
t x x c x Ag

ρ τ
ρ ρ

⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂Δ
− + − = + − + + +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠

 (2.1.47)

in which 
2/3

2 /32

1 1

1
S

o

a A RK
n H h BZ

x c x Agx
ρ τ

ρ ρ

=
⎡ ⎤ ∂ ∂Δ∂⎛ ⎞ − − ++⎢ ⎥⎜ ⎟ ∂ ∂∂⎝ ⎠⎢ ⎥⎣ ⎦

 
(2.1.48)

 
To achieve transient simulations, either water depth or stage must be given as the initial condition. In 
addition, appropriate boundary conditions need to be specified to match the corresponding physical 
system.  In our model, four types of boundary conditions may be specified depending on physical 
configurations of the boundary.  These boundary conditions are addressed below. 
 
Dirichlet boundary condition: prescribed water depth or stage 
 
On a Dirichlet boundary, either the water depth or stage can be prescribed as a function of time.  
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This boundary condition can be expressed as 
 

( ) ,d o d dh h t or H h Z H on B= = + =  (2.1.49)
 

where hd(t) is a prescribed time-dependent water depth on the Dirichlet boundary [L], Hd(t) is a 
prescribed time-dependent water stage [L], and Bd is the Dirichlet boundary point.  A Dirichlet 
boundary point can locate at the upstream or down stream point, control structures, or even interior 
point. 
 
Flux boundary condition: prescribed flow rate 
 
On a flux boundary, a time-dependent flow rate is prescribed as a function of time as 
 

( ) ff

S
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Ag
B

xc
h

x
HK =⎟⎟
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⎝
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∂
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∂
∂

−
ρ
τρ

ρ
 (2.1.50)

 

where Qf(t) a prescribed time-dependent flow rate [L3/t] and Bf is a flux boundary point.  
Mathematically, a flux boundary condition can be applied to an upstream or downstream point.  
However, in practice, it is often applied to an upstream boundary point. 
 
Water depth-dependent boundary condition: prescribed rating curve 
 
This condition is often used to describe the flow rate at a downstream river/stream boundary at 
which the flow rate is a function of water depth.  It can be written as 
 

( )( ) rrr

S

BontxhQ
Ag
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h

x
HK ,=⎟⎟

⎠

⎞
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⎝

⎛
−

∂
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+
∂
∂

−
ρ
τρ

ρ
 (2.1.51)

 

where Qr(h(xr,t)) is a water depth-dependent flow rate [L3/t], xr is the x-coordinate on the boundary 
Br, and Br is a boundary point on which the prescribed rating curve is applied. 
 
Junction boundary condition: 

 
This condition is applied to a boundary of a river/stream/canal reach that is connected to a junction 
(Fig. 2.1-1).  For the junction complex consisting of NJ river/stream/canal reaches (e.g., in Fig. 2.1-1, 
NJ = 3) and one junction (say J), we have (NJ + 1) unknowns, which are flow rates, QIJ (QIJ is the 
flow rate from the I-th reach to junction J), and water stage at junction J, HJ.   Therefore, we need to 
set up (NJ + 1) equations.   The first equation is obtained by applying the continuity of mass at the 
junction to result in Eq. (2.1.35) for the case when the storage effect of the junction must be 
accounted for or Eq. (2.1.36) when this effect is negligible.  The other NJ equations can be obtained 
by assuming the energy loss from any reach to the junction is negligible to result in 
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 (2.1.52)

 

where HIJ is the water stage the internal boundary Node IJ of the I-th reach connecting to junction J. 
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Equations (2.1.32) or (2.1.33) along with Eq. (2.1.52) provide (NJ + 1) equations to solve for (NJ + 
1) unknowns. 
 
Weir boundary condition: 
 
For any weir (W), there are two river/stream/canal reaches connecting to it.  Node 1W located just 
upstream of the weir is termed the controlled-internal boundary of the upstream reach while Node 
2W located just downstream of the weir is called the controlled-internal boundary of the downstream 
reach (Figure 2.1-4).  The specification of boundary conditions for the internal boundaries for the 
diffusive wave approach is given as 
 

( ) ( )

( ) ( )

1WK ,

K ,

S

W up dn

S

W up dn

h BH Q h h and
c Ag

h BH Q h h
c Ag

τρ
ρ ρ

τρ
ρ ρ

⎛ ⎞
− ⋅ ∇ + ∇ Δ − =⎜ ⎟

⎝ ⎠
⎛ ⎞

− ⋅ ∇ + ∇ Δ − =⎜ ⎟
⎝ ⎠

n

n
 (2.1.53)

 

where Qw is the weir discharge rate, which is a given function of the water depths hup at Node 1W 
and hdn at Node 2W (Fig. 2.1-5). 
 

W

1W 2W
Reach 1 Reach 2

 
Fig. 2.1-4.  Schematic of weir. 
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Fig. 2.1-5.  Flow configurations around a weir. 

 
The flow configuration around the weir and its surrounding reaches may be very dynamic under 
transient flows.  Both of the water stages at Nodes 1W and 2W may be below the weir, both may be 
above the weir, or one below the weir while the other is above the weir (Fig. 2.1-5).  When both 
stages are below the height of the weir, the two reaches connecting the weir are decoupled.  When at 
least one of the stages is above the weir, two reaches are coupled via the weir.  The weir discharge, 
Qw, can be obtained by solving the continuity equation and the Bernoulli equation between Nodes 
1W and 2W.  The weir formulae under various stage conditions are given as 
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(1) For submerged flow 
 

( ) updnupdndnupWdnWW hhandhhifhhgLhCQ <≥−=
3
22  (2.1.54)

 
 (2) For free fall flow 
 

updnupupWW hhifghLhCQ
3
22

33
2

<=  (2.1.55)

 
 (3) For decoupled flow 
 

0=WQ  (2.1.56)
 

where Cw is the weir coefficient and Lw is the weir length.  It should be noted that the above 
formulae are valid for broad weir.  For other types of weirs, different weir discharge formulae may 
be used and they can easily be incorporated into the computer code. 
 
 
 
Gate boundary condition: 
 
For any gate (G), there are two river/stream/canal reaches connecting to it.  Node 1G located just 
upstream of the gate G is termed the controlled-internal boundary of the upstream reach while Node 
2G located just downstream of the gate G is called the controlled-internal boundary of the 
downstream reach (Fig. 2.1-6).  The specification of boundary conditions for the internal boundaries 
separated by a gate can be made similar to that of a weir as follows. 
 

( ) ( )

( ) ( )
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S

g up dn
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h BH Q h h
c Ag

⎛ ⎞τ
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⎛ ⎞τ
− ⋅ ∇ + ∇ Δρ − =⎜ ⎟ρ ρ⎝ ⎠

n K

n Κ
 (2.1.57)

 

where Qg is the gate discharge rate, which is a given function of the water depths hup at 1G and hdn at 
2G (Fig. 2.1-7). 
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Fig. 2.1-6.  Schematic of Gate. 
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Fig. 2.1-7.  Flow configurations around a gate. 

 
The flow configuration around the gate and its surrounding reaches may be very dynamic under 
transient flows.  Depending on the water stages at Nodes 1G and 2G (H1G and H2G), we have several 
configurations (Fig. 2.1-7).  The gate discharge, Qg, can be obtained by solving the continuity 
equation and the Bernoulli equation between Nodes 1G and 2G.  The gate formulae under various 
stage conditions are given as 
 
(1) For free fall flow and not influenced by the gate opening 
 

upupdnupgupgg haandhhifghLhCQ
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3
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><=  (2.1.58)
 

(2) For submerged flow and not influenced by the gate opening 
 

( ) upupdnupdndnupgdngg haandhhhhifhhgLhCQ
3
2,,
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22 ><≥−=  (2.1.59)

 
(3) For free flow and influenced by the gate opening 
 

upupdnupggg haandhhifghaLCQ
3
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3
22

33
2

<<=  (2.1.60)

 
(4) For submerged flow and influenced by the gate opening 
 

( ) upupdnupdndnupggg haandhhhhifhhgaLCQ
3
2,,

3
22 <<≥−=  (2.1.61)

 
(5) For decoupled flow 
 

0=gQ  (2.1.62)
 



 2-18

where Cg is the gate coefficient, a is the gate opening, and Lg is the weir length. 
 
Culvert boundary condition: 
 
Similar to weirs and gates, the boundary conditions for the culvert can be stated as 
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 (2.1.63)

 

where Qc is the discharge through the culvert or culverts, Node 1C is the point upstream of the 
culvert and 2C is the point downstream of the culvert, hup is the water stage above the culvert at 
Node 1C, and hdn is the water stage above the culvert at Node 2C.  A wide range of culvert discharge 
formulae can be used and they can be easily incorporated in the computer code. 
 
 
2.1.3 Kinematic Wave Approaches 
 
In a kinematic approach, all the assumptions for the diffusive approach are hold.  However, the 
velocity is given by modifying Eq. (2.1.46) with ∂Zo/∂x replacing ∂H/∂x as follows 
 

2 /3

2
0

1

1

S
o

S
o

Za R h BV
n x c x AgZ Z h B

x x c x Ag

ρ τ
ρ ρρ τ

ρ ρ

⎡ ⎤
⎢ ⎥ ⎛ ⎞∂− ∂Δ⎢ ⎥= + −⎜ ⎟⎢ ⎥ ∂ ∂∂⎛ ⎞ ⎝ ⎠∂ ∂Δ+⎢ ⎥ − − +⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

 (2.1.64)

 
Substituting Eq. (2.1.64) into Eq. (2.1.1) and using the definition Q = VA, we obtain 
 

1 2S R E I
A VA S S S S S S
t x

∂ ∂
+ = + − + + +
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 (2.1.65)

 
It is noted that Eq. (2.1.65) represents the advective transport of the cross-sectional area, A.  It is an 
ideal equation amenable for numerically innovative advective transport algorithm. 
 
To achieve transient simulations, either water depth or stage must be given as the initial condition. In 
addition, appropriate boundary conditions need to be specified to match the corresponding physical 
configuration.  In a kinematic wave approach, boundary conditions are required only at upstream 
boundaries.  An upstream boundary point can be an open boundary or a closed boundary.  On an 
open upstream boundary, either the cross-sectional area (equivalent to water depth or water stage) or 
the flow rate can be specified as 
 

upup BonorAA upQVA =⋅= n  (2.1.66)
 

where Hup is the water stage of the incoming upstream flow, Qup is the flow rate of the incoming 
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upstream flow, and Bup is the open upstream boundary point.  The flow rate through a closed 
upstream boundary point is by default equal to zero. 
 
 
2.1.4 Thermal Transport 
 
The thermal transport equation is derived based on the conservation principle of energy as: 
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 (2.1.67)

 

where ρw is the water density [M/L3]; Cw is the heat capacity of water [L2/t2/T]; T is the temperature 
[T]; DH is the apparent thermal conductivity including the effect of dispersion, diffusion, and 
conduction [E/t/L/T = ML/t3/T, where E is the unit of energy]; Sh

a is the heat source due to artificial 
injection/withdraw including rainfall [E/t/L = ML/t3]; Sh

r is the heat source due to rainfall 
[E/t/L=ML/t3]; Sh

n is the heat source due to net radiation [E/t/L = ML/t3]; Sh
b is the heat sink due to 

back radiation from water surface to the atmosphere [E/t/L = ML/t3]; Sh
e is the heat sink due to 

evaporation [E/t/L = ML/t3]; Sh
s is the heat sink due to sensible heat flux [E/t/L = ML/t3]; Sh

i is the 
heat source due to exfiltration from subsurface [E/t/L = ML/t3]; Sh

o1 is the heat source from overland 
flow via Bank 1 [E/t/L = ML/t3]; Sh

o2 is the heat source from overland flow via Bank 2 [E/t/L = 
ML/t3]; and Sh

c is the heat source due to chemical reaction [E/t/L = ML/t3].  In Eq. (2.1.67), Sh
r, Sh

i, 
Sh

o1, and Sh
o2 are given by 
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where Tr is the temperature of the rainwater [T], Ti is the temperature of the exfiltration water from 
the subsurface flow [T], To1 is the temperature of the water from overland flow via river Bank 1 [T], 
and To2 is the temperature of the water from overland flow via river Bank 2 [T]. 
 
The heat source due to net radiation, Sh

n, heat sink due to back radiation, Sh
b, heat sink due to 

evaporation, Sh
e, and heat sink due to sensible heat, Sh

s, are given by their respective heat fluxes as 
follows 
 

s
s

he
e

hb
b

hn
n

h BHSBHSBHSBHS ==== ;;;  (2.1.70)
 

where Hn, Hb, He, and Hs are the net radiation flux, back radiation flux, latent heat flux, and sensible 
 heat flux, respectively.  These fluxes depend on only meteorological condition and water 
temperature.  They may be computed from follow equations (Yeh, 1969; Yeh et al., 1973; McCuen, 
1989; Song and Li. 2000; and Jennifer et al., 2002). 
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Net radiation Hn 
 

( ) ( ) ososn HaHaH AA−+−= 11  (2.1.71)
in which 

( ) dayftBtusHH oso //35.061.0 2+⋅=  (2.1.72)
and 

( ) ( )[ ] dayftBtueCTH aao //031.0460 22/14 ++= εσA  (2.1.73)
 

where sa  and Aa  are the albedos of the water surface for short- and long-wave radiation 
respectively; soH  and oH A are the solar short- and long-wave radiation respectively; Ho is the solar 
constant, s is the percentage of possible sunshine; ε = 0.97 is emissivity of water surface; σ = 4.15 x 
10-8 Btu/ft2/day/R4 is the Stenfan-Boltzmann constant; Ta is air temperature in oF; C is the brunt 
coefficient; and ea is the air vapor pressure in millimeter of mercury.  
 
Back radiation Hb  
 

( ) dayftBtuTH ab //460 24+= εσ  (2.1.74)
 
Sensible heat flux Hs 
 

( )( ) ( ) dayftBtupTTWH as //760/3.77326.0 2⋅−+=  (2.1.75)
 

where W is the wind speed in miles per hour and p is the atmospheric pressure in millimeter of 
mercury. 
 
Latent heat flux of evaporation He 
 

( )( ) dayftBtueeWH awe //3.77326.0 2−+=  (2.1.76)
 

where ew is the saturated vapor pressure in millimeter of mercury at the water temperature T. 
 
In addition to the initial boundary condition, boundary conditions must be specified for the 
temperature.  Four types of global boundary conditions are provided in this report as follows. 
 
Dirichlet boundary condition: 
 
This condition is applied when the temperature is prescribed as a function of time on the boundaries: 
 

( ),     db b dT T x t on B=  (2.1.77)
 

where Tdb(xb,t) is a time-dependent temperature on the Dirichlet boundary Bd [T]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
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< Case 1 > Flow is coming in from outside: 
 

( , )    H
w w w w vb b v

TC QT D A C QT x t on B
x

∂
ρ − = ρ

∂
 (2.1.78)

 
< Case 2 > Flow is going out from inside:  
 

0    H
v

TD A on B
x

∂
− =

∂
 (2.1.79)

 

where Tvb(xb,t) is a time-dependent temperature [T] through the variable boundary Bv, which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total heat-flow rate is given at the river/stream 
boundary.  Usually, this boundary is an upstream boundary node.  The conditions can be expressed 
as 
 

( ),H
w w cb b

TC QT D A x t
x

ρ ∂
− = Φ

∂
 (2.1.80)

 

where ( , )cb bx tΦ  is total heat-flow rate (E/t = ML2/t3, where E denotes the unit of energy) through 
the Cauchy boundary, which takes a positive value if it is going out of the region and a negative 
value if it is coming into the region. 
 
Neumann boundary condition: 
 
This boundary condition is used when the conductive heat-flow rate is known at the river/stream 
boundary node.  It can be written as 
 

( ),H
nb b

TD A x t
x

∂
− = Φ

∂
 (2.1.81)

 

where ( ),nb bx tΦ  is the heat flux through the Neumann boundary. 
 
In addition to the above four types of global boundary conditions, two types of internal boundary 
conditions are implemented: internal boundary nodes connecting to natural junctions and two 
internal boundary nodes for every control structures.  These internal boundary conditions are 
mathematically stated similar to fluid flow of diffusive wave approaches. 
 
Internal boundary condition at junctions: 
 
If Node IJ is the internal node from Reach I connecting to Junction J (Fig. 2.1-1), the boundary 
conditions at Node IJ is given as  
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( )( ) ( )( )[ ]JIJIJIJIJwwIJ
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∂
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where sign(QIJ) is equal 1.0 if the flow is from Reach I into Junction J, -1.0 if flow is from Junction 
J into Reach I; TIJ is the temperature at Node IJ; and TJ is the temperature at Junction J which is 
given by 
 

( )( ) ( )( )[ ] 011
2
1

=−++∑ JijiJiJiJww
i

TQsignTQsignQCρ  (2.1.83)
 

if the storage effect of Junction J is negligible or 
 

( ) ( )( ) ( )( )[ ]JiJiJiJiJww
i

JJww TQsignTQsignQC
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−++= ∑ 11
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ρ
 (2.1.84)

 

if the storage effect of Junction J is significant. 
 
Internal boundary condition at control structure: 
 
If Nodes 1S and 2S are two internal boundary nodes connecting to Structure S (Fig. 2.1-2), the 
boundary conditions at Nodes 1S and 2S are given 
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where sign(Q) is equal 1.0 if the flow is from Node 1S to Node 2S, -1.0 if flow is from Node 2S to 
Node 1S; T1S is the temperature at Node 1S; and T2S is the temperature at Node 2S. 
 
 
2.1.5 Salinity Transport 
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where S is the salinity [M/L3]; DS is the longitudinal dispersion coefficient for salinity [L2/t]; Ms
a is 

the artificial source of the salt [M/t/L]; Ms
r is the salt source from rainfall [M/t/L]; Ms

e is the salt sink 
from evaporation, which most likely would be zero [M/t/L]; Ms

i is the salt source from subsurface 
[M/t/L]; Ms

o1 is the salt source from overland via River Bank 1 [M/t/L]; and Ms
o2 is the salt source 

from overland source viz River Bank 2 [M/L/t].  In Eq. (2.1.86), Ms
e is likely to be zero and Ms

r, Ms
i, 

Ms
o1, and Ms

o2 are given by 
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and 
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where Sr is the salinity of the rainwater [M/L3], Si is the salinity of the exfiltration water from the 
subsurface flow [M/L3], So1 is the salinity of the water from overland flow via River Bank 1 [M/L3], 
and So2 is the salinity of the water from overland flow via River Bank 2 [M/L3]. 
 
As in thermal transport, four types of global boundary conditions for salinity transport are provided 
in this report as follows: 
 
Dirichlet boundary condition: 
 
This condition is applied when the salinity is prescribed as a function of time on the boundaries: 
 

( ),db bS S x t=  (2.1.89)
 

where ( ),db bS x t  is a time-dependent salinity on the Dirichlet boundary [M/L3]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ),S
vb b

SQS D A QS x t
x
∂

− =
∂

 (2.1.90)

 
< Case 2 > Flow is going out from inside: 
 

( ),
0bS S x t

D A
x

∂
− =

∂
 (2.1.91)

 

where ( ),vb bS x t  is a time-dependent salinity on the variable boundary [M/L3], which is associated 
with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total salt-flow rate is given at the river/stream 
boundary.  Usually, this boundary is an upstream boundary node.  The conditions are expressed as 
 

( ),S
cb b

SQS D A x t
x
∂

− = Φ
∂

 (2.1.92)
 

where ( ),cb bx tΦ  is total salt-flow rate on the Cauchy boundary [M/t], which takes a positive value if 
it is going out of the region and a negative value if it is coming into the region. 
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Neumann boundary condition: 
 
This boundary condition is used when the dispersive salt-flow rate is known at the river/stream 
boundary node.  It can be written as 
 

( ),S
nb b

SD A x t
x
∂

− = Φ
∂

 (2.1.93)
 

where ( ),nb bx tΦ  is the salt rate due to salt concentration through the Neumann boundary [M/L]. 
 
The internal boundary conditions at junctions and control structures for salinity transport are  stated 
similarly to those for thermal transport as follows. 
 
Internal boundary condition at junctions: 
 
If Node IJ is the internal node from Reach I connecting to Junction J (Fig. 2.1-1), the boundary 
condition at Node IJ is given as 
 

( )( ) ( )( )1 1 1
2

S
IJ IJ IJ IJ IJ J

SQS D A Q sign Q S sign Q S
x
∂⎛ ⎞ ⎡ ⎤− = + + −⎜ ⎟ ⎣ ⎦∂⎝ ⎠

 (2.1.94)
 

where SIJ is the salinity at Node IJ and SJ is the salinity at Junction J, which is governed by 
 

( )( ) ( )( )[ ] 011
2
1

=−++∑ JiJiJiJIJ
i

SQsignSQsignQ  (2.1.95)
 

if the storage effect of Junction J is negligible or 
 

( ) ( )( ) ( )( )1 1 1
2

J J
iJ iJ iJ iJ J

i

d V S
Q sign Q S sign Q S

dt
⎡ ⎤= + + −⎣ ⎦∑  (2.1.96)

 

if the storage effect of Junction J is significant. 

 
Internal boundary condition at control structure: 
 
If Nodes 1S and 2S are two internal boundary nodes connecting to Structure S (Fig. 2.1-2), the 
boundary conditions at nodes 1S and 2S are given 
 

( )( ) ( )( )1 2 1 2
1 1 1
2

S S
S S S S S S S

S SQS D A QS D A Q sign Q S sign Q S
x x
∂ ∂⎛ ⎞ ⎛ ⎞ ⎡ ⎤− = − = + + −⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂⎝ ⎠ ⎝ ⎠

 (2.1.97)

 

where S1S is the salinity at Node 1S and S2S is the salinity at Node 2S. 
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2.2 Water Flow in Two-Dimensional Overland Regime 

 
The governing equations for two-dimensional overland flow can be derived based on the 
conservation law of water mass and linear momentum [Wang and Connor, 1975].  The governing 
equations of a dynamic wave model in conservative form can be written as follows. 
 
The continuity equation: 
 

( ) ( )uh vhh S R E I
t x y

∂ ∂∂
+ + = + − +

∂ ∂ ∂
 (2.2.1) 

 

where h is the water depth [L]; u is the velocity component in the x-direction [L/t]; v is the velocity 
component in the y-velocity [L/t]; SS is the man-induced source [L3/t/L2]; SR is the source due to 
rainfall [L3/t/L2]; SE is the sink due to evapotranspiration [L3/t/L2]; and SI is the source from 
subsurface media due to exfiltration [L/t].   It should be noted that uh = qx is the flux the x-direction 
[L3/t/L2] and vh = qy is the flux in the y-direction [L3/t/L2]. 
 
The x-momentum equation: 
 

( ) ( ) ( ) ( )

( )

2

2
o yxxx

s b
S R E I x x

X X X X

Z h Fuh u uh v uh Fghgh
t x y x x x y

M M M M

∂ + ∂∂ ∂ ∂ ∂∂Δρ
+ + = − − − − +

∂ ∂ ∂ ∂ ρ ∂ ∂ ∂

τ −τ
+ − + +

ρ

 (2.2.2) 

 

where Zo is the bottom elevation of overland [L]; ]; Δρ = ρ - ρo is the density deviation [M/L3] from 
the reference density (ρo), which is a function of temperature and salinity as well as other chemical 
concentrations; S

XM  is the x-component of momentum-impulse from artificial sources/sinks [L2/t2]; 
R

XM  is the x-component of momentum-impulse gained from rainfall [L2/t2]; E
XM  is the x-

component of momentum-impulse lost to evapotranspiration [L2/t2]; I
XM  is the x-component of 

momentum-impulse gained from the subsurface media due to exfiltration [L2/t2]; Fxx and Fyx are the 
water fluxes due to eddy viscosity along the x-direction [L3/t2]; τxs is the component of surface shear 
stress along the x-direction over unit horizontal overland area [M/L/t2]; τxb  is the component of 
bottom shear stress along the x-direction over unit horizontal overland area [M/L/t2], which can be 
assumed proportional to the x-component flow rate, i.e., τxb/ρ = κ|V|u. 
 
The y-momentum equation: 
 

( ) ( ) ( ) ( )

( )
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2
xy yyo

s b
y yS R E I

y y y y

F Fvh u vh v vh Z h ghgh gh
t x y y y x y
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+ + = − − − − +

∂ ∂ ∂ ∂ ρ ∂ ∂ ∂

τ − τ
+ − + +

ρ

 (2.2.3) 
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where S
yM is the y-component of momentum-impulse from artificial sources/sinks [L2/t2]; R

yM is 

the y-component of momentum-impulse gained from rainfall [L2/t2]; E
yM  is the y-component of 

momentum-impulse lost to evapotranspiration L2/t2]; I
yM  is the y-component of momentum-

impulse gained from the subsurface media due to exfiltration [L2/t2];  Fxy and Fyy are the water fluxes 
due to eddy viscosity along the y-direction [L3/t2]; τys is the component of surface shear stress along 
the y-direction over unit horizontal overland area [M/L/t2]; τyb is the component of bottom shear 
stress along the y-direction over unit horizontal overland area [M/L/t2], which can be assumed 
proportional to the y-component flow rate, i.e., τyb/ρ = κ|V|v. 
 
 
2.2.1 Fully Dynamic Wave Approaches 
 
Eqs. (2.2.1) through (2.1.3) written in conservative form are the governing equations for two-
dimensional flow in overland.  Depending on the simplification of the momentum equation, one can 
have three approaches: fully dynamic wave, diffusive wave, and kinematic wave.  For the fully 
dynamic wave approach, all terms in Eqs. (2.2.1) and (2.2.3) are retained.  Under such 
circumstances, the conservative form of the governing equations may be used or they may be cast in 
the advection form or in the characteristic form.   In this report, while the conservative form of fully 
dynamic wave equation is used as an option, the characteristic form of the fully dynamic approach 
will be used as a primary option.  The characteristic form is the most natural way to deal with 
hyperbolic-dominant equations and amenable to the advective numerical methods, for example the 
upstream approximation or the Lagrangian-Eulerian method. 
 
With an adequate mathematical manipulation, Eqs. (2.2.1) through (2.2.3) can be written in 
advective form as follows 
 

( )h h u h vu h v h S R E I
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ρ

 (2.2.6) 

 

which can be written in matrix form as 
 

t x y
∂ ∂ ∂

+ + = +
∂ ∂ ∂x y
E E EA A R D  (2.2.7) 
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Let the matrix B be the linear combination of the matrices Ax and Ay as follows 
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where A is a third rank vector with the matrices Ax and Ay as its components and k is a unit vector.  
The eigenvalues and eigenvectors of the defined matrix B are 
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T

yx
yx

gkgkgh
ghvkuk

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

=++=
2222 2eλ  (2.2.13)

 
T

yx
yx

gkgkgh
ghvkuk

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
−=−+=

2223 3eλ  (2.2.14)

 

where kx and ky are the x- and y-component of the unit vector k. 
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Now we compose an eigenmatrix and its inverse from the eigenvectors of B as 
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Let us define a characteristic vector W by 
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where the first characteristic variable W1 is a vorticity or shear wave.  The second and third 
components, W2 and W3, are the amplitudes of the two gravity waves.   The multiplication of Eq. 
(2.2.7) by L-1 yields 
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or, with the transformation between E and W given by L-1∂E= ∂W, 
 

t x y
− − − −∂ ∂ ∂

+ + = +
∂ ∂ ∂

1 1 1 1
x y

W W WL A L L A L L R L D  (2.2.18)

 
Substituting Ax and Ay in Eq. (2.2.8) and L-1 and L in Eq. (2.2.15) into Eq. (2.2.18), and 
performing matrix multiplication, we obtain 
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1 1W W W L R L D  (2.2.19)

where 
ghc =  (2.2.20)
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It is noted that the coefficient matrices L-1AxL and L-1AyL, respectively, of (∂W/∂x) and (∂W/∂y), 
respectively, are not diagonal matrices because L-1 is not an eigenmatrix of Ax nor of Ay.  
Rearranging Eq. (2.2.19), we obtain 
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For a general consideration, we define a new L*-1 (and its inverse L*) which plays the following 
transformation.  
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where k = k(1)⋅k(2) is the inner product of k(1) and k(2).  It should be noted that two unit wave 
directions k(1) and k(2) should not be orthogonal so that the transformation will not be singular.   
Multiplying both side of Eq. (2.2.7) by this new L*-1 and repeating mathematical manipulations 
involved in Eqs. (2.2.19) and (2.2.21), we have 
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where 
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Substituting L*-1 defined in Eq. (2.2.23) into the right hand side of Eq. (2.2.24), we obtain 
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Writing out Eq. (2.2.26) in its three components, we have the following three equations for three 
unknowns W1, W2, and W3 
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( ) ( )(2) (2)3 3 3
3 3 3x y

W W Wu ck v ck S A B
t x y

∂ ∂ ∂
+ − + − + = +

∂ ∂ ∂
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Equations (2.2.28), (2.29), and (2.230) indicate that the vorticity wave is advected by the velocity V, 
the positive gravity wave by V + ck(2), and the negative gravity wave by V - ck(2), where k(2) is a unit 
vector. 
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We can write Eq. (2.2.26) in Lagrangian form as 
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where V is the transporting velocity of the vorticity wave W1, (V + ck(2)) is the transporting velocity 
of positive gravity wave W2, and (V - ck(2)) is the transporting velocity of negative gravity wave W3. 
Substituting the definition of the characteristic variable W in Eq. (2.2.23) into Eq. (2.2.31), we have 
the following three equations for the three waves 
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It is noted that a diagonalization can be achieved with special selections of kx

(1), ky
(1), kx

(2), and ky
(2) 

to make  S1, S2, and S3 zeros. 
 
In solving Eqs. (2.2.28) through (2.2.30) or Eqs. (2.2.32) through (2.2.34), the water depth h, and the 
velocity components, u and v, must be given initially or they can be obtained by simulating the 
steady-state version of Eqs. (2.2.28) through (2.2.30).   In addition, appropriate boundary conditions 
need to be specified to match the corresponding physical system.  The characteristics form of the 
governing equation offers great advantages over the primitive form in adapting appropriate 
numerical algorithms and in defining boundary conditions.  Innovative hyperbolic numerical 
algorithms can be employed to approximate the system because each of the three equations is a 
decoupled advective transport equation of a wave.  The specification of boundary conditions is made 
easy pending the wave direction.  We demonstrate how boundary conditions are specified in the 
following.  An overland boundary segment can be either open or closed.  In the former case, the 
boundary condition for any wave is needed only when it is transported into the region of interest. 
When a wave is transported out of the region, there is no need to specify the boundary condition 
because internal flow dynamics due to this wave affects the boundary values of u, v, and h.  In the 
later case, the flow rate on the boundary is zero. 
 
Open upstream boundary condition: 
 
At an open upstream boundary segment, the vorticity is always transported into the region from 
upstream.  If the flow is supercritical, then both gravity waves also transported into the region from 
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upstream; thus three boundary conditions are needed.  The water depth and velocity components at 
the boundary are determined entirely by the flow condition that prevails at the upstream.  The 
governing equations for this case can be set up based on the continuity of mass as well as 
momentums between the upstream and boundary as 
 

( )
2 2

( ) , ;  ( , );   ( , )
2 2

up up up
n b x x b y y b

gh ghh q t uh n M t and vh n M t⋅ = ⋅ + = ⋅ + =n V x n V x n V x  (2.2.35)
 

where n is the outward unit vector of the boundary segment; ( , )up
n bq tx , a function of time t, is flow 

rate normal to the boundary from the upstream; bx  is the coordinate on the boundary; nx is the x-
component of n; ( , )up

x bM tx is the x-momentum/impulse from the upstream; ny is the y-component of 
n; and ( , )up

y bM tx  is the y-momentum/impulse from the upstream.  It is noted that u, v, and h from 

the upstream must be given to provide up
nq , up

xM and up
yM . 

 
In the case of subcritical flow, one of the two gravity waves is transported into the region while the 
other is transported out of the region.  The water depth and velocity are determined with the 
upstream flow condition and internal flow dynamics.  The governing equations are set up based on 
the continuity of mass between the boundary and the upstream and on the flow dynamics in the 
region as 
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A

A

A

A
 (2.2.36)

 

where A  is the unit vector parallel to the boundary segment; ( ),up bH tx , a function of time t, is the 

water stage in the incoming fluid from the upstream; ( , )up
bq txA , a function of time t, is the flow rate 

parallel to the boundary. 
 
Open downstream boundary condition: 
 
At an open downstream boundary segment, the vorticity is always transported out of the region into 
downstream.  If the flow is supercritical, then both gravity waves also transported out of the region 
into downstream; thus three is no need to specify the boundary conditions.  The water depth and 
velocity components at the boundary are determined entirely by internal flow dynamics.  The 
governing equations for this case are given by 
 

( ) ( ) ( ) 000 === −+⊗ u,v,hFand;u,v,hF;u,v,hF  (2.2.37)
 

where ( )u,v,hF⊗ , a function of velocity and water depth, is the vorticity wave boundary function. 
 
In the case of subcritical flow, one of the two gravity waves is transported into the region from 
downstream while the other is transported out of the region into downstream.  The water depth and 
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velocity are determined by the internal flow dynamics and the control of the downstream boundary 
segment 
 

( ) ( )

( ) ( ) ( ) ( )
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= = = ⋅ =

x n V

x n V
 (2.2.38)

 

where hdn(t), a function of time t, is the water depth of the downstream boundary an qn
dn(h), a 

function of water depth h, is the rating curve of the downstream boundary. 
 
Closed upstream boundary condition: 
 
At the closed upstream boundary, physically all flow conditions can occur.  The vorticity wave is 
always transported from the outside of the boundary into the region. When the supercritical flow 
happens, both gravity waves are also transported into the region.  Thus, three boundary condition 
equations are needed.  Because the boundary is closed, it is impermeable.  The governing equations 
can be obtained by simply substituting qn

up = 0, Mx
up = 0, and My

up = 0 into Eq. (2.2.35) to yield 
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22
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ghnvhandghnuhh yx VnVnVn  (2.2.39)

 

The solutions for Eq. (2.2.39) are not unique.  One of the possible solution is u = 0, v = 0, and h = 0. 
 
When the flow is subcritical, one of the two gravity waves is transported from the outside of the 
boundary into the region while the other is transported from inside the boundary to the outside The 
boundary conditions are needed only for the incoming waves.  Since no fluid from the outside world 
is transported into the region via the closed boundary, one of the two boundary condition equations 
can be stated with Vn ⋅ = 0.  The other boundary equation can be obtained by assuming no slip 
condition on the boundary.  Thus, three governing equations are given as 
 

( ) ( )0;  0;   , , 0 0;  0;   , , 0h h and F u v h or   h h and F u v h+ −⋅ = ⋅ = = ⋅ = ⋅ = =n V V n V VA A  (2.2.40)
 

depending on which wave is transported out of the region. 
 
Closed downstream boundary condition: 
 
At the closed downstream boundary, physical condition dictates that normal flow rate at the 
boundary is zero.  The vorticity wave is always transported out of the region.  If the flow is 
supercritical, both gravity waves are also transported out of the region.  The velocity and water depth 
on the boundary is determined entirely by internal flow dynamics and no boundary condition is 
needed.  The governing equations are given by the wave boundary functions subject to the constraint 
that fluid flux is zero as follows: 
 

( ) ( ) ( ), , 0;   , , 0; , , 0 0F u v h F u v h and F u v h subject to⊗ + −= = = ⋅ =n V  (2.2.41)
 
The only feasible solution of Eq. (2.1.31) is u = 0, v = 0, and h = 0.  Therefore, supercritical flow 
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cannot occur at a closed downstream segment. 
 
In the case of subcritical flow, one of the two gravity waves is transported into the region while the 
other is transported out of the region.  The water depth and velocity are determined with the internal 
flow dynamics and the condition of zero normal flux as 
 

( ) ( ) ( ) ( ), , 0;  , , 0; 0   , , 0;  , , 0; 0F u v h F u v h and h or F u v h F u v h and h⊗ + ⊗ −= = ⋅ = = = ⋅ =n V n V (2.2.42)
 
Overland-river interface boundary condition: 
 
At the overland-river interface, the flux must be continuous as 
 

1 1 2 2Bank Bankh S and h S= =(n V) (n V)i i  (2.2.43)
 

where S1 and S2 are sources of water which appear in Eq. (2.1.1)  
 
 
2.2.2 Diffusive Wave Approaches 
 
For diffusion wave models, the inertia terms in Eqs. (2.2.2) and (2.2.3) are assumed not important 
when compared to the others.  With the further assumption that eddy viscosity is insignificant and 
Mx

S = Mx
R = Mx

E = Mx
I = My

S = My
R = My

E = My
I = 0, we approximate the velocity V = (u, v) as follows 
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Using the definition q = Vh and substituting Eq. (2.2.44) into Eq. (2.2.1), we obtain 
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in which 
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To achieve transient simulations, either water depth or stage must be given as the initial condition. In 
addition, appropriate boundary conditions need to be specified to match the corresponding physical 
system.  In our model, four types of boundary conditions may be specified depending on physical 
configurations of the boundary.  These boundary conditions are addressed below. 
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Dirichlet boundary condition: prescribed water depth or stage 
 
On a Dirichlet boundary, either the water depth or stage can be prescribed as a function of time.  
This boundary condition can be expressed as 
 

( ) 0, ( , ),d b d b dh h t or H h Z H t on B= = + =x x  (2.2.47)
 

where ( ),d bh tx  is a prescribed time-dependent water depth on the Dirichlet boundary [L], ( , )d bH tx  
is a prescribed time-dependent water stage [L], and Bd is the Dirichlet boundary segment.  A 
Dirichlet boundary segment can locate at the up-streams or down-streams, control structures, or even 
interior points. 
 
Flux boundary condition: prescribed flow rate 
 
On a flux boundary, a time-dependent flow rate is prescribed as a function of time as 
 

( ) ( ),
2 f

s

f b
hK H q t on B

gh
ρ

ρ ρ
⎛ ⎞

− ⋅ ∇ + ∇ Δ − =⎜ ⎟
⎝ ⎠

τn x  (2.2.48)

 

where n is an outward unit vector at the flux boundary point, ( ),f bq tx  a prescribed time-dependent 
flow rate [L3/t/L], and Bf is a flux boundary segment.  Mathematically, a flux boundary condition can 
be applied to an upstream or downstream segment.  However, in practice, it is often applied to an 
upstream boundary segment. 
 
Water depth-dependent boundary condition: prescribed rating curve 
 
This condition is often used to describe the flow rate at a downstream boundary at which the flow 
rate is a function of water depth.  It can be written as 
 

( ) ( )( ),
2

s

r r r
hK H q h x t on B

gh
ρ

ρ ρ
⎛ ⎞

− ⋅ ∇ + ∇ Δ − =⎜ ⎟
⎝ ⎠

τn  (2.2.49)

 

where qr(h(xr,t)) is a water depth-dependent flow rate [L3/t/L], xr is the x-coordinate on the boundary 
Br, and Br is a boundary segment on which the prescribed rating curve is applied. 
 
Overland-river interface boundary condition: 
 
At the overland-river interface, the flux must be continuous as 
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( )

1 1

2 2
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⎝ ⎠

τn

τn
 (2.2.50)
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where S1 and S2 are sources of water which appear in Eq. (2.1.1)  
 
 
2.2.3 Kinematic Wave Approaches 
 
In a kinematic approach, all the assumptions for the diffusive approach are hold.  However, the 
velocity is given by modifying Eq. (2.2.44) with 0Z∇  replacing H∇  as follows 
 

( ) ( )
( )

2 / 3

2

1
21

2

s

os
o

o

a h hz
n ghZ hZ

gh

τρ
ρ ρτρ

ρ ρ

⎡ ⎤ ⎛ ⎞−
= ∇ + ∇ Δ −⎢ ⎥ ⎜ ⎟

+ ∇⎢ ⎥ ⎝ ⎠⎣ ⎦ −∇ − ∇ Δ +

V  
(2.2.51)

 
Substituting Eq. (2.2.51) into Eq. (2.2.1) and using the definition q = Vh, we obtain 
 

( ) S R E I
h h S S S S
t

∂
+∇ ⋅ = + − +

∂
V  (2.2.52)

 
It is noted that Eq. (2.2.52) represents the advective transport of the water depth, h.  It is an ideal 
equation amenable for numerically innovative advective transport algorithm. 
 
To achieve transient simulations, either water depth or stage must be given as the initial condition. In 
addition, appropriate boundary conditions need to be specified to match the corresponding physical 
configuration.  In a kinematic wave approach, boundary conditions are required only at upstream 
boundaries.  An upstream boundary segment can be an open boundary or a closed boundary.  On an 
open upstream boundary, either the water depth or the flow rate can be specified as 
 

( ) ( ), ,up up up up uph h t or h q t on B= ⋅ =x n V x  (2.2.53)
 

where ( ),up uph tx  is the water depth of the incoming upstream flow, ( ),up upq tx  is the flow rate of the 

incoming upstream flow, upx  is the coordinate on the upstream boundary, and upB  is the open 
upstream boundary segment.  The flow rate through a closed upstream boundary segment is by 
default equal to zero. 
 
 
2.2.4 Thermal Transport 
 
The thermal transport equation is derived based on the conservation principle of energy as: 
 

( ) ( ) ( )
cisebnra

ww
ww

HHHHHHHH

ThC
t

hTC

++−−−++=

∇⋅⋅∇−⋅∇+
∂

∂ HDqTρρ
 (2.2.54)

 

where ρw is the water density [M/L3]; Cw is the heat capacity of water [L2/t2/T]; T is the temperature 
[T]; DH is the apparent thermal conductivity tensor including the effect of dispersion, diffusion, and 
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conduction [E/L/t/T = ML/t3/T, where E is the unit of energy]; Ha is the heat source due to artificial 
injection/withdraw including rainfall [E/t/L2 = M/t3]; Hr is the heat source due to rainfall [E/t/L2 = 
M/t3]; Hn is the heat source due to net radiation [E/t/L2 = M/t3]; Hb is the heat sink due to back 
radiation from water surface to the atmosphere [E/t/L2 = M/t3]; He is the heat sink due to evaporation 
[E/t/L2 = M/t3]; Hs is the heat sink due to sensible heat flux [E/t/L2 = M/t3]; Hi is the heat source due 
to exfiltration from subsurface [E/t/L2 = M/t3]; and Hc is the heat source due to chemical reaction 
[E/t/L2 = M/t3].  In Eq. (2.2.54), Hr and Hi are given by 
 

0
;

0

i
r w w

r w w i
w w

C I T if I
H C RT H

C I T if I
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ρ
ρ

⎧ ≥⎪= = ⎨
<⎪⎩

 (2.2.55)

 

where R is the rainfall rate [L/t], Tr is the temperature of the rainwater [T], I is the exfiltration rate 
[L/t], and Ti is the temperature of the exfiltration water from the subsurface flow [T].   Hn, Hb, He, 
and Hs are the net radiation flux, back radiation flux, latent heat flux, and sensible heat flux, 
respectively.  These fluxes depend on only meteorological condition and water temperature.  The 
formulation of these heat/energy fluxes were presented in Section 2.1. 
 
In addition to the initial boundary condition, boundary conditions must be specified for the 
temperature.  Four types of global boundary conditions are provided in this report as follows. 
 
Dirichlet boundary condition: 
 
This condition is applied when the temperature is prescribed as a function of time on the boundaries:  
 

( ),db b dT T t on B= x  (2.2.56)
 

where ( ),db bT tx  is a time-dependent temperature on the Dirichlet boundary dB  [T]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ) ( ),w w w w vb b vC T h T C T t on Bρ ρ⋅ − ⋅∇ = ⋅Hn q D n q x  (2.2.57)
 
< Case 2 > Flow is going out from inside: 
 

0 vh T on B− ⋅ ⋅∇ =Hn D  (2.2.58)
 

where ( ),vb bT tx  is a time-dependent temperature on the variable boundary vB  [T], which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
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This boundary condition is employed when the total heat-flow rate is given at the boundary.  
Usually, this boundary is a flow-in boundary.  The conditions can be expressed as 
 

( ) ( )w w cb cC T h T t on Bρ⋅ − ⋅∇ = ΦHn q D  (2.2.59)
 

where ( )tcbΦ  is total heat flux on the Cauchy boundary cB  [E/L/t = ML/t3, where E denotes the unit 
of energy], which takes a positive value if it is going out of the region and a negative value if it is 
coming into the region. 
 
Neumann boundary condition: 
 
This boundary condition is used when the conductive heat-flow rate is known at the boundary.  It 
can be written as 
 

( ),nb b nh T t on B− ⋅ ⋅∇ = ΦHn D x  (2.2.60)
 

where ( ),nb b tΦ x  is the heat flux on the Neumann boundary nB  [E/L/t]. 
 
In addition to the four types of global boundary conditions, an internal boundary condition may be 
specified for the exchange of energy/heat flux between the overland and river/stream network.  
Mathematically, this boundary condition is described below. 
 
Overland-river interface boundary condition: 
 

( ) ( )1 2
1 2    o o

w w Bank h w w Bank hC T h T S and C T h T Sρ ρ⋅ − ⋅∇ = ⋅ − ⋅∇ =H Hn q D n q D  (2.2.61)
 

where Sh
o1 and Sh

o2 are the heat sources, which appeared in Eq. (2.1.67).  These heat sources can be 
calculated using Eq. (2.1.69) if the temperatures in the overland water and river water are 
discontinuous at the interfaces.  If the temperatures are continuous, then these heat sources should be 
formulated by imposing the continuity of the temperatures in the overland water and river water at 
the interface. 
 
 
2.2.5 Salinity Transport 
 

( ) ( ) ( ) is
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∂ SDq  (2.2.62)

 

where S is the salinity [M/L3]; DS is the longitudinal dispersion coefficient for salt [L2/t]; Ms
as is the 

artificial source of the salt [M/t//L2]; Ms
rs is the salt source from rainfall [M/t/L2; Ms

es is the salt sink 
from evaporation [M/t/L2]; Ms

is is the salt source from subsurface [M/t/L2].  In Eq. (2.2.62), Ms
es is 

likely to be zero and Ms
rs and Ms

is are given by 
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 (2.2.63)
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where R is the rainfall rate [L/t], Sr is the salinity of the rainwater [M/L3], I is the exfiltration rate 
[L/t], and Si is the salinity of the exfiltration water from the subsurface flow [M/L3]. 
 
As in thermal transport, four types of global boundary conditions for salinity transport are provided 
in this report as follows. 
 
Dirichlet boundary condition: 
 
This condition is applied when the salinity is prescribed as a function of time on the boundaries:  
 

( ),db b dS S t on B= x  (2.2.64)
 

where ( ),db bS tx  is a time-dependent salinity on the Dirichlet boundary dB  [M/L3]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ) ( ),vb b vS h S S t on B⋅ − ⋅∇ = ⋅Sn q D n q x  (2.2.65)
 
< Case 2 > Flow is going out from inside: 
 

0 vh S on B− ⋅ ⋅∇ =Sn D  (2.2.66)
 

where ( ),vb bS tx  is a time-dependent salinity on the variable boundary vB  [M/L3], which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total salt-flow rate is given at the boundary.  Usually, 
this boundary is a flow-in boundary.  The conditions are expressed as 
 

( ) ( ),cb b cS h S S t on B⋅ − ⋅∇ =Sn q D x  (2.2.67)
 

where ( ),cb bS tx  is total salt-flow rate on the Cauchy boundary cB  [M/L/t], which takes a positive 
value if it is going out of the region and a negative value if it is coming into the region. 
 
Neumann boundary condition: 
 
This boundary condition is used when the dispersive salt-flow rate is known at the boundary.  t can 
be written as 
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( )nb nh S S t on B− ⋅ ⋅∇ =Sn D  (2.2.68)
 

where ( )nbS t is the salt flux on the Neumann boundary [M/L/t]. 
 
As in thermal transport, in addition to the four types of global boundary conditions, an internal 
boundary condition may be specified for the exchange of salt between the overland and river/stream 
network.  Mathematically, this boundary condition is described below. 
 
River-overland interface boundary condition: 
 

( ) ( )1 2
1 2

S o S o
Bank s Bank sS h S M and S h S M⋅ − ⋅∇ = ⋅ − ⋅∇ =n q D n q D  (2.2.69)

 

where Ms
o1 and Ms

o2, which appeared in Eq. (2.1.86),  are the salt sources from overland into the 
rivers.  These salt sources can be calculated using Eq. (2.1.88) if the salinity in the overland water 
and river water are discontinuous at the interfaces.  If the salinity is continuous, then these salt 
sources should be formulated by imposing the continuity of salinity in the overland water and river 
water at the interface. 
 
 
 
2.3 Water Flow in Three-Dimensional Subsurface Media 

 
2.3.1 Water Flow 
 
The governing equation of subsurface density dependent flow through saturated-unsaturated porous 
media can be derived based on the conservation law of water mass (Yeh, 1987; Yeh et al., 1994; Lin 
et al., 1997).  It is written as follows. 
 

qzh
t
hF

ooo ρ
ρ

ρ
ρ

ρ
ρ *

+⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
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∂
∂ K  (2.3.1) 

 

where ρ is the density of water; ρo is the reference density of water; h is the referenced pressure head 
[L]; t is the time [t]; K is the hydraulic conductivity tensor [L/t]; z is the potential head [L]; ρ* is the 
density of source water; q is the source and/or sink [L3/L3/t]; and F is the water capacity [1/L] given 
by 
 

dh
dSn

n
aF ee

e

e ++= θβ
θ

''  (2.3.2) 
 

where 'a  is the modified compressibility of the medium [1/L], θe is the effective moisture content 
[L3/L3], ne is the effectively porosity [L3/L3], 'β  is the compressibility of water [1/L], and S is the 
degree of saturation.  The Darcy’s velocity is given by 
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⎟⎟
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⎜⎜
⎝

⎛
∇+∇⋅−= zho

ρ
ρKV  (2.3.3) 

 
 
To achieve transient simulation, the following initial condition needs to be given. 
 

( ) ,Rinhh i x=  (2.3.4) 
 

where R is the region of interest and hi is the prescribed pressure head [L], which can be obtained by 
either field measurements or by solving the steady state version of Eq. (2.3.1). 
 
Five types of boundary conditions are taken into account as follows. 
 
Dirichlet boundary condition: 
 
This boundary condition is used when pressure head can be prescribed on the boundary.  It can be 
expressed as 
 

( ) ( ) 0, == xx dd Bonthh  (2.3.5) 
 

where hd(x,t) is the Dirichlet head on the boundary surface Bd(x) = 0 
 
Neumann boundary condition: 
 
This boundary condition is employed when the flux results from pressure-head gradient is known as 
a function of time.  It is written as 
 

( ) ( ) 0, ==∇⋅⋅− xxKn nn
o Bontqh
ρ
ρ  (2.3.6) 

 

where qn(x,t) is the Neumann flux and Bn(x) = 0 is the Neumann boundary surface. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the flux results from total-head gradient is known as a 
function of time.  It can be written as 
 

( ) ( ) 0, ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅+∇⋅⋅− xxKKn cc

o Bontqzh
ρ
ρ  (2.3.7) 

 

where qc(x,t) is the Cauchy flux and Bc(x) = 0 is the Cauchy boundary surface. 
 
River Boundary Condition: 
 
This boundary condition is employed when there is a thin layer of medium separating the river and 
the subsurface media. 
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( ) ( ) 0=−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇+∇⋅⋅− xKn rR
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Ro Bonhh
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Kzh

ρ
ρ  (2.3.8) 

 

where KR is the hydraulic conductivity of the thin layer, bR is the thickness of the thin layer, hR is the 
water depth in the river, and Br(x) = 0 is the surface between the river and subsurface media. 
 
Variable Boundary Condition: 
 
This boundary condition is usually used for the ground surface boundary when the coupling of 
surface and subsurface systems is not taken into account. 
 
(1) During precipitation periods: 
 

( ) ( ) ( ), , 0o
p p vh h t iff h z q t on Bρ

ρ
⎛ ⎞

= − ⋅ ⋅ ∇ +∇ ≥ =⎜ ⎟
⎝ ⎠

x n K x x  (2.3.9) 

or 

( ) ( ), 0o
p p vh z q t iff h h on Bρ

ρ
⎛ ⎞

− ⋅ ⋅ ∇ +∇ = ≤ =⎜ ⎟
⎝ ⎠

n K x x  (2.3.10)

 
 
 (2) During non-precipitation period:  
 

( ) ( ), 0 0o
p vh h t iff h z on Bρ

ρ
⎛ ⎞

= − ⋅ ⋅ ∇ +∇ ≥ =⎜ ⎟
⎝ ⎠

x n K x  (2.3.11)

 

( ) ( ), 0o
m e vh h t iff h z q on Bρ

ρ
⎛ ⎞

= − ⋅ ⋅ ∇ +∇ ≤ =⎜ ⎟
⎝ ⎠

x n K x  (2.3.12)

or 

( ) ( ), 0o
e m vh z q t iff h h on Bρ

ρ
⎛ ⎞

− ⋅ ⋅ ∇ +∇ = ≥ =⎜ ⎟
⎝ ⎠

n K x x  (2.3.13)

 

where hp(x,t) is ponding depth, qp(x,t) is the flux due to precipitation, hm(x,t) is the minimum 
pressure head, and qe(x,t) is the potential evaporation rate on the surfaces of the variable boundary 
condition Bv(x) = 0.  Only one of Eqs. (2.3.9) through (2.3.13) is used at any point on the variable 
boundary at any time. 
 
 
2.3.2 Thermal Transport 
 
The thermal transport equation is derived based on the conservation principle of energy as: 
 

( )[ ] ( ) ( ) ca
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where ρw is the water density [M/L3]; Cw is the heat capacity of water [L2/t2/T];  θ is the moisture 
content [L3/L3]; ρb is the bulk density of the media [M/L3]; Cm is the heat capacity of the matrix 
[L2/t2/T]; T is the temperature [T]; DH is the apparent thermal conductivity tensor including the 
effect of dispersion, diffusion, and conduction [E/t/L/T = ML/t3/T, where E is the unit of energy]; Ha 
is the heat source due to artificial injection/withdraw [E/t/L3 = M/L/t3], and Hc is the heat source due 
to chemical reaction [E/t/L3 = M/L/t3]. 
 
In addition to the initial boundary condition, boundary conditions must be specified for the 
temperature.  Five types of global boundary conditions are provided in this report as follows. 
 
 
Dirichlet boundary condition: 
 
This condition is applied when the temperature is prescribed as a function of time on the boundaries:  
 

( ) ( ), ,     ( ) 0db dT t T t on B= =x x x  (2.3.15)
 

where ( ),dbT tx  is a time-dependent temperature on the Dirichlet boundary Bd(x) = 0 [T]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ) ( ), ( ) 0w w w w vb vC T T C T t on Bρ ρ⋅ − ⋅∇ = ⋅ =Hn V D n V x x  (2.3.16)
 
< Case 2 > Flow is going out from inside: 
 

0 ( ) 0vT on B− ⋅ ⋅∇ = =Hn D x  (2.3.17)
 

where ( ),vbT tx  is a time-dependent temperature on the variable boundary, Bv(x) = 0, [T], which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total heat-flow rate is given at the river/stream 
boundary.  Usually, this boundary is an upstream boundary node.  The conditions can be expressed 
as 
 

( ) ( ), ( ) 0w w cb cC T T H t on Bρ⋅ − ⋅∇ = =Hn V D x x  (2.3.18)
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where ( ),cbH tx   is total heat flux through the Cauchy boundary, Bc(x) = 0, [E/L2/t = M/t3, where E 
denotes the unit of energy], which takes a positive value if it is going out of the region and a 
negative value if it is coming into the region. 
 
Neumann boundary condition: 
 
This boundary condition is used when the conductive heat-flow rate is known at the river/stream 
boundary node.  It can be written as 
 

( ), ( ) 0nb nT H t on B− ⋅ ⋅∇ = =Hn D x x  (2.3.19)
 

where ( ),nbH tx  is the heat flux through the Neumann boundary, Bn(x) = 0, [E/L2/t]. 
 
Atmosphere-subsurface interface boundary condition: 
 
At the interface of the atmosphere and subsurface media, a heat budget boundary condition is 
specified as 
 

( ) sebnww HHHHTTC −−−=∇⋅−⋅− HDVn ρ  (2.3.20)
 

where Hn, Hb, He, and Hs are calculated using Eqs. (2.1.71) through (2.1.76). 
 
In addition to the five types of global boundary conditions, two interface boundary conditions may 
be specified: one for the exchange of energy/heat flux between the subsurface media and 
river/stream network and the other for energy/heat exchange between the subsurface media and the 
overland.  Mathematically, these boundary conditions are described below. 
 
Subsurface-river interface boundary condition: 
 

( ) i
hww

P

SdPTTC =∇⋅−⋅∫ HDVn ρ  (2.3.21)
 

where Sh
i is the heat sources in Eq. (2.1.67) and P is the wet perimeter of the river.  The heat source 

can be calculated using Eq. (2.1.68) if the temperatures in the subsurface and river are discontinuous 
at the interfaces.  If the temperatures are continues, then this heat source should be formulated by 
imposing the continuity of the temperatures in the subsurface and river water at the interfaces. 
 
Subsurface-overland interface boundary condition: 
 

( ) iww HTTC =∇⋅−⋅ HDVn ρ  (2.3.22)
 

where Hi is the heat source in Eq. (2.2.54).  This heat source can be calculated using Eq. (2.2.55) if 
the temperatures in the subsurface and overland are discontinuous at the interface.  If the 
temperatures are continues, then this heat source should be formulated by imposing the continuity of 
the temperatures in the subsurface and overland at the interface. 
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2.3.3 Salinity Transport 
 

( ) ( ) ( ) asS
S S S

t
θ

θ
∂

+ ∇⋅ − ∇ ⋅ ⋅∇ =
∂

SV D  (2.3.23)
 

where S is the salinity [M/L3]; DS is the longitudinal dispersion coefficient [L2/t]; and Sas is the 
artificial source of the salt [M/L3/t]. 
 
As in thermal transport, four types of global boundary conditions for salinity transport are provided 
in this report as follows. 
 
Dirichlet boundary condition: 
 
This condition is applied when the salinity is prescribed as a function of time on the boundaries:  
 

( ) ( ), , ( ) 0db dS x t S t on B= =x x  (2.3.24)
 

where ( ),dbS tx  is a time-dependent salinity on the Dirichlet boundary, Bd(x) = 0, [M/L3]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ) ( ), ( ) 0vb vS S VS t on Bθ⋅ − ⋅∇ = ⋅ =Sn V D n x x  (2.3.25)
 
< Case 2 > Flow is going out from inside: 
 

0 ( ) 0vS on Bθ− ⋅ ⋅∇ = =Sn D x  (2.3.26)
 

where Svb(x,t) is a time-dependent salinity [M/L3] on the variable boundary, Bv(x) = 0, which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total salt-flow rate is given at pervious boundaries.  
Usually, this boundary is a flow-in boundary.  The conditions are expressed as 
 

( ) ( ), ( ) 0scb cS S Q t on Bθ⋅ − ⋅∇ = =Sn V D x x  (2.3.27)
 

where ( ),scbQ tx  is total salt-flow rate [M/L2/t] through the Cauchy boundary, Bc(x) = 0, which takes 
a positive value if it is going out of the region and a negative value if it is coming into the region. 
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Neumann boundary condition: 
 
This boundary condition is used when the dispersive salt-flow rate is known at the boundary.  It can 
be written as 
 

( ),snbS Q tθ− ⋅ ⋅∇ =Sn D x  (2.3.28)
 

where ( ),snbQ tx  is the salt flux through the Neumann boundary, Bn(x) = 0, [M/L2/t]. 
 
In addition to the four types of global boundary conditions, two interface boundary conditions may 
be specified: one for the exchange of salt flux between the subsurface media and river/stream 
network and the other for salt exchange between the subsurface media and the overland.  
Mathematically, these boundary conditions are described below. 
 
Subsurface-river interface boundary condition: 
 

( ) i
s

P

S S dP Mθ⋅ − ⋅∇ =∫ Sn V D  (2.3.29)
 

where Ms
i is the salt source in Eq. (2.1.86) and P is the wet perimeter of the river.  The salt source 

can be calculated using Eq. (2.1.87) if the salinity in the subsurface and river is discontinuous at the 
interfaces.  If the salinity is continuous, then this salt source should be formulated by imposing the 
continuity of the salinity in the subsurface and river at the interface. 
 
Subsurface-overland interface boundary condition: 
 

( ) is
sS S Mθ⋅ − ⋅∇ =Sn V D  (2.3.30)

 

where Ms
is is the salt source in Eq. (2.2.62).  This salt source can be calculated using Eq. (2.2.63) if 

the salinity in the subsurface and overland is discontinuous at the interface.  If the salinity is 
continuous, then this salt source should be formulated by imposing the continuity of the salinity in 
the subsurface and overland at the interface. 
 
 
 
2.4 Coupling Fluid Flows Among Various Media 

 
One of the critical issues in a first principle physics-based watershed model is its treatments of 
coupling among various media.  There appear a number of watershed models that have dealt with 
each component medium on the bases of first principle in the past decade (MIKE11-MIKE SHE 
[Abbott et al., 1986a, 1986b], SHETRAN [Ewen et al., 2000], MODFLOW-HMS [HydroGeoLogic, 
Inc., 2001], InHM [VanderKwaak, 1999], GISWA [Wigmosta and Perkins, 1997], SFRSM-HSE 
[SFWMD, 2005], COSFLOW [Yeh et al., 1997], WASH123D  Version 1.0 [Yeh et al., 1998]).  
However, rigorous considerations on coupling among media seemed lacking.  For example, a 
linkage term is normally formulated between the river/stream/canal dynamics and subsurface fluid 
flow (e.g., MODNET [Walton et al., 1999]) or between overland and subsurface flows (e.g., 
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MIKE11-MIKE SHE [http://www.dhisoftware.com/mikeshe/; 
http://www.dhisoftware.com/mikeshe/components]).  The linkage term usually introduces non-
physical parameters.   As a result, such watershed models have degraded even though each media-
component module has taken a first principle physics-based approach.  A rigorous treatment of 
coupling media should be based the continuity of mass, momentum, and state variables. This is the 
approach taken in this report.  Mathematical statements on coupling between pairs of media are 
address below. 
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2.4.1 Coupling between River/Stream/Canal and Overland Flows 
 
The fluxes between overland regime and canals/streams/rivers network are dynamics and depend on 
the water surface elevations in the vicinity of the interface between canal/stream/river and overland 
regime (Fig.  2.4-1).  The basic principle of coupling is to impose continuous of fluxes and the state 
variables (water surface elevations, temperature, and salinity in the overland and in the canal) if 
these state variables do not exhibit discontinuity.  If the state variables exhibit discontinuity, then the 
linkage term is used to simulate the volumetric fluxes or simplified formulations of heat fluxes and 
salinity fluxes are imposed.  
 
When a levee is present on the bank of the canal (left column in Fig. 2.4-1), there are several 
possibilities on the dynamic interactions between overland flow and river flow dynamics.  If water 
surfaces in both the overland regime and river are below the top of the levee, the two flow systems 
are decoupled (Fig. 2.4-1a). 
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Fig. 2.4-1.  Flow interactions between overland regime and canal: bank with levee (left column) 

and bank without levee (right column) 
 
 
When the water surface in the overland regime is above the top of the levee and in the canal is below 
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the top of the levee (Fig. 2.4-1b), the flux is a function of the water depth in the overland regime 
given 
 

( ) ( )Bo
o

O
oco ZhfShhfqq ;1 ==⋅⇒== Vn  (2.4.1) 

 

where qo is the outward normal flux of the overland flow, qc is the lateral flow from the overland to 
the canal, ho is the water depth in the overland regime, f(ho) is a prescribed function of ho given by 
the shape and width of the levee,  n is the outward unit vector (from the overland side) of the 
overland-canal interface, V is the velocity in the overland regime, S1 is defined in Eq. (2.1.1), Zo|B is 
the bottom elevation evaluated at the canal bank (in this case Zo|B is the elevation of the top of the 
levee).  The coupling of thermal and/or salinity transport between the overland regime and river 
networks for this case can be stated as 
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where To is the temperature of the overland water at the interface and So is the salinity of the 
overland water at the interface.  
 
On the other hand, when the water surface in the overland regime is belowe the top of the levee and 
in the canal is above the top of the levee (Fig. 2.4-1c), the flux is a function of the water depth in the 
overland regime given by 
 

( ) ( )Bo
c

O
cco ZhfShhfqq ;1 ==⋅⇒== Vn  (2.4.3) 

 

where hc is the water depth in the canal and f(hc) is a prescribed function of hc.  The coupling of 
thermal and salinity transport between the overland regime and river networks for this case can be 
stated as 
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where Tc is the temperature of the canal water at the interface and Sc is the salinity of the canal water 
at the interface.  
 
When the water surfaces in both the overland and canal are above the top of the levee (Fig. 2.4-1d), 
then the continuity of fluxes and state variables must be imposed as 
 

( ) ( )1
o c o c

O o O o Cq q h S and H H h Z h Z= ⇒ ⋅ = = ⇒ + = +n V  (2.4.5) 
 

where (h + Zo)|O denotes that (h + Zo) is evaluated at point O (Fig. 2.4-1 d).  Similarly, (h + Zo)|C 
denotes that (h + Zo) is evaluated at point C.  The coupling of thermal and/or salinity transport 
between the overland regime and river networks for this case can be obtained by formulating the 
fluxes 
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where sign(S1) is 1.0 if the flow is from overland to canal, -1.0 if the flow is from canal to overland.  
For this case, the temperature and salinity in the canal may be the same as those in the overland 
water at the interface.  If this is the case, we impose the continuity of temperature and/or salinity to 
yield the fluxes 
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When a levee is not present on the bank of the canal (right column in Fig. 2.4-1), there are two 
possibilities on the dynamic interactions between overland flow and river flow dynamics.  If water 
surface in the canal falls below the bank, the flux is either zero if the overland flow is not present or 
is nonzero and directed from the overland into the canal if overland flow is present (Fig. 2.4-1 e) as 
 

( ) ( )2 ;o c o o
O o B

q q f h h S f h Z= = ⇒ ⋅ = =n V  (2.4.8) 
 

where S2 is defined in Eq. (2.1.1) and Zo|B is the bottom elevation evaluated at point O on the canal 
bank.  The coupling of thermal and/or salinity transport between the overland regime and river 
networks for this case can be stated as 
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When the water surface in the canal is above the bank (Figs. 2.4-1f and 2.4-1.g), the flux direction 
can be either from the overland into the canal or from the canal into the overland depending on the 
flow dynamics in the overland and in the canal.  The direction of the flux and its magnitude are 
obtained by imposing the continuity of flux and state variables  
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The coupling of thermal and/or salinity transport between the overland regime and river networks 
for this case can be stated as 
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For these two cases (Fig. 2.4-1f and 2.4-1g), the temperature and salinity in the canal may be the 
same as those in the overland water at the interface.  If this is the case, we impose the continuity of 
temperature and/or salinity to yield the fluxes 
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2.4.2 Coupling between Overland and Subsurface Flows 
 
The fluxes between overland and subsurface media are obtained by imposing continuous of fluxes 
and state variables if these state variables do not exhibit discontinuity.  If the state variables exhibit 
discontinuity, then a linkage term is used to simulate the fluxes.  Consider the interaction between 
the overland subsurface and subsurface flows.   There are two cases: in one case, there is no 
impermeable layers on the ground surface (Fig. 2.4-2a) and, in another case, there are thin layers of 
very impermeable layers such as pavements or sediment deposits on the ground surface (Fig. 2.4-
2b). 
 
For the case of no impermeable layers on the ground surface (Fig. 2.4-2a), it can easily be seen that 
the pressures in the overland flow (if it is present) and in the subsurface media will be continuous 
across the interface.  Thus, the interaction must be simulated by imposing continuity of pressures 
and fluxes as 
 

o s o s soh h and Q Q I h zρ
ρ
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⎝ ⎠
n K  (2.4.13)

 

where ho is the water depth in the overland if it is present, hs is the pressure head in the subsurface, 
Qo is the flux from the overland to the interface and Qs is the flux from the interface to the 
subsurface media, I is defined in Eq. (2.2.1), n is an outward unit vector of the ground subsurface, K 
is the hydraulic conductivity tensor, and hs is the pressure head in the subsurface media.  The use of 
a linkage term such as Qo = Qs = K(ho - hs), while may be convenient, is not appropriate because it 
introduces a non-physics parameter K.  The calibration of K to match simulations with field data 
renders the coupled model ad hoc even though the overland and subsurface flows are each 
individually physics-based. 
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Fig. 2.4-2.  Flow interactions between overland regime and subsurface media. 

 
For the cases with thin impervious layers (Fig. 2.4-2b), one can include the impervious layers as part 
of the subsurface media or exclude these layers from the modeling.   If one includes the thin layers, 
then it is obvious the pressures in the overland flow and in the layer are continuous across the 
interface, thus continuity of pressures and fluxes must imposed to simulate the interaction.  On the 
other hand, if the thin layers are not included, it is obvious, the pressures in the overland flow and 
the subsurface are not continuous across the removed layers, then a linkage term is used to model the 
flux between across interface as 
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where Kb and b are the hydraulic conductivity and thickness, respectively, of the removed bottom 
sediment layer.  These parameters in the linkage term are the material properties and geometry of the 
removed layer.  These parameters, in theory, can be obtained independent of model calibration. 
 
The coupling of thermal and/or salinity transport between the overland regime and subsurface media 
can be stated as 
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where sign(I) is 1.0 if I is positive and is -1.0 if negative; Ts is the temperature of subsurface water at 
the interface; To is the temperature of overland water at the interface; Ss is the salinity of subsurface 
water at the interface; and So is the salinity of overland water at the interface.  
 
The temperature and salinity in the overland water may be the same as those in the subsurface water 
at the interface.  If this is the case, we impose the continuity of temperature and/or salinity to yield 
the fluxes 
 



 2-53

( )
( )

s o
w w i on the surface

is s o
s on the surface

C T T H and T T and

S S M and S S

ρ

θ

⋅ − ⋅∇ = =

⋅ − ⋅∇ = =

H

S

n V D

n V D
 (2.4.16)

 
 
2.4.3 Coupling between Subsurface and River/Stream/Canal Flows 
 
The fluxes between canal and subsurface are obtained by imposing continuous of fluxes and state 
variables if these state variables do not exhibit discontinuity.  If the state variables exhibit 
discontinuity, then a linkage term is used to simulate the fluxes.  Consider the interaction between 
the canal and subsurface.  There are two cases: in one case, there is not any thin layer of sediment 
materials (Fig. 2.4-3a) and, in another case, there are thin layers of sediment materials between the 
canal bottom and the top of surface media (Fig. 2.4-3b). 
 
For the case of no thin layer of sediments (Fig. 2.4-3a), it can easily be seen that the pressures in the 
canal and in the subsurface media will be continuous across the interface of canal bottom and 
subsurface media.  Thus, the interaction must be simulated by imposing continuity of pressure and 
flux as follows. 
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where hc is the water depth in the canal, hs is the pressure head in the subsurface, Qc is the flux from 
the canal to the interface and Qs is the flux from the interface to the subsurface media, SI is defined 
in Eq. (2.1.1),  n is an outward unit vector of the subsurface media interfacing the canal, K is the 
hydraulic conductivity tensor of the subsurface media, hs is the pressure head in the subsurface 
media, and P is the wet perimeter of the canal.  The use of a linkage term such as Qc = Qs = K(hc - 
hs), while may be convenient, is not appropriate because it introduces a non-physics parameter K. 
The calibration of K to match simulations with field data renders the coupled model ad hoc even 
though the canal and subsurface flows are each individually physics-based. 
 
For the cases with thin layers of sediments (Fig. 2.4-3b), one can include the sediment layers as part 
of the subsurface media or exclude these layers from the modeling.  If one includes the thin layers, 
then it is obvious the pressures in the canal and in the sediment layer are continuous across the 
interface of canal bottom and the top of the thin layers, thus continuity of pressures must imposed to 
simulate the interaction.  On the other hand, if the thin layers are excluded (Fig. 2.4-3c), the 
pressures in the canal and subsurface are not continuous across the bottom of canal and the top of 
subsurface media, then, a linkage term can be used to model the flux between the canal and surface 
media as 
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Fig. 2.4-3.  Flow interactions between canal and subsurface media. 
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where Kb and b are the hydraulic conductivity and thickness, respectively, of the removed bottom 
sediment layer.  These parameters in the linkage term are the material properties and geometry of the 
removed layer.  These parameters, in theory, can be obtained independent of model calibration. 
 
The coupling of thermal and/or salinity transport between the canal and subsurface media can be 
stated as 
 

( )

( ) ( )( )( )( )
( ) ( )( ) ( )( )( )

1 1 1   
2

1 1 1
2

i
w w h

P

s c
w w I I I

i s c
s I I IP

C T T dP S

C S sign S T sign S T and

S S dP M S sign S S sign S S

⋅ ρ − ⋅∇ =

= ρ + + −

⋅ − θ ⋅∇ = = + + −

∫

∫

H

S

n V D

n V D

 (2.4.19)

 

where sign(SI) is 1.0 if SI is positive and is -1.0 if negative; Ts is the temperature of subsurface water 
at the interface; Tc is the temperature of canal water at the interface; Ss is the salinity of subsurface 
water at the interface; and Sc is the salinity of canal water at the interface.  
 
Similar to the interaction between the overland regime and subsurface media, the temperature and 
salinity in the canal water may be the same as those in the subsurface water at the interface.  If this is 
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the case, we impose the continuity of temperature and/or salinity to yield the fluxes 
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2.5 Sediment and Water Quality Transport in 1D River/Stream/Canal Networks 

 
In WASH123D, sediments are categorized based on their physical and chemical properties. For each 
category of sediment, we include mobile suspended sediment particles scattered in water column and 
immobile bed sediment particles accumulated in river/stream bed. The distribution of suspended 
sediment and bed sediment is controlled through hydrological transport as well as erosion and 
deposition processes.  
 
In river/stream networks, there are six phases and three forms of biochemical species. As shown in 
Figure 2.5-1, the six phases are suspended sediment, bed sediment, mobile water, immobile water, 
suspension precipitate, and bed precipitate phases; and the three forms are dissolved biochemicals, 
particulate biochemicals sorbed onto sediments, and precipitates. Usually, biochemical species in the 
suspended sediment phase, the mobile water phase and the suspension precipitate phase are 
considered mobile.  Biochemical species in the bed sediment phase, the immobile water phase and 
the bed precipitate phase are considered immobile.  
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2.5-1. Sediments and Chemicals in River/Stream Networks 
 
A reactive system is completely defined by specifying biogeochemical reactions (Yeh, et al. 2001a). 
 In the transport simulation, biogeochemical reactions can be divided into two classes (Rubin, 1983): 
(1) Fast/equilibrium reactions, and (2) Slow/kinetic reactions.  The former are sufficiently fast 
compared to transport time scale and reversible, so that local equilibrium may be assumed.  The 
latter are not sufficiently fast compared to transport time scale.  They are either reversible or 
irreversible, where the local equilibrium formulation is inappropriate.  
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As shown in Figure 2.5-2, the biogeochemical reactions considered in the model can be categorized 
into ten types which take place between various phases:  (1) aqueous complexation in column water, 
(2) adsorption/desorption or ion-exchange to suspended sediment, (3) precipitation/dissolution in 
water column, (4) adsorption/desorption or ion-exchange between column water and bed sediment, 
(5) aqueous complexation in pore water, (6) adsorption/desorption or ion-exchange to bed sediment, 
(7) precipitation/dissolution in bed, (8) volatilization reactions from water column to the atmopshere, 
(9) diffusion reactions between column and pore water, and (10) sedimentation reactions.  Any 
individual reaction representing any of these chemical and physical processes may be simulated as 
kinetic or as equilibrium, which makes the code extremely flexible for application to a wide range of 
biogeochemical transport problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.5-2.  Biogeochemical Reactions Considered in the Model 
 
 
2.5.1 Bed Sediment 
 
The balance equation for bed sediments is simply the statement that the rate of mass change is due to 
erosion/deposition as 
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where P is the river/stream cross-sectional wetted perimeter [L], Mn is wetted perimeter-averaged 
concentration of the n-th bed sediment in mass per unit bed area [M/L2], Dn is the deposition rate of 
the n-th sediment in mass per unit bed area per unit time [M/L2/T], Rn is the erosion rate of the n-th 
sediment in mass per unit bed area per unit time [M/L2/T],  

n

is
MM  is the source of the n-th sediment 

from groundwater exfiltration in mass per unit river length [M/L/T], and NS is the total number of 
sediment size fractions. Concentrations of all bed sediments must be given initially for transient 
simulations. No boundary condition is needed for bed sediments. In equation (2.5.1), we estimate the 
deposition and erosion rates using the different equations for cohesive and non-cohesive sediments. 
 
For cohesive sediments, e.g., silt and clay, following equations are used (Yeh et al., 1998; Gerritsen 

(1) Aqueous complexation in mobile water phase, 
(2) Adsorption/desorption or ion-exchange between 
mobile water and suspended sediment phases,  
(3) Precipitation/dissolution between mobile water 
and suspension precipitate phases, 
(4) Adsorption/desorption or ion-exchange between 
mobile water and bed sediment phases,  
(5) Aqueous complexation in immobile water phase, 
(6) Adsorption/desorption or ion-exchange between 
immobile water and bed sediment phases,  
(7) Precipitation/dissolution between immobile water 
and bed precipitate phases, 
(8) Volatilization from mobile water phase, 
(9) Diffusion between mobile and immobile water 
phases, 
(10) Sedimentation of particulates between 
suspended and bed sediment phases 
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et al., 2000) 
 

( ) ( )min ,   where max 0,  1n sn n Dn n Dn b cDnD V S P S h t P τ τ= Δ = −  (2.5.2) 
and 

( ) ( )0min ,  where  max 0,  1n n Rn n Rn b cRnR E P DMA t P τ τ= Δ = −  (2.5.3) 
 

where Vsn is the settling velocity of the n-th sediment [L/T], Sn is the cross-section-averaged 
suspended concentration of n-th sediment [M/L3], h is the water depth [L], ∆t is the time step size 
[T], τb is the bottom shear stress or the bottom friction stress [M/L/T2], τcDn is the critical shear stress 
for the deposition of the n-th sediment [M/L/T2], E0n is the erodibility of the n-th sediment [M/L2/T], 
DMAn is the amount of locally available dry matter of n-th sediment, expressed as dry weight per 
unit area [M/L2], τcRn is the critical shear stress for the erosion of the n-th sediment [M/L/T2]. 
 
For Non-cohesive sediments, e.g., sand, we have two options. 
 
Option 1 (Prandle et al., 2000) 
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and 

( ) ( )0min ,  where max 0,  1n n Rn n Rn cDn cRnR E N DMA t N V V= Δ = −  (2.5.5) 
 

where VcDn and VcRn represent the critical friction velocities for the onset of deposition and erosion, 
respectively [L/T].  
 
Option 2 (Yeh et al., 1998) 
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n

G GD
L
−⎛ ⎞= ⎜ ⎟Δ⎝ ⎠

 (2.5.6) 

and 

max ,0sn sAn
n

G GR
L
−⎛ ⎞= ⎜ ⎟Δ⎝ ⎠

 (2.5.7) 
 

where GsAn is the actual load rate of the n-th sediment per unit width at a upstream location [M/L/T], 
Gsn is the maximum load rate of the n-th size fraction sediment per unit width at a downstream 
location [M/L/T], ΔL is the distance between the upstream and the downstream locations.  
 

sAn nG S VR=  (2.5.8) 
and 

2

2

( )10
( )

b crn
sn

n sn

VRSG
gd
ρ τ τ

ρ ρ
−

=
−

 (2.5.9) 
 

where V is the river/stream flow velocity [L/T], R is hydraulic radius [L], ρ is the density of water 
[M/L3], S is the friction slope, τcrn is the critical bottom shear stress of the n-th sediment at which 
sediment movement begins [M/L/T2], g is gravity [L/T2], dn is the median diameter of the n-th 
sediment particle [L], and ρsn is the density of the n-th sediment [M/L3].  
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It should be noted that equations (2.5.2) through (2.5.9) are the sample models programmed in the 
computer code to estimate sediment deposition and erosion rate. Any other phenomenological model 
equation can be easily incorporated in the code. 
 
 
2.5.2 Suspended Sediments 
 
The continuity equation of suspended sediment can be derived based on the conservation law of 
material mass as (Yeh et al., 2005): 
 

1 2

( ) ( )            

( ) ,      [1, ]
n n n n

n n n
x

as os os is
S S S S n n s

AS QS SAK
t x x x

M M M M R D P n N

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎛ ⎞+ − ⎜ ⎟
⎝ ⎠

= + + + + − ∈
 (2.5.10)

 

where Sn is the cross-sectional-averaged concentration of the n-th suspended sediment in the unit of 
mass per unit column volume [M/L3], Kx is the dispersion coefficient [L2/T], 

n

as
SM  is the artificial 

source of the n-th suspended sediment [M/L/T], 
n

is
SM  is the source of the n-th suspended sediment 

from groundwater exfiltration [M/L/T], and 1
n

os
SM  and 2

n

os
SM  are overland sources of the n-th 

suspended sediment from river bank 1 and 2, respectively [M/L/T].  
 
Concentrations of all suspended sediments must be given initially for transient simulations. Four 
types of boundary conditions are taken into account for suspended sediments, including Dirichlet, 
Variable, Cauchy, and Neumann boundary conditions (Yeh et al., 2005). 
 
Dirichlet boundary condition:  Dirichlet boundary conditions are prescribed on the boundary where 
the suspended sediment concentration is known, 
 

( , ) on ( )n dn b d bS S x t B x=  (2.5.11)
 

where xb is the axis coordinate of the boundary node [L], ( , )dn bS x t  is a time-dependent Dirichlet 
concentration of the n-th fraction size on the boundary ( )d bB x  [M/L3]. 
 
Variable boundary condition:  Variable boundary conditions are normally specified on the boundary 
where the flow direction can change with time or on any open boundary.  On the variable boundary, 
when the flow is directed into the region of the interest, the mass rate into the region is given by the 
product of the flow rate and concentration of the incoming fluid.  When the flow is directed out of 
the region, the sediment mass is assumed carried out via advection.  Mathematically, a variable 
boundary condition is given as   
 

( , )    0    ( )n
n x vn b v b

Sn QS AK nQS x t if nQ on B x
x

∂⎛ ⎞− = ≤⎜ ⎟∂⎝ ⎠
 (2.5.12)

and 

0    0    ( )n
x v b

SnAK if nQ on B x
x

∂
− = ≥

∂
 (2.5.13)
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where n is a unit outward direction, and ( , )vn bS x t  is a time-dependent concentration at the boundary 
that is associated with the incoming flow on the variable boundary ( )v bB x  [M/L3].  
 
Cauchy boundary condition:  This boundary condition is employed when the total material flow rate 
is given. Usually, this boundary is an upstream flux boundary.  
 

( , )    ( )
n

n
n x S c b c b

Sn QS AK Q x t on B x
x

∂⎛ ⎞− =⎜ ⎟∂⎝ ⎠
 (2.5.14)

 

where ( , )
nS c bQ x t  is a time-dependent material flow rate at the Cauchy boundary boundary [M/t] 

( )c bB x . 
 
Neumann boundary condition:  This boundary condition is used when the diffusive material flow 
rate is known at the boundary node. 
 

( , )    ( )
n

n
x S n b n b

SnAK Q x t on B x
x

∂
− =

∂
 (2.5.15)

 

where ( , ) 
nS n bQ x t  is a time-dependent diffusive material flow rate at the boundary ( )n bB x  [M/t]. 

 
 
2.5.3 Immobile Bed-Sediment Species 
 
The balance equation for immobile species is simply the statement that the rate of mass change is 
due to biogeochemical reaction as: 
 

( ) 'b bw b bw
b Cbw N

Ph C Ph r
t

ρ θ∂
=

∂
 (2.5.16)

 
( )

'b bw b bp
b Cbp N

Ph C
Ph r

t
ρ θ∂

=
∂

 (2.5.17)
 

( ) 'n bsn
b Cbsn N

PM C Ph r
t

∂
=

∂
 (2.5.18)

 

where hb is the river/stream bed depth [L], ρbw is the density of bed pore-water [M/L3], θb is the 
porosity of the bed sediment [L3/L3], Cbw is the concentration of dissolved chemical in the immobile 
pore-water phase in the unit of chemical mass per bed-water mass [M/M], rCbw│N’ is the production 
rate of Cbw due to all N reactions in the unit of chemical mass per  bed volume per time [M/L3/t], Cbp 
is the concentration of bed precipitate in the unit of chemical mass per bed-water mass [M/M], 
rCbp│N’ is the production rate of Cbp due to all N reactions in the unit of chemical mass per bed 
volume per time [M/L3/t], Cbsn is the concentration of particulate sorbed on to bed sediment of the n-
th fraction size in the unit of chemical mass per unit of bed-sediment mass [M/M], Mn is the 
concentration of the n-th bed sediment in the unit of sediment mass per bed area [M/L2], rCbsn│N’ is 
the production rate of Cbsn due to all N reactions in the unit of chemical mass per bed volume per 
time [M/L3/t]. 
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Define 
 

'       ,  ,   i N b i N bw bp bsnr Ph r A where i C C or C= =  (2.5.19)
 

Equation (2.5.16) through (2.5.18) can be modified as  
 

( )b bw b bw
Cbw N

Ph C Ar
t

ρ θ∂
=

∂
 (2.5.20)

 
( )b bw b bp

Cbp N

Ph C
Ar

t
ρ θ∂

=
∂

 (2.5.21)
 

( )n bsn
Cbsn N

PM C Ar
t

∂
=

∂
 (2.5.22)

 
Define  
 

/ ,     
/ ,                             

b bw b bw bp
i

n bsn

Ph A for C and C
PM A for C

ρ θ
ρ

⎧
= ⎨
⎩

 (2.5.23)

 
Equation (2.5.20) through (2.5.22) can be summarized as  
 

( ) ,   i i
i N im

A C Ar i M
t
ρ∂

= ∈
∂

 (2.5.24)
 

where Ci is the concentration of species i, which is immobile, in the unit of chemical mass per unit 
phase mass [M/M], ρi is the density of the phase associated with species i [M/L3], ri│N is the 
production rate of species i due to all N reactions in the unit of chemical mass per column volume 
per time [M/L3/t], and Mim is the number of immobile species. The concentrations of all immobile 
species must be given initially for transient simulations. No boundary conditions are needed for 
immobile species. 
 
 
2.5.4 Mobile Column-Water Species 
 
The continuity equation of mobile species can be derived based on the conservation law of material 
mass stating that the rate of mass change is due to both advective-dispersive transport and 
biogeochemical reactions as: 
 

( ) ( )w w
w w Cw N

A C L C Ar
t

ρ ρ∂
+ =

∂
 (2.5.25)

 
( )

( )w p
w p Cp N

A C
L C Ar

t
ρ

ρ
∂

+ =
∂

 (2.5.26)
 

( ) ( )n sn
n sn Csn N

AS C L S C Ar
t

∂
+ =

∂
 (2.5.27)
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where ρw is the density of column water [M/L3], Cw is the concentration of dissolved chemical in the 
mobile water phase in the unit of chemical mass per column-water mass [M/M], rCw│N is the 
production rate of Cw due to all N reactions in the unit of chemical mass per column volume per time 
[M/L3/t], Cp is the concentration of suspension precipitate in the unit of chemical mass per column-
water mass [M/M], rCp│N is the production rate of Cp due to all N reactions in the unit of chemical 
mass per column volume per time [M/L3/t], Csn is the concentration of particulate sorbed on to 
suspended sediment of the n-th fraction size in the unit of chemical mass per unit of sediment mass 
[M/M], Sn is the concentration of suspended sediment in the unit of sediment mass per column 
volume [M/L3], rCsn│N is the production rate of Csn due to all N reactions in the unit of chemical 
mass per column volume per time [M/L3/t], and L is an operator that will be defined in Eq. (2.5.30) 
later.  
 
Define  
 

        
                      
w w p

i
n sn

for C and C
S for C
ρ

ρ
⎧

= ⎨
⎩

 (2.5.28)

 
Equation (2.5.25) through (2.5.27) can be summarized as  
 

( ) ( ) ,   i i
i i i N m im

A C L C Ar i M M M
t
ρ ρ∂

+ = ∈ = −
∂

 (2.5.29)
 

where Ci is the concentration of species i, which is mobile, in the unit of chemical mass per unit 
phase mass [M/M], ρi is the density of the phase associated with species i [M/L3], ri│N is the 
production rate of species i due to all N reactions in the unit of chemical mass per column volume 
per time [M/L3/t], M is the total number of chemical species, Mm is the number of mobile chemical 
species, and operator L is defined as  
 

( ) 1 2( )( ) ( )
i i i i i i

i i as rs es os os isi i
i i x C C C C C C

CQ CL C AK M M M M M M
x x x

ρρρ
∂⎡ ⎤∂ ∂

= − − + − + + +⎢ ⎥∂ ∂ ∂⎣ ⎦
 (2.5.30)

 

where 
i

as
CM  is the artificial source of species i [M/L/T], 

i

rs
CM  is the rainfall source of species i 

[M/L/T], 
i

rs
CM  is the sink of species i due to evaporation, 1

i

os
CM  and 2

i

os
CM are the overland sources 

of species i from river bank 1 and 2, respectively [M/L/T], and 
i

is
CM  is the mass rate of the source of 

species i in river/stream from subsurface [M/L/T]. 
 
Concentrations of all mobile species must be given initially for transient simulations.  Four types of 
boundary conditions are taken into account for mobile species, including Dirichlet, Variable, 
Cauchy, and Neumann boundary conditions (Yeh et al., 2005), which are similar to those for 
suspended sediment transport and are presented below: 
 
Dirichlet boundary condition: On a Dirichlet boundary, the concentrations of all mobile species are 
prescribed  
 

( , ) ( ) 0  i idb b m dC C x t i M on B x= ∈ =  (2.5.31)
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where ( , )idb bC x t  is the prescribed concentration of the i-th mobile species on the Dirichlet boundary 
( ) 0dB x =  [M/M]. 

 
Variable boundary condition:  On a variable boundary, the concentrations of all mobile species are 
known and they contribute to the increase of chemical masses in the region of interest when the flow 
is coming into the region.  When the flow is going out of the region, the transport of all mobile 
species out of the region is assumed due to advection only, which implies that one must put an 
outgoing boundary far away from the source. 
 
< Case 1 > Flow is coming in from outside (nQ < 0) 
 

( ) ( , ) ( ) 0i i
i i x i ivb b m v

Cn Q C AK nQ C x t i M on B x
x

ρρ ρ∂⎛ ⎞− = ∈ =⎜ ⎟∂⎝ ⎠
 (2.5.32)

 
< Case 2 > Flow is going out from inside (nQ > 0). 
 

0 ( ) 0i i
x m v

CnAK i M on B x
x

ρ∂
− = ∈ =

∂
 (2.5.33)

 

where n is the unit outward direction and ( , )ivb bC x t  is the concentration of the i-th species in the 
incoming fluid on the variable boundary ( ) 0vB x =  [M/M]. 
 
Cauchy boundary condition:  On a Cauchy boundary chemical flux for any mobile species is 
prescribed 
 

( , ) ( ) 0
i

i i
i i x C cb b m c

Cn Q C AK Q x t i M on B x
x

ρρ ∂⎛ ⎞− = ∈ =⎜ ⎟∂⎝ ⎠
 (2.5.34)

 

where ( , )
iC cb bQ x t  is the mass flux of Ci through the Cauchy boundary ( ) 0cB x =  [M/t]. 

 
Neumann boundary condition: On a Neumann boundary, chemical flux of any mobile species due to 
dispersion is prescribed 
 

( , ) ( ) 0
i

i i
x C nb b m n

CnAK Q x t i M on B x
x

ρ∂
− = ∈ =

∂
 (2.5.35)

 

where ( , )
iC nb bQ x t  is the mass flux of Ci through the Neumann boundary ( ) 0nB x =  [M/t]. 

 
 
2.5.5 Diagonalization of Species Transport Equations 
 
The temporal-spatial distribution of chemical species is described by a system of Mim mass balance 
equations [equation (2.5.24)], and Mm reactive transport equations [equation (2.5.29)]. These two 
equations can be recast in the following form  
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( ) ( ) ,   i i
i i i i N

A C L C Ar i M
t
ρ α ρ∂

+ = ∈
∂

 (2.5.36)
 

where M is the total number of chemical species, αi is 0 for immobile species and 1 for mobile 
species. 
 
The determination of ri⏐N and associated parameters is a primary challenge in biogeochemical 
modeling.  Instead of using an ad hoc method to formulate ri⏐N, we use reaction-based formulations 
(Steefel and Cappellen, 1998).  In a reaction-based formulation, ri⏐N is given by the summation of 
rates of all reactions that the i-th species participates in,  
 

( ) [ ]
1

( ) ,   
N

i i
i N reaction ik ik k

k

d C
r r i M

dt
ρ

ν μ
=

= = − ∈∑  (2.5.37)
 

where νik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
products, μik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
reactants, and rk is the rate of the k-th reaction.  
 
Substituting equation (2.5.37) into equation (2.5.36) results in the transport equations of M chemical 
species described by   
 

[ ]
1

( ) ( ) ( ) ,   ;     ( )
N

i i
i i i ik ik k

k

A C L C A r i M or L A
t t
ρ α ρ ν μ

=

∂ ∂
+ = − ∈ + =

∂ ∂∑ ACU α C νr  (2.5.38)
 

where U is a unit matrix, CA is a vector with its components representing M species concentrations 
multiply the cross section area of the river [M/L], α is a diagonal matrix with αi as its diagonal 
component, C is a vector with its components representing M species concentrations [M/L3], ν is the 
reaction stoichiometry matrix, and r is the reaction rate vector with N reaction rates as its 
components. Equation (2.5.38) represents a mass balance for species i, which states that the rate of 
change of any species mass is due to advection-dispersion coupled with contributing reactions that 
describe the biogeochemical processes.  
 
In a primitive approach, equation (2.5.38) is integrated to yield the distributions and evolutions of 
chemical species in a region of interest.  However, when some fast equilibrium reactions take place 
in the system, this approach is not adequate (Fang et al., 2003).  Here, we will take a diagonalization 
approach through decomposition.  Equation (2.5.38) written in matrix form can be decomposed 
based on the type of biogeochemical reactions via Gauss-Jordan column reduction of reaction matrix 
ν. Among all the fast/equilibrium and slow/kinetic reactions, “redundant reactions” are defined as 
fast reactions that are linearly dependent on other fast reactions, and “irrelevant reactions” are 
kinetic reactions that are linearly dependent on only equilibrium reactions.  In order to avoid 
singularity of the reaction matrix, redundant fast reactions are omitted from the system prior to 
decomposition.  The removal of irrelevant slow reactions alleviates problems associated with rate 
formulation uncertainty and parameterization for these reactions. 
 
Decomposition is performed by pivoting on the NE equilibrium reactions and decoupling them from 
the NK kinetic reactions.  In other words, each fast reaction can be used to eliminate one chemical 
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species from simultaneous consideration.  An incomplete Gauss-Jordan row decomposition of the 
reaction matrix  ν by pivoting on NE equilibrium reactions will result in NE equilibrium-variables 
and NKIV kinetic-variables.  To analyze the system behavior, it is advantageous to perform a 
complete decomposition, in which the reduction of the reaction matrix is done by pivoting on NE 
equilibrium reactions and on NKI linearly independent kinetic reactions to result in NE equilibrium-
variables, NKI kinetic-variables, and NC components.  The complete decomposition is given as 
follows: 
 

2

3
3

dt 
L A

dt

dt

∂⎧ ⎫
⎪ ⎪

⎛ ⎞⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎧ ⎫⎪ ⎪
∂ ⎜ ⎟⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎩ ⎭⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠∂⎪ ⎪
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A1

11 12 13 11 12 13 11 12 131 1
A

221 22 23 21 22 23 21 22 232

331 32 33 31 32 33 31 32 33
A

C

A 0 0 B 0  0 D K  KC r
C rA A 0 B B 0  0 D KC

rCA A U B B α  0  0  0C

(2.5.39)

 

where A11 is the submatrix of the reduced U matrix with size of NE × NE,  A21 is the submatrix of the 
reduced U matrix with size of NKI × NE, and A31 is the submatrix of the reduced U matrix with size 
of NC × NE; 012 is the zero submatrix of the reduced U matrix with size of NE × NKI, A22 is the 
submatrix of the reduced U matrix with size of NKI × NKI,  and A32 is the submatrix of the reduced U 
matrix with size of NC × NKI; 013 is the zero submatrix of the reduced U matrix with size of NE × NC, 
023 is the submatrix of the reduced U matrix with size of NKI × NC, and U33 is the unit submatrix of 
the reduced U matrix with size of NC × NC;  CA1, CA2, and CA3 are the subvectors of the vector CA 
with sizes of NE, NKI, and NC, respectively; B11 is the submatrix of the reduced α matrix with size of 
NE × NE,  B21 is the submatrix of the reduced α matrix with size of NKI × NE, and B31 is the submatrix 
of the reduced α matrix with size of NC × NE; 012 is the zero submatrix of the reduced α matrix with 
size of NE × NKI, A22 is the submatrix of the reduced α matrix with size of NKI × NKI,  and B32 is the 
submatrix of the reduced α matrix with size of NC × NKI; 013 is the zero submatrix of the reduced α 
matrix with size of NE × NC, 023 is the submatrix of the reduced α matrix with size of NKI × NC, and 
α33 is the diagonal submatrix of the reduced α matrix with size of NC × NC;  C1, C2, and C3 are the 
subvectors of the vector C with sizes of NE, NKI, and NC, respectively;  D11 is the diagonal submatrix 
of the reduced ν matrix with size of NE × NE,  K12 is the submatrix of the reduced ν matrix with size 
of NE × NKI, and K13 is the submatrix of the reduced ν matrix with size of NE × NKD(k); 021 is the zero 
submatrix of the reduced ν matrix with size of NKI × NE, D22 is the diagonal submatrix of the reduced 
ν matrix with size of NKI × NKI,  and K23 is the submatrix of the reduced ν matrix with size of NKI × 
NKD(k); 013 is the zero submatrix of the reduced ν matrix with size of NC × NE, 032 is the zero 
submatrix of the reduced ν matrix with size of NC × NKI, and 033 is the zero submatrix of the reduced 
ν matrix with size of NC × NKD(k);  r1, r2, and r3 are the subvectors of the vector r with sizes of NE, 
NKI, and NKD(k), respectively. 
 
For incomplete decomposition of the reaction matrix ν, Equation (2.5.39) can be connoted as 
 

22

dt L A
U

dt

∂⎧ ⎫
⎪ ⎪ ⎛ ⎞⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎪ ⎪ + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ⎩ ⎭ ⎩ ⎭⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎪ ⎪
⎪ ⎪⎩ ⎭

A1

11 12 11 12 11 121 1

221 22 A 21 22 21 22

C
A 0 B 0 D KC r
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 (2.5.40)
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where A11 and A21 are the submatrices of the reduced U matrix with size of NE × NE and NKIV × NE, 
respectively (note that NKIV = M – NE = NKI + NC); 012 and U22 are the zero- and unit-submatrices, 
respectively, of the reduced U matrix with size of NE × NKIV and NKIV × NKIV, respectively; CA1 and 
CA2 are the subvectors of the vector CA with sizes of NE and NKIV, respectively; B11 and B21 are the 
submatrices of the reduced α matrix with sizes of NE × NE and NKIV × NE, respectively; 012 and α22 
are the zero- and unit- submatrices, respectively, of the reduced α matrix with size of NE × NKIV and 
NKIV × NKIV, respectively; C1 and C2 are the subvectors of the vector C with sizes of NE and NKIV, 
respectively;  D11 is the diagonal submatrix of the reduced ν matrix with size of NE × NE and K12 is 
the submatrix of the reduced ν matrix with size of NE × NKIV; 021 is the zero submatrix of the reduced 
ν matrix with size of NKIV × NE and  K22 is the submatrix of the reduced ν matrix with size of NKIV × 
NE;  r1 and r2 are the subvectors of the vector r with sizes of NE and  NKIV, respectively.   
  
For reactions that are fast, equilibrium may be regarded as being reached instantaneously among the 
relevant species and the reaction rates may be regarded as infinite. An infinite rate is mathematically 
represented by a mass action equation or a user specified nonlinear algebraic equation. As a result, 
the decomposition of equation (2.5.38) to equation (2.5.40) effectively reduces a set of M species 
reactive transport equations into two subsets of equations. The first set contains NE algebraic 
equations representing mass action laws for the equilibrium reactions, and the second set contains 
NKIV kinetic-variable transport equations. These equation subsets are defined as 
 
Algebraic Equations for Equilibrium Reactions 
 

1 1 1 2 1
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which is replaced with a thermodynamically consistent equation: 
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 (2.5.41)

 

where Ki
e is the equilibrium constant of the i-th fast reaction, Aj is the activity of the j-th species, 

Fi(C1,..,CM; p1,p2,..) is an empirical function of all species and a number of parameters p1, p2, … for 
the i-th fast reaction.  Ei was called an equilibrium-variable (Fang, et al., 2003) because 

( )iAE
t

∂
≈ ∞

∂
simply means that Ei can reach equilibrium instantaneously. 

 
Transport Equations for Kinetic-Variables  
 

2 2
1

2 1 2 2 1 1 2
1 1

( )      ( ) ,    -   
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=

= =

∂
+ = ∈ =

∂

= + = +

∑

∑ ∑
 (2.5.42)

 

where Ei was called kinetic variable (Fang, et al., 2003) because as Ei is transported it is subject to 
only kinetic reactions.  This is in contrast to Eq. (2.5.38) where as Ci is transported, it is subject to 
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both equilibrium and kinetic reactions. 
 
Assign 
 

2 2
1

,  i
KN

i ij j KIV
j

R K r N
=

= ∈∑  (2.5.43)

 
The reduction of Eq. (2.5.38) to Eq. (2.5.41) and (2.5.42) is equivalent to reducing M governing 
equations for immobile and mobile species to the mixed NE algebraic equations for equilibrium 
variables and NKIV transport equations for kinetic-variables specified as follows 
 

1 2
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AE QE EAK M M M
t x x x

M M M AR i N

⎛ ⎞∂ ∂ ∂ ∂
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 (2.5.44)

 

where Ei is the concentration of the i-th kinetic-variable [M/L3], Ei
m is the concentration of mobile 

part of the i-th kinetic-variable [M/L3], 
i

as
EM  is the artificial source of the i-th kinetic-variable 

[M/L/T], 
i

rs
EM  is the rainfall source of the i-th kinetic-variable [M/L/T], 

i

es
EM  is the evaporation 

sink of the i-th kinetic variable [M/L/T], 1
i

os
EM  and 2

i

os
EM  are overland sources of the i-th kinetic-

variable from river banks 1 and 2, respectively [M/L/T], 
i

is
EM  is the mass rate of the source of the i-

th kinetic-variable in river/stream from subsurface [M/L/T], Ri is the production rate of i-th kinetic-
variable due to biogeochemical reactions [M/L3/T], and NKIV is the number of kinetic variable 
variables. 
 
Boundary conditions for mobile species need to be transformed into corresponding boundary 
conditions for kinetic-variables, which are stated in the following.  
 
Dirichlet boundary condition: 
 

( , ) ( ) 0m m
i i db b m dE E x t i M on B x= ∈ =  (2.5.45)

 

where ( , )m
i db bE x t  is the specified concentration of the mobile portion of the i-th kinetic variable on 

the Dirichlet boundary ( ) 0dB x =  [M/L3]. 
 
Variable boundary condition: 
 
< Case 1 > Flow is coming in from outside (nQ < 0) 
 

( , ) ( ) 0
m

m mi
i x i vb b m v

En QE AK nQE x t i M on B x
x

⎛ ⎞∂
− = ∈ =⎜ ⎟∂⎝ ⎠

 (2.5.46)

 
< Case 2 > Flow is going out from inside (nQ > 0). 
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0 ( ) 0
m
i

x m v
EnAK i M on B x
x

∂
− = ∈ =

∂
 (2.5.47)

 
where n is the unit outward direction and ( , )m

i vb bE x t  is the concentration of the mobile portion of the 
i-th kinetic variable on the variable boundary ( ) 0vB x =  [M/L3]. 
 
Cauchy boundary condition: 
 

( , ) ( ) 0m
i

m
m i
i x cb b m cE

En QE AK Q x t i M on B x
x

⎛ ⎞∂
− = ∈ =⎜ ⎟∂⎝ ⎠

 (2.5.48)

 

where ( , )m
i

cb bE
Q x t  is the mass flux of Ei

m through the Cauchy boundary ( ) 0cB x =  [M/t]. 

 
Neumann boundary condition: 
 

( , ) ( ) 0m
i nb

m
i

x b m nE

EnAK Q x t i M on B x
x

∂
− = ∈ =

∂
 (2.5.49)

 

where ( , )m
i

nb bE
Q x t  is the mass flux of Ei

m through the Neumann boundary ( ) 0nB x =  [M/t]. 

 
 
 
2.6 Sediment and Water Quality Transport in Two-Dimension Overland Regime 

 
Researches on overland water quality modeling include studies of sediment (McDonald and Cheng, 
1994; Harris and Wiberg, 2001; and Zeng and Beck, 2003) and water quality transport (Falconer and 
Lin, 1997; Tufford and McKellar, 1999; Shen et al., 2002; and Zheng et al., 2004) as well as thermal 
and salinity transport.  Most of the existing overland water quality models simulate either specific 
systems (Cerco and Cole, 1995; Shen et al., 2002; and Zheng et al., 2004) or systems containing 
specific reactions (Brown and Barnwell, 1987; Ambrose et al, 1993; and Bonnet and Wessen, 2001). 
They may provide efficient monitoring and management tools because they are calibrated for 
specific environments, but the extension of a calibrated model to other environmental conditions 
needs to be carefully evaluated. With better understanding and mathematical formulation of complex 
biogeochemical interactions (Thomann, 1998; Somlyody et al., 1998; and Yeh et al., 2001a), models 
considering interactions among biogeochemicals based on reaction mechanism have a better 
potential for application to other systems (Steefel and Cappellen, 1998). Although a few reaction-
based models can handle contaminant transport subject to kinetically controlled chemical reactions 
(Cheng et al., 2000; and Yeh et al., 2005), no existing overland water quality model, to our 
knowledge, has the design capability that permitts the use of a fully mechanistic approach to 
estimate both kinetically and equilibrium controlled reactive chemical transport in overland water 
systems. 
 
This section presents a general two-dimensional depth-averaged numerical model simulating the 
water quality in overland shallow water systems using a general paradigm of diagonalized reaction-
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SS = suspended sediment  
BS = bed sediment  
MW = in mobile water 
IMW = in immobile water 
SP = suspension precipitate 
BP = bed precipitate 
C = dissolved chemical  
CS = particulate on SS 
CB = particulate on BS 
1 = clay 2 = silt 3 = sand  B

ed
  

  
  

  
  

  

based approaches.  In our model, sediments are categorized based on their physical and chemical 
properties. For each category of sediment, we include mobile suspended sediment particles scattered 
in water column and immobile bed sediment particles accumulated in water bed. The distribution of 
suspended sediment and bed sediment is controlled through hydrological transport as well as erosion 
and deposition processes. There are six phases and three forms for biogeochemical species. As 
shown in Figure 2.6-1, the six phases are suspended sediment, bed sediment, mobile water, 
immobile water, suspension precipitate, and bed precipitate phases; and the three forms are dissolved 
chemicals, particulate chemicals sorbed onto sediments, and precipitates. 
 
In the transport simulation, biogeochemical reactions can be divided into two classes (Rubin, 1983): 
(1) equilibrium-controlled “fast” reactions, and (2) kinetically-controlled “slow” reactions. The 
former are sufficiently fast compared to the transport time-scale and are reversible, so that local 
equilibrium may be assumed. The latter are not sufficiently fast compared to the transport time-
scale. As shown in Figure 2.6-2, biogeochemical reactions taken into account in the model include 
aqueous complexation, adsorption/desorption, ion-exchange, precipitation/dissolution, volatilization, 
diffusion, and sedimentation, etc. Any individual reaction representing any of these chemical and 
physical processes may be simulated as kinetic or as equilibrium, which makes the code extremely 
flexible for application to a wide range of biogeochemical transport problems. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.6-1. Sediments and Chemicals in River/Stream Networks 

 
 
2.6.1 Bed Sediment 
 
The balance equation for bed sediments is simply the statement that the rate of mass change is due to 
erosion/deposition as (Yeh, et al., 2005) 
 

( ) ( ) + ,    [1, ]
n

isn
n n M s

M
D R M n N

t
∂

= − ∈
∂

 (2.6.1) 
 

where Mn is the concentration of the n-th bed sediment in mass per unit bed area [M/L2], Dn is the 
deposition rate of the n-th sediment in mass per unit bed area per unit time [M/L2/T], Rn is the 
erosion rate of the n-th sediment in mass per unit bed area per unit time [M/L2/T],  

n

is
MM  is the source 

of the n-th sediment from groundwater exfiltration in mass per unit area [M/L2/T], and NS is the total 
number of sediment size fractions. Concentrations of all bed sediments must be given initially for 

  
                                              CS1 
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                            CMW                   
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transient simulations. No boundary condition is needed for bed sediments. In equation (2.6.1), we 
estimate the deposition and erosion rates using the different equations for cohesive and non-cohesive 
sediments. 
 
For cohesive sediments, e.g., silt and clay, following equations are used (Yeh et al., 1998; Gerritsen 
et al., 2000) 
 

( ) ( )min ,   where max 0,  1n sn n Dn n Dn b cDnD V S P S h t P τ τ= Δ = −  (2.6.2) 
and 

( ) ( )0min ,  where  max 0,  1n n Rn n Rn b cRnR E P DMA t P τ τ= Δ = −  (2.6.3) 
 

 
 
 

 

 

 

 

 

 
Fig. 2.6-2.  Biogeochemical Reactions Considered in the Model 

 
where Vsn is the settling velocity of the n-th sediment [L/T], Sn is the depth-averaged suspended 
concentration of n-th sediment [M/L3], h is the water depth [L], ∆t is the simulation time step size 
[T], τb is the bottom shear stress or the bottom friction stress [M/L/T2], τcDn is the critical shear stress 
for the deposition of the n-th sediment [M/L/T2], E0n is the erodibility of the n-th sediment [M/L2/T], 
DMAn is the amount of locally available dry matter of n-th sediment, expressed as dry weight per 
unit area [M/L2], τcRn is the critical shear stress for the erosion of the n-th sediment [M/L/T2]. 
 
For Non-cohesive sediments, e.g., sand, we have two options. 
 
Option 1 (Prandle et al., 2000) 
 

( ) ( )2min ,   where  max 0,  1n sn n Dn n Dn cDn cRnD V S N S h t N V V⎡ ⎤= Δ = −⎣ ⎦  (2.6.4) 
and 

( ) ( )0min ,  where max 0,  1n n Rn n Rn cDn cRnR E N DMA t N V V= Δ = −  (2.6.5) 
 

where VcDn and VcRn represent the critical friction velocities for the onset of deposition and erosion, 
respectively [L/T].  
 

(1) Aqueous complexation in mobile water phase, 
(2) Adsorption/desorption or ion-exchange between 
mobile water and suspended sediment phases,  
(3) Precipitation/dissolution between mobile water 
and suspension precipitate phases, 
(4) Adsorption/desorption or ion-exchange between 
mobile water and bed sediment phases,  
(5) Aqueous complexation in immobile water phase, 
(6) Adsorption/desorption or ion-exchange between 
immobile water and bed sediment phases,  
(7) Precipitation/dissolution between immobile water 
and bed precipitate phases, 
(8) Volatilization from mobile water phase, 
(9) Diffusion between mobile and immobile water 
phases, 
(10) Sedimentation of particulates between 
suspended and bed sediment phases 
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Option 2 (Yeh et al., 1998) 
 

max ,0  sAn sn
n

G GD
L
−⎛ ⎞= ⎜ ⎟Δ⎝ ⎠

 (2.6.6) 

and 

max ,0sn sAn
n

G GR
L
−⎛ ⎞= ⎜ ⎟Δ⎝ ⎠

 (2.6.7) 
 

where GsAn is the actual load rate of the n-th sediment per unit width at a upstream location [M/L/T], 
Gsn is the maximum load rate of the n-th size fraction sediment per unit width at a downstream 
location [M/L/T], ΔL is the distance between the upstream and the downstream locations.  
 

sAn nG S VR=  (2.6.8) 
and 

2

2

( )10
( )

b crn
sn

n sn

VRSG
gd
ρ τ τ

ρ ρ
−

=
−

 (2.6.9) 
 

where V is the overland flow velocity [L/t], R is hydraulic radius [L], ρ is the density of water 
[M/L3], S is the friction slope, τcrn is the critical bottom shear stress of the n-th sediment at which 
sediment movement begins [M/L/t2], g is gravity [L/t2], dn is the median diameter of the n-th 
sediment particle [L], and ρsn is the density of the n-th sediment [M/L3].  
 
It should be noted that equations (2.6.2) through (2.6.9) are the sample models programmed in the 
computer code to estimate sediment deposition and erosion rate. Any other phenomenological model 
equation can be easily incorporated in the code. 
 
 
2.6.2 Suspended Sediments 
 
The continuity equation of suspended sediment can be derived based on the conservation law of 
material mass as (Yeh et al., 2005): 
 

( ) ( ) ( ) ,      [1, ]as rs is
n n n

n
n n n n sS S S

hS S h S M M M R D n N
t

∂
∂

+ ∇ −∇ ∇ = + + + − ∈q Ki i  (2.6.10)
 

where Sn is the depth-averaged concentration of the n-th suspended sediment in the unit of mass per 
unit column volume [M/L3], K is the dispersion coefficient tensor [L2/t], and as

nS
M , rs

nS
M , and is

nS
M  

are the mass rate of artificial source, rainfall source, and groundwater source of the n-th suspended 
sediment [M/L2/t].  
 
Concentrations of all suspended sediments must be given initially for transient simulations.  Five 
types of boundary conditions are taken into account for suspended sediments, including Dirichlet, 
Variable, Cauchy, Neumann, and river/stream-overland interface boundary conditions (Yeh et al., 
2005). 
 
Dirichlet boundary condition:  Dirichlet boundary conditions are prescribed on the boundary where 
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the suspended sediment concentration is known, 
 

( , , ) ( ) 0n ndb b b dS S x y t on B= =x  (2.6.11)
 

where xb and yb are the coordinates of the boundary node [L], and ( , , )ndb b bS x y t is a time-dependent 
concentration of the n-th sediment size on the Dirichlet boundary ( ) 0dB =x [M/L3]. 
 
Variable boundary condition:  Variable boundary conditions are normally specified on the boundary 
where the flow direction can change with time or on any open boundary.  On the variable boundary, 
when the flow is directed into the region of the interest, the mass rate into the region is given by the 
product of the flow rate and concentration of the incoming fluid.  When the flow is directed out of 
the region, the sediment mass is assumed carried out via advection.  Mathematically, a variable 
boundary condition is given as   
 

( ) ( , , ) 0 ( ) 0n n nvb b b vS h S S x y t if on B− ∇ = ≤ =n q K n q n q xi i i i  (2.6.12)
and 

( ) 0 0 ( ) 0n vh S if on B− ∇ = ≥ =n K n q xi i i  (2.6.13)
 

where n is a unit outward direction and ( , , )nvb b bS x y t is a time-dependent concentration of the n-th 
sediment in the incoming fluid at the boundary [M/L3] ( ) 0vB =x .  
 
Cauchy boundary condition:  This boundary condition is employed when the total material flow rate 
is given. Usually, this boundary is an upstream flux boundary.  
 

( ) ( , , ) ( ) 0
nn n S cb b b cS h S Q x y t on B− ∇ = =n q K xi i  (2.6.14)

 

where ( , , )
nS cb b bQ x y t is a time-dependent material flow rate of the n-th sediment through the Cauchy 

boundary ( ) 0cB =x  [M/t/L]. 
 
Neumann boundary condition:  This boundary condition is used when the diffusive material flow 
rate is known at the boundary node. 
 

( , , ) ( ) 0
nn S nb b b nbh S Q x y t on B− ∇ = =n K xi i  (2.6.15)

 

where ( , , )
nS nb b bQ x y t is a time-dependent diffusive material flow rate of the n-th sediment trough the 

Neumann boundary ( ) 0nbB =x  [M/t/L]. 
 
Overland-River/Stream interface boundary condition: The boundary condition is needed when one-
dimensional sediment transport in river/stream networks is coupled with two-dimensional sediment 
transport in overland regime.  We assume that the exchange of sediment mass between river/stream 
and overland flows is mainly due to advection.  Under such circumstances, the interfacial boundary 
condition is stated as 
 

( ) ( ) ( ) ( ){ }1
1 1 1 ( , , )
2n n n n D b bS h S sign S sign S x y t⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦n q K n q n q n q  (2.6.16)
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where 1 ( , , )n D b bS x y t  is the time-dependent concentration of the n-th sediment at the 1-D node 
corresponding to the boundary [M/L3].  It is the contribution of 1D transport to the overland 
boundary. 
 
 
2.6.3 Immobile Species 
 
The balance equation for immobile species is simply the statement that the rate of mass change is 
due to biogeochemical reaction as: 
 

( ) 'b bw b bw
b Cbw N

h C h r
t

ρ θ∂
=

∂
 (2.6.17)

 
( )

'b bw b bp
b Cbp N

h C
h r

t
ρ θ∂

=
∂

 (2.6.18)
 

( ) 'n bsn
b Cbsn N

M C h r
t

∂
=

∂
 (2.6.19)

 

where hb is the bed depth [L], ρbw is the density of bed pore-water [M/L3], θb is the porosity of the 
bed sediment [L3/L3], Cbw is the concentration of dissolved chemical in the immobile pore-water 
phase in the unit of chemical mass per bed-water mass [M/M], rCbw│N’ is the production rate of Cbw 
due to all N reactions in the unit of chemical mass per  bed volume per time [M/L3/t], Cbp is the 
concentration of bed precipitate in the unit of chemical mass per bed-water mass [M/M], rCbp│N’ is 
the production rate of Cbp due to all N reactions in the unit of chemical mass per bed volume per 
time [M/L3/t], Cbsn is the concentration of particulate sorbed on to bed sediment of the n-th fraction 
size in the unit of chemical mass per unit of bed-sediment mass [M/M], Mn is the concentration of 
the n-th bed sediment in the unit of sediment mass per bed area [M/L2], rCbsn│N’ is the production 
rate of Cbsn due to all N reactions in the unit of chemical mass per bed volume per time [M/L3/t]. 
 
Define 
 

'       ,  ,   i N b i N bw bp bsnr h r h where i C C or C= ⋅ =  (2.6.20)
 
Equation (2.6.16) through (2.6.18) can be modified as  
 

( )b bw b bw
Cbw N

h C hr
t

ρ θ∂
=

∂
 (2.6.21)

 
( )b bw b bp

Cbp N

h C
h r

t
ρ θ∂

= ⋅
∂

 (2.6.22)
 

( )b n bsn
Cbsn N

h M C hr
t

∂
=

∂
 (2.6.23)

 
Define  
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/ ,       
/ ,                               

b bw b bw bp
i

n bsn

h h for C and C
M h for C

ρ θ
ρ

⎧
= ⎨
⎩

 (2.6.24)

 
Equation (2.6.21) through (2.6.23) can be summarized as  
 

( ) ,   i i
i N im

h C hr i M
t
ρ∂

= ∈
∂

 (2.6.25)
 

where Ci is the concentration of species i, which is immobile, in the unit of chemical mass per unit 
phase mass [M/M], ρi is the density of the phase associated with species i [M/L3], ri│N is the 
production rate of species i due to all N reactions in the unit of chemical mass per column volume 
per time [M/L3/t], and Mim is the number of immobile species. The concentrations of all immobile 
species must be given initially for transient simulations. No boundary conditions are needed for 
immobile species. 
 
 
2.6.4 Mobile Species 
 
The continuity equation of mobile species can be derived based on the conservation law of material 
mass stating that the rate of mass change is due to both advective-dispersive transport and 
biogeochemical reactions as: 
 

( ) ( )w w
w w Cw N

h C L C hr
t

ρ ρ∂
+ =

∂
 (2.6.26)

 
( )

( )w p
w p Cp N

h C
L C hr

t
ρ

ρ
∂

+ =
∂

 (2.6.27)
 

( ) ( )n sn
n sn Csn N

hS C L S C hr
t

∂
+ =

∂
 (2.6.28)

 

where ρw is the density of column water [M/L3], Cw is the concentration of dissolved chemical in the 
mobile water phase in the unit of chemical mass per column-water mass [M/M], rCw│N is the 
production rate of Cw due to all N reactions in the unit of chemical mass per column volume per time 
[M/L3/t], Cp is the concentration of suspension precipitate in the unit of chemical mass per column-
water mass [M/M], rCp│N is the production rate of Cp due to all N reactions in the unit of chemical 
mass per column volume per time [M/L3/t], Csn is the concentration of particulate sorbed on to 
suspended sediment of the n-th fraction size in the unit of chemical mass per unit of sediment mass 
[M/M], Sn is the concentration of suspended sediment in the unit of sediment mass per column 
volume [M/L3], rCsn│N is the production rate of Csn due to all N reactions in the unit of chemical 
mass per column volume per time [M/L3/t], and the operator L is defined in Eq. (2.6.31) later.  
 
Define  
 

        
                      
w w p

i
n sn

for C and C
S for C
ρ

ρ
⎧

= ⎨
⎩

 (2.6.29)
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Equation (2.6.26) through (2.6.28) can be summarized as  
 

( ) ( ) ,   i i
i i i N m im

h C L C hr i M M M
t
ρ

ρ
∂

+ = ∈ = −
∂

 (2.6.30)
 

where Ci is the concentration of species i, which is mobile, in the unit of chemical mass per unit 
phase mass [M/M], ρi is the density of the phase associated with species i [M/L3], ri│N is the 
production rate of species i due to all N reactions in the unit of chemical mass per column volume 
per time [M/L3/t], M is the total number of chemical species, Mm is the number of mobile chemical 
species, and operator L is defined as  
 

[ ]( ) ( ) ( ) ( )as rs es rs
i i i i

i i i i i i C C C C
L C C h C M M M Mρ ρ ρ= ∇ ⋅ −∇ ⋅ Κ ⋅∇ − + − +q  (2.6.31)

 

where as
iC

M  is the mass ratte of artificial source of species i [M/L2/T], rs
iC

M  is the mass rate of the 
rainfall source of species i [M/L2/T], es

iC
M  is the mass rate of the evaporation sink of species i 

[M/L2/T], and is
cC

M  is mass rate of  the source of species i in the overland from subsurface [M/L2/T]. 
 
Concentrations of all mobile species must be given initially for transient simulations.  Similar to 
suspended sediment transport, five types of boundary conditions are taken into account for mobile 
species, including Dirichlet, Variable, Cauchy, Neumann, and river/stream-overland interface 
boundary conditions (Yeh et al., 2005). 
 
Dirichlet boundary condition:  Dirichlet boundary conditions are prescribed on the boundary where 
the suspended sediment concentration is known, 
 

( , , ) ( ) 0i idb b b m dC C x y t i M on B= ∈ =x  (2.6.32)
 

where xb and yb are the coordinates of the boundary node [L], and ( , , )idb b bC x y t is a time-dependent 
concentration of the i-th mobile species on the Dirichlet boundary ( ) 0dB =x [M/M]. 
 
Variable boundary condition:  Variable boundary conditions are normally specified on the boundary 
where the flow direction can change with time or on any open boundary.  On the variable boundary, 
when the flow is directed into the region of the interest, the mass rate into the region is given by the 
product of the flow rate and concentration of the incoming fluid.  When the flow is directed out of 
the region, the sediment mass is assumed carried out via advection.  Mathematically, a variable 
boundary condition is given as   
 

( )( ) ( , , )  0  ( ) 0,  i i i i i ivb b b v mC h C C x y t if on B i Mρ ρ ρ⋅ − ⋅∇ = ⋅ ⋅ ≤ = ∈n q K n q n q x  (2.6.33)
and 

( )( ) 0 0 ( ) 0,i i v mh C if on B i Mρ− ⋅ ⋅∇ = ⋅ ≤ = ∈n K n q x  (2.6.34)
 

where n is a unit outward direction and ( , , )i vb b bC x y t is a time-dependent concentration of the i-th 
mobile species in the incoming fluid at the boundary [M/M] ( ) 0vB =x .  
 
Cauchy boundary condition:  This boundary condition is employed when the total material flow rate 
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is given. Usually, this boundary is an upstream flux boundary.  
 

( )( ) ( , , ) ( ) 0
ii i i i C cb b b m cC h C Q x y t i M on Bρ ρ⋅ − ⋅∇ = ∈ =n q K x  (2.6.35)

 

where ( , , )
iC cb b bQ x y t is a time-dependent material flow rate of the i-th mobile species through the 

Cauchy boundary ( ) 0cB =x [M/t/L]. 
 
Neumann boundary condition:  This boundary condition is used when the diffusive material flow 
rate is known at the boundary node. 
 

( ) ( , , ) ( ) 0
ii i C nb b b m nbh C Q x y t i M on Bρ− ⋅ ⋅∇ = ∈ =n K x  (2.6.36)

 

where ( , , )
iC nb b bQ x y t is a time-dependent diffusive material flow rate of the i-th mobile species 

through the Neumann boundary ( ) 0nbB =x  [M/t/L]. 
 
Overland-river/stream interface boundary condition: The boundary condition is needed when one-
dimensional sediment transport in river/stream networks is coupled with two-dimensional sediment 
transport in overland regime.  We assume that the exchange of sediment mass between river/stream 
and overland flows is mainly due to advection.  Under such circumstances, the interfacial boundary 
condition is stated as 
 

( ) ( ) ( ) ( ){ }1
1( ) 1 1 ( , , )
2i i i i i i i i D b bC h C sign C sign C x y tρ ρ ρ ρ⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦n q K n q n q n q  (2.6.37)

 

where 1 ( , , )i D b bC x y t  is the time-dependent concentration of the i-th species at the 1-D node 
corresponding to the overland-river/stream interfacial boundary point [M/M]. 
 
 
2.6.5 Diagonalization of Species Transport Equations 
 
The temporal-spatial distribution of chemical species is described by a system of Mim mass balance 
equations [equation (2.6.25)], and Mm reactive transport equations [equation (2.6.30)]. These two 
equations can be recast in the following form  
 

( ) ( ) ,   i i
i i i i N

h C L C hr i M
t
ρ

α ρ
∂

+ = ∈
∂

 (2.6.38)
 

where M is the total number of chemical species, αi is 0 for immobile species and 1 for mobile 
species. 
 
The determination of ri⏐N and associated parameters is a primary challenge in biogeochemical 
modeling.  Instead of using an ad hoc method to formulate ri⏐N, we use reaction-based formulations 
(Steefel and Cappellen, 1998).  In a reaction-based formulation, ri⏐N is given by the summation of 
rates of all reactions that the i-th species participates in,  
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( ) [ ]
1

( ) ,   
N

i i
i N reaction ik ik k

k

d C
r r i M

dt
ρ

ν μ
=

= = − ∈∑  (2.6.39)
 

where νik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
products, μik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
reactants, and rk is the rate of the k-th reaction.  
 
Substituting equation (2.6.39) into equation (2.6.38) results in the transport equations of M chemical 
species described by  
 

[ ]
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i i h
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k

h C L C h r i M or L h
t t
ρ

α ρ ν μ
=

∂ ∂
+ = − ∈ + =

∂ ∂∑ CU α C νr  (2.6.40)
 

where U is a unit matrix, Ch is a vector with its components representing M species concentrations 
multiply the water depth [M/L2], α is a diagonal matrix with αi as its diagonal component, C is a 
vector with its components representing M species concentrations [M/L3], ν is the reaction 
stoichiometry matrix, and r is the reaction rate vector with N reaction rates as its components. 
Equation (2.6.40) represents a mass balance for species i, which states that the rate of change of any 
species mass is due to advection-dispersion coupled with contributing reactions that describe the 
biogeochemical processes.  
 
In a primitive approach, equation (2.6.40) is integrated to yield the distributions and evolutions of 
chemical species in a region of interest.  However, when some fast equilibrium reactions take place 
in the system, this approach is not adequate (Fang et al., 2003).  Here, we will take a diagonalization 
approach through decomposition.  Equation (2.6.40) written in matrix form can be decomposed 
based on the type of biogeochemical reactions via Gauss-Jordan column reduction of reaction matrix 
ν. Among all the fast/equilibrium and slow/kinetic reactions, “redundant reactions” are defined as 
fast reactions that are linearly dependent on other fast reactions, and “irrelevant reactions” are 
kinetic reactions that are linearly dependent on only equilibrium reactions.  In order to avoid 
singularity of the reaction matrix, redundant fast reactions are omitted from the system prior to 
decomposition.  The removal of irrelevant slow reactions alleviates problems associated with rate 
formulation uncertainty and parameterization for these reactions. 
 
Decomposition is performed by pivoting on the NE equilibrium reactions and decoupling them from 
the NK kinetic reactions.  In other words, each fast reaction can be used to eliminate one chemical 
species from simultaneous consideration.  An incomplete Gauss-Jordan row decomposition of the 
reaction matrix  ν by pivoting on NE equilibrium reactions will result in NE equilibrium-variables 
and NKIV kinetic-variables.  To analyze the system behavior, it is advantageous to perform a 
complete decomposition, in which the reduction of the reaction matrix is done by pivoting on NE 
equilibrium reactions and on NKI linearly independent kinetic reactions to result in NE equilibrium-
variables, NKI kinetic-variables, and NC components.  The complete decomposition is given as 
follows: 
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where A11 is the submatrix of the reduced U matrix with size of NE × NE,  A21 is the submatrix of the 
reduced U matrix with size of NKI × NE, and A31 is the submatrix of the reduced U matrix with size 
of NC × NE; 012 is the zero submatrix of the reduced U matrix with size of NE × NKI, A22 is the 
submatrix of the reduced U matrix with size of NKI × NKI,  and A32 is the submatrix of the reduced U 
matrix with size of NC × NKI; 013 is the zero submatrix of the reduced U matrix with size of NE × NC, 
023 is the submatrix of the reduced U matrix with size of NKI × NC, and U33 is the unit submatrix of 
the reduced U matrix with size of NC × NC;  Ch1, Ch2, and Ch3 are the subvectors of the vector Ch 
with sizes of NE, NKI, and NC, respectively; B11 is the submatrix of the reduced α matrix with size of 
NE × NE,  B21 is the submatrix of the reduced α matrix with size of NKI × NE, and B31 is the submatrix 
of the reduced α matrix with size of NC × NE; 012 is the zero submatrix of the reduced α matrix with 
size of NE × NKI, A22 is the submatrix of the reduced α matrix with size of NKI × NKI,  and B32 is the 
submatrix of the reduced α matrix with size of NC × NKI; 013 is the zero submatrix of the reduced α 
matrix with size of NE × NC, 023 is the submatrix of the reduced α matrix with size of NKI × NC, and 
α33 is the diagonal submatrix of the reduced α matrix with size of NC × NC;  C1, C2, and C3 are the 
subvectors of the vector C with sizes of NE, NKI, and NC, respectively;  D11 is the diagonal submatrix 
of the reduced ν matrix with size of NE × NE,  K12 is the submatrix of the reduced ν matrix with size 
of NE × NKI, and K13 is the submatrix of the reduced ν matrix with size of NE × NKD(k); 021 is the zero 
submatrix of the reduced ν matrix with size of NKI × NE, D22 is the diagonal submatrix of the reduced 
ν matrix with size of NKI × NKI,  and K23 is the submatrix of the reduced ν matrix with size of NKI × 
NKD(k); 013 is the zero submatrix of the reduced ν matrix with size of NC × NE, 032 is the zero 
submatrix of the reduced ν matrix with size of NC × NKI, and 033 is the zero submatrix of the reduced 
ν matrix with size of NC × NKD(k);  r1, r2, and r3 are the subvectors of the vector r with sizes of NE, 
NKI, and NKD(k), respectively. 
 
For incomplete decomposition of the reaction matrix ν, Equation (2.6.41) can be connoted as 
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where A11 and A21 are the submatrices of the reduced U matrix with size of NE × NE and NKIV × NE, 
respectively (note that NKIV = M – NE = NKI + NC); 012 and U22 are the zero- and unit-submatrices, 
respectively, of the reduced U matrix with size of NE × NKIV and NKIV × NKIV, respectively; Ch1 and 
Ch2 are the subvectors of the vector Ch with sizes of NE and NKIV, respectively; B11 and B21 are the 
submatrices of the reduced α matrix with sizes of NE × NE and NKIV × NE, respectively; 012 and α22 
are the zero- and unit- submatrices, respectively, of the reduced α matrix with size of NE × NKIV and 
NKIV × NKIV, respectively; C1 and C2 are the subvectors of the vector C with sizes of NE and NKIV, 
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respectively;  D11 is the diagonal submatrix of the reduced ν matrix with size of NE × NE and K12 is 
the submatrix of the reduced ν matrix with size of NE × NKIV; 021 is the zero submatrix of the reduced 
ν matrix with size of NKIV × NE and  K22 is the submatrix of the reduced ν matrix with size of NKIV × 
NE;  r1 and r2 are the subvectors of the vector r with sizes of NE and  NKIV, respectively.   
  
For reactions that are fast, equilibrium may be regarded as being reached instantaneously among the 
relevant species and the reaction rates may be regarded as infinite. An infinite rate is mathematically 
represented by a mass action equation or a user specified nonlinear algebraic equation. As a result, 
the decomposition of equation (2.6.40) to equation (2.6.42) effectively reduces a set of M species 
reactive transport equations into two subsets of equations. The first set contains NE algebraic 
equations representing mass action laws for the equilibrium reactions, and the second set contains 
NKIV kinetic-variable transport equations. These equation subsets are defined as 
 
Algebraic Equations for Equilibrium Reactions 
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 (2.6.43)

 

where Ki
e is the equilibrium constant of the i-th fast reaction, Aj is the activity of the j-th species, 

Fi(C1,..,CM; p1,p2,..) is an empirical function of all species and a number of parameters p, p2, … for 
the i-th fast reaction.  Ei was called an equilibrium-variable (Fang, et al., 2003) because 

( )ihE
t

∂
≈ ∞

∂
simply means that Ei can reach equilibrium instantaneously. 

 
Transport Equations for Kinetic-Variables  
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where Ei was called a kinetic variable (Fang, et al., 2003) because as Ei is transported it is subject to 
only kinetic reactions.  This is in contrast to Eq. (2.6.44) where as Ci is transported, it is subject to 
both equilibrium and kinetic reactions. 
 
Assign 
 

2 2
1

,  i
KN

i ij j KIV
j

R K r N
=

= ∈∑  (2.6.45)

 
The reduction of Eq. (2.6.40) to Eq. (2.6.43) and (2.6.44) is equivalent to reducing M governing 
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equations for immobile and mobile species to the mixed NE algebraic equations for equilibrium 
variables and NKIV transport equations for kinetic-variables specified as follows 
 

( ) ( ) ( ) ,  as rs is
i i i

m mi
i i i KIVE E E

hE E h E M M M hR i N
t

∂ ⎡ ⎤+ ∇ −∇ ∇ = + + + ∈⎣ ⎦∂
q Ki i i  (2.6.46)

 

where Ei is the concentration of the i-th kinetic-variable [M/L3], Ei
m is the concentration of mobile 

part of the i-th kinetic-variable [M/L3], as
iE

M is the artificial source of the i-th kinetic-variable 

[M/L2/T], rs
iE

M  is the rainfall source of the i-th kinetic-variable [M/L2/T], 1os
iE

M and 2os
iE

M  are 

overland sources of the i-th kinetic-variable from river banks 1 and 2, respectively [M/L2/T], is
iE

M  is 

the mass rate of the source of the i-th kinetic-variable in the overland from subsurface [M/L2/T], Ri is 
the production rate of i-th kinetic-variable due to biogeochemical reactions [M/L3/T], and NKIV is the 
number of kinetic variable variables. 
 
Initial and boundary condition for chemical species need to be transformed into corresponding initial 
and boundary conditions for kinetic-variables, which are stated in the following.  
 
Dirichlet boundary condition: 
 

( , , ) ( ) 0  m m
i i db b b m dE E x y t i M on B= ∈ =x  (2.6.47)

 

where ( , , )m
i db b bE x y t is the prescribed concentration of the mobile portion of the i-th kinetic variable 

on the Dirichlet boundary ( ) 0dB =x [M/L3]. 
 
Variable boundary condition: 
 
< Case 1 > Flow is coming in from outside (nQ < 0) 
 

( ) ( , , ) ( ) 0m m m
i i i vb b b i vE h E E x y t i M on B− ∇ = ∈ =n q K n q xi i i  (2.6.48)

 
< Case 2 > Flow is going out from inside (nQ > 0). 
 

( ) 0 ( ) 0m
i m vh E i M on B− ∇ = ∈ =n K xi i  (2.6.49)

 

where n is the unit outward vector and ( , , )m
i vb b bE x y t  is the concentration of the mobile portion of the 

i-th kinetic variable on the variable boundary ( ) 0vB =x  [M/L3]. 
 
Cauchy boundary condition: 
 

( ) ( , , ) ( ) 0m
i

m m
i i cb b b i cE

E h E Q x y t i M on B− ∇ = ∈ =n q K xi i  (2.6.50)
 

where ( , , )m
i

cb b bE
Q x y t  is the mass flux of Ei

m through the Cauchy boundary ( ) 0cB =x  [M/t/L]. 
 
Neumann boundary condition: 
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i

m
i nb b b i nE
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where ( , , )m
i

nb b bE
Q x y t  is the mass flux of Ei

m through the Neumann boundary ( ) 0nB =x  [M/t/L]. 
 
Overland-river/stream interface boundary condition: 
 

( ) ( ) ( ) ( ){ }1
1 1 1 ( , , )
2

m m m m
i i i i D b bE h E sign E sign E x y t⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦n q K n q n q n q  (2.6.52)

 

where 1 ( , , )m
i D b bE x y t  is the time-dependent concentration of the mobile portion of the i-th kinetic 

variable at the 1-D node corresponding to the overland-river/stream interfacial boundary point 
[M/L3]. 
 
 
 
2.7 Reactive Biogeochemical Transport in Three-Dimension Subsurface Media 

 
Reactive chemical transport in the subsurface occurs over a broad range of geochemical 
environments at various space and time scales. Coupled models that simulate hydrological transport 
and complex biogeochemical reactions are important tools for quantitative predictions of the fate and 
transport of chemicals in groundwater. Biogeochemical reactions can be divided into two classes 
(Rubin, 1983): (1) equilibrium-controlled “fast” reactions, and (2) kinetically-controlled “slow” 
reactions. The former are sufficiently fast compared to the transport time-scale and are reversible, so 
that local equilibrium may be assumed. The latter are not sufficiently fast compared to the transport 
time-scale. They may be either reversible or irreversible. Local equilibrium conditions cannot be 
assumed.  
  
Due to computational limitations, existing coupled models for subsurface reactive transport have 
various capabilities (Keum and Hahn, 2003). Some models couple transport with equilibrium 
chemistry (e.g., Cederberg et al., 1985; Liu and Narasimhan, 1989; Yeh and Tripathi, 1991; 
Parkhurst, 1995; and Parkhurst and Appelo, 1999), while some couple transport with kinetic 
chemistry (e.g., MacQuarrie et al., 1990; Tompson, 1993; Lensing et al., 1994; Wood et al., 1994; 
Adeel et al., 1995; Yeh et al., 1998; and Saiers et al., 2000). Models coupling transport with both 
equilibrium and kinetic reactions appeared in the mid-1990s (e.g., Steefel and Lasaga, 1994; 
Chilakapati, 1995; Chilakapati et al., 1998; Tebes-Stevens et al., 1998; Yeh et al., 2001b; Brun and 
Engesgaard, 2002). Most of these models either implicitly assumes that equilibrium reactions occur 
only among aqueous species or consider only limited reaction networks. These limitations affect the 
generality of the models. There appears to be few general-purpose transport models that can simulate 
generic reaction networks including mixed equilibrium/kinetic biochemical and geochemical 
reactions (Yeh et al., 2004).  
 
This report presents a general mathematical framework and a three-dimensional numerical 
implementation to simulate reactive chemical transport in subsurface water subject to a defined flow 
field. Chemical species considered include dissolved species, suspension precipitates and surface 
species that encompass adsorbed species, ion-exchanged species and free sites. Biogeochemical 
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reactions taken into account in the model include aqueous complexation, adsorption/desorption, ion-
exchange, precipitation/dissolution, reduction/oxidation, and volatilization. Any individual reaction 
representing any of these chemical and physical processes may be simulated as kinetic or as 
equilibrium, which makes the approach applicable to a wide range of biogeochemical transport 
problems.   In the subsurface, all dissolved species are assumed mobile while all surface species and 
suspension precipitates are assumed immobile. 
 
 
2.7.1 Immobile Species 
 
The balance equation for immobile species is simply the statement that the rate of mass change is 
due to biogeochemical reaction as: 
 

( )w p
Cp N

C
r

t
θρ

θ
∂

=
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 (2.7.1) 

and 
( )b A s

Cs N
S C r
t

ρ θ∂
=

∂
 (2.7.2) 

 

where ρw is the density of pore-water [M/L3], θ is the porosity of the media [L3/L3], Cp is the 
concentration of precipitate in the unit of chemical mass per por-water mass [M/M], rCp│N is the 
production rate of Cp due to all N reactions in the unit of chemical mass per pore-water volume per 
time [M/L3/t], bρ is the bulk density in dry media mass per unit media volume [M/L3], SA is the 
surface area per unit dry mass [L2/M], Cs is the concentration of surface species in unit of chemical 
mass per surface area [M/L2], and rCs│N is the production rate of Cs due to all N reactions in the unit 
of chemical mass per pore-water per time [M/L3/t]. 
 
Equation (2.7.1) and (2.7.2) can be combined as  
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C r i M
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∂
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where Ci is the concentration of the i-th immobile, ri│N is the production rate of species i due to all N 
reactions in the unit of chemical mass per pore-water volume per time [M/L3/t], Mim is the number of 
immobile species, and ρi is defined by 
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The concentrations of all immobile species must be given initially for transient simulations. No 
boundary conditions are needed for immobile species. 
 
 
2.7.2 Mobile Species 
 
The continuity equation of mobile species, i.e. dissolved species in the water phase, can be derived 
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based on the mass conservation law stating that the rate of mass change is due to both advective-
dispersive transport and biogeochemical reactions as 
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where Ci is the concentration of the i-th dissolved species in the unit of chemical mass per unit water 
mass [M/M], ρi is the density of water [i.e., Ci  = Cw] [M/L3], V is the Darcy velocity [L/t], D is the 
dispersion coefficient tensor [L2/t],  ri│N is the production rate of species i due to all N reactions in 
the unit of chemical mass per volume of water per time [M/L3/t], 

i

as
CM is the artificial source of Ci in 

unit of chemical mass per unit of medium volume [M/L3/t], and Mm is the number of mobile 
chemical species. 
 
Concentrations of all mobile species must be given initially for transient simulations.  Similar to 
salinity transport, six types of boundary conditions are taken into account for mobile species, 
including Dirichlet, Variable, Cauchy, Neumann, river/stream-overland interface, and overland-
subsurface interface boundary conditions (Yeh et al., 2005).  These boundary conditions are stated 
below: 
 
Dirichlet boundary condition:  This condition is applied when the species concentration is 
prescribed as a function of time on the boundaries:  
 

( ) ( ), , ( ) 0i idb dC t C t on B= =x x x  (2.7.6) 
 

where ( ),idbC tx  is a time-dependent concentration of the i-th species on the Dirichlet boundary, 
Bd(x) = 0, [M/M]. 
 
Variable boundary condition:  This boundary condition is employed when the flow direction would 
change with time during simulations.  Two cases are considered, regarding to the flow direction on 
the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

[ ] ( )( ) ( ) , ( ) 0i i i i i i vb vC C C t on Bρ θ ρ ρ⋅ − ⋅∇ = ⋅ =n V D n V x x  (2.7.7) 
 
< Case 2 > Flow is going out from inside: 
 

[ ]( ) 0 ( ) 0i i vC on Bθ ρ⋅ ⋅∇ = =-n D x  (2.7.8) 
 
where Civb(x,t) is a time-dependent concentration of the i-th species [M/M] on the variable boundary, 
Bv(x) = 0, which is associated with the incoming flow. 
 
Cauchy boundary condition:  This boundary condition is employed when the total salt-flow rate is 
given at pervious boundaries.  Usually, this boundary is a flow-in boundary.  The conditions are 
expressed as 
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[ ] ( )( ) , ( ) 0
ii i i i C cb cC C Q t on Bρ θ ρ⋅ − ⋅∇ = =n V D x x  (2.7.9) 

 

where ( ),
iC cbQ tx  is total chemical flux of the i-th species [M/L2/t] through the Cauchy boundary, 

Bc(x) = 0, which takes a positive value if it is going out of the region and a negative value if it is 
coming into the region. 
 
Neumann boundary condition:  This boundary condition is used when the dispersive salt-flow rate 
is known at the boundary.  It can be written as 
 

( ) ( )( ) , ( ) 0
ii i C nb nC Q t on Bθ ρ⋅ ⋅∇ = =-n D x x  (2.7.10)

 

where ( ),
iC nbQ tx  is the chemical flux of the i-th species through the Neumann boundary, Bn(x) = 0, 

[M/L2/t]. 
 
In addition to the four types of global boundary conditions, two interface boundary conditions may 
be specified: one for the exchange of chemicals between the subsurface media and river/stream 
network and the other for chemical exchange between the subsurface media and the overland.  
Mathematically, these boundary conditions are described below. 
 
Subsurface-river interface boundary condition: 
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where 1 ( , , , )i D b b bC x y z t  is the time-dependent concentration of the i-th species at the 1-D node 
corresponding to the subsurface-river/stream interfacial boundary points [M/M]. 
 
Subsurface-overland interface boundary condition: 
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where 2 ( , , , )i D b b bC x y z t  is the time-dependent concentration of the i-th species at the 2-D node 
corresponding to the subsurface-overland interfacial boundary point [M/M]. 
 
 
2.7.3 Diagonalization of Species Transport Equations 
 
The temporal-spatial distribution of chemical species is described by a system of Mim mass balance 
equations [equation (2.7.3)], and Mm reactive transport equations [equation (2.7.5)]. These two 
equations can be recast in the following form  
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where L is an operator defined as  
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( ) ( ) [ ( )]
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The determination of ri⏐N and associated parameters is a primary challenge in biogeochemical 
modeling.  Instead of using an ad hoc method to formulate ri⏐N, we use reaction-based formulations 
(Steefel and Cappellen, 1998).  In a reaction-based formulation, ri⏐N is given by the summation of 
rates of all reactions that the i-th species participates in,  
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where νik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
products, μik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
reactants, and rk is the rate of the k-th reaction.  
 
Substituting equation (2.7.15) into equation (2.7.18) results in the transport equations of M chemical 
species described by  
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where U is a unit matrix, Cθ is a vector with its components representing M species concentrations 
multiply the moisture content [M/L3], α is a diagonal matrix with αi as its diagonal component, C is 
a vector with its components representing M species concentrations [M/L3], ν is the reaction 
stoichiometry matrix, and r is the reaction rate vector with N reaction rates as its components. 
Equation (2.7.16) represents a mass balance for species i, which states that the rate of change of any 
species mass is due to advection-dispersion coupled with contributing reactions that describe the 
biogeochemical processes.  
 
In a primitive approach, equation (2.7.16) is integrated to yield the distributions and evolutions of 
chemical species in a region of interest.  However, when some fast equilibrium reactions take place 
in the system, this approach is not adequate (Fang et al., 2003).  Here, we will take a diagonalization 
approach through decomposition.  Equation (2.7.16) written in matrix form can be decomposed 
based on the type of biogeochemical reactions via Gauss-Jordan column reduction of reaction matrix 
ν. Among all the fast/equilibrium and slow/kinetic reactions, “redundant reactions” are defined as 
fast reactions that are linearly dependent on other fast reactions, and “irrelevant reactions” are 
kinetic reactions that are linearly dependent on only equilibrium reactions.  In order to avoid 
singularity of the reaction matrix, redundant fast reactions are omitted from the system prior to 
decomposition.  The removal of irrelevant slow reactions alleviates problems associated with rate 
formulation uncertainty and parameterization for these reactions. 
 
Decomposition is performed by pivoting on the NE equilibrium reactions and decoupling them from 
the NK kinetic reactions.  In other words, each fast reaction can be used to eliminate one chemical 
species from simultaneous consideration.  An incomplete Gauss-Jordan row decomposition of the 
reaction matrix  ν by pivoting on NE equilibrium reactions will result in NE equilibrium-variables 
and NKIV kinetic-variables.  To analyze the system behavior, it is advantageous to perform a 
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complete decomposition, in which the reduction of the reaction matrix is done by pivoting on NE 
equilibrium reactions and on NKI linearly independent kinetic reactions to result in NE equilibrium-
variables, NKI kinetic-variables, and NC components.  The complete decomposition is given as 
follows: 
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 (2.7.17)

 

where A11 is the submatrix of the reduced U matrix with size of NE × NE,  A21 is the submatrix of the 
reduced U matrix with size of NKI × NE, and A31 is the submatrix of the reduced U matrix with size 
of NC × NE; 012 is the zero submatrix of the reduced U matrix with size of NE × NKI, A22 is the 
submatrix of the reduced U matrix with size of NKI × NKI,  and A32 is the submatrix of the reduced U 
matrix with size of NC × NKI; 013 is the zero submatrix of the reduced U matrix with size of NE × NC, 
023 is the submatrix of the reduced U matrix with size of NKI × NC, and U33 is the unit submatrix of 
the reduced U matrix with size of NC × NC;  Ch1, Ch2, and Ch3 are the subvectors of the vector Ch 
with sizes of NE, NKI, and NC, respectively; B11 is the submatrix of the reduced α matrix with size of 
NE × NE,  B21 is the submatrix of the reduced α matrix with size of NKI × NE, and B31 is the submatrix 
of the reduced α matrix with size of NC × NE; 012 is the zero submatrix of the reduced α matrix with 
size of NE × NKI, A22 is the submatrix of the reduced α matrix with size of NKI × NKI,  and B32 is the 
submatrix of the reduced α matrix with size of NC × NKI; 013 is the zero submatrix of the reduced α 
matrix with size of NE × NC, 023 is the submatrix of the reduced α matrix with size of NKI × NC, and 
α33 is the diagonal submatrix of the reduced α matrix with size of NC × NC;  C1, C2, and C3 are the 
subvectors of the vector C with sizes of NE, NKI, and NC, respectively;  D11 is the diagonal submatrix 
of the reduced ν matrix with size of NE × NE,  K12 is the submatrix of the reduced ν matrix with size 
of NE × NKI, and K13 is the submatrix of the reduced ν matrix with size of NE × NKD(k); 021 is the zero 
submatrix of the reduced ν matrix with size of NKI × NE, D22 is the diagonal submatrix of the reduced 
ν matrix with size of NKI × NKI,  and K23 is the submatrix of the reduced ν matrix with size of NKI × 
NKD(k); 013 is the zero submatrix of the reduced ν matrix with size of NC × NE, 032 is the zero 
submatrix of the reduced ν matrix with size of NC × NKI, and 033 is the zero submatrix of the reduced 
ν matrix with size of NC × NKD(k);  r1, r2, and r3 are the subvectors of the vector r with sizes of NE, 
NKI, and NKD(k), respectively. 
 
For incomplete decomposition of the reaction matrix ν, Equation (2.7.17) can be connoted as 
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where A11 and A21 are the submatrices of the reduced U matrix with size of NE × NE and NKIV × NE, 
respectively (note that NKIV = M – NE = NKI + NC); 012 and U22 are the zero- and unit-submatrices, 
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respectively, of the reduced U matrix with size of NE × NKIV and NKIV × NKIV, respectively; Cθ1 and 
Cθ2 are the subvectors of the vector Cθ with sizes of NE and NKIV, respectively; B11 and B21 are the 
submatrices of the reduced α matrix with sizes of NE × NE and NKIV × NE, respectively; 012 and α22 
are the zero- and unit- submatrices, respectively, of the reduced α matrix with size of NE × NKIV and 
NKIV × NKIV, respectively; C1 and C2 are the subvectors of the vector C with sizes of NE and NKIV, 
respectively;  D11 is the diagonal submatrix of the reduced ν matrix with size of NE × NE and K12 is 
the submatrix of the reduced ν matrix with size of NE × NKIV; 021 is the zero submatrix of the reduced 
ν matrix with size of NKIV × NE and  K22 is the submatrix of the reduced ν matrix with size of NKIV × 
NE;  r1 and r2 are the subvectors of the vector r with sizes of NE and  NKIV, respectively.   
  
For reactions that are fast, equilibrium may be regarded as being reached instantaneously among the 
relevant species and the reaction rates may be regarded as infinite. An infinite rate is mathematically 
represented by a mass action equation or a user specified nonlinear algebraic equation. As a result, 
the decomposition of equation (2.7.16) to equation (2.7.18) effectively reduces a set of M species 
reactive transport equations into two subsets of equations. The first set contains NE algebraic 
equations representing mass action laws for the equilibrium reactions, and the second set contains 
NKIV kinetic-variable transport equations. These equation subsets are defined as 
 
Algebraic Equations for Equilibrium Reactions 
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 (2.7.19)

 

where Ki
e is the equilibrium constant of the i-th fast reaction, Aj is the activity of the j-th species, 

Fi(C1,..,CM; p1,p2,..) is an empirical function of all species and a number of parameters p, p2, … for 
the i-th fast reaction.  Ei was called an equilibrium-variable (Fang, et al., 2003) because 

( )iE
t

θ∂
≈ ∞

∂
simply means that Ei can reach equilibrium instantaneously. 

 
Transport Equations for Kinetic-Variables  
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 (2.7.20)

 

where Ei was called a kinetic variable (Fang, et al., 2003) because as Ei is transported it is subject to 
only kinetic reactions.  This is in contrast to Eq. (2.7.16) where as Ci is transported, it is subject to 
both equilibrium and kinetic reactions. 
 
Assign 
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=

= ∈∑  (2.7.21)
 

The reduction of Eq. (2.7.15) to Eq. (2.7.18) and (2.7.19) is equivalent to reducing M governing 
equations for immobile and mobile species to NE algebraic equations for equilibrium variables and 
NKIV transport equations for kinetic-variables specified as follows 
 

( ) ( ) ( ) ,  as
i

m mi
i i i KIVE

E E E M R i N
t

θ θ θ∂ ⎡ ⎤+ ∇ −∇ ∇ = + ∈⎣ ⎦∂
V Di i i  (2.7.22)

 

where Ei is the concentration of the i-th kinetic-variable [M/L3], Ei
m is the concentration of mobile 

part of the i-th kinetic-variable [M/L3], as
iE

M is the artificial source of the i-th kinetic-variable 

[M/L3/T], Ri is the production rate of i-th kinetic-variable due to biogeochemical reactions [M/L3/T], 
and NKIV is the number of kinetic variable variables. 
 
Initial and boundary condition for chemical species need to be transformed into corresponding initial 
and boundary conditions for kinetic-variables, which are stated in the following.  
 
Dirichlet boundary condition: 
 

( , , , ) ( ) 0m m
i id b b b dE E x y z t on B= =x  (2.7.23)

 

where ( , , )m
id b bE x y t  is the specified concentration of the mobile portion of the i-th kinetic variable on 

the Dirichlet boundary ( ) 0dB =x   [M/L3]. 
 
Variable boundary condition: 
 
< Case 1 > Flow is coming in from outside (nQ < 0) 
 

( ) ( , , , ) ( ) 0m m m
i i iv b b b vE E E x y z t on Bθ− ∇ = =n V D n V xi i i  (2.7.24)

 
< Case 2 > Flow is going out from inside (nQ > 0). 
 

( ) 0 ( ) 0m
i vE on Bθ− ∇ = =n D xi i  (2.7.25)

 

where n is the unit outward vector and ( , , , )m
iv b b bE x y z t  is the concentration of the mobile portion of 

the i-th kinetic variable on the variable boundary ( ) 0vB =x  [M/L3]. 
 
Cauchy boundary condition: 
 

( ) ( , , , ) ( ) 0m
i

m m
i i b b b ccE

E E Q x y z t on Bθ− ∇ = =n V D xi i  (2.7.26)
 

where ,( , , )m
i

b b bcE
Q x y z t  is the mass flux of Ei

m through the Cauchy boundary ( ) 0cB =x  [M/t/L2]. 
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Neumann boundary condition: 
 

( ) ( , , , ) ( ) 0m
i

m
i b b b nnE

E Q x y z t on Bθ− ∇ = =n D xi i  (2.7.27)
 

where ( , , , )m
i

b b bnE
Q x y z t  is the mass flux of Ei

m through the Neumann boundary ( ) 0nB =x  [M/t/L2]. 
 
Subsurface-river interface boundary condition: 
 

( ) ( ) ( ){ }11( ) 1 1 ( ' )
2

m m m m D
i i i i jE E sign E sign E C sθ⎡ ⎤⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦n V D n V n V n V  (2.7.28)

 

Where 1( ' )m D
i jE C s  is the mobile portion of the subsurface i-th kinetic variables with its argument 

being the linear combination of 1-D river/stream species concentrations 1 'D
jC s  [M/L3]. 

 
Subsurface-overland interface boundary condition: 
 

( ) ( ) ( ){ }21( ) 1 1 ( ' )
2

m m m m D
i i i i jE E sign E sign E C sθ⎡ ⎤⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦n V D n V n V n V  (2.7.29)

 

where 2( ' )m D
i jE C s  is the mobile portion of the subsurface i-th kinetic variables with its argument 

being the linear comination of 2-D overland species concentrations 2 'D
jC s  [M/L3]. 

 
 
 
2.8 Coupling Transport Among Various Media 

 
As in coupling flows among various media, a rigorous treatment of coupling transport among media 
should be based the continuity of material fluxes and state variables.  This rigorous treatment in 
coupling chemical transport among various media can be taken similar to the case of flows.   We 
simply impose the continuity of material fluxes and species concentrations for all mobile (between 
river/stream networks and overland regime) dissolved aqueous species (between subsurface media 
and overland regime and between subsurface media and river/stream networks) .  
 
However, because the state variables (dissolved chemical concentrations, suspend sediment 
concentrations, and mobile particulate chemical concentrations) in various media may not be 
continuous because these state variables are true three-dimensional distribution in subsurface media, 
but are vertically averaged quantities in overland regime and cross-sectional area averaged quantity 
in river/stream networks.   Because of the averaging processes, mass fluxes between media can be 
considered due mainly to the advective transport.  If this assumption is valid, the coupling of 
transport among various medial is much simpler than that for fluid flow. 
 
 
2.8.1 Coupling between Overland Transport and River/StreamNetworks 
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The coupling of transport between overland and canal is similar to that of salinity transport.  When a 
levee is present on the bank of the canal (left column in Fig. 2.4-1), there are several possibilities on 
the interactions between overland and river flow transport.  If water surfaces in both the overland 
regime and river are below the top of the levee, the two flow systems are decoupled and transport in 
overland is decoupled from that in river networks (Fig. 2.4-1a). 
 
When the water surface in the overland regime is above the top of the levee and in the canal is below 
the top of the levee (Fig. 2.4-1b), the flow is from the overland to river network and thus the 
transport is also one way from the overland to river network.  The fluxes are given by 
 

[ ] 1 1( )
i

osl o
Bank CC h C M S Cρ ρ ρ⋅ − ⋅∇ = =n q D  (2.8.1) 

 

where C [denotes Sn with ρ = 1 for supended sediment, Cw with ρ = ρw for dissolved species, Cp with 
ρ = ρw for precipitated species, CSn with ρ = Sn for particulate species] is sediment concentration 
[M/L3] or species concentrations [M/M] in the overland flow,

i

osl
CM is the source rate of the i-th 

species in the canal from the overland via bank 1, which appeared in Eq. (2.5.30) [M/t/L],  Co is the 
value of C in the overland water at the interface.  When the water surface in the overland regime is 
below the top of the levee and in the canal is above the top of the levee (Fig. 2.4-1c), the flow is 
from the canal to overland and thus the transport is one way from the canal to overland.  The fluxes 
are given by 
 

[ ] 1 1( )
i

osl c
Bank CC h C M S Cρ ρ ρ⋅ − ⋅∇ = =n q D  (2.8.2) 

 

where Cc is the value of C in the canal water.  When the water surfaces in the overland and canal are 
above the top of the levee (Fig. 2.4-1d), flow direction can e either from the overland to the canl or 
from the canal to the overland depending on the flow dynamics in the overland and in the canal.  If 
the state variable C is discontinues at the interface of the canal and overland, the fluxes are given by 
 

[ ] ( )( ) ( )( )1 1 1 1
1( ) 1 1
2i

osl o c
Bank CC h C M S sign S C sign S Cρ ρ ρ ρ⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦n q D  (2.8.3) 

 

If the state variable is continuous, the fluxes are modeled by imposing its continuity to yield the 
fluxes 
 

[ ] 1 1( )
i

osl o c
Bank C BankC h C M and C Cρ ρ⋅ − ⋅∇ = =n q D  (2.8.4) 

 

 
When a levee is not present on the bank of the canal (right column in Fig. 2.4-1), there are two 
possibilities on the interactions between overland and river transport.  If water surface in the canal 
falls below the bank, the flux is either zero if the overland flow is not present or is nonzero and 
directed from the overland into the canal if overland flow is present (Fig. 2.4-1e).  Under this 
circumstance, the fluxes are given by 
 

[ ] 2
2 2( )

i

os o
Bank CC h C M S Cρ ρ ρ⋅ − ⋅∇ = =n q D  (2.8.5) 
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where 2
i

os
CM is the source rate of the i-th species in the canal from the overland via bank 2, which 

appeared in Eq. (2.5.30) [M/t/L], 
 
When the water surface in the canal is above the bank (Figs. 2.4-1f and 2.4-1.g), the flow direction 
can be either from the overland into the canal or from the canal into the overland depending on the 
flow dynamics in the overland and in the canal.  If the state variable is discontinuous, the fluxes are  
 

[ ] ( )( ) ( )( )2
2 2 2 2

1( ) 1 1
2i

os o c
Bank CC h C M S sign S C sign S Cρ ρ ρ ρ⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦n q D  (2.8.6) 

 
If the state variable is continuous, we impose the continuity of the state variable to yield the fluxes 
 

[ ] 2
2 2( )

i

os o c
Bank C BankC h C M and C Cρ ρ⋅ − ⋅∇ = =n q D  (2.8.7) 

 
 
Because kinetic variables E are chosen as the primary variables in the transport module, for reactive 
chemical transport, the interfacial boundary conditions in terms of species concentrations must be 
transformed into those in terms of kinetic variables.  Since reaction networks in overland and 
river/stream/canal networks are identical, every corresponding kinetic variable in the overland and 
river/stream networks contains the same mobile portion.   Thus, one simply replaces Cρ  with m

iE  in 
Eqs. (2.8.1) through (2.8.7).   For completeness of this report, these equations are listed below. 
 
For couling via bank 1: 
 
When the water surface in the overland regime is above the top of the levee and in the canal is below 
the top of the levee (Fig. 2.4-1b), the flow is from the overland to river network and thus the 
transport is also one way from the overland to river network.  The flux of the i-th kinetic variables 
are given by 
 

( )1
1 1i

om m os m
i i Bank E iE h E M S E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.8) 

 

When the water surface in the overland regime is below the top of the levee and in the canal is above 
the top of the levee (Fig. 2.4-1c), the flow is from the canal to overland and thus the transport is one 
way from the canal to overland, the flux of the i-th kinetic variable is given as 

( )1
1 1i

cm m os m
i i Bank E iE h E M S E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.9) 

 

When the water surfaces in the overland and canal are above the top of the levee (Fig. 2.4-1d), flow 
direction can e either from the overland to the canl or from the canal to the overland depending on 
the flow dynamics in the overland and in the canal.  If the state variable E is discontinues at the 
interface of the canal and overland, the fluxes are given by 
 

( )( )( ) ( )( )( )1
1 1 1 1

1 1 1
2i

o cm m os m m
i i Bank E i iE h E M S sign S E sign S E⎡ ⎤⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦ ⎢ ⎥⎣ ⎦

n q D  (2.8.10)
 

If the state variable E is continuous, the fluxes are modeled by imposing its continuity to yield the 
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fluxes 
 

( ) ( )1
1 1i

o cm m os m m
i i Bank E i Bank iE h E M and E E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.11)

 

In Equations (2.8.8) through (2.8.11), m
iE  is the concentration of the mobile portion of the i-th 

kinetic variable [M/L3], ( )om
iE is the value of m

iE in the overland water at the interface [M/L3], and 
1

i

os
EM is the source of the kinetic variable Ei in the canal from the overland via bank 1 [M/t/L], which 

appeared in Eq. (2.5.44), and ( )cm
iE is the value of m

iE in the canal water at the interface.   
 
For couling via bank 2: 
 
When a levee is not present on the bank of the canal (right column in Fig. 2.4-1), there are two 
possibilities on the interactions between overland and river transport.  If water surface in the canal 
falls below the bank, the flux is either zero if the overland flow is not present or is nonzero and 
directed from the overland into the canal if overland flow is present (Fig. 2.4-1e).  Under this 
circumstance, the fluxes are given by 
 

( )2
2 2i

om m os m
i i Bank E iE h E M S E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.12)

 

When the water surface in the canal is above the bank (Figs. 2.4-1f and 2.4-1g), the flow direction 
can be either from the overland into the canal or from the canal into the overland depending on the 
flow dynamics in the overland and in the canal.  If the state variable is discontinuous, the fluxes are  
 

( )( )( ) ( )( )( )2
2 2 2 2

1 1 1
2i

o cm m os m m
i i Bank E i iE h E M S sign S E sign S E⎡ ⎤⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦ ⎢ ⎥⎣ ⎦

n q D  (2.8.13)

 
If the state variable is continuous, we impose the continuity of the state variable to yield the fluxes 
 

( ) ( )2
2 2i

o cm m os m m
i i Bank E i Bank iE h E M and E E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.14)

 
In Equstions (2.8.12) through (2.8.14), 2

i

os
EM is the source of the kinetic variable Ei in the canal from 

the overland via bank 2 [M/t/L], which appeared in Eq. (2.5.44). 
 
 
2.8.2 Coupling between Subsurface and Overland Transport 
 
The coupling of overland and subsurface transport is through the exchange of dissolved species only. 
Sediments, particulate species, and precipitated species in the overland flow will not exchange with 
adsorbed/ion exchanged and precipitated species in the subsurface flow.  If the concentrations of 
dissolved chemicals in overland water and subsurface water at the ground surface are discontinuous, 
the chemical flux is given by 
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( )( ) ( ) ( )( ) ( )( ) 1 1
2is

i

s ow w w wI
w i w i I w i I w iC

SC C M sign S C sign S Cρ θ ρ ρ ρ⎡ ⎤⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦ ⎢ ⎥⎣ ⎦
n V D (2.8.15)

 

where ( )ow
iC is the concentration of the i-th dissolved species in the overland water and ( )sw

iC is the 
concentration of the i-th dissolved species of subsurface water at the interface and is

iC
M  is mass rate 

of the source of the i-th dissolved species in overland from subsurface media [M/t/L2], which 
appeared in Eq. (2.6.31).  If the concentrations are continuous, we impose the continuity of dissolved 
concentration to yield the fluxes 
 

( ) ( )on the interface( ) is
i

s ow w w w
i i i i i iC
C C M and C Cρ θ ρ⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n V D  (2.8.16)

 
 
The transforemation of the interfacial boundary conditions, Eq. (2.8.15) and (2.8.16), to those in 
terms of kinetic variables is not straightforward because the reaction networks for the subsurface and 
overland may not be identical.  If every kinetic-variable in the subsurface corresponding to that in 
the overland contains the same dissolved aqueous species, then the transformation is straightforwd 
as  
 

( )( )( ) ( )( )( )( ) 1 1
2is

i

s ow w w wI
i i I i I iE

SE E M sign S E sign S Eθ ⎡ ⎤⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦ ⎢ ⎥⎣ ⎦
n V D  (2.8.17)

 

for the case when the state variables are discontinuous, and 
 

( ) ( )on the interface( ) is
i

s ow w w w
i i i iE

E E M and E Eθ⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n V D  (2.8.18)
 

for the case when the state variables are continuous.  In Equstions (2.8.17) and (2.8.18), ( )ow
iE is the 

concentration of the dissolved portion of i-th kinetic variables in the overland water and ( )sw
iE is the 

concentration of the dissolved portion of the i-th kinetic variable in subsurface water at the interface 
and is

iE
M  is the mass rate of the source of the i-th kinetic variable in overland from subsurface media 

[M/t/L2], which appeared in Eq. (2.6.46).  
 
It should be kept in mind that ( )ow

iE and ( )sw
iE (and as a matter of fact ( )w

iE ) must have the same 
dissolved species content for Equations (2.8.17) and (2.8.18) to be valid.  Otherwise, the coupling in 
terms of kinetic-variables requires further elaborations that will be addressed in Section 2.8.4. 
 
 
2.8.3 Coupling between Subsurface and River/Stream/Canal Transport 
 
Similar to the coupling between subsurface and overland, the transport between subsurface and canal 
is coupled and the fluxes between two media depend on if the dissolved concentration is continuous 
or not.  For the case of discontinuous chemical concentration, the flux is given by 
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( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

1 1
2

1 1
2i

s cw w w w
w i w i w i w i

s cis w w
C w i w i

P

C C sign C sign C

M sign C sign C dP

ρ θ ρ ρ ρ

ρ ρ

⋅ − ⋅∇ = + + −

= + + −∫

n Vn V D n V n V

n V n V n V

i i i

i i i
 (2.8.19)

 
where ( )sw

iC and ( )cw
iC are the concentrations of the i-th dissolved species in the subsurface and canal 

waters.  If the concentration is continuous, we impose its continuity to yield the flux 
 

( ) ( ) ( )on the interface( )
i

s cw w is w w
w i w i C i i

P

C C dP M and C Cρ θ ρ⋅ − ⋅∇ = =∫n V D  (2.8.20)

 
where is

iC
M is mass rate of the source of the i-th dissolved species in canal from subsurface media 

[M/t/L]. 
 
Similar to the coupling between subsurface and overland flows, the transforemation of the interfacial 
boundary conditions, Eq. (2.8.19) and (2.8.20), to those in terms of kinetic variables is not 
straightforward because the reaction networks for the subsurface and river/stream newtworks may 
not be identical.  If every kinetic-variable in the subsurface corresponding to that in the river/stream 
contains the same dissolved aqueous species, then the transformation is straightforwd and is given in 
Eqs. (2.8.21) and (2.8.22), respectively, for the cases of discontinuity and conctinuity, respectively, 
in species concentrations, 
 

( ) ( )( )( ) ( )( )( )( )
( )( )( ) ( )( )( )( )

1 1
2

1 1
2i

s cw w w w
i i i i

s cis w w
E i i

P

E E sign E sign E

M sign E sign E dP

θ⋅ − ⋅∇ = + + −

= + + −∫

n Vn V D n V n V

n V n V n V

i i i

i i i
 (2.8.21)

and 

( ) ( ) ( )on the interface( )
i

s cw w is w w
i i E i i

P

E E dP M and E Eθ⋅ − ⋅∇ = =∫n V D  (2.8.22)

 
where ( )sw

iE and ( )cw
iE are the concentration of the dissolved portion of i-th kinetic variables in the 

subsurface and canal.  
 
It should be kept in mind that ( )cw

iE and ( )sw
iE (and as a matter of fact ( )w

iE ) must have the same 
content of dissolved species for Equations (2.8.21) and (2.8.22) to be valid.  Otherwise, the coupling 
in terms of kinetic-variables requires further elaborations that will be addressed in Section 2.8.4. 
 
 
2.8.4 Coupling of Reactive Transport between Groundwater and Surface Transport 
 
Since reaction networks for groundwater and surface waters (in overland and river/stream flows) are 
likely to be different, the continuity of species fluxes and the continuity of species concentration or 
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the formulation of species fluxes must be transformed from those in terms of species concentration 
to those in terms of kinetic variables.   
 
After decomposition of reaction networks, kinetic-variables and their corresponding dissolved 
portion are simply defined as linear combination of species 
 

{ } [ ] { } ,   { } [ ] { } { } [ ] { } ,  { } [ ] { }w w
g g g g g g s s s s s sand= = = =E A C E B C E A C E B C  (2.8.23)

 
where the subscript g denotes the groundwater system; the subscript s denote the surface water 
system; {E} and {Ew} are the vectors of size M; and [A] and [B] are the decomposed unit matrices 
of size M x M.  It is noted that the i-th reaction extent, Ei, is an equilibrium variable if its evolution is 
governed by an indepdendnt equilibrium raeaction and a set of linearly depending kinetic reactions; 
a kinetic variable if by an independent kinetic reaction and a set of linearly dependent kinetic 
reactions; a component if its concentration remains constant (Fang et al., 2003).  Inverting Eq. 
(2.8.23), we have 
 

1 1{ } [ ] { } { } [ ] { }g g g s s sand− −= =C A E C A E  (2.8.24)
 
Continuity of flux of all aqueous requires 
 

( ) ( )
( ) ( )

( )1 1

{ } { } [ ] { } [ ] { } ,

{ } { } [ ] { } [ ] { }

[ ] [ ] { } [ ] [ ] { }

w w w w
g g g g g g

w w w w
g g g s g s

g s s g s s

thus

θ θ

θ θ

θ− −

⋅ − ⋅∇ = ⋅ − ⋅∇

⋅ − ⋅∇ = ⋅ − ⋅∇

= ⋅ − ⋅∇

n V E D E n V B C D B C

n V E D E n V B C D B C

n V B A E D B A E

 (2.8.25)

 
Continuity of aqueous speces require 
 

1{ } [ ] { } [ ] { } [ ] [ ] { }w w w
g g g g s g s s

−= = =E B C B C B A E  (2.8.26)
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2 MATHEMATICAL BASIS 

 
In this section, we are to give governing equations, initial conditions, and boundary conditions for 
simulating water flow and chemical and sediment transport in watershed systems. 
 
 
2.1 Water Flow in One-Dimensional River/Stream/Canal Network 

 
The governing equations of water flow in one-dimensional river/stream/canal can be derived based 
on the conservation law of water mass and linear momentum (Singh, 1996), and can be written as 
follows. 
 
The continuity equation: 
 

1 2S R E I
A Q S S S S S S
t x

∂ ∂
+ = + − + + +

∂ ∂
 (2.1.1) 

 

where t is time [t]; x is the axis along the river/stream/canal direction [L]; A is cross-sectional area of 
the river/stream [L2]; Q is flow rate of the river/stream/canal [L3/t]; SS is the man-induced source 
[L3/t/L]; SR is the source due to rainfall [L3/t/L]; SE is the sink due to evapotranspiration [L3/t/L]; SI 
is the source due to exfiltration from the subsurface media [L3//t/L]; S1 and S2 are the source terms 
contributed from overland flow [L3/t/L]. 
 
The momentum equation: 
 

( )

( )1 2

O x

S b

S R E I

Z hQ VQ gAh FgA
t x x c x x

B PM M M M M M

ρ
ρ

τ τ
ρ

∂ +∂ ∂ ∂Δ ∂
+ = − − − +

∂ ∂ ∂ ∂ ∂

−
+ − + + + +

 (2.1.2) 

 

where h is water depth [L]; V is river/stream/canal velocity [L/t]; g is gravity [L/t2]; Zo is bottom 
elevation [L]; Δρ = ρ - ρo is the density deviation [M/L3] from the reference density (ρo), which is a 
function of temperature and salinity as well as other chemical concentrations; c is the shape factor of 
the cross-sectional area; Fx is the momentum flux due to eddy viscosity [L4/t2]; MS is the external 
momentum-impulse from artificial sources/sinks [L3/t2]; MR is the momentum-impulse gained from 
rainfall [L3/t2]; ME is the momentum-impulse lost to evapotranspiration [L3/t2]; MI is the momentum-
impulse gained from the subsurface due to exfiltration [L3/t2]; M1 and M2 are the momentum-impulse 
gained from the overland flow [L3/t2]; ρ is the water density [M/L3]; B is the top width of the cross-
section [L]; τs is the surface shear stress [M/t2/L]; P is the wet perimeter [L]; and τb is the bottom 
shear stress [M/t2/L], which can be assumed proportional to the flow rate as τb/ρ = κV2 where κ = 
gn2/R1/3 and R is the hydraulic radius (L) and n is the Manning’s roughness. 
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2.1.1 Fully Dynamic Wave Approaches 
 
Equations (2.1.1) and (2.1.2) written in the conservative form are the governing equations for one-
dimensional flow in river/stream/canals.  Depending on the simplification of the momentum 
equation, one can have three approaches: fully dynamic wave, diffusive wave, and kinematic wave.  
For the fully dynamic wave approach, all terms in Eq. (2.1.2) are retained.  Under such 
circumstances, the conservative form of the governing equations may be used or they may be cast in 
the advection form or in the characteristic form.   In this report the characteristic form of the fully 
dynamic approach will be used as the main option because it is the most natural way and amenable 
to the advective numerical methods, e.g., the upstream approximation or the Lagrangian-Eulerian 
method. 
 
For a non-prismatic river/stream/canal network, the cross-sectional area is a function not only of the 
water depth but also of the river distance, i.e., 
 

( ) ( )#, ( , ),A x t A h x t x=  (2.1.3) 
 

where A# is a function of the water depth h(x,t) and the axis along the river/stream/canal direction x.  
Differentiating Eq. (2.1.3) with respect to x and t, respectively, we have 
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 (2.1.5) 

 

where B(x,t) = B#(h,x) = ∂A#/∂h is the top width of the cross-section, [L]. 
 
Substituting Q = VA and Eqs. (2.1.4) and (2.1.5) into Eqs. (2.1.1) and (2.1.2), we obtain 
 

( )
#

1 2
1

S R E I
h h A V V AV S S S S S S
t x B x B B x

∂ ∂ ∂ ∂
+ + = + − + + + −

∂ ∂ ∂ ∂
 (2.1.6) 
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+ + = − − − +

∂ ∂ ∂ ∂ ∂ ∂
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 (2.1.7) 

 

Equations (2.1.6) and (2.1.7) can be written in matrix form as 
 

DREAE
+=

∂
∂

+
∂
∂

xt
 (2.1.8) 

 

where 
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{ } { } { }TTT DRR
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in which 
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1
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∂
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 (2.1.10)
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( ) 1 S R E I

s b

S R E I

V S S S S S S
Z ghR g B Px c x A M M M M M M

ρ
τ τρ

ρ

⎡− + − + + + + ⎤
∂ ∂ Δ ⎢ ⎥= − − + −⎢ ⎥∂ ∂ + − + + + +⎢ ⎥⎣ ⎦

 (2.1.11)
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where ε  is the eddy viscosity. 
 
The eigenvalues and eigenvectors of A are 
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Denoting 
B
gAc = , we define 
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where L and L-1, respectively, are the right and left eigenmatrices, respectively, of the matrix A.  Set 
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where W is a characteristic wave variable.  Equation (2.1.16) transforms the primitive variable E = 
{h, V}T to the characteristic variable W = {W1, W2}T. 
 



 2-4

Multiplying both side of Eq. (2.1.8) by L-1 yields  
 

DLRLELLAL
t
EL 1-11-11- +=

∂
∂

+
∂
∂ −−

x
 (2.1.17)

 
Since by definition ∂W = L-1∂E and L-1AL is a diagonal matrix whose entries are the eigenvalues of 
A, we have 
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Substituting L-1 (L-1 is defined by Eq. (2.1.15)) into the right hand side of Eq. (2.1.18) and 
making an integral transformation so that (g/c)∂h = ∂ω, we obtain 
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where c is the wave speed and ω is the transformed wave speed.  Equation (2.1.19) simply states that 
the positive gravity wave (V + ω) is advected by the speed (V + c) while Equation (2.1.20) states that 
the negative gravity wave (V - ω) is advected by the speed (V - c). 
 
For transient simulations, the water depth (or water stage) and the cross-sectionally averaged 
velocity must be given as the initial condition.  In addition, appropriate boundary conditions need to 
be specified to match the corresponding physical system. 
 
The system of Eqs. (2.1.19) and (2.1.20) are identical to the system of Eqs. (2.1.1) and (2.1.2) on the 
differential level.  They offer advantages in their amenability to innovative advective numerical 
methods such as the upstream finite difference, upwind finite element, or semi-Lagrangian scheme.  
Furthermore, the implementation of boundary conditions is very straightforward.  Only when the 
wave is coming into the region of interest, the boundary condition is required.  For the wave that is 
going out of the region of interest, there is no need to specify a boundary condition. 
 
Open upstream boundary condition: 
 
The boundary condition at an upstream point depends on flow conditions.  If the flow is 
supercritical, both waves are transported into the region and two boundary conditions are needed.  
The water depth and velocity at the boundary are determined entirely by the flow condition that 
prevails at the upstream. The governing equations for this case can be set up based on the continuity 
of mass as well as momentum between the boundary and the upstream as follows  
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up up up c up up up upc up upVA V A Q and VAV gh A V A V gh A Mρ ρ ρ ρ= = + = + =  (2.1.22)
 

where Vup is the cross-sectional averaged velocity from the incoming upstream fluid, Aup is the cross-
sectional area in the upstream, Qup is the flow rate of the incoming fluid from the upstream, hc is the 
water depth to the centroid of the cross-sectional area of the boundary, hupc is the water depth to the 
centroid of the upstream cross-sectional area, and Mup is the momentum-impulse of the incoming 
fluid from the upstream.  It should be noted that both the water depth and velocity in the upstream 
must be measured to provide values of Qup and Mup.  If the flow is critical, the positive wave is 
transported into the region from upstream and the negative wave is immobile.  The water depth and 
velocity at the boundary are determined by the flow conditions prevail at the upstream and by the 
condition of critical flow.  The governing equations for this case may be set up based on the 
continuity of mass and the requirement of critical flow condition as 
 

13

2

==
gA
BQandQVA up  (2.1.23)

 
If the flow is subcritical, while the positive wave is transported into the region, the negative wave is 
transported out of the region.  The water depth and velocity are determined by the flow condition 
prevail at upstream and by flow dynamics in the region.  The governing equations are set up based 
on the continuity of mass between the boundary and the upstream, and on flow dynamics in the 
region  
 

( ) 0, == − hVFandQVA up  (2.1.24)
 

where F-(V, h), a function of velocity and water depth, is the negative wave boundary function. 
 
In summary, the boundary condition at an open upstream boundary point is given by Eqs. (2.1.22), 
(2.1.23), and (2.1.24), respectively, for the case of supercritical, critical, and subcritical flows, 
respectively. 
 
Open downstream boundary condition: 
 
If the flow is supercritical on an open downstream boundary point, both waves are transported out of 
region.  Under such circumstances, no boundary conditions are needed.  The water depth and 
velocity on the boundary are determined by flow dynamics in the region.  The governing equations 
for V and h are 
 

( ) ( ) 0,0, ==
−+ hVFandhVF  (2.1.25)

 

where F+(V, h), a function of V and h, is the positive wave boundary function.  If the flow is critical, 
the water depth and velocity at the boundary are determined by flow dynamics in the region and by 
the condition of critical flow.  Thus, the governing equations for critical flow are given by 
 

( ) 10, 3

2

==+ gA
BQandhVF  (2.1.26)
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If the flow is subcritical, while the positive wave is transported out of the region, the negative wave 
is transported into the region.  The water depth and velocity are determined by flow dynamics in the 
region and by what is the control on the boundary.  The governing equations may be given by 
 

( ) ( ) ( ) ( )thhandhVForhQVAandhVF dndn ==== ++ 0,0,  (2.1.27)
 

where Qdn(h), a function of h, is the rating curve function for the downstream boundary and hdn(t), a 
function of t, is the water depth at the downstream boundary.  The adaptation of Eq. (2.1.27) 
depends on the physical configuration at the boundary. 
 
In summary, the boundary condition at an open downstream boundary is given by Eqs. (2.1.25), 
(2.1.26), and (2.1.27), respectively, for the case of supercritical flow, critical flow, and subcritical 
flows, respectively. 
 
Closed upstream boundary condition: 
 
At the closed upstream boundary, physically all flow conditions can occur. When the supercritical 
flow happens, both positive and negative waves are transported into the region.  Two boundary 
condition equations are needed.  Because the boundary is closed, it is impermeable.  The governing 
equations can be obtained by simply substituting Qup = 0 and Mup = 0 into Eq. (2.1.22) to yield 
 

0 0cVA and VAV gh Aρ ρ= + =  (2.1.28)
 

The solutions for Eq. (2.1.28) are not unique.  One possible solution is V = 0 and h = 0. 
 
For the critical flow, the velocity is equal to the wave speed, V = c, the negative wave is immobile. 
On the other hand, the positive wave is transported into the region of interest, one boundary-
condition equation is needed.  Because the closed boundary is impermeable, the governing equations 
may be set up by imposing zero flow rate and the condition of critical flow as 
 

10 3

2

==
gA
BQandVA  (2.1.29)

 
When the flow is subcritical, the positive wave is transported into the region of interest while the 
negative wave is transported out of the region of interest.   Only the boundary condition for the 
positive wave is needed.  Since no fluid from the outside world is transported into the region via the 
boundary, the boundary condition for the positive wave can be stated with Q = VA =0.  The 
governing equations for V and h are thus given by 
 

( ) 0,0 == − hVFandVA  (2.1.30)
 
In summary, the boundary condition at a closed upstream point is given by Eqs. (2.1.28), (2.1.29), 
and (2.1.30), respectively, for the case of supercritical flow, critical flow, and subcritical flows, 
respectively. 
 
Closed downstream boundary condition: 
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At the closed downstream boundary, physical condition dictates that the velocity at the boundary is 
zero.  Since the velocity is zero, supercritical flow cannot occur at the closed boundary point because 
the water depth is greater or equal to zero.  Therefore, the flow can only be either critical or 
subcritical.  For critical flow, c = V = 0, which is very unlikely.   Therefore, it is highly unlikely that 
critical flow will occur at the closed downstream boundary. 
 
For the subcritical flow, the positive wave is transported out of the region and no boundary condition 
is needed for this wave.  On the other hand, the negative wave is transported into the region of 
interest.  The governing equations for V and h are 
 

( ) 00, ==+ VandhVF  (2.1.31)
 
which is based on the physics that V = 0 and the water depth is governed by internal flow dynamics. 
 
In summary, supercritical flow cannot occur at a closed downstream point.  The boundary condition 
at a closed downstream boundary point is either V = 0 and h = 0 for critical flow or is given by Eq. 
(2.1.31) for subcritical flow. 
 
Natural internal boundary condition at junctions: 
 
For the junction node J (Figure 2.1-1), we have one unknown:  the water surface elevation or the 
stage, HJ.  The governing equation for this junction is obtained as 
 

J JN N
J J

IJ IJ IJ
I IJ

dV dh Q V A
dh dt

= =∑ ∑  (2.1.32)

 

for the case when the storage effect of the junction is accounted for, or 
 

∑ ∑ ==
J JN

I

N

I
IJIJIJ AVQ 0  (2.1.33)

 

for the case when the storage effect of the junction is not included. 
 

 

J

1J 2J

3J

 
Fig. 2.1-1.  Schematic of a Junction 

 
In Eqs. (2.1.32) and (2.1.33), JV is the volume of the junction J; hJ is the water depth of the junction 
J; QIJ is the flow rate of the Ith reach to the Jth junction; I is the identification number of 
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river/stream/canal reach; NJ is the total number of river/stream/canal reaches that are connected to 
the junction J (it is 3 in the case shown); VIJ and AIJ are the velocity and cross sectional area, 
respectively, of the Ith reach at the location entering the Jth junction. 
 
The node IJ located at the boundary between the Ith reach and the Jth junction is termed the natural 
internal boundary of reach I.  The governing equations for the internal boundary node IJ depend on 
whether this node is a downstream or an upstream node in reference to the reach I.  Let us say that 
node IJ is a downstream point if the flow is from the reach I toward the junction J.  On the other 
hand, we say that the node IJ is an upstream point if the flow is from the junction J toward the reach 
I.   With this definition, we can generate equations for any internal boundary node IJ, which will be 
stated in the following. 
 
If IJ is a downstream internal boundary, we have three cases to consider: subcritical flow, critical 
flow, and supercritical flow.   For the case of subcritical flow, the positive wave is going out of the 
reach and no boundary condition for this wave is needed.  On the other hand, the negative wave is 
going into the region and its boundary condition is obtained by the assumption that no loss in energy 
between the junction and node IJ.  The governing equations for node IJ are given as 
 

( ) JoIJIJ
IJ

IJIJIJ HZh
g

VEandhVF =++==+ 2
0,

2

 (2.1.34)

 

where F+(VIJ,hIJ), a function of the velocity VIJ (velocity at node IJ) and hIJ (water depth at node IJ), 
is the positive wave boundary function; EIJ is the energy line at node IJ,  ZoIJ is the bottom elevation 
at node IJ; and HJ is the water surface elevation of the junction J.  The second equation of Eq. 
(2.1.34) is obtained from the assumption that the total energy is constant from the junction to the 
node IJ.  In the case of critical flow, the positive wave is going out of the reach and there is no need 
of a boundary condition for this wave.  The negative wave is immobile and its boundary condition is 
given by the condition of critical flow.  The governing equations for node IJ under critical flow are 
given by 
 

( ) 10, 3

2

==+
IJ

IJIJ
IJIJ gA

BQandhVF  (2.1.35)

 

where BIJ is the top width of the cross-section of the I-th reach at node IJ and AIJ is the cross-section 
area of the I-th reach at node IJ.  In the case of supercritical flow, both positive and negative waves 
are going out of the reach, therefore no boundary conditions are needed and the governing equations 
for node IJ under supercritical flow are given by 
 

( ) ( ) 0,0, == −+ IJIJIJIJ hVFandhVF  (2.1.36)
 

where ( )IJIJ hVF ,− , a function of the velocity VIJ and hIJ, is the negative wave boundary function. 
 
If IJ is an upstream point, we have also three cases to consider: subcritical, critical, and supercritical 
flows.  For the case of subcritical flow, the positive wave is going into the reach and its boundary 
condition is obtained with the assumption that the specific energy is constant between the junction J 
and the node IJ.  With this assumption, the governing equations for node IJ are given by 
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( ) 0,
2

2

=++= − IJIJoIJIJ
IJ

J hVFandZh
g

VH  (2.1.37)

 
In the case of critical flow, the positive wave is going into the reach from the junction and its 
boundary condition is obtained with the assumption of constant energy line between the junction and 
the node IJ, and the negative wave is immobile and its boundary condition is obtained from the 
condition of critical flow.  The governing equations for node IJ under critical flow are given by 
 

1
2 3

22

=++=
IJ

IJIJ
oIJIJ

IJ
J gA

BQandZh
g

VH  (2.1.38)

 
In the case of supercritical flow, both positive and negative waves are going into the region from the 
junction J to the reach I.  Two boundary conditions are required for this case.  One of the boundary 
conditions is obtained with the assumption of constant energy line between the junction J and the 
node IJ.  The other boundary condition is obtained with the assumption that the supercritical flow at 
node IJ will become a critical flow in a very short distance (so short that it can be conceptually 
considered to locate at IJ).  With these assumptions the governing equations for node IJ under 
supercritical flow is given by Eq. (2.1.38). 
 
In summary, the governing equations at a natural internal boundary node of a reach connecting to 
junctions are given by one of Eq. (2.1.34) through (2.1.38) depending on whether the node IJ is a 
downstream or an upstream point and whether the flow is supercritical, critical, or subcritical. 
 
Controlled internal boundary condition at control structures: 
 
For any structure, S (which may be a weir, a gate, or a culvert), there are two river/stream/canal 
reaches connecting to the structure.  The node 1S located at the upstream of the structure is termed 
the controlled-internal boundary of the first reach while the Node 2S located at the downstream of 
the structure is called the controlled-internal boundary of the second reach (Fig. 2.1-2).  The 
specification of boundary conditions for the internal boundaries separated by a structure requires 
elaboration. 
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h2S

h1S
V1S

FS V2S
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Distribution
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Zo1S

Zo2S

V1S
2/2g

V2S
2/2g

hLS

H1S

H2S

Energy Line

 
Fig. 2.1-2.  The control volume (red outline) between Nodes 1S and 2S 
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The flow configuration around a structure and its surrounding reaches may be very dynamic under 
transient flows.  Governing equations of flow at Nodes 1S and 2S depend on the changing dynamics 
of water stages around the structure.  When both stages are below the height of the structure, the two 
reaches connecting the structure are decoupled.  When at least one of the stages is above the 
structure, two reaches are either sequentially coupled or fully coupled via the structure.  Here for 
sake of simplicity of discussions, we assume that the flow direction is from Reach 1 to Reach 2.  In 
other words, Reach 1 is an upstream reach and Reach 2 is a downstream reach.  If the flow direction 
is reversed, we can have the boundary condition similarly prescribed. 
 
There are five unknowns, V1S (velocity of the upstream reach Node 1S), h1S (the water depth of the 
upstream Node 1S), Q (the flow rate through the internal-boundary complex), V2S (the velocity of the 
downstream reach Node 2S), and h2S (the water depth of the downstream Node 2S); five equations 
must be set up for this internal-boundary complex consisting of a upstream reach node, a structure, 
and a downstream node. The governing equations for these five unknowns can be obtained 
depending on the flow conditions at the upstream and downstream reaches separated by the internal 
boundary structure.  The flow condition can be supercritical, critical, or subcritical at Node 1S and 
Node 2S. 
 
Node 1S is a downstream point relative to the first reach or is the upstream point relative to the 
structure. The positive wave is transported out of Reach 1 over the structure to Reach 2, and there is 
no need of a boundary condition for this wave.  As for the negative wave, if the flow is supercritical, 
it is transported out of the reach, and there is no need to prescribe a boundary condition for this 
wave.  Thus, the governing equations for Node 1S under supercritical flow are given by 
 

( ) ( ) SSSSSS AVQandhVFhVF 111111 ,0,,0, === −+  (2.1.39)
 

where F+(V1S,h1S), a function of V1S and h1S, is the positive wave boundary function; and F-(V1S,h1S), 
a function of V1S and h1S, is the negative wave boundary function. 
 
If the flow is critical, the negative wave is immobile and its governing equation must satisfy the 
condition of critical flow.  Thus, the two governing equations for Node 1S under critical flow are 
given by 
 

( ) SS
S

S
SS AVQand

gA
BQhVF 113
1

1
2

11 ,1,0, ===+  (2.1.40)

 

where B1S and A1S, respectively, are the top width and the area, respectively, of the cross-section at 
Node 1S. 
 
If the flow is subcritical, the negative wave is transported into the reach from the downstream reach 
via the structure, and its boundary condition is obtained by equating the flow rates at Nodes 1S and 
2S.  Thus the governing equations for Node 1S under subcritical flow are given by 
 

( ) SSSSSSSS AVQandAVAVhVF 11221111 ,,0, ===+  (2.1.41)
 
A comment is in order here.  When the flow at Note 1S is supercritical or critical, the flow in the 
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upstream reach is decouple from the flow in the downstream reach.  Under such conditions, Eq. 
(2.1.39) or (2.1.40) is used to solve to the values of V1S and h1S, which then yield the flow rate Q, the 
energy level H1S at Node 1S, or the momentum-impulse M1S at Node 1S.  These quantities (Q, H1S, 
and M1S) may serve as the boundary conditions for Node 2S.  As to which of these quantities is 
needed for the internal boundary Node 2S depends on the flow condition at Node 2S.  This point will 
be taken up when the boundary conditions for Node 2S are addressed. When the flow at Node 1S is 
subcritical, then the flows in the upstream and downstream reaches are coupled via the second 
equation in Eq. (2.1.41).  
 
On the other hand, Node 2S is an upstream point relative to the second reach or a downstream point 
relative to the structure.  If the flow is supercritical at Node 2S, both the positive and the negative 
waves are coming into the reach from the upstream reach via the structure, and two boundary 
conditions are needed.  These two boundary conditions can be obtained by the principle of mass 
continuity and the principle of momentum/impulse or the Bernoulli’s equation between Nodes 1S 
and 2S.  The structure between Nodes 1S and 2S will exert reaction force, FS, on the fluid between 
two nodes or it induces energy loss, hLS, between two nodes (Fig. 2.1-2).  Thus, the governing 
equations for Node 2S are 
 

SSS

SSSSSS

SLSS

MFM
orandAVAVAVQ

HhH

12

112211

12

,,
=+

==
=+

 (2.1.42)

 

where FS is the force exerted by the structure on the fluid; hLS is the energy loss between Nodes 1 
and 2; H2S and H1S (defined in Fig. 2.1-2), respectively, are the energy level at Nodes 2S and 1S, 
respectively; and M2S (= ρV2SA2SV2S + ρg h2ScA2S) and M1S (= ρV1SA1SV1S + ρg h1ScA1S), respectively, 
are the momentum-impulse at Nodes 2S and 1S, respectively (where ρ is the fluid density, g is the 
gravity constant, h2Sc is the water depth to the centroid of the cross-sectional area at Node 2, and h1Sc 
is the water depth to the centroid of the cross-sectional area at Node 1). 
 
If the flow at Node 2S is critical, one of the two boundary equations is obtained by the requirement 
of critical conditions while the other is obtained by the principle of mass continuity and the principle 
of  momentum/impulse or the Bernoulli’s equation between Nodes 1S and 2S.  Thus, the governing 
conditions for Node 2S are given as follows 
 

SSS

SSSSSS
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S
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===

 (2.1.43)

 
If the flow at Node 2S is subcritical, the positive wave is transported into the reach from the 
upstream reach via the structure while the negative wave is transport out of the reach.  The boundary 
condition for the positive wave is obtained by the principle of mass continuity and the principle of 
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momentum/impulse or the Bernoulli’s equation between Nodes 1S and 2S.  Thus the two governing 
equations for Node 2S under subcritical flow are given as follows 
 

( )

2 2 2 2 1 1 1 1

2 1

2 2 2 2 1 1 1 1

2 1 1

( , ) 0, ,

, 0, , ,

S S S S S S S S

S LS S

S S S S S S S S

S S S

F V h V A V A Q V A
or H h H
F V h V A V A Q V A and or

M F M

−

−

= = =
+ =

= = =

+ =

 (2.1.44)

 
In summary, the governing equations for internal boundary nodes separated by a structure are 
given by any combination of Eq. (2.1.39), (2.1.40), or (2.1.41) and Eq. (2.1.42), (2.1.43), or 
(2.1.44).  All combinations provide five governing equations for five unknowns (V1S, h1S, Q, V2S, 
and h2S), except for one combination. 

 
The combination of Eq. (2.1.41) and Eq. (2.1.42) only generates four equations; one more equation 
is needed.  This combination represents the situation that flow in the upstream reach is subcritical 
and in the downstream reach is supercritical.  For this situation to occur, flow must under go a 
transitional state of critical flow over the structure, and the critical flow condition on the structure 
must be satisfied.  Thus, the following additional governing equations can be set up by applying the 
principle of mass continuity and the principle of momentum-impulse or the Bernoulli equation to a 
control volume between Node 1S and the structure (Fig. 2.1-3) as  
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Fig. 2.1-3.  The control volume (red outline) between Node 1S and structure. 
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 (2.1.45)

 

where AS, BS, and VS, are the area, top width, and velocity of the cross-sectional area over the 
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structure; hL1S is head loss between Node 1S and the structure; F1S is the force the structure exerts 
on the fluid between Node 1S and the structure, HS is the total head over the structure (Fig. 2.1-3); 
and MS (= ρVSASVS + g hScAS) is the momentum-impulse at the structure (where hSc is the water 
depth to the centroid of the cross-sectional area at the structure).   Now, Eq. (2.1.41), (2.1.42), and 
(2.1.45) give seven equations for seven unknowns (V1S, h1S, Q, V2S, h2S, VS, and hS). 
 
The theoretical presentation about the governing equations for the internal-boundary complex is 
valid for any structure including weirs, gates, and culverts.  The differences among various 
structures are characterized by the formulation of the head loss functions, hLS(Q, h1S, h2S) and hL1S 
(Q, h1S, hS), which depend on the flow rate Q and the water depth h1S, and h2S. 
 
2.1.2 Diffusive Wave Approaches 
 
In a diffusive approach, the inertia terms in the momentum equation is assumed negligible when 
compared with the other terms.  By further assuming negligible eddy viscosity and MS = MR = ME = 
MI = M1 = M2 = 0, we approximate the river/stream/canal velocity with the following equation 
(Hergarten and Neugebauer, 1995). 
 

2 / 3

2
1

1

S

S
o

a R H h BV
n x c x AgZ H h B

x x c x Ag

⎡ ⎤
⎢ ⎥ ⎛ ⎞− ∂ ∂Δρ τ⎢ ⎥= + −⎜ ⎟∂ ρ ∂ ρ⎢ ⎥∂⎛ ⎞ ⎝ ⎠∂ ∂Δρ τ+ − − +⎢ ⎥⎜ ⎟∂⎝ ⎠ ∂ ρ ∂ ρ⎣ ⎦

 (2.1.46)

 

where n is Manning’s roughness [tL-1/3], a is a unit-dependent factor (a = 1 for SI units and a = 1.49 
for U.S. Customary units) to make the Manning’s roughness unit-independent, R is the hydraulic 
radius [L], and H = h + Zo is the water stage. 
 
Using the definition Q = VA and substituting Eq. (2.1.46) into Eq. (2.1.1), we obtain 
 

1 2

S

S R E I
H H h BB K S S S S S S
t x x c x Ag

ρ τ
ρ ρ

⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂Δ
− + − = + − + + +⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠

 (2.1.47)

in which 
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ρ τ

ρ ρ

=
⎡ ⎤ ∂ ∂Δ∂⎛ ⎞ − − ++⎢ ⎥⎜ ⎟ ∂ ∂∂⎝ ⎠⎢ ⎥⎣ ⎦

 
(2.1.48)

 
To achieve transient simulations, either water depth or stage must be given as the initial condition. In 
addition, appropriate boundary conditions need to be specified to match the corresponding physical 
system.  In our model, four types of boundary conditions may be specified depending on physical 
configurations of the boundary.  These boundary conditions are addressed below. 
 
Dirichlet boundary condition: prescribed water depth or stage 
 
On a Dirichlet boundary, either the water depth or stage can be prescribed as a function of time.  
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This boundary condition can be expressed as 
 

( ) ,d o d dh h t or H h Z H on B= = + =  (2.1.49)
 

where hd(t) is a prescribed time-dependent water depth on the Dirichlet boundary [L], Hd(t) is a 
prescribed time-dependent water stage [L], and Bd is the Dirichlet boundary point.  A Dirichlet 
boundary point can locate at the upstream or down stream point, control structures, or even interior 
point. 
 
Flux boundary condition: prescribed flow rate 
 
On a flux boundary, a time-dependent flow rate is prescribed as a function of time as 
 

( ) ff
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 (2.1.50)

 

where Qf(t) a prescribed time-dependent flow rate [L3/t] and Bf is a flux boundary point.  
Mathematically, a flux boundary condition can be applied to an upstream or downstream point.  
However, in practice, it is often applied to an upstream boundary point. 
 
Water depth-dependent boundary condition: prescribed rating curve 
 
This condition is often used to describe the flow rate at a downstream river/stream boundary at 
which the flow rate is a function of water depth.  It can be written as 
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 (2.1.51)

 

where Qr(h(xr,t)) is a water depth-dependent flow rate [L3/t], xr is the x-coordinate on the boundary 
Br, and Br is a boundary point on which the prescribed rating curve is applied. 
 
Junction boundary condition: 

 
This condition is applied to a boundary of a river/stream/canal reach that is connected to a junction 
(Fig. 2.1-1).  For the junction complex consisting of NJ river/stream/canal reaches (e.g., in Fig. 2.1-1, 
NJ = 3) and one junction (say J), we have (NJ + 1) unknowns, which are flow rates, QIJ (QIJ is the 
flow rate from the I-th reach to junction J), and water stage at junction J, HJ.   Therefore, we need to 
set up (NJ + 1) equations.   The first equation is obtained by applying the continuity of mass at the 
junction to result in Eq. (2.1.35) for the case when the storage effect of the junction must be 
accounted for or Eq. (2.1.36) when this effect is negligible.  The other NJ equations can be obtained 
by assuming the energy loss from any reach to the junction is negligible to result in 
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 (2.1.52)

 

where HIJ is the water stage the internal boundary Node IJ of the I-th reach connecting to junction J. 
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Equations (2.1.32) or (2.1.33) along with Eq. (2.1.52) provide (NJ + 1) equations to solve for (NJ + 
1) unknowns. 
 
Weir boundary condition: 
 
For any weir (W), there are two river/stream/canal reaches connecting to it.  Node 1W located just 
upstream of the weir is termed the controlled-internal boundary of the upstream reach while Node 
2W located just downstream of the weir is called the controlled-internal boundary of the downstream 
reach (Figure 2.1-4).  The specification of boundary conditions for the internal boundaries for the 
diffusive wave approach is given as 
 

( ) ( )

( ) ( )

1WK ,

K ,

S
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⎝ ⎠
⎛ ⎞
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⎝ ⎠

n

n
 (2.1.53)

 

where Qw is the weir discharge rate, which is a given function of the water depths hup at Node 1W 
and hdn at Node 2W (Fig. 2.1-5). 
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Fig. 2.1-4.  Schematic of weir. 
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Fig. 2.1-5.  Flow configurations around a weir. 

 
The flow configuration around the weir and its surrounding reaches may be very dynamic under 
transient flows.  Both of the water stages at Nodes 1W and 2W may be below the weir, both may be 
above the weir, or one below the weir while the other is above the weir (Fig. 2.1-5).  When both 
stages are below the height of the weir, the two reaches connecting the weir are decoupled.  When at 
least one of the stages is above the weir, two reaches are coupled via the weir.  The weir discharge, 
Qw, can be obtained by solving the continuity equation and the Bernoulli equation between Nodes 
1W and 2W.  The weir formulae under various stage conditions are given as 
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(1) For submerged flow 
 

( ) updnupdndnupWdnWW hhandhhifhhgLhCQ <≥−=
3
22  (2.1.54)

 
 (2) For free fall flow 
 

updnupupWW hhifghLhCQ
3
22

33
2

<=  (2.1.55)

 
 (3) For decoupled flow 
 

0=WQ  (2.1.56)
 

where Cw is the weir coefficient and Lw is the weir length.  It should be noted that the above 
formulae are valid for broad weir.  For other types of weirs, different weir discharge formulae may 
be used and they can easily be incorporated into the computer code. 
 
 
 
Gate boundary condition: 
 
For any gate (G), there are two river/stream/canal reaches connecting to it.  Node 1G located just 
upstream of the gate G is termed the controlled-internal boundary of the upstream reach while Node 
2G located just downstream of the gate G is called the controlled-internal boundary of the 
downstream reach (Fig. 2.1-6).  The specification of boundary conditions for the internal boundaries 
separated by a gate can be made similar to that of a weir as follows. 
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 (2.1.57)

 

where Qg is the gate discharge rate, which is a given function of the water depths hup at 1G and hdn at 
2G (Fig. 2.1-7). 
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Fig. 2.1-6.  Schematic of Gate. 

 



 2-17
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Fig. 2.1-7.  Flow configurations around a gate. 

 
The flow configuration around the gate and its surrounding reaches may be very dynamic under 
transient flows.  Depending on the water stages at Nodes 1G and 2G (H1G and H2G), we have several 
configurations (Fig. 2.1-7).  The gate discharge, Qg, can be obtained by solving the continuity 
equation and the Bernoulli equation between Nodes 1G and 2G.  The gate formulae under various 
stage conditions are given as 
 
(1) For free fall flow and not influenced by the gate opening 
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(2) For submerged flow and not influenced by the gate opening 
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(3) For free flow and influenced by the gate opening 
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(4) For submerged flow and influenced by the gate opening 
 

( ) upupdnupdndnupggg haandhhhhifhhgaLCQ
3
2,,

3
22 <<≥−=  (2.1.61)

 
(5) For decoupled flow 
 

0=gQ  (2.1.62)
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where Cg is the gate coefficient, a is the gate opening, and Lg is the weir length. 
 
Culvert boundary condition: 
 
Similar to weirs and gates, the boundary conditions for the culvert can be stated as 
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where Qc is the discharge through the culvert or culverts, Node 1C is the point upstream of the 
culvert and 2C is the point downstream of the culvert, hup is the water stage above the culvert at 
Node 1C, and hdn is the water stage above the culvert at Node 2C.  A wide range of culvert discharge 
formulae can be used and they can be easily incorporated in the computer code. 
 
 
2.1.3 Kinematic Wave Approaches 
 
In a kinematic approach, all the assumptions for the diffusive approach are hold.  However, the 
velocity is given by modifying Eq. (2.1.46) with ∂Zo/∂x replacing ∂H/∂x as follows 
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Substituting Eq. (2.1.64) into Eq. (2.1.1) and using the definition Q = VA, we obtain 
 

1 2S R E I
A VA S S S S S S
t x

∂ ∂
+ = + − + + +
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 (2.1.65)

 
It is noted that Eq. (2.1.65) represents the advective transport of the cross-sectional area, A.  It is an 
ideal equation amenable for numerically innovative advective transport algorithm. 
 
To achieve transient simulations, either water depth or stage must be given as the initial condition. In 
addition, appropriate boundary conditions need to be specified to match the corresponding physical 
configuration.  In a kinematic wave approach, boundary conditions are required only at upstream 
boundaries.  An upstream boundary point can be an open boundary or a closed boundary.  On an 
open upstream boundary, either the cross-sectional area (equivalent to water depth or water stage) or 
the flow rate can be specified as 
 

upup BonorAA upQVA =⋅= n  (2.1.66)
 

where Hup is the water stage of the incoming upstream flow, Qup is the flow rate of the incoming 
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upstream flow, and Bup is the open upstream boundary point.  The flow rate through a closed 
upstream boundary point is by default equal to zero. 
 
 
2.1.4 Thermal Transport 
 
The thermal transport equation is derived based on the conservation principle of energy as: 
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where ρw is the water density [M/L3]; Cw is the heat capacity of water [L2/t2/T]; T is the temperature 
[T]; DH is the apparent thermal conductivity including the effect of dispersion, diffusion, and 
conduction [E/t/L/T = ML/t3/T, where E is the unit of energy]; Sh

a is the heat source due to artificial 
injection/withdraw including rainfall [E/t/L = ML/t3]; Sh

r is the heat source due to rainfall 
[E/t/L=ML/t3]; Sh

n is the heat source due to net radiation [E/t/L = ML/t3]; Sh
b is the heat sink due to 

back radiation from water surface to the atmosphere [E/t/L = ML/t3]; Sh
e is the heat sink due to 

evaporation [E/t/L = ML/t3]; Sh
s is the heat sink due to sensible heat flux [E/t/L = ML/t3]; Sh

i is the 
heat source due to exfiltration from subsurface [E/t/L = ML/t3]; Sh

o1 is the heat source from overland 
flow via Bank 1 [E/t/L = ML/t3]; Sh

o2 is the heat source from overland flow via Bank 2 [E/t/L = 
ML/t3]; and Sh

c is the heat source due to chemical reaction [E/t/L = ML/t3].  In Eq. (2.1.67), Sh
r, Sh

i, 
Sh

o1, and Sh
o2 are given by 
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where Tr is the temperature of the rainwater [T], Ti is the temperature of the exfiltration water from 
the subsurface flow [T], To1 is the temperature of the water from overland flow via river Bank 1 [T], 
and To2 is the temperature of the water from overland flow via river Bank 2 [T]. 
 
The heat source due to net radiation, Sh

n, heat sink due to back radiation, Sh
b, heat sink due to 

evaporation, Sh
e, and heat sink due to sensible heat, Sh

s, are given by their respective heat fluxes as 
follows 
 

s
s

he
e

hb
b

hn
n

h BHSBHSBHSBHS ==== ;;;  (2.1.70)
 

where Hn, Hb, He, and Hs are the net radiation flux, back radiation flux, latent heat flux, and sensible 
 heat flux, respectively.  These fluxes depend on only meteorological condition and water 
temperature.  They may be computed from follow equations (Yeh, 1969; Yeh et al., 1973; McCuen, 
1989; Song and Li. 2000; and Jennifer et al., 2002). 
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Net radiation Hn 
 

( ) ( ) ososn HaHaH AA−+−= 11  (2.1.71)
in which 

( ) dayftBtusHH oso //35.061.0 2+⋅=  (2.1.72)
and 

( ) ( )[ ] dayftBtueCTH aao //031.0460 22/14 ++= εσA  (2.1.73)
 

where sa  and Aa  are the albedos of the water surface for short- and long-wave radiation 
respectively; soH  and oH A are the solar short- and long-wave radiation respectively; Ho is the solar 
constant, s is the percentage of possible sunshine; ε = 0.97 is emissivity of water surface; σ = 4.15 x 
10-8 Btu/ft2/day/R4 is the Stenfan-Boltzmann constant; Ta is air temperature in oF; C is the brunt 
coefficient; and ea is the air vapor pressure in millimeter of mercury.  
 
Back radiation Hb  
 

( ) dayftBtuTH ab //460 24+= εσ  (2.1.74)
 
Sensible heat flux Hs 
 

( )( ) ( ) dayftBtupTTWH as //760/3.77326.0 2⋅−+=  (2.1.75)
 

where W is the wind speed in miles per hour and p is the atmospheric pressure in millimeter of 
mercury. 
 
Latent heat flux of evaporation He 
 

( )( ) dayftBtueeWH awe //3.77326.0 2−+=  (2.1.76)
 

where ew is the saturated vapor pressure in millimeter of mercury at the water temperature T. 
 
In addition to the initial boundary condition, boundary conditions must be specified for the 
temperature.  Four types of global boundary conditions are provided in this report as follows. 
 
Dirichlet boundary condition: 
 
This condition is applied when the temperature is prescribed as a function of time on the boundaries: 
 

( ),     db b dT T x t on B=  (2.1.77)
 

where Tdb(xb,t) is a time-dependent temperature on the Dirichlet boundary Bd [T]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
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< Case 1 > Flow is coming in from outside: 
 

( , )    H
w w w w vb b v

TC QT D A C QT x t on B
x

∂
ρ − = ρ

∂
 (2.1.78)

 
< Case 2 > Flow is going out from inside:  
 

0    H
v

TD A on B
x

∂
− =

∂
 (2.1.79)

 

where Tvb(xb,t) is a time-dependent temperature [T] through the variable boundary Bv, which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total heat-flow rate is given at the river/stream 
boundary.  Usually, this boundary is an upstream boundary node.  The conditions can be expressed 
as 
 

( ),H
w w cb b

TC QT D A x t
x

ρ ∂
− = Φ

∂
 (2.1.80)

 

where ( , )cb bx tΦ  is total heat-flow rate (E/t = ML2/t3, where E denotes the unit of energy) through 
the Cauchy boundary, which takes a positive value if it is going out of the region and a negative 
value if it is coming into the region. 
 
Neumann boundary condition: 
 
This boundary condition is used when the conductive heat-flow rate is known at the river/stream 
boundary node.  It can be written as 
 

( ),H
nb b

TD A x t
x

∂
− = Φ

∂
 (2.1.81)

 

where ( ),nb bx tΦ  is the heat flux through the Neumann boundary. 
 
In addition to the above four types of global boundary conditions, two types of internal boundary 
conditions are implemented: internal boundary nodes connecting to natural junctions and two 
internal boundary nodes for every control structures.  These internal boundary conditions are 
mathematically stated similar to fluid flow of diffusive wave approaches. 
 
Internal boundary condition at junctions: 
 
If Node IJ is the internal node from Reach I connecting to Junction J (Fig. 2.1-1), the boundary 
conditions at Node IJ is given as  
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where sign(QIJ) is equal 1.0 if the flow is from Reach I into Junction J, -1.0 if flow is from Junction 
J into Reach I; TIJ is the temperature at Node IJ; and TJ is the temperature at Junction J which is 
given by 
 

( )( ) ( )( )[ ] 011
2
1

=−++∑ JijiJiJiJww
i

TQsignTQsignQCρ  (2.1.83)
 

if the storage effect of Junction J is negligible or 
 

( ) ( )( ) ( )( )[ ]JiJiJiJiJww
i
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 (2.1.84)

 

if the storage effect of Junction J is significant. 
 
Internal boundary condition at control structure: 
 
If Nodes 1S and 2S are two internal boundary nodes connecting to Structure S (Fig. 2.1-2), the 
boundary conditions at Nodes 1S and 2S are given 
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where sign(Q) is equal 1.0 if the flow is from Node 1S to Node 2S, -1.0 if flow is from Node 2S to 
Node 1S; T1S is the temperature at Node 1S; and T2S is the temperature at Node 2S. 
 
 
2.1.5 Salinity Transport 
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where S is the salinity [M/L3]; DS is the longitudinal dispersion coefficient for salinity [L2/t]; Ms
a is 

the artificial source of the salt [M/t/L]; Ms
r is the salt source from rainfall [M/t/L]; Ms

e is the salt sink 
from evaporation, which most likely would be zero [M/t/L]; Ms

i is the salt source from subsurface 
[M/t/L]; Ms

o1 is the salt source from overland via River Bank 1 [M/t/L]; and Ms
o2 is the salt source 

from overland source viz River Bank 2 [M/L/t].  In Eq. (2.1.86), Ms
e is likely to be zero and Ms

r, Ms
i, 

Ms
o1, and Ms

o2 are given by 
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and 
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where Sr is the salinity of the rainwater [M/L3], Si is the salinity of the exfiltration water from the 
subsurface flow [M/L3], So1 is the salinity of the water from overland flow via River Bank 1 [M/L3], 
and So2 is the salinity of the water from overland flow via River Bank 2 [M/L3]. 
 
As in thermal transport, four types of global boundary conditions for salinity transport are provided 
in this report as follows: 
 
Dirichlet boundary condition: 
 
This condition is applied when the salinity is prescribed as a function of time on the boundaries: 
 

( ),db bS S x t=  (2.1.89)
 

where ( ),db bS x t  is a time-dependent salinity on the Dirichlet boundary [M/L3]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ),S
vb b

SQS D A QS x t
x
∂

− =
∂

 (2.1.90)

 
< Case 2 > Flow is going out from inside: 
 

( ),
0bS S x t

D A
x

∂
− =

∂
 (2.1.91)

 

where ( ),vb bS x t  is a time-dependent salinity on the variable boundary [M/L3], which is associated 
with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total salt-flow rate is given at the river/stream 
boundary.  Usually, this boundary is an upstream boundary node.  The conditions are expressed as 
 

( ),S
cb b

SQS D A x t
x
∂

− = Φ
∂

 (2.1.92)
 

where ( ),cb bx tΦ  is total salt-flow rate on the Cauchy boundary [M/t], which takes a positive value if 
it is going out of the region and a negative value if it is coming into the region. 
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Neumann boundary condition: 
 
This boundary condition is used when the dispersive salt-flow rate is known at the river/stream 
boundary node.  It can be written as 
 

( ),S
nb b

SD A x t
x
∂

− = Φ
∂

 (2.1.93)
 

where ( ),nb bx tΦ  is the salt rate due to salt concentration through the Neumann boundary [M/L]. 
 
The internal boundary conditions at junctions and control structures for salinity transport are  stated 
similarly to those for thermal transport as follows. 
 
Internal boundary condition at junctions: 
 
If Node IJ is the internal node from Reach I connecting to Junction J (Fig. 2.1-1), the boundary 
condition at Node IJ is given as 
 

( )( ) ( )( )1 1 1
2

S
IJ IJ IJ IJ IJ J

SQS D A Q sign Q S sign Q S
x
∂⎛ ⎞ ⎡ ⎤− = + + −⎜ ⎟ ⎣ ⎦∂⎝ ⎠

 (2.1.94)
 

where SIJ is the salinity at Node IJ and SJ is the salinity at Junction J, which is governed by 
 

( )( ) ( )( )[ ] 011
2
1

=−++∑ JiJiJiJIJ
i

SQsignSQsignQ  (2.1.95)
 

if the storage effect of Junction J is negligible or 
 

( ) ( )( ) ( )( )1 1 1
2

J J
iJ iJ iJ iJ J

i

d V S
Q sign Q S sign Q S

dt
⎡ ⎤= + + −⎣ ⎦∑  (2.1.96)

 

if the storage effect of Junction J is significant. 

 
Internal boundary condition at control structure: 
 
If Nodes 1S and 2S are two internal boundary nodes connecting to Structure S (Fig. 2.1-2), the 
boundary conditions at nodes 1S and 2S are given 
 

( )( ) ( )( )1 2 1 2
1 1 1
2

S S
S S S S S S S

S SQS D A QS D A Q sign Q S sign Q S
x x
∂ ∂⎛ ⎞ ⎛ ⎞ ⎡ ⎤− = − = + + −⎜ ⎟ ⎜ ⎟ ⎣ ⎦∂ ∂⎝ ⎠ ⎝ ⎠

 (2.1.97)

 

where S1S is the salinity at Node 1S and S2S is the salinity at Node 2S. 
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2.2 Water Flow in Two-Dimensional Overland Regime 

 
The governing equations for two-dimensional overland flow can be derived based on the 
conservation law of water mass and linear momentum [Wang and Connor, 1975].  The governing 
equations of a dynamic wave model in conservative form can be written as follows. 
 
The continuity equation: 
 

( ) ( )uh vhh S R E I
t x y

∂ ∂∂
+ + = + − +

∂ ∂ ∂
 (2.2.1) 

 

where h is the water depth [L]; u is the velocity component in the x-direction [L/t]; v is the velocity 
component in the y-velocity [L/t]; SS is the man-induced source [L3/t/L2]; SR is the source due to 
rainfall [L3/t/L2]; SE is the sink due to evapotranspiration [L3/t/L2]; and SI is the source from 
subsurface media due to exfiltration [L/t].   It should be noted that uh = qx is the flux the x-direction 
[L3/t/L2] and vh = qy is the flux in the y-direction [L3/t/L2]. 
 
The x-momentum equation: 
 

( ) ( ) ( ) ( )

( )

2

2
o yxxx

s b
S R E I x x

X X X X

Z h Fuh u uh v uh Fghgh
t x y x x x y

M M M M

∂ + ∂∂ ∂ ∂ ∂∂Δρ
+ + = − − − − +

∂ ∂ ∂ ∂ ρ ∂ ∂ ∂

τ −τ
+ − + +

ρ

 (2.2.2) 

 

where Zo is the bottom elevation of overland [L]; ]; Δρ = ρ - ρo is the density deviation [M/L3] from 
the reference density (ρo), which is a function of temperature and salinity as well as other chemical 
concentrations; S

XM  is the x-component of momentum-impulse from artificial sources/sinks [L2/t2]; 
R

XM  is the x-component of momentum-impulse gained from rainfall [L2/t2]; E
XM  is the x-

component of momentum-impulse lost to evapotranspiration [L2/t2]; I
XM  is the x-component of 

momentum-impulse gained from the subsurface media due to exfiltration [L2/t2]; Fxx and Fyx are the 
water fluxes due to eddy viscosity along the x-direction [L3/t2]; τxs is the component of surface shear 
stress along the x-direction over unit horizontal overland area [M/L/t2]; τxb  is the component of 
bottom shear stress along the x-direction over unit horizontal overland area [M/L/t2], which can be 
assumed proportional to the x-component flow rate, i.e., τxb/ρ = κ|V|u. 
 
The y-momentum equation: 
 

( ) ( ) ( ) ( )

( )

2

2
xy yyo

s b
y yS R E I

y y y y

F Fvh u vh v vh Z h ghgh gh
t x y y y x y

M M M M

∂ ∂∂ ∂ ∂ ∂ + ∂Δρ
+ + = − − − − +

∂ ∂ ∂ ∂ ρ ∂ ∂ ∂

τ − τ
+ − + +

ρ

 (2.2.3) 
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where S
yM is the y-component of momentum-impulse from artificial sources/sinks [L2/t2]; R

yM is 

the y-component of momentum-impulse gained from rainfall [L2/t2]; E
yM  is the y-component of 

momentum-impulse lost to evapotranspiration L2/t2]; I
yM  is the y-component of momentum-

impulse gained from the subsurface media due to exfiltration [L2/t2];  Fxy and Fyy are the water fluxes 
due to eddy viscosity along the y-direction [L3/t2]; τys is the component of surface shear stress along 
the y-direction over unit horizontal overland area [M/L/t2]; τyb is the component of bottom shear 
stress along the y-direction over unit horizontal overland area [M/L/t2], which can be assumed 
proportional to the y-component flow rate, i.e., τyb/ρ = κ|V|v. 
 
 
2.2.1 Fully Dynamic Wave Approaches 
 
Eqs. (2.2.1) through (2.1.3) written in conservative form are the governing equations for two-
dimensional flow in overland.  Depending on the simplification of the momentum equation, one can 
have three approaches: fully dynamic wave, diffusive wave, and kinematic wave.  For the fully 
dynamic wave approach, all terms in Eqs. (2.2.1) and (2.2.3) are retained.  Under such 
circumstances, the conservative form of the governing equations may be used or they may be cast in 
the advection form or in the characteristic form.   In this report, while the conservative form of fully 
dynamic wave equation is used as an option, the characteristic form of the fully dynamic approach 
will be used as a primary option.  The characteristic form is the most natural way to deal with 
hyperbolic-dominant equations and amenable to the advective numerical methods, for example the 
upstream approximation or the Lagrangian-Eulerian method. 
 
With an adequate mathematical manipulation, Eqs. (2.2.1) through (2.2.3) can be written in 
advective form as follows 
 

( )h h u h vu h v h S R E I
t x x y y

∂ ∂ ∂ ∂ ∂
+ + + + = + − +

∂ ∂ ∂ ∂ ∂
 (2.2.4) 
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y y y y y y
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v S R E I M M M M

h h
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− +

ρ

 (2.2.6) 

 

which can be written in matrix form as 
 

t x y
∂ ∂ ∂

+ + = +
∂ ∂ ∂x y
E E EA A R D  (2.2.7) 



 2-27

where 
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Let the matrix B be the linear combination of the matrices Ax and Ay as follows 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+

+

+

=+=⋅=

yxy

yxx

yxyx

yx

vkukgk

vkukgk

hkhkvkuk

kk

0

0yx AAkAB  (2.2.11)

 

where A is a third rank vector with the matrices Ax and Ay as its components and k is a unit vector.  
The eigenvalues and eigenvectors of the defined matrix B are 
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where kx and ky are the x- and y-component of the unit vector k. 
 



 2-28

Now we compose an eigenmatrix and its inverse from the eigenvectors of B as 
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Let us define a characteristic vector W by 
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where the first characteristic variable W1 is a vorticity or shear wave.  The second and third 
components, W2 and W3, are the amplitudes of the two gravity waves.   The multiplication of Eq. 
(2.2.7) by L-1 yields 
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or, with the transformation between E and W given by L-1∂E= ∂W, 
 

t x y
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x y

W W WL A L L A L L R L D  (2.2.18)

 
Substituting Ax and Ay in Eq. (2.2.8) and L-1 and L in Eq. (2.2.15) into Eq. (2.2.18), and 
performing matrix multiplication, we obtain 
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where 
ghc =  (2.2.20)
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It is noted that the coefficient matrices L-1AxL and L-1AyL, respectively, of (∂W/∂x) and (∂W/∂y), 
respectively, are not diagonal matrices because L-1 is not an eigenmatrix of Ax nor of Ay.  
Rearranging Eq. (2.2.19), we obtain 
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For a general consideration, we define a new L*-1 (and its inverse L*) which plays the following 
transformation.  
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where k = k(1)⋅k(2) is the inner product of k(1) and k(2).  It should be noted that two unit wave 
directions k(1) and k(2) should not be orthogonal so that the transformation will not be singular.   
Multiplying both side of Eq. (2.2.7) by this new L*-1 and repeating mathematical manipulations 
involved in Eqs. (2.2.19) and (2.2.21), we have 
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where 
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Substituting L*-1 defined in Eq. (2.2.23) into the right hand side of Eq. (2.2.24), we obtain 
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Writing out Eq. (2.2.26) in its three components, we have the following three equations for three 
unknowns W1, W2, and W3 
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( ) ( )(2) (2)2 2 2
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( ) ( )(2) (2)3 3 3
3 3 3x y

W W Wu ck v ck S A B
t x y

∂ ∂ ∂
+ − + − + = +

∂ ∂ ∂
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Equations (2.2.28), (2.29), and (2.230) indicate that the vorticity wave is advected by the velocity V, 
the positive gravity wave by V + ck(2), and the negative gravity wave by V - ck(2), where k(2) is a unit 
vector. 
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We can write Eq. (2.2.26) in Lagrangian form as 
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where V is the transporting velocity of the vorticity wave W1, (V + ck(2)) is the transporting velocity 
of positive gravity wave W2, and (V - ck(2)) is the transporting velocity of negative gravity wave W3. 
Substituting the definition of the characteristic variable W in Eq. (2.2.23) into Eq. (2.2.31), we have 
the following three equations for the three waves 
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It is noted that a diagonalization can be achieved with special selections of kx

(1), ky
(1), kx

(2), and ky
(2) 

to make  S1, S2, and S3 zeros. 
 
In solving Eqs. (2.2.28) through (2.2.30) or Eqs. (2.2.32) through (2.2.34), the water depth h, and the 
velocity components, u and v, must be given initially or they can be obtained by simulating the 
steady-state version of Eqs. (2.2.28) through (2.2.30).   In addition, appropriate boundary conditions 
need to be specified to match the corresponding physical system.  The characteristics form of the 
governing equation offers great advantages over the primitive form in adapting appropriate 
numerical algorithms and in defining boundary conditions.  Innovative hyperbolic numerical 
algorithms can be employed to approximate the system because each of the three equations is a 
decoupled advective transport equation of a wave.  The specification of boundary conditions is made 
easy pending the wave direction.  We demonstrate how boundary conditions are specified in the 
following.  An overland boundary segment can be either open or closed.  In the former case, the 
boundary condition for any wave is needed only when it is transported into the region of interest. 
When a wave is transported out of the region, there is no need to specify the boundary condition 
because internal flow dynamics due to this wave affects the boundary values of u, v, and h.  In the 
later case, the flow rate on the boundary is zero. 
 
Open upstream boundary condition: 
 
At an open upstream boundary segment, the vorticity is always transported into the region from 
upstream.  If the flow is supercritical, then both gravity waves also transported into the region from 
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upstream; thus three boundary conditions are needed.  The water depth and velocity components at 
the boundary are determined entirely by the flow condition that prevails at the upstream.  The 
governing equations for this case can be set up based on the continuity of mass as well as 
momentums between the upstream and boundary as 
 

( )
2 2

( ) , ;  ( , );   ( , )
2 2

up up up
n b x x b y y b

gh ghh q t uh n M t and vh n M t⋅ = ⋅ + = ⋅ + =n V x n V x n V x  (2.2.35)
 

where n is the outward unit vector of the boundary segment; ( , )up
n bq tx , a function of time t, is flow 

rate normal to the boundary from the upstream; bx  is the coordinate on the boundary; nx is the x-
component of n; ( , )up

x bM tx is the x-momentum/impulse from the upstream; ny is the y-component of 
n; and ( , )up

y bM tx  is the y-momentum/impulse from the upstream.  It is noted that u, v, and h from 

the upstream must be given to provide up
nq , up

xM and up
yM . 

 
In the case of subcritical flow, one of the two gravity waves is transported into the region while the 
other is transported out of the region.  The water depth and velocity are determined with the 
upstream flow condition and internal flow dynamics.  The governing equations are set up based on 
the continuity of mass between the boundary and the upstream and on the flow dynamics in the 
region as 
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A
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A
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where A  is the unit vector parallel to the boundary segment; ( ),up bH tx , a function of time t, is the 

water stage in the incoming fluid from the upstream; ( , )up
bq txA , a function of time t, is the flow rate 

parallel to the boundary. 
 
Open downstream boundary condition: 
 
At an open downstream boundary segment, the vorticity is always transported out of the region into 
downstream.  If the flow is supercritical, then both gravity waves also transported out of the region 
into downstream; thus three is no need to specify the boundary conditions.  The water depth and 
velocity components at the boundary are determined entirely by internal flow dynamics.  The 
governing equations for this case are given by 
 

( ) ( ) ( ) 000 === −+⊗ u,v,hFand;u,v,hF;u,v,hF  (2.2.37)
 

where ( )u,v,hF⊗ , a function of velocity and water depth, is the vorticity wave boundary function. 
 
In the case of subcritical flow, one of the two gravity waves is transported into the region from 
downstream while the other is transported out of the region into downstream.  The water depth and 
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velocity are determined by the internal flow dynamics and the control of the downstream boundary 
segment 
 

( ) ( )

( ) ( ) ( ) ( )
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= = = ⋅ =

x n V

x n V
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where hdn(t), a function of time t, is the water depth of the downstream boundary an qn
dn(h), a 

function of water depth h, is the rating curve of the downstream boundary. 
 
Closed upstream boundary condition: 
 
At the closed upstream boundary, physically all flow conditions can occur.  The vorticity wave is 
always transported from the outside of the boundary into the region. When the supercritical flow 
happens, both gravity waves are also transported into the region.  Thus, three boundary condition 
equations are needed.  Because the boundary is closed, it is impermeable.  The governing equations 
can be obtained by simply substituting qn

up = 0, Mx
up = 0, and My

up = 0 into Eq. (2.2.35) to yield 
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22
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ghnvhandghnuhh yx VnVnVn  (2.2.39)

 

The solutions for Eq. (2.2.39) are not unique.  One of the possible solution is u = 0, v = 0, and h = 0. 
 
When the flow is subcritical, one of the two gravity waves is transported from the outside of the 
boundary into the region while the other is transported from inside the boundary to the outside The 
boundary conditions are needed only for the incoming waves.  Since no fluid from the outside world 
is transported into the region via the closed boundary, one of the two boundary condition equations 
can be stated with Vn ⋅ = 0.  The other boundary equation can be obtained by assuming no slip 
condition on the boundary.  Thus, three governing equations are given as 
 

( ) ( )0;  0;   , , 0 0;  0;   , , 0h h and F u v h or   h h and F u v h+ −⋅ = ⋅ = = ⋅ = ⋅ = =n V V n V VA A  (2.2.40)
 

depending on which wave is transported out of the region. 
 
Closed downstream boundary condition: 
 
At the closed downstream boundary, physical condition dictates that normal flow rate at the 
boundary is zero.  The vorticity wave is always transported out of the region.  If the flow is 
supercritical, both gravity waves are also transported out of the region.  The velocity and water depth 
on the boundary is determined entirely by internal flow dynamics and no boundary condition is 
needed.  The governing equations are given by the wave boundary functions subject to the constraint 
that fluid flux is zero as follows: 
 

( ) ( ) ( ), , 0;   , , 0; , , 0 0F u v h F u v h and F u v h subject to⊗ + −= = = ⋅ =n V  (2.2.41)
 
The only feasible solution of Eq. (2.1.31) is u = 0, v = 0, and h = 0.  Therefore, supercritical flow 
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cannot occur at a closed downstream segment. 
 
In the case of subcritical flow, one of the two gravity waves is transported into the region while the 
other is transported out of the region.  The water depth and velocity are determined with the internal 
flow dynamics and the condition of zero normal flux as 
 

( ) ( ) ( ) ( ), , 0;  , , 0; 0   , , 0;  , , 0; 0F u v h F u v h and h or F u v h F u v h and h⊗ + ⊗ −= = ⋅ = = = ⋅ =n V n V (2.2.42)
 
Overland-river interface boundary condition: 
 
At the overland-river interface, the flux must be continuous as 
 

1 1 2 2Bank Bankh S and h S= =(n V) (n V)i i  (2.2.43)
 

where S1 and S2 are sources of water which appear in Eq. (2.1.1)  
 
 
2.2.2 Diffusive Wave Approaches 
 
For diffusion wave models, the inertia terms in Eqs. (2.2.2) and (2.2.3) are assumed not important 
when compared to the others.  With the further assumption that eddy viscosity is insignificant and 
Mx

S = Mx
R = Mx

E = Mx
I = My

S = My
R = My

E = My
I = 0, we approximate the velocity V = (u, v) as follows 
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Using the definition q = Vh and substituting Eq. (2.2.44) into Eq. (2.2.1), we obtain 
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H hK H Δρ S S S S
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in which 
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To achieve transient simulations, either water depth or stage must be given as the initial condition. In 
addition, appropriate boundary conditions need to be specified to match the corresponding physical 
system.  In our model, four types of boundary conditions may be specified depending on physical 
configurations of the boundary.  These boundary conditions are addressed below. 
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Dirichlet boundary condition: prescribed water depth or stage 
 
On a Dirichlet boundary, either the water depth or stage can be prescribed as a function of time.  
This boundary condition can be expressed as 
 

( ) 0, ( , ),d b d b dh h t or H h Z H t on B= = + =x x  (2.2.47)
 

where ( ),d bh tx  is a prescribed time-dependent water depth on the Dirichlet boundary [L], ( , )d bH tx  
is a prescribed time-dependent water stage [L], and Bd is the Dirichlet boundary segment.  A 
Dirichlet boundary segment can locate at the up-streams or down-streams, control structures, or even 
interior points. 
 
Flux boundary condition: prescribed flow rate 
 
On a flux boundary, a time-dependent flow rate is prescribed as a function of time as 
 

( ) ( ),
2 f

s

f b
hK H q t on B

gh
ρ

ρ ρ
⎛ ⎞

− ⋅ ∇ + ∇ Δ − =⎜ ⎟
⎝ ⎠

τn x  (2.2.48)

 

where n is an outward unit vector at the flux boundary point, ( ),f bq tx  a prescribed time-dependent 
flow rate [L3/t/L], and Bf is a flux boundary segment.  Mathematically, a flux boundary condition can 
be applied to an upstream or downstream segment.  However, in practice, it is often applied to an 
upstream boundary segment. 
 
Water depth-dependent boundary condition: prescribed rating curve 
 
This condition is often used to describe the flow rate at a downstream boundary at which the flow 
rate is a function of water depth.  It can be written as 
 

( ) ( )( ),
2

s

r r r
hK H q h x t on B

gh
ρ

ρ ρ
⎛ ⎞

− ⋅ ∇ + ∇ Δ − =⎜ ⎟
⎝ ⎠

τn  (2.2.49)

 

where qr(h(xr,t)) is a water depth-dependent flow rate [L3/t/L], xr is the x-coordinate on the boundary 
Br, and Br is a boundary segment on which the prescribed rating curve is applied. 
 
Overland-river interface boundary condition: 
 
At the overland-river interface, the flux must be continuous as 
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where S1 and S2 are sources of water which appear in Eq. (2.1.1)  
 
 
2.2.3 Kinematic Wave Approaches 
 
In a kinematic approach, all the assumptions for the diffusive approach are hold.  However, the 
velocity is given by modifying Eq. (2.2.44) with 0Z∇  replacing H∇  as follows 
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(2.2.51)

 
Substituting Eq. (2.2.51) into Eq. (2.2.1) and using the definition q = Vh, we obtain 
 

( ) S R E I
h h S S S S
t

∂
+∇ ⋅ = + − +

∂
V  (2.2.52)

 
It is noted that Eq. (2.2.52) represents the advective transport of the water depth, h.  It is an ideal 
equation amenable for numerically innovative advective transport algorithm. 
 
To achieve transient simulations, either water depth or stage must be given as the initial condition. In 
addition, appropriate boundary conditions need to be specified to match the corresponding physical 
configuration.  In a kinematic wave approach, boundary conditions are required only at upstream 
boundaries.  An upstream boundary segment can be an open boundary or a closed boundary.  On an 
open upstream boundary, either the water depth or the flow rate can be specified as 
 

( ) ( ), ,up up up up uph h t or h q t on B= ⋅ =x n V x  (2.2.53)
 

where ( ),up uph tx  is the water depth of the incoming upstream flow, ( ),up upq tx  is the flow rate of the 

incoming upstream flow, upx  is the coordinate on the upstream boundary, and upB  is the open 
upstream boundary segment.  The flow rate through a closed upstream boundary segment is by 
default equal to zero. 
 
 
2.2.4 Thermal Transport 
 
The thermal transport equation is derived based on the conservation principle of energy as: 
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cisebnra
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where ρw is the water density [M/L3]; Cw is the heat capacity of water [L2/t2/T]; T is the temperature 
[T]; DH is the apparent thermal conductivity tensor including the effect of dispersion, diffusion, and 
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conduction [E/L/t/T = ML/t3/T, where E is the unit of energy]; Ha is the heat source due to artificial 
injection/withdraw including rainfall [E/t/L2 = M/t3]; Hr is the heat source due to rainfall [E/t/L2 = 
M/t3]; Hn is the heat source due to net radiation [E/t/L2 = M/t3]; Hb is the heat sink due to back 
radiation from water surface to the atmosphere [E/t/L2 = M/t3]; He is the heat sink due to evaporation 
[E/t/L2 = M/t3]; Hs is the heat sink due to sensible heat flux [E/t/L2 = M/t3]; Hi is the heat source due 
to exfiltration from subsurface [E/t/L2 = M/t3]; and Hc is the heat source due to chemical reaction 
[E/t/L2 = M/t3].  In Eq. (2.2.54), Hr and Hi are given by 
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 (2.2.55)

 

where R is the rainfall rate [L/t], Tr is the temperature of the rainwater [T], I is the exfiltration rate 
[L/t], and Ti is the temperature of the exfiltration water from the subsurface flow [T].   Hn, Hb, He, 
and Hs are the net radiation flux, back radiation flux, latent heat flux, and sensible heat flux, 
respectively.  These fluxes depend on only meteorological condition and water temperature.  The 
formulation of these heat/energy fluxes were presented in Section 2.1. 
 
In addition to the initial boundary condition, boundary conditions must be specified for the 
temperature.  Four types of global boundary conditions are provided in this report as follows. 
 
Dirichlet boundary condition: 
 
This condition is applied when the temperature is prescribed as a function of time on the boundaries:  
 

( ),db b dT T t on B= x  (2.2.56)
 

where ( ),db bT tx  is a time-dependent temperature on the Dirichlet boundary dB  [T]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ) ( ),w w w w vb b vC T h T C T t on Bρ ρ⋅ − ⋅∇ = ⋅Hn q D n q x  (2.2.57)
 
< Case 2 > Flow is going out from inside: 
 

0 vh T on B− ⋅ ⋅∇ =Hn D  (2.2.58)
 

where ( ),vb bT tx  is a time-dependent temperature on the variable boundary vB  [T], which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
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This boundary condition is employed when the total heat-flow rate is given at the boundary.  
Usually, this boundary is a flow-in boundary.  The conditions can be expressed as 
 

( ) ( )w w cb cC T h T t on Bρ⋅ − ⋅∇ = ΦHn q D  (2.2.59)
 

where ( )tcbΦ  is total heat flux on the Cauchy boundary cB  [E/L/t = ML/t3, where E denotes the unit 
of energy], which takes a positive value if it is going out of the region and a negative value if it is 
coming into the region. 
 
Neumann boundary condition: 
 
This boundary condition is used when the conductive heat-flow rate is known at the boundary.  It 
can be written as 
 

( ),nb b nh T t on B− ⋅ ⋅∇ = ΦHn D x  (2.2.60)
 

where ( ),nb b tΦ x  is the heat flux on the Neumann boundary nB  [E/L/t]. 
 
In addition to the four types of global boundary conditions, an internal boundary condition may be 
specified for the exchange of energy/heat flux between the overland and river/stream network.  
Mathematically, this boundary condition is described below. 
 
Overland-river interface boundary condition: 
 

( ) ( )1 2
1 2    o o

w w Bank h w w Bank hC T h T S and C T h T Sρ ρ⋅ − ⋅∇ = ⋅ − ⋅∇ =H Hn q D n q D  (2.2.61)
 

where Sh
o1 and Sh

o2 are the heat sources, which appeared in Eq. (2.1.67).  These heat sources can be 
calculated using Eq. (2.1.69) if the temperatures in the overland water and river water are 
discontinuous at the interfaces.  If the temperatures are continuous, then these heat sources should be 
formulated by imposing the continuity of the temperatures in the overland water and river water at 
the interface. 
 
 
2.2.5 Salinity Transport 
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where S is the salinity [M/L3]; DS is the longitudinal dispersion coefficient for salt [L2/t]; Ms
as is the 

artificial source of the salt [M/t//L2]; Ms
rs is the salt source from rainfall [M/t/L2; Ms

es is the salt sink 
from evaporation [M/t/L2]; Ms

is is the salt source from subsurface [M/t/L2].  In Eq. (2.2.62), Ms
es is 

likely to be zero and Ms
rs and Ms

is are given by 
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where R is the rainfall rate [L/t], Sr is the salinity of the rainwater [M/L3], I is the exfiltration rate 
[L/t], and Si is the salinity of the exfiltration water from the subsurface flow [M/L3]. 
 
As in thermal transport, four types of global boundary conditions for salinity transport are provided 
in this report as follows. 
 
Dirichlet boundary condition: 
 
This condition is applied when the salinity is prescribed as a function of time on the boundaries:  
 

( ),db b dS S t on B= x  (2.2.64)
 

where ( ),db bS tx  is a time-dependent salinity on the Dirichlet boundary dB  [M/L3]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ) ( ),vb b vS h S S t on B⋅ − ⋅∇ = ⋅Sn q D n q x  (2.2.65)
 
< Case 2 > Flow is going out from inside: 
 

0 vh S on B− ⋅ ⋅∇ =Sn D  (2.2.66)
 

where ( ),vb bS tx  is a time-dependent salinity on the variable boundary vB  [M/L3], which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total salt-flow rate is given at the boundary.  Usually, 
this boundary is a flow-in boundary.  The conditions are expressed as 
 

( ) ( ),cb b cS h S S t on B⋅ − ⋅∇ =Sn q D x  (2.2.67)
 

where ( ),cb bS tx  is total salt-flow rate on the Cauchy boundary cB  [M/L/t], which takes a positive 
value if it is going out of the region and a negative value if it is coming into the region. 
 
Neumann boundary condition: 
 
This boundary condition is used when the dispersive salt-flow rate is known at the boundary.  t can 
be written as 
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( )nb nh S S t on B− ⋅ ⋅∇ =Sn D  (2.2.68)
 

where ( )nbS t is the salt flux on the Neumann boundary [M/L/t]. 
 
As in thermal transport, in addition to the four types of global boundary conditions, an internal 
boundary condition may be specified for the exchange of salt between the overland and river/stream 
network.  Mathematically, this boundary condition is described below. 
 
River-overland interface boundary condition: 
 

( ) ( )1 2
1 2

S o S o
Bank s Bank sS h S M and S h S M⋅ − ⋅∇ = ⋅ − ⋅∇ =n q D n q D  (2.2.69)

 

where Ms
o1 and Ms

o2, which appeared in Eq. (2.1.86),  are the salt sources from overland into the 
rivers.  These salt sources can be calculated using Eq. (2.1.88) if the salinity in the overland water 
and river water are discontinuous at the interfaces.  If the salinity is continuous, then these salt 
sources should be formulated by imposing the continuity of salinity in the overland water and river 
water at the interface. 
 
 
 
2.3 Water Flow in Three-Dimensional Subsurface Media 

 
2.3.1 Water Flow 
 
The governing equation of subsurface density dependent flow through saturated-unsaturated porous 
media can be derived based on the conservation law of water mass (Yeh, 1987; Yeh et al., 1994; Lin 
et al., 1997).  It is written as follows. 
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where ρ is the density of water; ρo is the reference density of water; h is the referenced pressure head 
[L]; t is the time [t]; K is the hydraulic conductivity tensor [L/t]; z is the potential head [L]; ρ* is the 
density of source water; q is the source and/or sink [L3/L3/t]; and F is the water capacity [1/L] given 
by 
 

dh
dSn

n
aF ee

e

e ++= θβ
θ

''  (2.3.2) 
 

where 'a  is the modified compressibility of the medium [1/L], θe is the effective moisture content 
[L3/L3], ne is the effectively porosity [L3/L3], 'β  is the compressibility of water [1/L], and S is the 
degree of saturation.  The Darcy’s velocity is given by 
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To achieve transient simulation, the following initial condition needs to be given. 
 

( ) ,Rinhh i x=  (2.3.4) 
 

where R is the region of interest and hi is the prescribed pressure head [L], which can be obtained by 
either field measurements or by solving the steady state version of Eq. (2.3.1). 
 
Five types of boundary conditions are taken into account as follows. 
 
Dirichlet boundary condition: 
 
This boundary condition is used when pressure head can be prescribed on the boundary.  It can be 
expressed as 
 

( ) ( ) 0, == xx dd Bonthh  (2.3.5) 
 

where hd(x,t) is the Dirichlet head on the boundary surface Bd(x) = 0 
 
Neumann boundary condition: 
 
This boundary condition is employed when the flux results from pressure-head gradient is known as 
a function of time.  It is written as 
 

( ) ( ) 0, ==∇⋅⋅− xxKn nn
o Bontqh
ρ
ρ  (2.3.6) 

 

where qn(x,t) is the Neumann flux and Bn(x) = 0 is the Neumann boundary surface. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the flux results from total-head gradient is known as a 
function of time.  It can be written as 
 

( ) ( ) 0, ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅+∇⋅⋅− xxKKn cc

o Bontqzh
ρ
ρ  (2.3.7) 

 

where qc(x,t) is the Cauchy flux and Bc(x) = 0 is the Cauchy boundary surface. 
 
River Boundary Condition: 
 
This boundary condition is employed when there is a thin layer of medium separating the river and 
the subsurface media. 
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where KR is the hydraulic conductivity of the thin layer, bR is the thickness of the thin layer, hR is the 
water depth in the river, and Br(x) = 0 is the surface between the river and subsurface media. 
 
Variable Boundary Condition: 
 
This boundary condition is usually used for the ground surface boundary when the coupling of 
surface and subsurface systems is not taken into account. 
 
(1) During precipitation periods: 
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( ) ( ), 0o
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 (2) During non-precipitation period:  
 

( ) ( ), 0 0o
p vh h t iff h z on Bρ

ρ
⎛ ⎞
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( ) ( ), 0o
m e vh h t iff h z q on Bρ
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⎛ ⎞
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( ) ( ), 0o
e m vh z q t iff h h on Bρ
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where hp(x,t) is ponding depth, qp(x,t) is the flux due to precipitation, hm(x,t) is the minimum 
pressure head, and qe(x,t) is the potential evaporation rate on the surfaces of the variable boundary 
condition Bv(x) = 0.  Only one of Eqs. (2.3.9) through (2.3.13) is used at any point on the variable 
boundary at any time. 
 
 
2.3.2 Thermal Transport 
 
The thermal transport equation is derived based on the conservation principle of energy as: 
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where ρw is the water density [M/L3]; Cw is the heat capacity of water [L2/t2/T];  θ is the moisture 
content [L3/L3]; ρb is the bulk density of the media [M/L3]; Cm is the heat capacity of the matrix 
[L2/t2/T]; T is the temperature [T]; DH is the apparent thermal conductivity tensor including the 
effect of dispersion, diffusion, and conduction [E/t/L/T = ML/t3/T, where E is the unit of energy]; Ha 
is the heat source due to artificial injection/withdraw [E/t/L3 = M/L/t3], and Hc is the heat source due 
to chemical reaction [E/t/L3 = M/L/t3]. 
 
In addition to the initial boundary condition, boundary conditions must be specified for the 
temperature.  Five types of global boundary conditions are provided in this report as follows. 
 
 
Dirichlet boundary condition: 
 
This condition is applied when the temperature is prescribed as a function of time on the boundaries:  
 

( ) ( ), ,     ( ) 0db dT t T t on B= =x x x  (2.3.15)
 

where ( ),dbT tx  is a time-dependent temperature on the Dirichlet boundary Bd(x) = 0 [T]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ) ( ), ( ) 0w w w w vb vC T T C T t on Bρ ρ⋅ − ⋅∇ = ⋅ =Hn V D n V x x  (2.3.16)
 
< Case 2 > Flow is going out from inside: 
 

0 ( ) 0vT on B− ⋅ ⋅∇ = =Hn D x  (2.3.17)
 

where ( ),vbT tx  is a time-dependent temperature on the variable boundary, Bv(x) = 0, [T], which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total heat-flow rate is given at the river/stream 
boundary.  Usually, this boundary is an upstream boundary node.  The conditions can be expressed 
as 
 

( ) ( ), ( ) 0w w cb cC T T H t on Bρ⋅ − ⋅∇ = =Hn V D x x  (2.3.18)
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where ( ),cbH tx   is total heat flux through the Cauchy boundary, Bc(x) = 0, [E/L2/t = M/t3, where E 
denotes the unit of energy], which takes a positive value if it is going out of the region and a 
negative value if it is coming into the region. 
 
Neumann boundary condition: 
 
This boundary condition is used when the conductive heat-flow rate is known at the river/stream 
boundary node.  It can be written as 
 

( ), ( ) 0nb nT H t on B− ⋅ ⋅∇ = =Hn D x x  (2.3.19)
 

where ( ),nbH tx  is the heat flux through the Neumann boundary, Bn(x) = 0, [E/L2/t]. 
 
Atmosphere-subsurface interface boundary condition: 
 
At the interface of the atmosphere and subsurface media, a heat budget boundary condition is 
specified as 
 

( ) sebnww HHHHTTC −−−=∇⋅−⋅− HDVn ρ  (2.3.20)
 

where Hn, Hb, He, and Hs are calculated using Eqs. (2.1.71) through (2.1.76). 
 
In addition to the five types of global boundary conditions, two interface boundary conditions may 
be specified: one for the exchange of energy/heat flux between the subsurface media and 
river/stream network and the other for energy/heat exchange between the subsurface media and the 
overland.  Mathematically, these boundary conditions are described below. 
 
Subsurface-river interface boundary condition: 
 

( ) i
hww

P

SdPTTC =∇⋅−⋅∫ HDVn ρ  (2.3.21)
 

where Sh
i is the heat sources in Eq. (2.1.67) and P is the wet perimeter of the river.  The heat source 

can be calculated using Eq. (2.1.68) if the temperatures in the subsurface and river are discontinuous 
at the interfaces.  If the temperatures are continues, then this heat source should be formulated by 
imposing the continuity of the temperatures in the subsurface and river water at the interfaces. 
 
Subsurface-overland interface boundary condition: 
 

( ) iww HTTC =∇⋅−⋅ HDVn ρ  (2.3.22)
 

where Hi is the heat source in Eq. (2.2.54).  This heat source can be calculated using Eq. (2.2.55) if 
the temperatures in the subsurface and overland are discontinuous at the interface.  If the 
temperatures are continues, then this heat source should be formulated by imposing the continuity of 
the temperatures in the subsurface and overland at the interface. 
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2.3.3 Salinity Transport 
 

( ) ( ) ( ) asS
S S S

t
θ

θ
∂

+ ∇⋅ − ∇ ⋅ ⋅∇ =
∂

SV D  (2.3.23)
 

where S is the salinity [M/L3]; DS is the longitudinal dispersion coefficient [L2/t]; and Sas is the 
artificial source of the salt [M/L3/t]. 
 
As in thermal transport, four types of global boundary conditions for salinity transport are provided 
in this report as follows. 
 
Dirichlet boundary condition: 
 
This condition is applied when the salinity is prescribed as a function of time on the boundaries:  
 

( ) ( ), , ( ) 0db dS x t S t on B= =x x  (2.3.24)
 

where ( ),dbS tx  is a time-dependent salinity on the Dirichlet boundary, Bd(x) = 0, [M/L3]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ) ( ), ( ) 0vb vS S VS t on Bθ⋅ − ⋅∇ = ⋅ =Sn V D n x x  (2.3.25)
 
< Case 2 > Flow is going out from inside: 
 

0 ( ) 0vS on Bθ− ⋅ ⋅∇ = =Sn D x  (2.3.26)
 

where Svb(x,t) is a time-dependent salinity [M/L3] on the variable boundary, Bv(x) = 0, which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total salt-flow rate is given at pervious boundaries.  
Usually, this boundary is a flow-in boundary.  The conditions are expressed as 
 

( ) ( ), ( ) 0scb cS S Q t on Bθ⋅ − ⋅∇ = =Sn V D x x  (2.3.27)
 

where ( ),scbQ tx  is total salt-flow rate [M/L2/t] through the Cauchy boundary, Bc(x) = 0, which takes 
a positive value if it is going out of the region and a negative value if it is coming into the region. 
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Neumann boundary condition: 
 
This boundary condition is used when the dispersive salt-flow rate is known at the boundary.  It can 
be written as 
 

( ),snbS Q tθ− ⋅ ⋅∇ =Sn D x  (2.3.28)
 

where ( ),snbQ tx  is the salt flux through the Neumann boundary, Bn(x) = 0, [M/L2/t]. 
 
In addition to the four types of global boundary conditions, two interface boundary conditions may 
be specified: one for the exchange of salt flux between the subsurface media and river/stream 
network and the other for salt exchange between the subsurface media and the overland.  
Mathematically, these boundary conditions are described below. 
 
Subsurface-river interface boundary condition: 
 

( ) i
s

P

S S dP Mθ⋅ − ⋅∇ =∫ Sn V D  (2.3.29)
 

where Ms
i is the salt source in Eq. (2.1.86) and P is the wet perimeter of the river.  The salt source 

can be calculated using Eq. (2.1.87) if the salinity in the subsurface and river is discontinuous at the 
interfaces.  If the salinity is continuous, then this salt source should be formulated by imposing the 
continuity of the salinity in the subsurface and river at the interface. 
 
Subsurface-overland interface boundary condition: 
 

( ) is
sS S Mθ⋅ − ⋅∇ =Sn V D  (2.3.30)

 

where Ms
is is the salt source in Eq. (2.2.62).  This salt source can be calculated using Eq. (2.2.63) if 

the salinity in the subsurface and overland is discontinuous at the interface.  If the salinity is 
continuous, then this salt source should be formulated by imposing the continuity of the salinity in 
the subsurface and overland at the interface. 
 
 
 
2.4 Coupling Fluid Flows Among Various Media 

 
One of the critical issues in a first principle physics-based watershed model is its treatments of 
coupling among various media.  There appear a number of watershed models that have dealt with 
each component medium on the bases of first principle in the past decade (MIKE11-MIKE SHE 
[Abbott et al., 1986a, 1986b], SHETRAN [Ewen et al., 2000], MODFLOW-HMS [HydroGeoLogic, 
Inc., 2001], InHM [VanderKwaak, 1999], GISWA [Wigmosta and Perkins, 1997], SFRSM-HSE 
[SFWMD, 2005], COSFLOW [Yeh et al., 1997], WASH123D  Version 1.0 [Yeh et al., 1998]).  
However, rigorous considerations on coupling among media seemed lacking.  For example, a 
linkage term is normally formulated between the river/stream/canal dynamics and subsurface fluid 
flow (e.g., MODNET [Walton et al., 1999]) or between overland and subsurface flows (e.g., 
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MIKE11-MIKE SHE [http://www.dhisoftware.com/mikeshe/; 
http://www.dhisoftware.com/mikeshe/components]).  The linkage term usually introduces non-
physical parameters.   As a result, such watershed models have degraded even though each media-
component module has taken a first principle physics-based approach.  A rigorous treatment of 
coupling media should be based the continuity of mass, momentum, and state variables. This is the 
approach taken in this report.  Mathematical statements on coupling between pairs of media are 
address below. 
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2.4.1 Coupling between River/Stream/Canal and Overland Flows 
 
The fluxes between overland regime and canals/streams/rivers network are dynamics and depend on 
the water surface elevations in the vicinity of the interface between canal/stream/river and overland 
regime (Fig.  2.4-1).  The basic principle of coupling is to impose continuous of fluxes and the state 
variables (water surface elevations, temperature, and salinity in the overland and in the canal) if 
these state variables do not exhibit discontinuity.  If the state variables exhibit discontinuity, then the 
linkage term is used to simulate the volumetric fluxes or simplified formulations of heat fluxes and 
salinity fluxes are imposed.  
 
When a levee is present on the bank of the canal (left column in Fig. 2.4-1), there are several 
possibilities on the dynamic interactions between overland flow and river flow dynamics.  If water 
surfaces in both the overland regime and river are below the top of the levee, the two flow systems 
are decoupled (Fig. 2.4-1a). 
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Fig. 2.4-1.  Flow interactions between overland regime and canal: bank with levee (left column) 

and bank without levee (right column) 
 
 
When the water surface in the overland regime is above the top of the levee and in the canal is below 
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the top of the levee (Fig. 2.4-1b), the flux is a function of the water depth in the overland regime 
given 
 

( ) ( )Bo
o

O
oco ZhfShhfqq ;1 ==⋅⇒== Vn  (2.4.1) 

 

where qo is the outward normal flux of the overland flow, qc is the lateral flow from the overland to 
the canal, ho is the water depth in the overland regime, f(ho) is a prescribed function of ho given by 
the shape and width of the levee,  n is the outward unit vector (from the overland side) of the 
overland-canal interface, V is the velocity in the overland regime, S1 is defined in Eq. (2.1.1), Zo|B is 
the bottom elevation evaluated at the canal bank (in this case Zo|B is the elevation of the top of the 
levee).  The coupling of thermal and/or salinity transport between the overland regime and river 
networks for this case can be stated as 
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where To is the temperature of the overland water at the interface and So is the salinity of the 
overland water at the interface.  
 
On the other hand, when the water surface in the overland regime is belowe the top of the levee and 
in the canal is above the top of the levee (Fig. 2.4-1c), the flux is a function of the water depth in the 
overland regime given by 
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where hc is the water depth in the canal and f(hc) is a prescribed function of hc.  The coupling of 
thermal and salinity transport between the overland regime and river networks for this case can be 
stated as 
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where Tc is the temperature of the canal water at the interface and Sc is the salinity of the canal water 
at the interface.  
 
When the water surfaces in both the overland and canal are above the top of the levee (Fig. 2.4-1d), 
then the continuity of fluxes and state variables must be imposed as 
 

( ) ( )1
o c o c

O o O o Cq q h S and H H h Z h Z= ⇒ ⋅ = = ⇒ + = +n V  (2.4.5) 
 

where (h + Zo)|O denotes that (h + Zo) is evaluated at point O (Fig. 2.4-1 d).  Similarly, (h + Zo)|C 
denotes that (h + Zo) is evaluated at point C.  The coupling of thermal and/or salinity transport 
between the overland regime and river networks for this case can be obtained by formulating the 
fluxes 
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where sign(S1) is 1.0 if the flow is from overland to canal, -1.0 if the flow is from canal to overland.  
For this case, the temperature and salinity in the canal may be the same as those in the overland 
water at the interface.  If this is the case, we impose the continuity of temperature and/or salinity to 
yield the fluxes 
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When a levee is not present on the bank of the canal (right column in Fig. 2.4-1), there are two 
possibilities on the dynamic interactions between overland flow and river flow dynamics.  If water 
surface in the canal falls below the bank, the flux is either zero if the overland flow is not present or 
is nonzero and directed from the overland into the canal if overland flow is present (Fig. 2.4-1 e) as 
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where S2 is defined in Eq. (2.1.1) and Zo|B is the bottom elevation evaluated at point O on the canal 
bank.  The coupling of thermal and/or salinity transport between the overland regime and river 
networks for this case can be stated as 
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When the water surface in the canal is above the bank (Figs. 2.4-1f and 2.4-1.g), the flux direction 
can be either from the overland into the canal or from the canal into the overland depending on the 
flow dynamics in the overland and in the canal.  The direction of the flux and its magnitude are 
obtained by imposing the continuity of flux and state variables  
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The coupling of thermal and/or salinity transport between the overland regime and river networks 
for this case can be stated as 
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For these two cases (Fig. 2.4-1f and 2.4-1g), the temperature and salinity in the canal may be the 
same as those in the overland water at the interface.  If this is the case, we impose the continuity of 
temperature and/or salinity to yield the fluxes 
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2.4.2 Coupling between Overland and Subsurface Flows 
 
The fluxes between overland and subsurface media are obtained by imposing continuous of fluxes 
and state variables if these state variables do not exhibit discontinuity.  If the state variables exhibit 
discontinuity, then a linkage term is used to simulate the fluxes.  Consider the interaction between 
the overland subsurface and subsurface flows.   There are two cases: in one case, there is no 
impermeable layers on the ground surface (Fig. 2.4-2a) and, in another case, there are thin layers of 
very impermeable layers such as pavements or sediment deposits on the ground surface (Fig. 2.4-
2b). 
 
For the case of no impermeable layers on the ground surface (Fig. 2.4-2a), it can easily be seen that 
the pressures in the overland flow (if it is present) and in the subsurface media will be continuous 
across the interface.  Thus, the interaction must be simulated by imposing continuity of pressures 
and fluxes as 
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where ho is the water depth in the overland if it is present, hs is the pressure head in the subsurface, 
Qo is the flux from the overland to the interface and Qs is the flux from the interface to the 
subsurface media, I is defined in Eq. (2.2.1), n is an outward unit vector of the ground subsurface, K 
is the hydraulic conductivity tensor, and hs is the pressure head in the subsurface media.  The use of 
a linkage term such as Qo = Qs = K(ho - hs), while may be convenient, is not appropriate because it 
introduces a non-physics parameter K.  The calibration of K to match simulations with field data 
renders the coupled model ad hoc even though the overland and subsurface flows are each 
individually physics-based. 
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Fig. 2.4-2.  Flow interactions between overland regime and subsurface media. 

 
For the cases with thin impervious layers (Fig. 2.4-2b), one can include the impervious layers as part 
of the subsurface media or exclude these layers from the modeling.   If one includes the thin layers, 
then it is obvious the pressures in the overland flow and in the layer are continuous across the 
interface, thus continuity of pressures and fluxes must imposed to simulate the interaction.  On the 
other hand, if the thin layers are not included, it is obvious, the pressures in the overland flow and 
the subsurface are not continuous across the removed layers, then a linkage term is used to model the 
flux between across interface as 
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where Kb and b are the hydraulic conductivity and thickness, respectively, of the removed bottom 
sediment layer.  These parameters in the linkage term are the material properties and geometry of the 
removed layer.  These parameters, in theory, can be obtained independent of model calibration. 
 
The coupling of thermal and/or salinity transport between the overland regime and subsurface media 
can be stated as 
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where sign(I) is 1.0 if I is positive and is -1.0 if negative; Ts is the temperature of subsurface water at 
the interface; To is the temperature of overland water at the interface; Ss is the salinity of subsurface 
water at the interface; and So is the salinity of overland water at the interface.  
 
The temperature and salinity in the overland water may be the same as those in the subsurface water 
at the interface.  If this is the case, we impose the continuity of temperature and/or salinity to yield 
the fluxes 
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2.4.3 Coupling between Subsurface and River/Stream/Canal Flows 
 
The fluxes between canal and subsurface are obtained by imposing continuous of fluxes and state 
variables if these state variables do not exhibit discontinuity.  If the state variables exhibit 
discontinuity, then a linkage term is used to simulate the fluxes.  Consider the interaction between 
the canal and subsurface.  There are two cases: in one case, there is not any thin layer of sediment 
materials (Fig. 2.4-3a) and, in another case, there are thin layers of sediment materials between the 
canal bottom and the top of surface media (Fig. 2.4-3b). 
 
For the case of no thin layer of sediments (Fig. 2.4-3a), it can easily be seen that the pressures in the 
canal and in the subsurface media will be continuous across the interface of canal bottom and 
subsurface media.  Thus, the interaction must be simulated by imposing continuity of pressure and 
flux as follows. 
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where hc is the water depth in the canal, hs is the pressure head in the subsurface, Qc is the flux from 
the canal to the interface and Qs is the flux from the interface to the subsurface media, SI is defined 
in Eq. (2.1.1),  n is an outward unit vector of the subsurface media interfacing the canal, K is the 
hydraulic conductivity tensor of the subsurface media, hs is the pressure head in the subsurface 
media, and P is the wet perimeter of the canal.  The use of a linkage term such as Qc = Qs = K(hc - 
hs), while may be convenient, is not appropriate because it introduces a non-physics parameter K. 
The calibration of K to match simulations with field data renders the coupled model ad hoc even 
though the canal and subsurface flows are each individually physics-based. 
 
For the cases with thin layers of sediments (Fig. 2.4-3b), one can include the sediment layers as part 
of the subsurface media or exclude these layers from the modeling.  If one includes the thin layers, 
then it is obvious the pressures in the canal and in the sediment layer are continuous across the 
interface of canal bottom and the top of the thin layers, thus continuity of pressures must imposed to 
simulate the interaction.  On the other hand, if the thin layers are excluded (Fig. 2.4-3c), the 
pressures in the canal and subsurface are not continuous across the bottom of canal and the top of 
subsurface media, then, a linkage term can be used to model the flux between the canal and surface 
media as 
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Fig. 2.4-3.  Flow interactions between canal and subsurface media. 
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where Kb and b are the hydraulic conductivity and thickness, respectively, of the removed bottom 
sediment layer.  These parameters in the linkage term are the material properties and geometry of the 
removed layer.  These parameters, in theory, can be obtained independent of model calibration. 
 
The coupling of thermal and/or salinity transport between the canal and subsurface media can be 
stated as 
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where sign(SI) is 1.0 if SI is positive and is -1.0 if negative; Ts is the temperature of subsurface water 
at the interface; Tc is the temperature of canal water at the interface; Ss is the salinity of subsurface 
water at the interface; and Sc is the salinity of canal water at the interface.  
 
Similar to the interaction between the overland regime and subsurface media, the temperature and 
salinity in the canal water may be the same as those in the subsurface water at the interface.  If this is 
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the case, we impose the continuity of temperature and/or salinity to yield the fluxes 
 

( )

( )

  i s c
w w h on the surface

P

S i s c
s on the surface

P

C T T dP S and T T and

S S dP M and S S

⋅ ρ − ⋅∇ = =

⋅ − θ ⋅∇ = = =

∫

∫

Hn V D

n V D
 (2.4.20)

 
 
 
2.5 Sediment and Water Quality Transport in 1D River/Stream/Canal Networks 

 
In WASH123D, sediments are categorized based on their physical and chemical properties. For each 
category of sediment, we include mobile suspended sediment particles scattered in water column and 
immobile bed sediment particles accumulated in river/stream bed. The distribution of suspended 
sediment and bed sediment is controlled through hydrological transport as well as erosion and 
deposition processes.  
 
In river/stream networks, there are six phases and three forms of biochemical species. As shown in 
Figure 2.5-1, the six phases are suspended sediment, bed sediment, mobile water, immobile water, 
suspension precipitate, and bed precipitate phases; and the three forms are dissolved biochemicals, 
particulate biochemicals sorbed onto sediments, and precipitates. Usually, biochemical species in the 
suspended sediment phase, the mobile water phase and the suspension precipitate phase are 
considered mobile.  Biochemical species in the bed sediment phase, the immobile water phase and 
the bed precipitate phase are considered immobile.  
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2.5-1. Sediments and Chemicals in River/Stream Networks 
 
A reactive system is completely defined by specifying biogeochemical reactions (Yeh, et al. 2001a). 
 In the transport simulation, biogeochemical reactions can be divided into two classes (Rubin, 1983): 
(1) Fast/equilibrium reactions, and (2) Slow/kinetic reactions.  The former are sufficiently fast 
compared to transport time scale and reversible, so that local equilibrium may be assumed.  The 
latter are not sufficiently fast compared to transport time scale.  They are either reversible or 
irreversible, where the local equilibrium formulation is inappropriate.  
 

  
                                              CS1 
            CS3           SP  
                                                  SS1 
                            CMW                   
            SS3                     CS2    SS2 
                                                                             CB3 
                                     BP            CIMW            BS3 
   
 

CB2    BS2         CB1            BS1  



 2-56

As shown in Figure 2.5-2, the biogeochemical reactions considered in the model can be categorized 
into ten types which take place between various phases:  (1) aqueous complexation in column water, 
(2) adsorption/desorption or ion-exchange to suspended sediment, (3) precipitation/dissolution in 
water column, (4) adsorption/desorption or ion-exchange between column water and bed sediment, 
(5) aqueous complexation in pore water, (6) adsorption/desorption or ion-exchange to bed sediment, 
(7) precipitation/dissolution in bed, (8) volatilization reactions from water column to the atmopshere, 
(9) diffusion reactions between column and pore water, and (10) sedimentation reactions.  Any 
individual reaction representing any of these chemical and physical processes may be simulated as 
kinetic or as equilibrium, which makes the code extremely flexible for application to a wide range of 
biogeochemical transport problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.5-2.  Biogeochemical Reactions Considered in the Model 
 
 
2.5.1 Bed Sediment 
 
The balance equation for bed sediments is simply the statement that the rate of mass change is due to 
erosion/deposition as 
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where P is the river/stream cross-sectional wetted perimeter [L], Mn is wetted perimeter-averaged 
concentration of the n-th bed sediment in mass per unit bed area [M/L2], Dn is the deposition rate of 
the n-th sediment in mass per unit bed area per unit time [M/L2/T], Rn is the erosion rate of the n-th 
sediment in mass per unit bed area per unit time [M/L2/T],  

n

is
MM  is the source of the n-th sediment 

from groundwater exfiltration in mass per unit river length [M/L/T], and NS is the total number of 
sediment size fractions. Concentrations of all bed sediments must be given initially for transient 
simulations. No boundary condition is needed for bed sediments. In equation (2.5.1), we estimate the 
deposition and erosion rates using the different equations for cohesive and non-cohesive sediments. 
 
For cohesive sediments, e.g., silt and clay, following equations are used (Yeh et al., 1998; Gerritsen 

(1) Aqueous complexation in mobile water phase, 
(2) Adsorption/desorption or ion-exchange between 
mobile water and suspended sediment phases,  
(3) Precipitation/dissolution between mobile water 
and suspension precipitate phases, 
(4) Adsorption/desorption or ion-exchange between 
mobile water and bed sediment phases,  
(5) Aqueous complexation in immobile water phase, 
(6) Adsorption/desorption or ion-exchange between 
immobile water and bed sediment phases,  
(7) Precipitation/dissolution between immobile water 
and bed precipitate phases, 
(8) Volatilization from mobile water phase, 
(9) Diffusion between mobile and immobile water 
phases, 
(10) Sedimentation of particulates between 
suspended and bed sediment phases 
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et al., 2000) 
 

( ) ( )min ,   where max 0,  1n sn n Dn n Dn b cDnD V S P S h t P τ τ= Δ = −  (2.5.2) 
and 

( ) ( )0min ,  where  max 0,  1n n Rn n Rn b cRnR E P DMA t P τ τ= Δ = −  (2.5.3) 
 

where Vsn is the settling velocity of the n-th sediment [L/T], Sn is the cross-section-averaged 
suspended concentration of n-th sediment [M/L3], h is the water depth [L], ∆t is the time step size 
[T], τb is the bottom shear stress or the bottom friction stress [M/L/T2], τcDn is the critical shear stress 
for the deposition of the n-th sediment [M/L/T2], E0n is the erodibility of the n-th sediment [M/L2/T], 
DMAn is the amount of locally available dry matter of n-th sediment, expressed as dry weight per 
unit area [M/L2], τcRn is the critical shear stress for the erosion of the n-th sediment [M/L/T2]. 
 
For Non-cohesive sediments, e.g., sand, we have two options. 
 
Option 1 (Prandle et al., 2000) 
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where VcDn and VcRn represent the critical friction velocities for the onset of deposition and erosion, 
respectively [L/T].  
 
Option 2 (Yeh et al., 1998) 
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where GsAn is the actual load rate of the n-th sediment per unit width at a upstream location [M/L/T], 
Gsn is the maximum load rate of the n-th size fraction sediment per unit width at a downstream 
location [M/L/T], ΔL is the distance between the upstream and the downstream locations.  
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sn

n sn

VRSG
gd
ρ τ τ

ρ ρ
−

=
−

 (2.5.9) 
 

where V is the river/stream flow velocity [L/T], R is hydraulic radius [L], ρ is the density of water 
[M/L3], S is the friction slope, τcrn is the critical bottom shear stress of the n-th sediment at which 
sediment movement begins [M/L/T2], g is gravity [L/T2], dn is the median diameter of the n-th 
sediment particle [L], and ρsn is the density of the n-th sediment [M/L3].  
 



 2-58

It should be noted that equations (2.5.2) through (2.5.9) are the sample models programmed in the 
computer code to estimate sediment deposition and erosion rate. Any other phenomenological model 
equation can be easily incorporated in the code. 
 
 
2.5.2 Suspended Sediments 
 
The continuity equation of suspended sediment can be derived based on the conservation law of 
material mass as (Yeh et al., 2005): 
 

1 2

( ) ( )            

( ) ,      [1, ]
n n n n

n n n
x

as os os is
S S S S n n s

AS QS SAK
t x x x

M M M M R D P n N

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎛ ⎞+ − ⎜ ⎟
⎝ ⎠

= + + + + − ∈
 (2.5.10)

 

where Sn is the cross-sectional-averaged concentration of the n-th suspended sediment in the unit of 
mass per unit column volume [M/L3], Kx is the dispersion coefficient [L2/T], 

n

as
SM  is the artificial 

source of the n-th suspended sediment [M/L/T], 
n

is
SM  is the source of the n-th suspended sediment 

from groundwater exfiltration [M/L/T], and 1
n

os
SM  and 2

n

os
SM  are overland sources of the n-th 

suspended sediment from river bank 1 and 2, respectively [M/L/T].  
 
Concentrations of all suspended sediments must be given initially for transient simulations. Four 
types of boundary conditions are taken into account for suspended sediments, including Dirichlet, 
Variable, Cauchy, and Neumann boundary conditions (Yeh et al., 2005). 
 
Dirichlet boundary condition:  Dirichlet boundary conditions are prescribed on the boundary where 
the suspended sediment concentration is known, 
 

( , ) on ( )n dn b d bS S x t B x=  (2.5.11)
 

where xb is the axis coordinate of the boundary node [L], ( , )dn bS x t  is a time-dependent Dirichlet 
concentration of the n-th fraction size on the boundary ( )d bB x  [M/L3]. 
 
Variable boundary condition:  Variable boundary conditions are normally specified on the boundary 
where the flow direction can change with time or on any open boundary.  On the variable boundary, 
when the flow is directed into the region of the interest, the mass rate into the region is given by the 
product of the flow rate and concentration of the incoming fluid.  When the flow is directed out of 
the region, the sediment mass is assumed carried out via advection.  Mathematically, a variable 
boundary condition is given as   
 

( , )    0    ( )n
n x vn b v b

Sn QS AK nQS x t if nQ on B x
x

∂⎛ ⎞− = ≤⎜ ⎟∂⎝ ⎠
 (2.5.12)

and 

0    0    ( )n
x v b

SnAK if nQ on B x
x

∂
− = ≥

∂
 (2.5.13)
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where n is a unit outward direction, and ( , )vn bS x t  is a time-dependent concentration at the boundary 
that is associated with the incoming flow on the variable boundary ( )v bB x  [M/L3].  
 
Cauchy boundary condition:  This boundary condition is employed when the total material flow rate 
is given. Usually, this boundary is an upstream flux boundary.  
 

( , )    ( )
n

n
n x S c b c b

Sn QS AK Q x t on B x
x

∂⎛ ⎞− =⎜ ⎟∂⎝ ⎠
 (2.5.14)

 

where ( , )
nS c bQ x t  is a time-dependent material flow rate at the Cauchy boundary boundary [M/t] 

( )c bB x . 
 
Neumann boundary condition:  This boundary condition is used when the diffusive material flow 
rate is known at the boundary node. 
 

( , )    ( )
n

n
x S n b n b

SnAK Q x t on B x
x

∂
− =

∂
 (2.5.15)

 

where ( , ) 
nS n bQ x t  is a time-dependent diffusive material flow rate at the boundary ( )n bB x  [M/t]. 

 
 
2.5.3 Immobile Bed-Sediment Species 
 
The balance equation for immobile species is simply the statement that the rate of mass change is 
due to biogeochemical reaction as: 
 

( ) 'b bw b bw
b Cbw N

Ph C Ph r
t

ρ θ∂
=

∂
 (2.5.16)

 
( )

'b bw b bp
b Cbp N

Ph C
Ph r

t
ρ θ∂

=
∂

 (2.5.17)
 

( ) 'n bsn
b Cbsn N

PM C Ph r
t

∂
=

∂
 (2.5.18)

 

where hb is the river/stream bed depth [L], ρbw is the density of bed pore-water [M/L3], θb is the 
porosity of the bed sediment [L3/L3], Cbw is the concentration of dissolved chemical in the immobile 
pore-water phase in the unit of chemical mass per bed-water mass [M/M], rCbw│N’ is the production 
rate of Cbw due to all N reactions in the unit of chemical mass per  bed volume per time [M/L3/t], Cbp 
is the concentration of bed precipitate in the unit of chemical mass per bed-water mass [M/M], 
rCbp│N’ is the production rate of Cbp due to all N reactions in the unit of chemical mass per bed 
volume per time [M/L3/t], Cbsn is the concentration of particulate sorbed on to bed sediment of the n-
th fraction size in the unit of chemical mass per unit of bed-sediment mass [M/M], Mn is the 
concentration of the n-th bed sediment in the unit of sediment mass per bed area [M/L2], rCbsn│N’ is 
the production rate of Cbsn due to all N reactions in the unit of chemical mass per bed volume per 
time [M/L3/t]. 
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Define 
 

'       ,  ,   i N b i N bw bp bsnr Ph r A where i C C or C= =  (2.5.19)
 

Equation (2.5.16) through (2.5.18) can be modified as  
 

( )b bw b bw
Cbw N

Ph C Ar
t

ρ θ∂
=

∂
 (2.5.20)

 
( )b bw b bp

Cbp N

Ph C
Ar

t
ρ θ∂

=
∂

 (2.5.21)
 

( )n bsn
Cbsn N

PM C Ar
t

∂
=

∂
 (2.5.22)

 
Define  
 

/ ,     
/ ,                             

b bw b bw bp
i

n bsn

Ph A for C and C
PM A for C

ρ θ
ρ

⎧
= ⎨
⎩

 (2.5.23)

 
Equation (2.5.20) through (2.5.22) can be summarized as  
 

( ) ,   i i
i N im

A C Ar i M
t
ρ∂

= ∈
∂

 (2.5.24)
 

where Ci is the concentration of species i, which is immobile, in the unit of chemical mass per unit 
phase mass [M/M], ρi is the density of the phase associated with species i [M/L3], ri│N is the 
production rate of species i due to all N reactions in the unit of chemical mass per column volume 
per time [M/L3/t], and Mim is the number of immobile species. The concentrations of all immobile 
species must be given initially for transient simulations. No boundary conditions are needed for 
immobile species. 
 
 
2.5.4 Mobile Column-Water Species 
 
The continuity equation of mobile species can be derived based on the conservation law of material 
mass stating that the rate of mass change is due to both advective-dispersive transport and 
biogeochemical reactions as: 
 

( ) ( )w w
w w Cw N

A C L C Ar
t

ρ ρ∂
+ =

∂
 (2.5.25)

 
( )

( )w p
w p Cp N

A C
L C Ar

t
ρ

ρ
∂

+ =
∂

 (2.5.26)
 

( ) ( )n sn
n sn Csn N

AS C L S C Ar
t

∂
+ =

∂
 (2.5.27)
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where ρw is the density of column water [M/L3], Cw is the concentration of dissolved chemical in the 
mobile water phase in the unit of chemical mass per column-water mass [M/M], rCw│N is the 
production rate of Cw due to all N reactions in the unit of chemical mass per column volume per time 
[M/L3/t], Cp is the concentration of suspension precipitate in the unit of chemical mass per column-
water mass [M/M], rCp│N is the production rate of Cp due to all N reactions in the unit of chemical 
mass per column volume per time [M/L3/t], Csn is the concentration of particulate sorbed on to 
suspended sediment of the n-th fraction size in the unit of chemical mass per unit of sediment mass 
[M/M], Sn is the concentration of suspended sediment in the unit of sediment mass per column 
volume [M/L3], rCsn│N is the production rate of Csn due to all N reactions in the unit of chemical 
mass per column volume per time [M/L3/t], and L is an operator that will be defined in Eq. (2.5.30) 
later.  
 
Define  
 

        
                      
w w p

i
n sn

for C and C
S for C
ρ

ρ
⎧

= ⎨
⎩

 (2.5.28)

 
Equation (2.5.25) through (2.5.27) can be summarized as  
 

( ) ( ) ,   i i
i i i N m im

A C L C Ar i M M M
t
ρ ρ∂

+ = ∈ = −
∂

 (2.5.29)
 

where Ci is the concentration of species i, which is mobile, in the unit of chemical mass per unit 
phase mass [M/M], ρi is the density of the phase associated with species i [M/L3], ri│N is the 
production rate of species i due to all N reactions in the unit of chemical mass per column volume 
per time [M/L3/t], M is the total number of chemical species, Mm is the number of mobile chemical 
species, and operator L is defined as  
 

( ) 1 2( )( ) ( )
i i i i i i

i i as rs es os os isi i
i i x C C C C C C

CQ CL C AK M M M M M M
x x x

ρρρ
∂⎡ ⎤∂ ∂

= − − + − + + +⎢ ⎥∂ ∂ ∂⎣ ⎦
 (2.5.30)

 

where 
i

as
CM  is the artificial source of species i [M/L/T], 

i

rs
CM  is the rainfall source of species i 

[M/L/T], 
i

rs
CM  is the sink of species i due to evaporation, 1

i

os
CM  and 2

i

os
CM are the overland sources 

of species i from river bank 1 and 2, respectively [M/L/T], and 
i

is
CM  is the mass rate of the source of 

species i in river/stream from subsurface [M/L/T]. 
 
Concentrations of all mobile species must be given initially for transient simulations.  Four types of 
boundary conditions are taken into account for mobile species, including Dirichlet, Variable, 
Cauchy, and Neumann boundary conditions (Yeh et al., 2005), which are similar to those for 
suspended sediment transport and are presented below: 
 
Dirichlet boundary condition: On a Dirichlet boundary, the concentrations of all mobile species are 
prescribed  
 

( , ) ( ) 0  i idb b m dC C x t i M on B x= ∈ =  (2.5.31)
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where ( , )idb bC x t  is the prescribed concentration of the i-th mobile species on the Dirichlet boundary 
( ) 0dB x =  [M/M]. 

 
Variable boundary condition:  On a variable boundary, the concentrations of all mobile species are 
known and they contribute to the increase of chemical masses in the region of interest when the flow 
is coming into the region.  When the flow is going out of the region, the transport of all mobile 
species out of the region is assumed due to advection only, which implies that one must put an 
outgoing boundary far away from the source. 
 
< Case 1 > Flow is coming in from outside (nQ < 0) 
 

( ) ( , ) ( ) 0i i
i i x i ivb b m v

Cn Q C AK nQ C x t i M on B x
x

ρρ ρ∂⎛ ⎞− = ∈ =⎜ ⎟∂⎝ ⎠
 (2.5.32)

 
< Case 2 > Flow is going out from inside (nQ > 0). 
 

0 ( ) 0i i
x m v

CnAK i M on B x
x

ρ∂
− = ∈ =

∂
 (2.5.33)

 

where n is the unit outward direction and ( , )ivb bC x t  is the concentration of the i-th species in the 
incoming fluid on the variable boundary ( ) 0vB x =  [M/M]. 
 
Cauchy boundary condition:  On a Cauchy boundary chemical flux for any mobile species is 
prescribed 
 

( , ) ( ) 0
i

i i
i i x C cb b m c

Cn Q C AK Q x t i M on B x
x

ρρ ∂⎛ ⎞− = ∈ =⎜ ⎟∂⎝ ⎠
 (2.5.34)

 

where ( , )
iC cb bQ x t  is the mass flux of Ci through the Cauchy boundary ( ) 0cB x =  [M/t]. 

 
Neumann boundary condition: On a Neumann boundary, chemical flux of any mobile species due to 
dispersion is prescribed 
 

( , ) ( ) 0
i

i i
x C nb b m n

CnAK Q x t i M on B x
x

ρ∂
− = ∈ =

∂
 (2.5.35)

 

where ( , )
iC nb bQ x t  is the mass flux of Ci through the Neumann boundary ( ) 0nB x =  [M/t]. 

 
 
2.5.5 Diagonalization of Species Transport Equations 
 
The temporal-spatial distribution of chemical species is described by a system of Mim mass balance 
equations [equation (2.5.24)], and Mm reactive transport equations [equation (2.5.29)]. These two 
equations can be recast in the following form  
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( ) ( ) ,   i i
i i i i N

A C L C Ar i M
t
ρ α ρ∂

+ = ∈
∂

 (2.5.36)
 

where M is the total number of chemical species, αi is 0 for immobile species and 1 for mobile 
species. 
 
The determination of ri⏐N and associated parameters is a primary challenge in biogeochemical 
modeling.  Instead of using an ad hoc method to formulate ri⏐N, we use reaction-based formulations 
(Steefel and Cappellen, 1998).  In a reaction-based formulation, ri⏐N is given by the summation of 
rates of all reactions that the i-th species participates in,  
 

( ) [ ]
1

( ) ,   
N

i i
i N reaction ik ik k

k

d C
r r i M

dt
ρ

ν μ
=

= = − ∈∑  (2.5.37)
 

where νik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
products, μik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
reactants, and rk is the rate of the k-th reaction.  
 
Substituting equation (2.5.37) into equation (2.5.36) results in the transport equations of M chemical 
species described by   
 

[ ]
1

( ) ( ) ( ) ,   ;     ( )
N

i i
i i i ik ik k

k

A C L C A r i M or L A
t t
ρ α ρ ν μ

=

∂ ∂
+ = − ∈ + =

∂ ∂∑ ACU α C νr  (2.5.38)
 

where U is a unit matrix, CA is a vector with its components representing M species concentrations 
multiply the cross section area of the river [M/L], α is a diagonal matrix with αi as its diagonal 
component, C is a vector with its components representing M species concentrations [M/L3], ν is the 
reaction stoichiometry matrix, and r is the reaction rate vector with N reaction rates as its 
components. Equation (2.5.38) represents a mass balance for species i, which states that the rate of 
change of any species mass is due to advection-dispersion coupled with contributing reactions that 
describe the biogeochemical processes.  
 
In a primitive approach, equation (2.5.38) is integrated to yield the distributions and evolutions of 
chemical species in a region of interest.  However, when some fast equilibrium reactions take place 
in the system, this approach is not adequate (Fang et al., 2003).  Here, we will take a diagonalization 
approach through decomposition.  Equation (2.5.38) written in matrix form can be decomposed 
based on the type of biogeochemical reactions via Gauss-Jordan column reduction of reaction matrix 
ν. Among all the fast/equilibrium and slow/kinetic reactions, “redundant reactions” are defined as 
fast reactions that are linearly dependent on other fast reactions, and “irrelevant reactions” are 
kinetic reactions that are linearly dependent on only equilibrium reactions.  In order to avoid 
singularity of the reaction matrix, redundant fast reactions are omitted from the system prior to 
decomposition.  The removal of irrelevant slow reactions alleviates problems associated with rate 
formulation uncertainty and parameterization for these reactions. 
 
Decomposition is performed by pivoting on the NE equilibrium reactions and decoupling them from 
the NK kinetic reactions.  In other words, each fast reaction can be used to eliminate one chemical 
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species from simultaneous consideration.  An incomplete Gauss-Jordan row decomposition of the 
reaction matrix  ν by pivoting on NE equilibrium reactions will result in NE equilibrium-variables 
and NKIV kinetic-variables.  To analyze the system behavior, it is advantageous to perform a 
complete decomposition, in which the reduction of the reaction matrix is done by pivoting on NE 
equilibrium reactions and on NKI linearly independent kinetic reactions to result in NE equilibrium-
variables, NKI kinetic-variables, and NC components.  The complete decomposition is given as 
follows: 
 

2

3
3

dt 
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dt

dt
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A

C

A 0 0 B 0  0 D K  KC r
C rA A 0 B B 0  0 D KC

rCA A U B B α  0  0  0C

(2.5.39)

 

where A11 is the submatrix of the reduced U matrix with size of NE × NE,  A21 is the submatrix of the 
reduced U matrix with size of NKI × NE, and A31 is the submatrix of the reduced U matrix with size 
of NC × NE; 012 is the zero submatrix of the reduced U matrix with size of NE × NKI, A22 is the 
submatrix of the reduced U matrix with size of NKI × NKI,  and A32 is the submatrix of the reduced U 
matrix with size of NC × NKI; 013 is the zero submatrix of the reduced U matrix with size of NE × NC, 
023 is the submatrix of the reduced U matrix with size of NKI × NC, and U33 is the unit submatrix of 
the reduced U matrix with size of NC × NC;  CA1, CA2, and CA3 are the subvectors of the vector CA 
with sizes of NE, NKI, and NC, respectively; B11 is the submatrix of the reduced α matrix with size of 
NE × NE,  B21 is the submatrix of the reduced α matrix with size of NKI × NE, and B31 is the submatrix 
of the reduced α matrix with size of NC × NE; 012 is the zero submatrix of the reduced α matrix with 
size of NE × NKI, A22 is the submatrix of the reduced α matrix with size of NKI × NKI,  and B32 is the 
submatrix of the reduced α matrix with size of NC × NKI; 013 is the zero submatrix of the reduced α 
matrix with size of NE × NC, 023 is the submatrix of the reduced α matrix with size of NKI × NC, and 
α33 is the diagonal submatrix of the reduced α matrix with size of NC × NC;  C1, C2, and C3 are the 
subvectors of the vector C with sizes of NE, NKI, and NC, respectively;  D11 is the diagonal submatrix 
of the reduced ν matrix with size of NE × NE,  K12 is the submatrix of the reduced ν matrix with size 
of NE × NKI, and K13 is the submatrix of the reduced ν matrix with size of NE × NKD(k); 021 is the zero 
submatrix of the reduced ν matrix with size of NKI × NE, D22 is the diagonal submatrix of the reduced 
ν matrix with size of NKI × NKI,  and K23 is the submatrix of the reduced ν matrix with size of NKI × 
NKD(k); 013 is the zero submatrix of the reduced ν matrix with size of NC × NE, 032 is the zero 
submatrix of the reduced ν matrix with size of NC × NKI, and 033 is the zero submatrix of the reduced 
ν matrix with size of NC × NKD(k);  r1, r2, and r3 are the subvectors of the vector r with sizes of NE, 
NKI, and NKD(k), respectively. 
 
For incomplete decomposition of the reaction matrix ν, Equation (2.5.39) can be connoted as 
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where A11 and A21 are the submatrices of the reduced U matrix with size of NE × NE and NKIV × NE, 
respectively (note that NKIV = M – NE = NKI + NC); 012 and U22 are the zero- and unit-submatrices, 
respectively, of the reduced U matrix with size of NE × NKIV and NKIV × NKIV, respectively; CA1 and 
CA2 are the subvectors of the vector CA with sizes of NE and NKIV, respectively; B11 and B21 are the 
submatrices of the reduced α matrix with sizes of NE × NE and NKIV × NE, respectively; 012 and α22 
are the zero- and unit- submatrices, respectively, of the reduced α matrix with size of NE × NKIV and 
NKIV × NKIV, respectively; C1 and C2 are the subvectors of the vector C with sizes of NE and NKIV, 
respectively;  D11 is the diagonal submatrix of the reduced ν matrix with size of NE × NE and K12 is 
the submatrix of the reduced ν matrix with size of NE × NKIV; 021 is the zero submatrix of the reduced 
ν matrix with size of NKIV × NE and  K22 is the submatrix of the reduced ν matrix with size of NKIV × 
NE;  r1 and r2 are the subvectors of the vector r with sizes of NE and  NKIV, respectively.   
  
For reactions that are fast, equilibrium may be regarded as being reached instantaneously among the 
relevant species and the reaction rates may be regarded as infinite. An infinite rate is mathematically 
represented by a mass action equation or a user specified nonlinear algebraic equation. As a result, 
the decomposition of equation (2.5.38) to equation (2.5.40) effectively reduces a set of M species 
reactive transport equations into two subsets of equations. The first set contains NE algebraic 
equations representing mass action laws for the equilibrium reactions, and the second set contains 
NKIV kinetic-variable transport equations. These equation subsets are defined as 
 
Algebraic Equations for Equilibrium Reactions 
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 (2.5.41)

 

where Ki
e is the equilibrium constant of the i-th fast reaction, Aj is the activity of the j-th species, 

Fi(C1,..,CM; p1,p2,..) is an empirical function of all species and a number of parameters p1, p2, … for 
the i-th fast reaction.  Ei was called an equilibrium-variable (Fang, et al., 2003) because 

( )iAE
t

∂
≈ ∞

∂
simply means that Ei can reach equilibrium instantaneously. 

 
Transport Equations for Kinetic-Variables  
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 (2.5.42)

 

where Ei was called kinetic variable (Fang, et al., 2003) because as Ei is transported it is subject to 
only kinetic reactions.  This is in contrast to Eq. (2.5.38) where as Ci is transported, it is subject to 
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both equilibrium and kinetic reactions. 
 
Assign 
 

2 2
1

,  i
KN

i ij j KIV
j

R K r N
=

= ∈∑  (2.5.43)

 
The reduction of Eq. (2.5.38) to Eq. (2.5.41) and (2.5.42) is equivalent to reducing M governing 
equations for immobile and mobile species to the mixed NE algebraic equations for equilibrium 
variables and NKIV transport equations for kinetic-variables specified as follows 
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 (2.5.44)

 

where Ei is the concentration of the i-th kinetic-variable [M/L3], Ei
m is the concentration of mobile 

part of the i-th kinetic-variable [M/L3], 
i

as
EM  is the artificial source of the i-th kinetic-variable 

[M/L/T], 
i

rs
EM  is the rainfall source of the i-th kinetic-variable [M/L/T], 

i

es
EM  is the evaporation 

sink of the i-th kinetic variable [M/L/T], 1
i

os
EM  and 2

i

os
EM  are overland sources of the i-th kinetic-

variable from river banks 1 and 2, respectively [M/L/T], 
i

is
EM  is the mass rate of the source of the i-

th kinetic-variable in river/stream from subsurface [M/L/T], Ri is the production rate of i-th kinetic-
variable due to biogeochemical reactions [M/L3/T], and NKIV is the number of kinetic variable 
variables. 
 
Boundary conditions for mobile species need to be transformed into corresponding boundary 
conditions for kinetic-variables, which are stated in the following.  
 
Dirichlet boundary condition: 
 

( , ) ( ) 0m m
i i db b m dE E x t i M on B x= ∈ =  (2.5.45)

 

where ( , )m
i db bE x t  is the specified concentration of the mobile portion of the i-th kinetic variable on 

the Dirichlet boundary ( ) 0dB x =  [M/L3]. 
 
Variable boundary condition: 
 
< Case 1 > Flow is coming in from outside (nQ < 0) 
 

( , ) ( ) 0
m

m mi
i x i vb b m v

En QE AK nQE x t i M on B x
x

⎛ ⎞∂
− = ∈ =⎜ ⎟∂⎝ ⎠

 (2.5.46)

 
< Case 2 > Flow is going out from inside (nQ > 0). 
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0 ( ) 0
m
i

x m v
EnAK i M on B x
x

∂
− = ∈ =

∂
 (2.5.47)

 
where n is the unit outward direction and ( , )m

i vb bE x t  is the concentration of the mobile portion of the 
i-th kinetic variable on the variable boundary ( ) 0vB x =  [M/L3]. 
 
Cauchy boundary condition: 
 

( , ) ( ) 0m
i

m
m i
i x cb b m cE

En QE AK Q x t i M on B x
x

⎛ ⎞∂
− = ∈ =⎜ ⎟∂⎝ ⎠

 (2.5.48)

 

where ( , )m
i

cb bE
Q x t  is the mass flux of Ei

m through the Cauchy boundary ( ) 0cB x =  [M/t]. 

 
Neumann boundary condition: 
 

( , ) ( ) 0m
i nb

m
i

x b m nE

EnAK Q x t i M on B x
x

∂
− = ∈ =

∂
 (2.5.49)

 

where ( , )m
i

nb bE
Q x t  is the mass flux of Ei

m through the Neumann boundary ( ) 0nB x =  [M/t]. 

 
 
 
2.6 Sediment and Water Quality Transport in Two-Dimension Overland Regime 

 
Researches on overland water quality modeling include studies of sediment (McDonald and Cheng, 
1994; Harris and Wiberg, 2001; and Zeng and Beck, 2003) and water quality transport (Falconer and 
Lin, 1997; Tufford and McKellar, 1999; Shen et al., 2002; and Zheng et al., 2004) as well as thermal 
and salinity transport.  Most of the existing overland water quality models simulate either specific 
systems (Cerco and Cole, 1995; Shen et al., 2002; and Zheng et al., 2004) or systems containing 
specific reactions (Brown and Barnwell, 1987; Ambrose et al, 1993; and Bonnet and Wessen, 2001). 
They may provide efficient monitoring and management tools because they are calibrated for 
specific environments, but the extension of a calibrated model to other environmental conditions 
needs to be carefully evaluated. With better understanding and mathematical formulation of complex 
biogeochemical interactions (Thomann, 1998; Somlyody et al., 1998; and Yeh et al., 2001a), models 
considering interactions among biogeochemicals based on reaction mechanism have a better 
potential for application to other systems (Steefel and Cappellen, 1998). Although a few reaction-
based models can handle contaminant transport subject to kinetically controlled chemical reactions 
(Cheng et al., 2000; and Yeh et al., 2005), no existing overland water quality model, to our 
knowledge, has the design capability that permitts the use of a fully mechanistic approach to 
estimate both kinetically and equilibrium controlled reactive chemical transport in overland water 
systems. 
 
This section presents a general two-dimensional depth-averaged numerical model simulating the 
water quality in overland shallow water systems using a general paradigm of diagonalized reaction-
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SS = suspended sediment  
BS = bed sediment  
MW = in mobile water 
IMW = in immobile water 
SP = suspension precipitate 
BP = bed precipitate 
C = dissolved chemical  
CS = particulate on SS 
CB = particulate on BS 
1 = clay 2 = silt 3 = sand  B

ed
  

  
  

  
  

  

based approaches.  In our model, sediments are categorized based on their physical and chemical 
properties. For each category of sediment, we include mobile suspended sediment particles scattered 
in water column and immobile bed sediment particles accumulated in water bed. The distribution of 
suspended sediment and bed sediment is controlled through hydrological transport as well as erosion 
and deposition processes. There are six phases and three forms for biogeochemical species. As 
shown in Figure 2.6-1, the six phases are suspended sediment, bed sediment, mobile water, 
immobile water, suspension precipitate, and bed precipitate phases; and the three forms are dissolved 
chemicals, particulate chemicals sorbed onto sediments, and precipitates. 
 
In the transport simulation, biogeochemical reactions can be divided into two classes (Rubin, 1983): 
(1) equilibrium-controlled “fast” reactions, and (2) kinetically-controlled “slow” reactions. The 
former are sufficiently fast compared to the transport time-scale and are reversible, so that local 
equilibrium may be assumed. The latter are not sufficiently fast compared to the transport time-
scale. As shown in Figure 2.6-2, biogeochemical reactions taken into account in the model include 
aqueous complexation, adsorption/desorption, ion-exchange, precipitation/dissolution, volatilization, 
diffusion, and sedimentation, etc. Any individual reaction representing any of these chemical and 
physical processes may be simulated as kinetic or as equilibrium, which makes the code extremely 
flexible for application to a wide range of biogeochemical transport problems. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.6-1. Sediments and Chemicals in River/Stream Networks 

 
 
2.6.1 Bed Sediment 
 
The balance equation for bed sediments is simply the statement that the rate of mass change is due to 
erosion/deposition as (Yeh, et al., 2005) 
 

( ) ( ) + ,    [1, ]
n

isn
n n M s

M
D R M n N

t
∂

= − ∈
∂

 (2.6.1) 
 

where Mn is the concentration of the n-th bed sediment in mass per unit bed area [M/L2], Dn is the 
deposition rate of the n-th sediment in mass per unit bed area per unit time [M/L2/T], Rn is the 
erosion rate of the n-th sediment in mass per unit bed area per unit time [M/L2/T],  

n

is
MM  is the source 

of the n-th sediment from groundwater exfiltration in mass per unit area [M/L2/T], and NS is the total 
number of sediment size fractions. Concentrations of all bed sediments must be given initially for 

  
                                              CS1 
            CS3           SP  
                                                  SS1 
                            CMW                   
            SS3                     CS2    SS2 
                                                                             CB3 
                                     BP            CIMW            BS3 
   
 

CB2    BS2         CB1            BS1  
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transient simulations. No boundary condition is needed for bed sediments. In equation (2.6.1), we 
estimate the deposition and erosion rates using the different equations for cohesive and non-cohesive 
sediments. 
 
For cohesive sediments, e.g., silt and clay, following equations are used (Yeh et al., 1998; Gerritsen 
et al., 2000) 
 

( ) ( )min ,   where max 0,  1n sn n Dn n Dn b cDnD V S P S h t P τ τ= Δ = −  (2.6.2) 
and 

( ) ( )0min ,  where  max 0,  1n n Rn n Rn b cRnR E P DMA t P τ τ= Δ = −  (2.6.3) 
 

 
 
 

 

 

 

 

 

 
Fig. 2.6-2.  Biogeochemical Reactions Considered in the Model 

 
where Vsn is the settling velocity of the n-th sediment [L/T], Sn is the depth-averaged suspended 
concentration of n-th sediment [M/L3], h is the water depth [L], ∆t is the simulation time step size 
[T], τb is the bottom shear stress or the bottom friction stress [M/L/T2], τcDn is the critical shear stress 
for the deposition of the n-th sediment [M/L/T2], E0n is the erodibility of the n-th sediment [M/L2/T], 
DMAn is the amount of locally available dry matter of n-th sediment, expressed as dry weight per 
unit area [M/L2], τcRn is the critical shear stress for the erosion of the n-th sediment [M/L/T2]. 
 
For Non-cohesive sediments, e.g., sand, we have two options. 
 
Option 1 (Prandle et al., 2000) 
 

( ) ( )2min ,   where  max 0,  1n sn n Dn n Dn cDn cRnD V S N S h t N V V⎡ ⎤= Δ = −⎣ ⎦  (2.6.4) 
and 

( ) ( )0min ,  where max 0,  1n n Rn n Rn cDn cRnR E N DMA t N V V= Δ = −  (2.6.5) 
 

where VcDn and VcRn represent the critical friction velocities for the onset of deposition and erosion, 
respectively [L/T].  
 

(1) Aqueous complexation in mobile water phase, 
(2) Adsorption/desorption or ion-exchange between 
mobile water and suspended sediment phases,  
(3) Precipitation/dissolution between mobile water 
and suspension precipitate phases, 
(4) Adsorption/desorption or ion-exchange between 
mobile water and bed sediment phases,  
(5) Aqueous complexation in immobile water phase, 
(6) Adsorption/desorption or ion-exchange between 
immobile water and bed sediment phases,  
(7) Precipitation/dissolution between immobile water 
and bed precipitate phases, 
(8) Volatilization from mobile water phase, 
(9) Diffusion between mobile and immobile water 
phases, 
(10) Sedimentation of particulates between 
suspended and bed sediment phases 
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Option 2 (Yeh et al., 1998) 
 

max ,0  sAn sn
n

G GD
L
−⎛ ⎞= ⎜ ⎟Δ⎝ ⎠

 (2.6.6) 

and 

max ,0sn sAn
n

G GR
L
−⎛ ⎞= ⎜ ⎟Δ⎝ ⎠

 (2.6.7) 
 

where GsAn is the actual load rate of the n-th sediment per unit width at a upstream location [M/L/T], 
Gsn is the maximum load rate of the n-th size fraction sediment per unit width at a downstream 
location [M/L/T], ΔL is the distance between the upstream and the downstream locations.  
 

sAn nG S VR=  (2.6.8) 
and 

2

2

( )10
( )

b crn
sn

n sn

VRSG
gd
ρ τ τ

ρ ρ
−

=
−

 (2.6.9) 
 

where V is the overland flow velocity [L/t], R is hydraulic radius [L], ρ is the density of water 
[M/L3], S is the friction slope, τcrn is the critical bottom shear stress of the n-th sediment at which 
sediment movement begins [M/L/t2], g is gravity [L/t2], dn is the median diameter of the n-th 
sediment particle [L], and ρsn is the density of the n-th sediment [M/L3].  
 
It should be noted that equations (2.6.2) through (2.6.9) are the sample models programmed in the 
computer code to estimate sediment deposition and erosion rate. Any other phenomenological model 
equation can be easily incorporated in the code. 
 
 
2.6.2 Suspended Sediments 
 
The continuity equation of suspended sediment can be derived based on the conservation law of 
material mass as (Yeh et al., 2005): 
 

( ) ( ) ( ) ,      [1, ]as rs is
n n n

n
n n n n sS S S

hS S h S M M M R D n N
t

∂
∂

+ ∇ −∇ ∇ = + + + − ∈q Ki i  (2.6.10)
 

where Sn is the depth-averaged concentration of the n-th suspended sediment in the unit of mass per 
unit column volume [M/L3], K is the dispersion coefficient tensor [L2/t], and as

nS
M , rs

nS
M , and is

nS
M  

are the mass rate of artificial source, rainfall source, and groundwater source of the n-th suspended 
sediment [M/L2/t].  
 
Concentrations of all suspended sediments must be given initially for transient simulations.  Five 
types of boundary conditions are taken into account for suspended sediments, including Dirichlet, 
Variable, Cauchy, Neumann, and river/stream-overland interface boundary conditions (Yeh et al., 
2005). 
 
Dirichlet boundary condition:  Dirichlet boundary conditions are prescribed on the boundary where 
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the suspended sediment concentration is known, 
 

( , , ) ( ) 0n ndb b b dS S x y t on B= =x  (2.6.11)
 

where xb and yb are the coordinates of the boundary node [L], and ( , , )ndb b bS x y t is a time-dependent 
concentration of the n-th sediment size on the Dirichlet boundary ( ) 0dB =x [M/L3]. 
 
Variable boundary condition:  Variable boundary conditions are normally specified on the boundary 
where the flow direction can change with time or on any open boundary.  On the variable boundary, 
when the flow is directed into the region of the interest, the mass rate into the region is given by the 
product of the flow rate and concentration of the incoming fluid.  When the flow is directed out of 
the region, the sediment mass is assumed carried out via advection.  Mathematically, a variable 
boundary condition is given as   
 

( ) ( , , ) 0 ( ) 0n n nvb b b vS h S S x y t if on B− ∇ = ≤ =n q K n q n q xi i i i  (2.6.12)
and 

( ) 0 0 ( ) 0n vh S if on B− ∇ = ≥ =n K n q xi i i  (2.6.13)
 

where n is a unit outward direction and ( , , )nvb b bS x y t is a time-dependent concentration of the n-th 
sediment in the incoming fluid at the boundary [M/L3] ( ) 0vB =x .  
 
Cauchy boundary condition:  This boundary condition is employed when the total material flow rate 
is given. Usually, this boundary is an upstream flux boundary.  
 

( ) ( , , ) ( ) 0
nn n S cb b b cS h S Q x y t on B− ∇ = =n q K xi i  (2.6.14)

 

where ( , , )
nS cb b bQ x y t is a time-dependent material flow rate of the n-th sediment through the Cauchy 

boundary ( ) 0cB =x  [M/t/L]. 
 
Neumann boundary condition:  This boundary condition is used when the diffusive material flow 
rate is known at the boundary node. 
 

( , , ) ( ) 0
nn S nb b b nbh S Q x y t on B− ∇ = =n K xi i  (2.6.15)

 

where ( , , )
nS nb b bQ x y t is a time-dependent diffusive material flow rate of the n-th sediment trough the 

Neumann boundary ( ) 0nbB =x  [M/t/L]. 
 
Overland-River/Stream interface boundary condition: The boundary condition is needed when one-
dimensional sediment transport in river/stream networks is coupled with two-dimensional sediment 
transport in overland regime.  We assume that the exchange of sediment mass between river/stream 
and overland flows is mainly due to advection.  Under such circumstances, the interfacial boundary 
condition is stated as 
 

( ) ( ) ( ) ( ){ }1
1 1 1 ( , , )
2n n n n D b bS h S sign S sign S x y t⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦n q K n q n q n q  (2.6.16)
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where 1 ( , , )n D b bS x y t  is the time-dependent concentration of the n-th sediment at the 1-D node 
corresponding to the boundary [M/L3].  It is the contribution of 1D transport to the overland 
boundary. 
 
 
2.6.3 Immobile Species 
 
The balance equation for immobile species is simply the statement that the rate of mass change is 
due to biogeochemical reaction as: 
 

( ) 'b bw b bw
b Cbw N

h C h r
t

ρ θ∂
=

∂
 (2.6.17)

 
( )

'b bw b bp
b Cbp N

h C
h r

t
ρ θ∂

=
∂

 (2.6.18)
 

( ) 'n bsn
b Cbsn N

M C h r
t

∂
=

∂
 (2.6.19)

 

where hb is the bed depth [L], ρbw is the density of bed pore-water [M/L3], θb is the porosity of the 
bed sediment [L3/L3], Cbw is the concentration of dissolved chemical in the immobile pore-water 
phase in the unit of chemical mass per bed-water mass [M/M], rCbw│N’ is the production rate of Cbw 
due to all N reactions in the unit of chemical mass per  bed volume per time [M/L3/t], Cbp is the 
concentration of bed precipitate in the unit of chemical mass per bed-water mass [M/M], rCbp│N’ is 
the production rate of Cbp due to all N reactions in the unit of chemical mass per bed volume per 
time [M/L3/t], Cbsn is the concentration of particulate sorbed on to bed sediment of the n-th fraction 
size in the unit of chemical mass per unit of bed-sediment mass [M/M], Mn is the concentration of 
the n-th bed sediment in the unit of sediment mass per bed area [M/L2], rCbsn│N’ is the production 
rate of Cbsn due to all N reactions in the unit of chemical mass per bed volume per time [M/L3/t]. 
 
Define 
 

'       ,  ,   i N b i N bw bp bsnr h r h where i C C or C= ⋅ =  (2.6.20)
 
Equation (2.6.16) through (2.6.18) can be modified as  
 

( )b bw b bw
Cbw N

h C hr
t

ρ θ∂
=

∂
 (2.6.21)

 
( )b bw b bp

Cbp N

h C
h r

t
ρ θ∂

= ⋅
∂

 (2.6.22)
 

( )b n bsn
Cbsn N

h M C hr
t

∂
=

∂
 (2.6.23)

 
Define  
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/ ,       
/ ,                               

b bw b bw bp
i

n bsn

h h for C and C
M h for C

ρ θ
ρ

⎧
= ⎨
⎩

 (2.6.24)

 
Equation (2.6.21) through (2.6.23) can be summarized as  
 

( ) ,   i i
i N im

h C hr i M
t
ρ∂

= ∈
∂

 (2.6.25)
 

where Ci is the concentration of species i, which is immobile, in the unit of chemical mass per unit 
phase mass [M/M], ρi is the density of the phase associated with species i [M/L3], ri│N is the 
production rate of species i due to all N reactions in the unit of chemical mass per column volume 
per time [M/L3/t], and Mim is the number of immobile species. The concentrations of all immobile 
species must be given initially for transient simulations. No boundary conditions are needed for 
immobile species. 
 
 
2.6.4 Mobile Species 
 
The continuity equation of mobile species can be derived based on the conservation law of material 
mass stating that the rate of mass change is due to both advective-dispersive transport and 
biogeochemical reactions as: 
 

( ) ( )w w
w w Cw N

h C L C hr
t

ρ ρ∂
+ =

∂
 (2.6.26)

 
( )

( )w p
w p Cp N

h C
L C hr

t
ρ

ρ
∂

+ =
∂

 (2.6.27)
 

( ) ( )n sn
n sn Csn N

hS C L S C hr
t

∂
+ =

∂
 (2.6.28)

 

where ρw is the density of column water [M/L3], Cw is the concentration of dissolved chemical in the 
mobile water phase in the unit of chemical mass per column-water mass [M/M], rCw│N is the 
production rate of Cw due to all N reactions in the unit of chemical mass per column volume per time 
[M/L3/t], Cp is the concentration of suspension precipitate in the unit of chemical mass per column-
water mass [M/M], rCp│N is the production rate of Cp due to all N reactions in the unit of chemical 
mass per column volume per time [M/L3/t], Csn is the concentration of particulate sorbed on to 
suspended sediment of the n-th fraction size in the unit of chemical mass per unit of sediment mass 
[M/M], Sn is the concentration of suspended sediment in the unit of sediment mass per column 
volume [M/L3], rCsn│N is the production rate of Csn due to all N reactions in the unit of chemical 
mass per column volume per time [M/L3/t], and the operator L is defined in Eq. (2.6.31) later.  
 
Define  
 

        
                      
w w p

i
n sn

for C and C
S for C
ρ

ρ
⎧

= ⎨
⎩

 (2.6.29)
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Equation (2.6.26) through (2.6.28) can be summarized as  
 

( ) ( ) ,   i i
i i i N m im

h C L C hr i M M M
t
ρ

ρ
∂

+ = ∈ = −
∂

 (2.6.30)
 

where Ci is the concentration of species i, which is mobile, in the unit of chemical mass per unit 
phase mass [M/M], ρi is the density of the phase associated with species i [M/L3], ri│N is the 
production rate of species i due to all N reactions in the unit of chemical mass per column volume 
per time [M/L3/t], M is the total number of chemical species, Mm is the number of mobile chemical 
species, and operator L is defined as  
 

[ ]( ) ( ) ( ) ( )as rs es rs
i i i i

i i i i i i C C C C
L C C h C M M M Mρ ρ ρ= ∇ ⋅ −∇ ⋅ Κ ⋅∇ − + − +q  (2.6.31)

 

where as
iC

M  is the mass ratte of artificial source of species i [M/L2/T], rs
iC

M  is the mass rate of the 
rainfall source of species i [M/L2/T], es

iC
M  is the mass rate of the evaporation sink of species i 

[M/L2/T], and is
cC

M  is mass rate of  the source of species i in the overland from subsurface [M/L2/T]. 
 
Concentrations of all mobile species must be given initially for transient simulations.  Similar to 
suspended sediment transport, five types of boundary conditions are taken into account for mobile 
species, including Dirichlet, Variable, Cauchy, Neumann, and river/stream-overland interface 
boundary conditions (Yeh et al., 2005). 
 
Dirichlet boundary condition:  Dirichlet boundary conditions are prescribed on the boundary where 
the suspended sediment concentration is known, 
 

( , , ) ( ) 0i idb b b m dC C x y t i M on B= ∈ =x  (2.6.32)
 

where xb and yb are the coordinates of the boundary node [L], and ( , , )idb b bC x y t is a time-dependent 
concentration of the i-th mobile species on the Dirichlet boundary ( ) 0dB =x [M/M]. 
 
Variable boundary condition:  Variable boundary conditions are normally specified on the boundary 
where the flow direction can change with time or on any open boundary.  On the variable boundary, 
when the flow is directed into the region of the interest, the mass rate into the region is given by the 
product of the flow rate and concentration of the incoming fluid.  When the flow is directed out of 
the region, the sediment mass is assumed carried out via advection.  Mathematically, a variable 
boundary condition is given as   
 

( )( ) ( , , )  0  ( ) 0,  i i i i i ivb b b v mC h C C x y t if on B i Mρ ρ ρ⋅ − ⋅∇ = ⋅ ⋅ ≤ = ∈n q K n q n q x  (2.6.33)
and 

( )( ) 0 0 ( ) 0,i i v mh C if on B i Mρ− ⋅ ⋅∇ = ⋅ ≤ = ∈n K n q x  (2.6.34)
 

where n is a unit outward direction and ( , , )i vb b bC x y t is a time-dependent concentration of the i-th 
mobile species in the incoming fluid at the boundary [M/M] ( ) 0vB =x .  
 
Cauchy boundary condition:  This boundary condition is employed when the total material flow rate 
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is given. Usually, this boundary is an upstream flux boundary.  
 

( )( ) ( , , ) ( ) 0
ii i i i C cb b b m cC h C Q x y t i M on Bρ ρ⋅ − ⋅∇ = ∈ =n q K x  (2.6.35)

 

where ( , , )
iC cb b bQ x y t is a time-dependent material flow rate of the i-th mobile species through the 

Cauchy boundary ( ) 0cB =x [M/t/L]. 
 
Neumann boundary condition:  This boundary condition is used when the diffusive material flow 
rate is known at the boundary node. 
 

( ) ( , , ) ( ) 0
ii i C nb b b m nbh C Q x y t i M on Bρ− ⋅ ⋅∇ = ∈ =n K x  (2.6.36)

 

where ( , , )
iC nb b bQ x y t is a time-dependent diffusive material flow rate of the i-th mobile species 

through the Neumann boundary ( ) 0nbB =x  [M/t/L]. 
 
Overland-river/stream interface boundary condition: The boundary condition is needed when one-
dimensional sediment transport in river/stream networks is coupled with two-dimensional sediment 
transport in overland regime.  We assume that the exchange of sediment mass between river/stream 
and overland flows is mainly due to advection.  Under such circumstances, the interfacial boundary 
condition is stated as 
 

( ) ( ) ( ) ( ){ }1
1( ) 1 1 ( , , )
2i i i i i i i i D b bC h C sign C sign C x y tρ ρ ρ ρ⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦n q K n q n q n q  (2.6.37)

 

where 1 ( , , )i D b bC x y t  is the time-dependent concentration of the i-th species at the 1-D node 
corresponding to the overland-river/stream interfacial boundary point [M/M]. 
 
 
2.6.5 Diagonalization of Species Transport Equations 
 
The temporal-spatial distribution of chemical species is described by a system of Mim mass balance 
equations [equation (2.6.25)], and Mm reactive transport equations [equation (2.6.30)]. These two 
equations can be recast in the following form  
 

( ) ( ) ,   i i
i i i i N

h C L C hr i M
t
ρ

α ρ
∂

+ = ∈
∂

 (2.6.38)
 

where M is the total number of chemical species, αi is 0 for immobile species and 1 for mobile 
species. 
 
The determination of ri⏐N and associated parameters is a primary challenge in biogeochemical 
modeling.  Instead of using an ad hoc method to formulate ri⏐N, we use reaction-based formulations 
(Steefel and Cappellen, 1998).  In a reaction-based formulation, ri⏐N is given by the summation of 
rates of all reactions that the i-th species participates in,  
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( ) [ ]
1

( ) ,   
N

i i
i N reaction ik ik k

k

d C
r r i M

dt
ρ

ν μ
=

= = − ∈∑  (2.6.39)
 

where νik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
products, μik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
reactants, and rk is the rate of the k-th reaction.  
 
Substituting equation (2.6.39) into equation (2.6.38) results in the transport equations of M chemical 
species described by  
 

[ ]
1

( ) ( ) ( ) ,   ;     ( )
N

i i h
i i i ik ik k

k

h C L C h r i M or L h
t t
ρ

α ρ ν μ
=

∂ ∂
+ = − ∈ + =

∂ ∂∑ CU α C νr  (2.6.40)
 

where U is a unit matrix, Ch is a vector with its components representing M species concentrations 
multiply the water depth [M/L2], α is a diagonal matrix with αi as its diagonal component, C is a 
vector with its components representing M species concentrations [M/L3], ν is the reaction 
stoichiometry matrix, and r is the reaction rate vector with N reaction rates as its components. 
Equation (2.6.40) represents a mass balance for species i, which states that the rate of change of any 
species mass is due to advection-dispersion coupled with contributing reactions that describe the 
biogeochemical processes.  
 
In a primitive approach, equation (2.6.40) is integrated to yield the distributions and evolutions of 
chemical species in a region of interest.  However, when some fast equilibrium reactions take place 
in the system, this approach is not adequate (Fang et al., 2003).  Here, we will take a diagonalization 
approach through decomposition.  Equation (2.6.40) written in matrix form can be decomposed 
based on the type of biogeochemical reactions via Gauss-Jordan column reduction of reaction matrix 
ν. Among all the fast/equilibrium and slow/kinetic reactions, “redundant reactions” are defined as 
fast reactions that are linearly dependent on other fast reactions, and “irrelevant reactions” are 
kinetic reactions that are linearly dependent on only equilibrium reactions.  In order to avoid 
singularity of the reaction matrix, redundant fast reactions are omitted from the system prior to 
decomposition.  The removal of irrelevant slow reactions alleviates problems associated with rate 
formulation uncertainty and parameterization for these reactions. 
 
Decomposition is performed by pivoting on the NE equilibrium reactions and decoupling them from 
the NK kinetic reactions.  In other words, each fast reaction can be used to eliminate one chemical 
species from simultaneous consideration.  An incomplete Gauss-Jordan row decomposition of the 
reaction matrix  ν by pivoting on NE equilibrium reactions will result in NE equilibrium-variables 
and NKIV kinetic-variables.  To analyze the system behavior, it is advantageous to perform a 
complete decomposition, in which the reduction of the reaction matrix is done by pivoting on NE 
equilibrium reactions and on NKI linearly independent kinetic reactions to result in NE equilibrium-
variables, NKI kinetic-variables, and NC components.  The complete decomposition is given as 
follows: 
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where A11 is the submatrix of the reduced U matrix with size of NE × NE,  A21 is the submatrix of the 
reduced U matrix with size of NKI × NE, and A31 is the submatrix of the reduced U matrix with size 
of NC × NE; 012 is the zero submatrix of the reduced U matrix with size of NE × NKI, A22 is the 
submatrix of the reduced U matrix with size of NKI × NKI,  and A32 is the submatrix of the reduced U 
matrix with size of NC × NKI; 013 is the zero submatrix of the reduced U matrix with size of NE × NC, 
023 is the submatrix of the reduced U matrix with size of NKI × NC, and U33 is the unit submatrix of 
the reduced U matrix with size of NC × NC;  Ch1, Ch2, and Ch3 are the subvectors of the vector Ch 
with sizes of NE, NKI, and NC, respectively; B11 is the submatrix of the reduced α matrix with size of 
NE × NE,  B21 is the submatrix of the reduced α matrix with size of NKI × NE, and B31 is the submatrix 
of the reduced α matrix with size of NC × NE; 012 is the zero submatrix of the reduced α matrix with 
size of NE × NKI, A22 is the submatrix of the reduced α matrix with size of NKI × NKI,  and B32 is the 
submatrix of the reduced α matrix with size of NC × NKI; 013 is the zero submatrix of the reduced α 
matrix with size of NE × NC, 023 is the submatrix of the reduced α matrix with size of NKI × NC, and 
α33 is the diagonal submatrix of the reduced α matrix with size of NC × NC;  C1, C2, and C3 are the 
subvectors of the vector C with sizes of NE, NKI, and NC, respectively;  D11 is the diagonal submatrix 
of the reduced ν matrix with size of NE × NE,  K12 is the submatrix of the reduced ν matrix with size 
of NE × NKI, and K13 is the submatrix of the reduced ν matrix with size of NE × NKD(k); 021 is the zero 
submatrix of the reduced ν matrix with size of NKI × NE, D22 is the diagonal submatrix of the reduced 
ν matrix with size of NKI × NKI,  and K23 is the submatrix of the reduced ν matrix with size of NKI × 
NKD(k); 013 is the zero submatrix of the reduced ν matrix with size of NC × NE, 032 is the zero 
submatrix of the reduced ν matrix with size of NC × NKI, and 033 is the zero submatrix of the reduced 
ν matrix with size of NC × NKD(k);  r1, r2, and r3 are the subvectors of the vector r with sizes of NE, 
NKI, and NKD(k), respectively. 
 
For incomplete decomposition of the reaction matrix ν, Equation (2.6.41) can be connoted as 
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where A11 and A21 are the submatrices of the reduced U matrix with size of NE × NE and NKIV × NE, 
respectively (note that NKIV = M – NE = NKI + NC); 012 and U22 are the zero- and unit-submatrices, 
respectively, of the reduced U matrix with size of NE × NKIV and NKIV × NKIV, respectively; Ch1 and 
Ch2 are the subvectors of the vector Ch with sizes of NE and NKIV, respectively; B11 and B21 are the 
submatrices of the reduced α matrix with sizes of NE × NE and NKIV × NE, respectively; 012 and α22 
are the zero- and unit- submatrices, respectively, of the reduced α matrix with size of NE × NKIV and 
NKIV × NKIV, respectively; C1 and C2 are the subvectors of the vector C with sizes of NE and NKIV, 
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respectively;  D11 is the diagonal submatrix of the reduced ν matrix with size of NE × NE and K12 is 
the submatrix of the reduced ν matrix with size of NE × NKIV; 021 is the zero submatrix of the reduced 
ν matrix with size of NKIV × NE and  K22 is the submatrix of the reduced ν matrix with size of NKIV × 
NE;  r1 and r2 are the subvectors of the vector r with sizes of NE and  NKIV, respectively.   
  
For reactions that are fast, equilibrium may be regarded as being reached instantaneously among the 
relevant species and the reaction rates may be regarded as infinite. An infinite rate is mathematically 
represented by a mass action equation or a user specified nonlinear algebraic equation. As a result, 
the decomposition of equation (2.6.40) to equation (2.6.42) effectively reduces a set of M species 
reactive transport equations into two subsets of equations. The first set contains NE algebraic 
equations representing mass action laws for the equilibrium reactions, and the second set contains 
NKIV kinetic-variable transport equations. These equation subsets are defined as 
 
Algebraic Equations for Equilibrium Reactions 
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 (2.6.43)

 

where Ki
e is the equilibrium constant of the i-th fast reaction, Aj is the activity of the j-th species, 

Fi(C1,..,CM; p1,p2,..) is an empirical function of all species and a number of parameters p, p2, … for 
the i-th fast reaction.  Ei was called an equilibrium-variable (Fang, et al., 2003) because 

( )ihE
t

∂
≈ ∞

∂
simply means that Ei can reach equilibrium instantaneously. 

 
Transport Equations for Kinetic-Variables  
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where Ei was called a kinetic variable (Fang, et al., 2003) because as Ei is transported it is subject to 
only kinetic reactions.  This is in contrast to Eq. (2.6.44) where as Ci is transported, it is subject to 
both equilibrium and kinetic reactions. 
 
Assign 
 

2 2
1

,  i
KN

i ij j KIV
j

R K r N
=

= ∈∑  (2.6.45)

 
The reduction of Eq. (2.6.40) to Eq. (2.6.43) and (2.6.44) is equivalent to reducing M governing 
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equations for immobile and mobile species to the mixed NE algebraic equations for equilibrium 
variables and NKIV transport equations for kinetic-variables specified as follows 
 

( ) ( ) ( ) ,  as rs is
i i i

m mi
i i i KIVE E E

hE E h E M M M hR i N
t

∂ ⎡ ⎤+ ∇ −∇ ∇ = + + + ∈⎣ ⎦∂
q Ki i i  (2.6.46)

 

where Ei is the concentration of the i-th kinetic-variable [M/L3], Ei
m is the concentration of mobile 

part of the i-th kinetic-variable [M/L3], as
iE

M is the artificial source of the i-th kinetic-variable 

[M/L2/T], rs
iE

M  is the rainfall source of the i-th kinetic-variable [M/L2/T], 1os
iE

M and 2os
iE

M  are 

overland sources of the i-th kinetic-variable from river banks 1 and 2, respectively [M/L2/T], is
iE

M  is 

the mass rate of the source of the i-th kinetic-variable in the overland from subsurface [M/L2/T], Ri is 
the production rate of i-th kinetic-variable due to biogeochemical reactions [M/L3/T], and NKIV is the 
number of kinetic variable variables. 
 
Initial and boundary condition for chemical species need to be transformed into corresponding initial 
and boundary conditions for kinetic-variables, which are stated in the following.  
 
Dirichlet boundary condition: 
 

( , , ) ( ) 0  m m
i i db b b m dE E x y t i M on B= ∈ =x  (2.6.47)

 

where ( , , )m
i db b bE x y t is the prescribed concentration of the mobile portion of the i-th kinetic variable 

on the Dirichlet boundary ( ) 0dB =x [M/L3]. 
 
Variable boundary condition: 
 
< Case 1 > Flow is coming in from outside (nQ < 0) 
 

( ) ( , , ) ( ) 0m m m
i i i vb b b i vE h E E x y t i M on B− ∇ = ∈ =n q K n q xi i i  (2.6.48)

 
< Case 2 > Flow is going out from inside (nQ > 0). 
 

( ) 0 ( ) 0m
i m vh E i M on B− ∇ = ∈ =n K xi i  (2.6.49)

 

where n is the unit outward vector and ( , , )m
i vb b bE x y t  is the concentration of the mobile portion of the 

i-th kinetic variable on the variable boundary ( ) 0vB =x  [M/L3]. 
 
Cauchy boundary condition: 
 

( ) ( , , ) ( ) 0m
i

m m
i i cb b b i cE

E h E Q x y t i M on B− ∇ = ∈ =n q K xi i  (2.6.50)
 

where ( , , )m
i

cb b bE
Q x y t  is the mass flux of Ei

m through the Cauchy boundary ( ) 0cB =x  [M/t/L]. 
 
Neumann boundary condition: 
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( ) ( , , ) ( ) 0m
i

m
i nb b b i nE

h E Q x y t i M on B− ∇ = ∈ =n K xi i  (2.6.51)
 

where ( , , )m
i

nb b bE
Q x y t  is the mass flux of Ei

m through the Neumann boundary ( ) 0nB =x  [M/t/L]. 
 
Overland-river/stream interface boundary condition: 
 

( ) ( ) ( ) ( ){ }1
1 1 1 ( , , )
2

m m m m
i i i i D b bE h E sign E sign E x y t⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦n q K n q n q n q  (2.6.52)

 

where 1 ( , , )m
i D b bE x y t  is the time-dependent concentration of the mobile portion of the i-th kinetic 

variable at the 1-D node corresponding to the overland-river/stream interfacial boundary point 
[M/L3]. 
 
 
 
2.7 Reactive Biogeochemical Transport in Three-Dimension Subsurface Media 

 
Reactive chemical transport in the subsurface occurs over a broad range of geochemical 
environments at various space and time scales. Coupled models that simulate hydrological transport 
and complex biogeochemical reactions are important tools for quantitative predictions of the fate and 
transport of chemicals in groundwater. Biogeochemical reactions can be divided into two classes 
(Rubin, 1983): (1) equilibrium-controlled “fast” reactions, and (2) kinetically-controlled “slow” 
reactions. The former are sufficiently fast compared to the transport time-scale and are reversible, so 
that local equilibrium may be assumed. The latter are not sufficiently fast compared to the transport 
time-scale. They may be either reversible or irreversible. Local equilibrium conditions cannot be 
assumed.  
  
Due to computational limitations, existing coupled models for subsurface reactive transport have 
various capabilities (Keum and Hahn, 2003). Some models couple transport with equilibrium 
chemistry (e.g., Cederberg et al., 1985; Liu and Narasimhan, 1989; Yeh and Tripathi, 1991; 
Parkhurst, 1995; and Parkhurst and Appelo, 1999), while some couple transport with kinetic 
chemistry (e.g., MacQuarrie et al., 1990; Tompson, 1993; Lensing et al., 1994; Wood et al., 1994; 
Adeel et al., 1995; Yeh et al., 1998; and Saiers et al., 2000). Models coupling transport with both 
equilibrium and kinetic reactions appeared in the mid-1990s (e.g., Steefel and Lasaga, 1994; 
Chilakapati, 1995; Chilakapati et al., 1998; Tebes-Stevens et al., 1998; Yeh et al., 2001b; Brun and 
Engesgaard, 2002). Most of these models either implicitly assumes that equilibrium reactions occur 
only among aqueous species or consider only limited reaction networks. These limitations affect the 
generality of the models. There appears to be few general-purpose transport models that can simulate 
generic reaction networks including mixed equilibrium/kinetic biochemical and geochemical 
reactions (Yeh et al., 2004).  
 
This report presents a general mathematical framework and a three-dimensional numerical 
implementation to simulate reactive chemical transport in subsurface water subject to a defined flow 
field. Chemical species considered include dissolved species, suspension precipitates and surface 
species that encompass adsorbed species, ion-exchanged species and free sites. Biogeochemical 
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reactions taken into account in the model include aqueous complexation, adsorption/desorption, ion-
exchange, precipitation/dissolution, reduction/oxidation, and volatilization. Any individual reaction 
representing any of these chemical and physical processes may be simulated as kinetic or as 
equilibrium, which makes the approach applicable to a wide range of biogeochemical transport 
problems.   In the subsurface, all dissolved species are assumed mobile while all surface species and 
suspension precipitates are assumed immobile. 
 
 
2.7.1 Immobile Species 
 
The balance equation for immobile species is simply the statement that the rate of mass change is 
due to biogeochemical reaction as: 
 

( )w p
Cp N

C
r

t
θρ

θ
∂

=
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 (2.7.1) 

and 
( )b A s

Cs N
S C r
t

ρ θ∂
=

∂
 (2.7.2) 

 

where ρw is the density of pore-water [M/L3], θ is the porosity of the media [L3/L3], Cp is the 
concentration of precipitate in the unit of chemical mass per por-water mass [M/M], rCp│N is the 
production rate of Cp due to all N reactions in the unit of chemical mass per pore-water volume per 
time [M/L3/t], bρ is the bulk density in dry media mass per unit media volume [M/L3], SA is the 
surface area per unit dry mass [L2/M], Cs is the concentration of surface species in unit of chemical 
mass per surface area [M/L2], and rCs│N is the production rate of Cs due to all N reactions in the unit 
of chemical mass per pore-water per time [M/L3/t]. 
 
Equation (2.7.1) and (2.7.2) can be combined as  
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where Ci is the concentration of the i-th immobile, ri│N is the production rate of species i due to all N 
reactions in the unit of chemical mass per pore-water volume per time [M/L3/t], Mim is the number of 
immobile species, and ρi is defined by 
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The concentrations of all immobile species must be given initially for transient simulations. No 
boundary conditions are needed for immobile species. 
 
 
2.7.2 Mobile Species 
 
The continuity equation of mobile species, i.e. dissolved species in the water phase, can be derived 
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based on the mass conservation law stating that the rate of mass change is due to both advective-
dispersive transport and biogeochemical reactions as 
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where Ci is the concentration of the i-th dissolved species in the unit of chemical mass per unit water 
mass [M/M], ρi is the density of water [i.e., Ci  = Cw] [M/L3], V is the Darcy velocity [L/t], D is the 
dispersion coefficient tensor [L2/t],  ri│N is the production rate of species i due to all N reactions in 
the unit of chemical mass per volume of water per time [M/L3/t], 

i

as
CM is the artificial source of Ci in 

unit of chemical mass per unit of medium volume [M/L3/t], and Mm is the number of mobile 
chemical species. 
 
Concentrations of all mobile species must be given initially for transient simulations.  Similar to 
salinity transport, six types of boundary conditions are taken into account for mobile species, 
including Dirichlet, Variable, Cauchy, Neumann, river/stream-overland interface, and overland-
subsurface interface boundary conditions (Yeh et al., 2005).  These boundary conditions are stated 
below: 
 
Dirichlet boundary condition:  This condition is applied when the species concentration is 
prescribed as a function of time on the boundaries:  
 

( ) ( ), , ( ) 0i idb dC t C t on B= =x x x  (2.7.6) 
 

where ( ),idbC tx  is a time-dependent concentration of the i-th species on the Dirichlet boundary, 
Bd(x) = 0, [M/M]. 
 
Variable boundary condition:  This boundary condition is employed when the flow direction would 
change with time during simulations.  Two cases are considered, regarding to the flow direction on 
the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

[ ] ( )( ) ( ) , ( ) 0i i i i i i vb vC C C t on Bρ θ ρ ρ⋅ − ⋅∇ = ⋅ =n V D n V x x  (2.7.7) 
 
< Case 2 > Flow is going out from inside: 
 

[ ]( ) 0 ( ) 0i i vC on Bθ ρ⋅ ⋅∇ = =-n D x  (2.7.8) 
 
where Civb(x,t) is a time-dependent concentration of the i-th species [M/M] on the variable boundary, 
Bv(x) = 0, which is associated with the incoming flow. 
 
Cauchy boundary condition:  This boundary condition is employed when the total salt-flow rate is 
given at pervious boundaries.  Usually, this boundary is a flow-in boundary.  The conditions are 
expressed as 
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[ ] ( )( ) , ( ) 0
ii i i i C cb cC C Q t on Bρ θ ρ⋅ − ⋅∇ = =n V D x x  (2.7.9) 

 

where ( ),
iC cbQ tx  is total chemical flux of the i-th species [M/L2/t] through the Cauchy boundary, 

Bc(x) = 0, which takes a positive value if it is going out of the region and a negative value if it is 
coming into the region. 
 
Neumann boundary condition:  This boundary condition is used when the dispersive salt-flow rate 
is known at the boundary.  It can be written as 
 

( ) ( )( ) , ( ) 0
ii i C nb nC Q t on Bθ ρ⋅ ⋅∇ = =-n D x x  (2.7.10)

 

where ( ),
iC nbQ tx  is the chemical flux of the i-th species through the Neumann boundary, Bn(x) = 0, 

[M/L2/t]. 
 
In addition to the four types of global boundary conditions, two interface boundary conditions may 
be specified: one for the exchange of chemicals between the subsurface media and river/stream 
network and the other for chemical exchange between the subsurface media and the overland.  
Mathematically, these boundary conditions are described below. 
 
Subsurface-river interface boundary condition: 
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where 1 ( , , , )i D b b bC x y z t  is the time-dependent concentration of the i-th species at the 1-D node 
corresponding to the subsurface-river/stream interfacial boundary points [M/M]. 
 
Subsurface-overland interface boundary condition: 
 

[ ] ( ) ( ) ( ){ }2
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where 2 ( , , , )i D b b bC x y z t  is the time-dependent concentration of the i-th species at the 2-D node 
corresponding to the subsurface-overland interfacial boundary point [M/M]. 
 
 
2.7.3 Diagonalization of Species Transport Equations 
 
The temporal-spatial distribution of chemical species is described by a system of Mim mass balance 
equations [equation (2.7.3)], and Mm reactive transport equations [equation (2.7.5)]. These two 
equations can be recast in the following form  
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where L is an operator defined as  
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( ) ( ) [ ( )]
i

as
i i i i i i CL C C C Mρ ρ θ ρ= ∇⋅ −∇⋅ ⋅∇ −V D  (2.7.14)

 

 
The determination of ri⏐N and associated parameters is a primary challenge in biogeochemical 
modeling.  Instead of using an ad hoc method to formulate ri⏐N, we use reaction-based formulations 
(Steefel and Cappellen, 1998).  In a reaction-based formulation, ri⏐N is given by the summation of 
rates of all reactions that the i-th species participates in,  
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where νik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
products, μik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
reactants, and rk is the rate of the k-th reaction.  
 
Substituting equation (2.7.15) into equation (2.7.18) results in the transport equations of M chemical 
species described by  
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where U is a unit matrix, Cθ is a vector with its components representing M species concentrations 
multiply the moisture content [M/L3], α is a diagonal matrix with αi as its diagonal component, C is 
a vector with its components representing M species concentrations [M/L3], ν is the reaction 
stoichiometry matrix, and r is the reaction rate vector with N reaction rates as its components. 
Equation (2.7.16) represents a mass balance for species i, which states that the rate of change of any 
species mass is due to advection-dispersion coupled with contributing reactions that describe the 
biogeochemical processes.  
 
In a primitive approach, equation (2.7.16) is integrated to yield the distributions and evolutions of 
chemical species in a region of interest.  However, when some fast equilibrium reactions take place 
in the system, this approach is not adequate (Fang et al., 2003).  Here, we will take a diagonalization 
approach through decomposition.  Equation (2.7.16) written in matrix form can be decomposed 
based on the type of biogeochemical reactions via Gauss-Jordan column reduction of reaction matrix 
ν. Among all the fast/equilibrium and slow/kinetic reactions, “redundant reactions” are defined as 
fast reactions that are linearly dependent on other fast reactions, and “irrelevant reactions” are 
kinetic reactions that are linearly dependent on only equilibrium reactions.  In order to avoid 
singularity of the reaction matrix, redundant fast reactions are omitted from the system prior to 
decomposition.  The removal of irrelevant slow reactions alleviates problems associated with rate 
formulation uncertainty and parameterization for these reactions. 
 
Decomposition is performed by pivoting on the NE equilibrium reactions and decoupling them from 
the NK kinetic reactions.  In other words, each fast reaction can be used to eliminate one chemical 
species from simultaneous consideration.  An incomplete Gauss-Jordan row decomposition of the 
reaction matrix  ν by pivoting on NE equilibrium reactions will result in NE equilibrium-variables 
and NKIV kinetic-variables.  To analyze the system behavior, it is advantageous to perform a 
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complete decomposition, in which the reduction of the reaction matrix is done by pivoting on NE 
equilibrium reactions and on NKI linearly independent kinetic reactions to result in NE equilibrium-
variables, NKI kinetic-variables, and NC components.  The complete decomposition is given as 
follows: 
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rCA A U B B α  0  0  0C

 (2.7.17)

 

where A11 is the submatrix of the reduced U matrix with size of NE × NE,  A21 is the submatrix of the 
reduced U matrix with size of NKI × NE, and A31 is the submatrix of the reduced U matrix with size 
of NC × NE; 012 is the zero submatrix of the reduced U matrix with size of NE × NKI, A22 is the 
submatrix of the reduced U matrix with size of NKI × NKI,  and A32 is the submatrix of the reduced U 
matrix with size of NC × NKI; 013 is the zero submatrix of the reduced U matrix with size of NE × NC, 
023 is the submatrix of the reduced U matrix with size of NKI × NC, and U33 is the unit submatrix of 
the reduced U matrix with size of NC × NC;  Ch1, Ch2, and Ch3 are the subvectors of the vector Ch 
with sizes of NE, NKI, and NC, respectively; B11 is the submatrix of the reduced α matrix with size of 
NE × NE,  B21 is the submatrix of the reduced α matrix with size of NKI × NE, and B31 is the submatrix 
of the reduced α matrix with size of NC × NE; 012 is the zero submatrix of the reduced α matrix with 
size of NE × NKI, A22 is the submatrix of the reduced α matrix with size of NKI × NKI,  and B32 is the 
submatrix of the reduced α matrix with size of NC × NKI; 013 is the zero submatrix of the reduced α 
matrix with size of NE × NC, 023 is the submatrix of the reduced α matrix with size of NKI × NC, and 
α33 is the diagonal submatrix of the reduced α matrix with size of NC × NC;  C1, C2, and C3 are the 
subvectors of the vector C with sizes of NE, NKI, and NC, respectively;  D11 is the diagonal submatrix 
of the reduced ν matrix with size of NE × NE,  K12 is the submatrix of the reduced ν matrix with size 
of NE × NKI, and K13 is the submatrix of the reduced ν matrix with size of NE × NKD(k); 021 is the zero 
submatrix of the reduced ν matrix with size of NKI × NE, D22 is the diagonal submatrix of the reduced 
ν matrix with size of NKI × NKI,  and K23 is the submatrix of the reduced ν matrix with size of NKI × 
NKD(k); 013 is the zero submatrix of the reduced ν matrix with size of NC × NE, 032 is the zero 
submatrix of the reduced ν matrix with size of NC × NKI, and 033 is the zero submatrix of the reduced 
ν matrix with size of NC × NKD(k);  r1, r2, and r3 are the subvectors of the vector r with sizes of NE, 
NKI, and NKD(k), respectively. 
 
For incomplete decomposition of the reaction matrix ν, Equation (2.7.17) can be connoted as 
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where A11 and A21 are the submatrices of the reduced U matrix with size of NE × NE and NKIV × NE, 
respectively (note that NKIV = M – NE = NKI + NC); 012 and U22 are the zero- and unit-submatrices, 
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respectively, of the reduced U matrix with size of NE × NKIV and NKIV × NKIV, respectively; Cθ1 and 
Cθ2 are the subvectors of the vector Cθ with sizes of NE and NKIV, respectively; B11 and B21 are the 
submatrices of the reduced α matrix with sizes of NE × NE and NKIV × NE, respectively; 012 and α22 
are the zero- and unit- submatrices, respectively, of the reduced α matrix with size of NE × NKIV and 
NKIV × NKIV, respectively; C1 and C2 are the subvectors of the vector C with sizes of NE and NKIV, 
respectively;  D11 is the diagonal submatrix of the reduced ν matrix with size of NE × NE and K12 is 
the submatrix of the reduced ν matrix with size of NE × NKIV; 021 is the zero submatrix of the reduced 
ν matrix with size of NKIV × NE and  K22 is the submatrix of the reduced ν matrix with size of NKIV × 
NE;  r1 and r2 are the subvectors of the vector r with sizes of NE and  NKIV, respectively.   
  
For reactions that are fast, equilibrium may be regarded as being reached instantaneously among the 
relevant species and the reaction rates may be regarded as infinite. An infinite rate is mathematically 
represented by a mass action equation or a user specified nonlinear algebraic equation. As a result, 
the decomposition of equation (2.7.16) to equation (2.7.18) effectively reduces a set of M species 
reactive transport equations into two subsets of equations. The first set contains NE algebraic 
equations representing mass action laws for the equilibrium reactions, and the second set contains 
NKIV kinetic-variable transport equations. These equation subsets are defined as 
 
Algebraic Equations for Equilibrium Reactions 
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 (2.7.19)

 

where Ki
e is the equilibrium constant of the i-th fast reaction, Aj is the activity of the j-th species, 

Fi(C1,..,CM; p1,p2,..) is an empirical function of all species and a number of parameters p, p2, … for 
the i-th fast reaction.  Ei was called an equilibrium-variable (Fang, et al., 2003) because 

( )iE
t

θ∂
≈ ∞

∂
simply means that Ei can reach equilibrium instantaneously. 

 
Transport Equations for Kinetic-Variables  
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 (2.7.20)

 

where Ei was called a kinetic variable (Fang, et al., 2003) because as Ei is transported it is subject to 
only kinetic reactions.  This is in contrast to Eq. (2.7.16) where as Ci is transported, it is subject to 
both equilibrium and kinetic reactions. 
 
Assign 
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1

,  i
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i ij j KIV
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=

= ∈∑  (2.7.21)
 

The reduction of Eq. (2.7.15) to Eq. (2.7.18) and (2.7.19) is equivalent to reducing M governing 
equations for immobile and mobile species to NE algebraic equations for equilibrium variables and 
NKIV transport equations for kinetic-variables specified as follows 
 

( ) ( ) ( ) ,  as
i

m mi
i i i KIVE

E E E M R i N
t

θ θ θ∂ ⎡ ⎤+ ∇ −∇ ∇ = + ∈⎣ ⎦∂
V Di i i  (2.7.22)

 

where Ei is the concentration of the i-th kinetic-variable [M/L3], Ei
m is the concentration of mobile 

part of the i-th kinetic-variable [M/L3], as
iE

M is the artificial source of the i-th kinetic-variable 

[M/L3/T], Ri is the production rate of i-th kinetic-variable due to biogeochemical reactions [M/L3/T], 
and NKIV is the number of kinetic variable variables. 
 
Initial and boundary condition for chemical species need to be transformed into corresponding initial 
and boundary conditions for kinetic-variables, which are stated in the following.  
 
Dirichlet boundary condition: 
 

( , , , ) ( ) 0m m
i id b b b dE E x y z t on B= =x  (2.7.23)

 

where ( , , )m
id b bE x y t  is the specified concentration of the mobile portion of the i-th kinetic variable on 

the Dirichlet boundary ( ) 0dB =x   [M/L3]. 
 
Variable boundary condition: 
 
< Case 1 > Flow is coming in from outside (nQ < 0) 
 

( ) ( , , , ) ( ) 0m m m
i i iv b b b vE E E x y z t on Bθ− ∇ = =n V D n V xi i i  (2.7.24)

 
< Case 2 > Flow is going out from inside (nQ > 0). 
 

( ) 0 ( ) 0m
i vE on Bθ− ∇ = =n D xi i  (2.7.25)

 

where n is the unit outward vector and ( , , , )m
iv b b bE x y z t  is the concentration of the mobile portion of 

the i-th kinetic variable on the variable boundary ( ) 0vB =x  [M/L3]. 
 
Cauchy boundary condition: 
 

( ) ( , , , ) ( ) 0m
i

m m
i i b b b ccE

E E Q x y z t on Bθ− ∇ = =n V D xi i  (2.7.26)
 

where ,( , , )m
i

b b bcE
Q x y z t  is the mass flux of Ei

m through the Cauchy boundary ( ) 0cB =x  [M/t/L2]. 
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Neumann boundary condition: 
 

( ) ( , , , ) ( ) 0m
i

m
i b b b nnE

E Q x y z t on Bθ− ∇ = =n D xi i  (2.7.27)
 

where ( , , , )m
i

b b bnE
Q x y z t  is the mass flux of Ei

m through the Neumann boundary ( ) 0nB =x  [M/t/L2]. 
 
Subsurface-river interface boundary condition: 
 

( ) ( ) ( ){ }11( ) 1 1 ( ' )
2

m m m m D
i i i i jE E sign E sign E C sθ⎡ ⎤⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦n V D n V n V n V  (2.7.28)

 

Where 1( ' )m D
i jE C s  is the mobile portion of the subsurface i-th kinetic variables with its argument 

being the linear combination of 1-D river/stream species concentrations 1 'D
jC s  [M/L3]. 

 
Subsurface-overland interface boundary condition: 
 

( ) ( ) ( ){ }21( ) 1 1 ( ' )
2

m m m m D
i i i i jE E sign E sign E C sθ⎡ ⎤⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦n V D n V n V n V  (2.7.29)

 

where 2( ' )m D
i jE C s  is the mobile portion of the subsurface i-th kinetic variables with its argument 

being the linear comination of 2-D overland species concentrations 2 'D
jC s  [M/L3]. 

 
 
 
2.8 Coupling Transport Among Various Media 

 
As in coupling flows among various media, a rigorous treatment of coupling transport among media 
should be based the continuity of material fluxes and state variables.  This rigorous treatment in 
coupling chemical transport among various media can be taken similar to the case of flows.   We 
simply impose the continuity of material fluxes and species concentrations for all mobile (between 
river/stream networks and overland regime) dissolved aqueous species (between subsurface media 
and overland regime and between subsurface media and river/stream networks) .  
 
However, because the state variables (dissolved chemical concentrations, suspend sediment 
concentrations, and mobile particulate chemical concentrations) in various media may not be 
continuous because these state variables are true three-dimensional distribution in subsurface media, 
but are vertically averaged quantities in overland regime and cross-sectional area averaged quantity 
in river/stream networks.   Because of the averaging processes, mass fluxes between media can be 
considered due mainly to the advective transport.  If this assumption is valid, the coupling of 
transport among various medial is much simpler than that for fluid flow. 
 
 
2.8.1 Coupling between Overland Transport and River/StreamNetworks 
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The coupling of transport between overland and canal is similar to that of salinity transport.  When a 
levee is present on the bank of the canal (left column in Fig. 2.4-1), there are several possibilities on 
the interactions between overland and river flow transport.  If water surfaces in both the overland 
regime and river are below the top of the levee, the two flow systems are decoupled and transport in 
overland is decoupled from that in river networks (Fig. 2.4-1a). 
 
When the water surface in the overland regime is above the top of the levee and in the canal is below 
the top of the levee (Fig. 2.4-1b), the flow is from the overland to river network and thus the 
transport is also one way from the overland to river network.  The fluxes are given by 
 

[ ] 1 1( )
i

osl o
Bank CC h C M S Cρ ρ ρ⋅ − ⋅∇ = =n q D  (2.8.1) 

 

where C [denotes Sn with ρ = 1 for supended sediment, Cw with ρ = ρw for dissolved species, Cp with 
ρ = ρw for precipitated species, CSn with ρ = Sn for particulate species] is sediment concentration 
[M/L3] or species concentrations [M/M] in the overland flow,

i

osl
CM is the source rate of the i-th 

species in the canal from the overland via bank 1, which appeared in Eq. (2.5.30) [M/t/L],  Co is the 
value of C in the overland water at the interface.  When the water surface in the overland regime is 
below the top of the levee and in the canal is above the top of the levee (Fig. 2.4-1c), the flow is 
from the canal to overland and thus the transport is one way from the canal to overland.  The fluxes 
are given by 
 

[ ] 1 1( )
i

osl c
Bank CC h C M S Cρ ρ ρ⋅ − ⋅∇ = =n q D  (2.8.2) 

 

where Cc is the value of C in the canal water.  When the water surfaces in the overland and canal are 
above the top of the levee (Fig. 2.4-1d), flow direction can e either from the overland to the canl or 
from the canal to the overland depending on the flow dynamics in the overland and in the canal.  If 
the state variable C is discontinues at the interface of the canal and overland, the fluxes are given by 
 

[ ] ( )( ) ( )( )1 1 1 1
1( ) 1 1
2i

osl o c
Bank CC h C M S sign S C sign S Cρ ρ ρ ρ⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦n q D  (2.8.3) 

 

If the state variable is continuous, the fluxes are modeled by imposing its continuity to yield the 
fluxes 
 

[ ] 1 1( )
i

osl o c
Bank C BankC h C M and C Cρ ρ⋅ − ⋅∇ = =n q D  (2.8.4) 

 

 
When a levee is not present on the bank of the canal (right column in Fig. 2.4-1), there are two 
possibilities on the interactions between overland and river transport.  If water surface in the canal 
falls below the bank, the flux is either zero if the overland flow is not present or is nonzero and 
directed from the overland into the canal if overland flow is present (Fig. 2.4-1e).  Under this 
circumstance, the fluxes are given by 
 

[ ] 2
2 2( )

i

os o
Bank CC h C M S Cρ ρ ρ⋅ − ⋅∇ = =n q D  (2.8.5) 
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where 2
i

os
CM is the source rate of the i-th species in the canal from the overland via bank 2, which 

appeared in Eq. (2.5.30) [M/t/L], 
 
When the water surface in the canal is above the bank (Figs. 2.4-1f and 2.4-1.g), the flow direction 
can be either from the overland into the canal or from the canal into the overland depending on the 
flow dynamics in the overland and in the canal.  If the state variable is discontinuous, the fluxes are  
 

[ ] ( )( ) ( )( )2
2 2 2 2

1( ) 1 1
2i

os o c
Bank CC h C M S sign S C sign S Cρ ρ ρ ρ⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦n q D  (2.8.6) 

 
If the state variable is continuous, we impose the continuity of the state variable to yield the fluxes 
 

[ ] 2
2 2( )

i

os o c
Bank C BankC h C M and C Cρ ρ⋅ − ⋅∇ = =n q D  (2.8.7) 

 
 
Because kinetic variables E are chosen as the primary variables in the transport module, for reactive 
chemical transport, the interfacial boundary conditions in terms of species concentrations must be 
transformed into those in terms of kinetic variables.  Since reaction networks in overland and 
river/stream/canal networks are identical, every corresponding kinetic variable in the overland and 
river/stream networks contains the same mobile portion.   Thus, one simply replaces Cρ  with m

iE  in 
Eqs. (2.8.1) through (2.8.7).   For completeness of this report, these equations are listed below. 
 
For couling via bank 1: 
 
When the water surface in the overland regime is above the top of the levee and in the canal is below 
the top of the levee (Fig. 2.4-1b), the flow is from the overland to river network and thus the 
transport is also one way from the overland to river network.  The flux of the i-th kinetic variables 
are given by 
 

( )1
1 1i

om m os m
i i Bank E iE h E M S E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.8) 

 

When the water surface in the overland regime is below the top of the levee and in the canal is above 
the top of the levee (Fig. 2.4-1c), the flow is from the canal to overland and thus the transport is one 
way from the canal to overland, the flux of the i-th kinetic variable is given as 

( )1
1 1i

cm m os m
i i Bank E iE h E M S E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.9) 

 

When the water surfaces in the overland and canal are above the top of the levee (Fig. 2.4-1d), flow 
direction can e either from the overland to the canl or from the canal to the overland depending on 
the flow dynamics in the overland and in the canal.  If the state variable E is discontinues at the 
interface of the canal and overland, the fluxes are given by 
 

( )( )( ) ( )( )( )1
1 1 1 1

1 1 1
2i

o cm m os m m
i i Bank E i iE h E M S sign S E sign S E⎡ ⎤⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦ ⎢ ⎥⎣ ⎦

n q D  (2.8.10)
 

If the state variable E is continuous, the fluxes are modeled by imposing its continuity to yield the 
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fluxes 
 

( ) ( )1
1 1i

o cm m os m m
i i Bank E i Bank iE h E M and E E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.11)

 

In Equations (2.8.8) through (2.8.11), m
iE  is the concentration of the mobile portion of the i-th 

kinetic variable [M/L3], ( )om
iE is the value of m

iE in the overland water at the interface [M/L3], and 
1

i

os
EM is the source of the kinetic variable Ei in the canal from the overland via bank 1 [M/t/L], which 

appeared in Eq. (2.5.44), and ( )cm
iE is the value of m

iE in the canal water at the interface.   
 
For couling via bank 2: 
 
When a levee is not present on the bank of the canal (right column in Fig. 2.4-1), there are two 
possibilities on the interactions between overland and river transport.  If water surface in the canal 
falls below the bank, the flux is either zero if the overland flow is not present or is nonzero and 
directed from the overland into the canal if overland flow is present (Fig. 2.4-1e).  Under this 
circumstance, the fluxes are given by 
 

( )2
2 2i

om m os m
i i Bank E iE h E M S E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.12)

 

When the water surface in the canal is above the bank (Figs. 2.4-1f and 2.4-1g), the flow direction 
can be either from the overland into the canal or from the canal into the overland depending on the 
flow dynamics in the overland and in the canal.  If the state variable is discontinuous, the fluxes are  
 

( )( )( ) ( )( )( )2
2 2 2 2

1 1 1
2i

o cm m os m m
i i Bank E i iE h E M S sign S E sign S E⎡ ⎤⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦ ⎢ ⎥⎣ ⎦

n q D  (2.8.13)

 
If the state variable is continuous, we impose the continuity of the state variable to yield the fluxes 
 

( ) ( )2
2 2i

o cm m os m m
i i Bank E i Bank iE h E M and E E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.14)

 
In Equstions (2.8.12) through (2.8.14), 2

i

os
EM is the source of the kinetic variable Ei in the canal from 

the overland via bank 2 [M/t/L], which appeared in Eq. (2.5.44). 
 
 
2.8.2 Coupling between Subsurface and Overland Transport 
 
The coupling of overland and subsurface transport is through the exchange of dissolved species only. 
Sediments, particulate species, and precipitated species in the overland flow will not exchange with 
adsorbed/ion exchanged and precipitated species in the subsurface flow.  If the concentrations of 
dissolved chemicals in overland water and subsurface water at the ground surface are discontinuous, 
the chemical flux is given by 
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( )( ) ( ) ( )( ) ( )( ) 1 1
2is

i

s ow w w wI
w i w i I w i I w iC

SC C M sign S C sign S Cρ θ ρ ρ ρ⎡ ⎤⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦ ⎢ ⎥⎣ ⎦
n V D (2.8.15)

 

where ( )ow
iC is the concentration of the i-th dissolved species in the overland water and ( )sw

iC is the 
concentration of the i-th dissolved species of subsurface water at the interface and is

iC
M  is mass rate 

of the source of the i-th dissolved species in overland from subsurface media [M/t/L2], which 
appeared in Eq. (2.6.31).  If the concentrations are continuous, we impose the continuity of dissolved 
concentration to yield the fluxes 
 

( ) ( )on the interface( ) is
i

s ow w w w
i i i i i iC
C C M and C Cρ θ ρ⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n V D  (2.8.16)

 
 
The transforemation of the interfacial boundary conditions, Eq. (2.8.15) and (2.8.16), to those in 
terms of kinetic variables is not straightforward because the reaction networks for the subsurface and 
overland may not be identical.  If every kinetic-variable in the subsurface corresponding to that in 
the overland contains the same dissolved aqueous species, then the transformation is straightforwd 
as  
 

( )( )( ) ( )( )( )( ) 1 1
2is

i

s ow w w wI
i i I i I iE

SE E M sign S E sign S Eθ ⎡ ⎤⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦ ⎢ ⎥⎣ ⎦
n V D  (2.8.17)

 

for the case when the state variables are discontinuous, and 
 

( ) ( )on the interface( ) is
i

s ow w w w
i i i iE

E E M and E Eθ⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n V D  (2.8.18)
 

for the case when the state variables are continuous.  In Equstions (2.8.17) and (2.8.18), ( )ow
iE is the 

concentration of the dissolved portion of i-th kinetic variables in the overland water and ( )sw
iE is the 

concentration of the dissolved portion of the i-th kinetic variable in subsurface water at the interface 
and is

iE
M  is the mass rate of the source of the i-th kinetic variable in overland from subsurface media 

[M/t/L2], which appeared in Eq. (2.6.46).  
 
It should be kept in mind that ( )ow

iE and ( )sw
iE (and as a matter of fact ( )w

iE ) must have the same 
dissolved species content for Equations (2.8.17) and (2.8.18) to be valid.  Otherwise, the coupling in 
terms of kinetic-variables requires further elaborations that will be addressed in Section 2.8.4. 
 
 
2.8.3 Coupling between Subsurface and River/Stream/Canal Transport 
 
Similar to the coupling between subsurface and overland, the transport between subsurface and canal 
is coupled and the fluxes between two media depend on if the dissolved concentration is continuous 
or not.  For the case of discontinuous chemical concentration, the flux is given by 
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( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

1 1
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1 1
2i
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w i w i w i w i

s cis w w
C w i w i
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C C sign C sign C

M sign C sign C dP

ρ θ ρ ρ ρ

ρ ρ
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= + + −∫
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n V n V n V

i i i

i i i
 (2.8.19)

 
where ( )sw

iC and ( )cw
iC are the concentrations of the i-th dissolved species in the subsurface and canal 

waters.  If the concentration is continuous, we impose its continuity to yield the flux 
 

( ) ( ) ( )on the interface( )
i

s cw w is w w
w i w i C i i

P

C C dP M and C Cρ θ ρ⋅ − ⋅∇ = =∫n V D  (2.8.20)

 
where is

iC
M is mass rate of the source of the i-th dissolved species in canal from subsurface media 

[M/t/L]. 
 
Similar to the coupling between subsurface and overland flows, the transforemation of the interfacial 
boundary conditions, Eq. (2.8.19) and (2.8.20), to those in terms of kinetic variables is not 
straightforward because the reaction networks for the subsurface and river/stream newtworks may 
not be identical.  If every kinetic-variable in the subsurface corresponding to that in the river/stream 
contains the same dissolved aqueous species, then the transformation is straightforwd and is given in 
Eqs. (2.8.21) and (2.8.22), respectively, for the cases of discontinuity and conctinuity, respectively, 
in species concentrations, 
 

( ) ( )( )( ) ( )( )( )( )
( )( )( ) ( )( )( )( )

1 1
2

1 1
2i

s cw w w w
i i i i

s cis w w
E i i

P

E E sign E sign E

M sign E sign E dP

θ⋅ − ⋅∇ = + + −

= + + −∫

n Vn V D n V n V

n V n V n V

i i i

i i i
 (2.8.21)

and 

( ) ( ) ( )on the interface( )
i

s cw w is w w
i i E i i

P

E E dP M and E Eθ⋅ − ⋅∇ = =∫n V D  (2.8.22)

 
where ( )sw

iE and ( )cw
iE are the concentration of the dissolved portion of i-th kinetic variables in the 

subsurface and canal.  
 
It should be kept in mind that ( )cw

iE and ( )sw
iE (and as a matter of fact ( )w

iE ) must have the same 
content of dissolved species for Equations (2.8.21) and (2.8.22) to be valid.  Otherwise, the coupling 
in terms of kinetic-variables requires further elaborations that will be addressed in Section 2.8.4. 
 
 
2.8.4 Coupling of Reactive Transport between Groundwater and Surface Transport 
 
Since reaction networks for groundwater and surface waters (in overland and river/stream flows) are 
likely to be different, the continuity of species fluxes and the continuity of species concentration or 
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the formulation of species fluxes must be transformed from those in terms of species concentration 
to those in terms of kinetic variables.   
 
After decomposition of reaction networks, kinetic-variables and their corresponding dissolved 
portion are simply defined as linear combination of species 
 

{ } [ ] { } ,   { } [ ] { } { } [ ] { } ,  { } [ ] { }w w
g g g g g g s s s s s sand= = = =E A C E B C E A C E B C  (2.8.23)

 
where the subscript g denotes the groundwater system; the subscript s denote the surface water 
system; {E} and {Ew} are the vectors of size M; and [A] and [B] are the decomposed unit matrices 
of size M x M.  It is noted that the i-th reaction extent, Ei, is an equilibrium variable if its evolution is 
governed by an indepdendnt equilibrium raeaction and a set of linearly depending kinetic reactions; 
a kinetic variable if by an independent kinetic reaction and a set of linearly dependent kinetic 
reactions; a component if its concentration remains constant (Fang et al., 2003).  Inverting Eq. 
(2.8.23), we have 
 

1 1{ } [ ] { } { } [ ] { }g g g s s sand− −= =C A E C A E  (2.8.24)
 
Continuity of flux of all aqueous requires 
 

( ) ( )
( ) ( )

( )1 1

{ } { } [ ] { } [ ] { } ,

{ } { } [ ] { } [ ] { }

[ ] [ ] { } [ ] [ ] { }

w w w w
g g g g g g

w w w w
g g g s g s

g s s g s s

thus

θ θ

θ θ

θ− −

⋅ − ⋅∇ = ⋅ − ⋅∇

⋅ − ⋅∇ = ⋅ − ⋅∇

= ⋅ − ⋅∇

n V E D E n V B C D B C

n V E D E n V B C D B C

n V B A E D B A E

 (2.8.25)

 
Continuity of aqueous speces require 
 

1{ } [ ] { } [ ] { } [ ] [ ] { }w w w
g g g g s g s s

−= = =E B C B C B A E  (2.8.26)
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3 NUMERICAL APPROACHES 

 
In this chapter, we are to present the numerical approaches employed to solve the governing 
equations of flow and transport given in the previous section.  In our model, transport is assumed not 
to influence flow.  Three time scales are considered in the model.  They are (1) for three-dimensional 
subsurface flow, (2) for three-dimensional subsurface transport and two-dimensional overland 
flow/transport, and (3) for one-dimensional river/stream/canal flow/transport.  In general, a three-
dimensional flow time step may include several two-dimensional flow time steps and a two-
dimensional flow time step can cover many one-dimensional flow time steps.  The time scale for 
three-dimensional subsurface transport is set to be the same as that for two-dimensional overland 
flow/transport because kinetic chemical reactions are taken into account.  During each three-
dimensional flow time step, we solve three-dimensional subsurface flow by employing the updated 
two-dimensional flow conditions to achieve the surface/subsurface interface boundary conditions 
and determine the infiltration/seepage for two-dimensional flow computation included in this three-
dimensional flow time step.  During each two-dimensional flow time step, we first solve three-
dimensional reactive chemical transport with the updated two-dimensional transport result (i.e., at 
the previous time) used for implementing variable boundary conditions on the interface boundary 
and determine the dissolve chemical flux through the surface/subsurface interface.  This flux is 
actually the source/sink to two-dimensional dissolve chemical transport through infiltration/seepage. 
 Then we solve two-dimensional flow equations to determine the water stage/depth and velocity of 
overland flow.  Finally, we solve two-dimensional reactive chemical transport equations for the 
distribution of dissolved chemicals, sediments, and particulate chemicals.  Within a one-dimensional 
flow time step, the river/stream flow equations are solved first and the one-dimensional transport 
equations are solved by using the newly-computed flow results.  The interaction between one-
dimensional river/stream and two-dimenional overland flow/transport is taken into account by using 
the updated computational results.  Depth or stage difference-dependent fluxes are employed to 
determine the flow through this one-dimensional/two-dimensional interface. 
 
 

3.1 Solving One-Dimensional River/Stream/Canal Network Flow Equations 
 
As mentioned earlier in this report, we desire to implement a hybrid model to accurately simulate 
surface water flow under a wide range of physical conditions though it is still under investigation 
and further study is required.  In our investigation to date, we would apply the hybrid Lagrangian-
Eulerian finite element method to solve dynamical wave models, the hybrid Lagrangian-Eulerian or 
conventional finite element method to solve diffusion wave models, and the semi-Lagrangian 
method for kinematic wave models.  In this and the next subsections, we will present the numerical 
approaches used in the method of characteristics and the Lagrangian approach for solving the one-
dimensional river/stream/canal flow and two-dimensional overland flow equations, respectively.  In 
either approach, the Picard method is employed to deal with the nonlinearity. 
 
3.1.1 The Lagrangian-Eulerian Finite Element Method for Dynamic Wave 
 
Substituting Equations (2.1.10) through (2.1.12) into Equations (2.1.19) and (2.1.20) and rearranging 



 3-2

the resulting equations, we obtain 
 

( )
++

+ +−=
+ SVKD

D
VD cV

τ
ω  (3.1.1) 

 

( )
−−

− +−=
− SVKD

D
VD cV

τ
ω  (3.1.2) 

in which 
( )#

1 21 ; S R E IS S S S S SV g A PVD A K
A x x Bc x A A

κε +

+ − + + +∂ ∂ ∂⎛ ⎞= = + +⎜ ⎟∂ ∂ ∂⎝ ⎠
 (3.1.3) 

 

( )

( )

1 2

1 2

o
S R E I

s
S R E I

Zg ghS S S S S S S g
Bc x c x

M M M M M M B
A A

ρ
ρ

τ
ρ

+

∂ ∂Δ
= + − + + + − −

∂ ∂

+ − + + +
+ +

 (3.1.4) 

 

( )#
1 2S R E IS S S S S Sg A PVK

Bc x A A
κ

−

+ − + + +∂
= + +

∂
 (3.1.5) 

 

( )1 2

1 2

o
S R E I

s
S R E I

Zg ghS S S S S S S g
Bc x c x

M M M M M M B
A A

ρ
ρ
τ

ρ

−

∂ ∂Δ
= − + − + + + − −

∂ ∂

+ − + + +
+ +

 (3.1.6) 

 

where D is the diffusive transport of waves, K+ is the decay coefficient of the positive gravity wave, 
S+ is the source/sink of the positive wave, K- is the decay coefficient of the negative gravity wave, 
and S- is the source/sink of the negative wave. 
 
Integrating Equations (3.1.1) and (3.1.2) along their respective characteristic lines from xi at new 
time-level to xi1

* and xi2
* (Fig. 3.1-1), we obtain 

 

( ) ( ) ( ) ( ) ( )( )

( ) ( )( ) NISS

VKVKDD
VV

ili

ililiiili
l

ililii

∈++

+−+=
Δ

+−+
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,
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2
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2
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***
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τ
ωω

 (3.1.7) 

 

( ) ( ) ( ) ( ) ( )( )
( ) ( )( )

* *
*2 2 * *

2 22

*
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1 1
2 2

1 ,
2

i i i i
i i i ii i

l

i i

V V
D D K V K V

S S I N

ω ω
τ − −

− −

− − −
= + − +

Δ

+ + ∈

 (3.1.8) 

 

where (referring to Figure 3.1-1) Vi, ωi are the values of V and ω at xi (xi = coordinate of  node i) at 
new time level; Vi1

* and ωi1
* are the values of V and ω point xi1

* (where xi1
* is the location of a 

fictitious particle backward tracked from xi along the first characteristics); Δτ1 is the time determined 
by backward tracking along the first characteristic;  Di is the value of D at node i at new time level; 
Di1

* is the value of D at point xi1
*; (K+)i and (S+)i are the values of K+ and S+, respectively at node i 
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at new time level; (K+)i1
* and (S+)i1

* are the values of K+ and S+, respectively at node xi1
* ; N is the 

number of nodes; Vi2
* and ωi2

* are the values of V and ω point xi2
* (where xi2

* is the location of a 
fictitious particle backward tracked from xi along the second characteristics); Δτ2 is the time 
determined by backward tracking along the second characteristic; Di2

* is the value of D at point xi2
*; 

(K-)i and (S-)i are the values of K- and S-, respectively at node i at new time level; and (K)i2
* and (S-)i2

* 
are the values of K- and S-, respectively at node xi2

*. 
 

V + c
V - c

t = n

t = n + 1

Δτ1

Δτ2
Δt

i

x

x

xi2
*

xi1
*

i

xi
k1

(i) k2
(i)

k1
(i) k2

(i)

j1
(i)

j1
(i)

j2
(i)

j2
(i)

 
Fig. 3.1-1.  Backward Tracking along Characteristics in One Dimension. 

 
 

In Equations (3.1.7) and (3.1.8), the primitive variables at the backward tracked location are 
interpolated with those at the global nodes at both new time and old time as 
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2
)(*

i2 ii
l

ii
l jj

n
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n
jl bbbb ωωωωω +++=  (3.1.12)

 

in which the superscript (n) denotes time level (n); k1
(i) and k2

(i) are the two nodes of the element in 
which the backward tracking from node i, along the first characteristic, stops;  j1

(i) and j2
(i) are the 

two nodes of the element in which the backward tracking from node i, along the second 
characteristic, stops; a1(i), a2(i), a3(i), a4(i), b1(i), b2(i), b3(i), and b4(i) are the interpolation parameters 
associated with the backtracking of the i-th node, all in the range of [0,1].  It should be noted that we 
may use two given parameters to determine where to stop in the backward tracking: one is for 
controlling tracking time and the other one is for controlling tracking distance.  After the primitive 
variables at the backward tracked points are interpolated, all other parameters (such as the decay 
coefficients and source/sink terms) are functions of these variables and can be calculated. 
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To compute the eddy diffusion terms Di, we rewrite the first equation in Equation (3.1.3) as 
 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
x
VA

x
AD ε  (3.1.13)

 

in which the momentum flux due to turbulence is modeled with the eddy diffusion hypothesis.  
Applying the Galerkin finite element method to Equation (3.1.13), we obtain the following matrix 
equation for D as 
 

[ ]{ } [ ]{ } { }FVbDa =+  (3.1.14)
in which 

{ } { }T
Ni DDDDDD ....321=  (3.1.15)

 

{ } { }T
Ni VVVVVV ....321=  (3.1.16)

 

{ } { }T
Ni FFFFFF ....321=  (3.1.17)

 

x
VAnFdx

dx
dN

A
dx

dNbdxANNa
N

l

N

l

X

x
i

ji
X

x
ijjiij ∂

∂
=== ∫∫ εε iN,,  (3.1.18)

 

where Ni and Nj, functions of x, are the base functions of nodes at xi and xj, respectively. 
 
Lumping the matrix [a], we can solve Eq. (3.1.14) for Di as follows 
 

∑−=
j

jij
ii

i
ii

i Vb
a

F
a

D 11  (3.1.19)

 
 

Following the identical procedure that leads Eq. (3.1.13) to Eq. (3.1.19), we have 
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n
in

ii

n
i Vb

a
F

a
D )()(

)(
)(

)(
)( 11  (3.1.20)

 

where {F(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {F}, {a} and {b}, respectively. 
Similar to Eqs. (3.1.9) and (3.1.10), Di1

* and Di2
* at the backward tracked location are interpolated 

with {D} and {D(n)} as 
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and 
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2
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2
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)(

*
2 ii

l
ii
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n

ki
n

kili DbDbDbDbD +++=  (3.1.22)
 

 
Substituting Equations (3.1.9) through (3.1.12) and Equations (3.1.19) through (3.1.22) into 
Equations (3.1.7) and (3.1.8) and implementing boundary conditions given Section 2.1.1, we obtain 
a system of 2N simultaneous algebraic equations for the 2N unknowns (Vi for i = 1, 2, .., N and ωi for 
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i = 1, 2, .., N).  If the eddy diffusion terms are not included and the backward tracking is performed 
to reach the time level n (Fig. 3.1-2), then Eqs. (3.1.7) and (3.1.8) are reduced to a set of N 
decoupled pairs of equations as 
 

12 1 21 22 2a ,  ll i i i ia V a b and V a b i Nω ω+ = − = ∈  (3.1.23)
 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

* ** *1 1 1
11 12 1

* ** *2 2
21 22 2 2 22 2
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il ili il i il

i ii i i i

a K a b K V S S

a K a b K V S S

τ τ τω

τ τ τω

+ + + +

− − − −

Δ Δ Δ⎛ ⎞= + = = − + + +⎜ ⎟
⎝ ⎠

Δ Δ Δ⎛ ⎞= + = = − + + +⎜ ⎟
⎝ ⎠

 (3.1.24)

 
 

Equation (3.1.23) ) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there are several possibilities: (1) both equations in Eq. (3.1.23) are replaced with 
two boundary equations, (2) one of the two equations is replaced with a boundary condition equation 
while the other remains unchanged, and (3) both equations stay valid.  These conditions are 
addressed below. 
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Δt
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x

xi2
*xi1
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Fig. 3.1-2.  Backward Tracking along Characteristics to the Toot in One Dimension. 

 
 
Open upstream boundary condition: 
 
If the flow is supercritical, Eq. (3.1.23) is replaced with 
 

( ) upiiciiupii MAhgAVandQAV =+= 2  (3.1.25)
 

where Vi the cross-sectionally averaged velocity at node i, Ai is the cross-sectional area at node i, Qup 
is the flow rate of the incoming fluid from the upstream, (hc)i is the water depth to the centroid of the 
cross-sectional area at node i, and Mup is the momentum-impulse of the incoming fluid from the 
upstream.  It should be noted that both the water depth and velocity in the upstream must be 
measured to provide values of Qup and Mup.  Equation (3.1.25) provides two equations for the 
solution of Vi and hi.  If the flow is critical, Eq. (3.1.23) for the boundary point i is replaced with 
 

13

2

==
i

ii
upii gA

QBandQAV  (3.1.26)

 

where Bi is the top width of the cross-section at node i.  Equation (3.1.26) provides two equations to 
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solve for Vi and hi.  If the flow is subcritical, Eq. (3.1.23) is replaced with 
 

upiilii QAVandbaVa ==+ ω1211  (3.1.27)
 

which is solved for Vi and hi. 
 
Open downstream boundary condition: 
 
If the flow is supercritical, Eq. (3.1.23) is used to solve for Vi and hi on node i.  If the flow is critical, 
the following equation 
 

13

2

11211 ==+
i

ii
ii gA

QBandbaVa ω  (3.1.28)

 

is used to solve for Vi and hi.  If the flow is subcritical, the following equation is used to solve for Vi 
and hi 
 

( ) ( )thhorhQAVandbaVa dnidniiii ===+ 11211 ω  (3.1.29)
 

where Qdn(h), a function of h, is the rating curve function for the downstream boundary and hdn(t), a 
function of t, is the water depth at the downstream boundary.  The adaption of Eq. (3.1.29) depends 
on the physical configuration at the boundary. 
 
Closed upstream boundary condition: 
 
If the flow is supercritical or critical, Eq. (3.1.23) is replaced with Vi = 0 and hi = 0.  If the flow is 
subcritical, Vi = 0 and the second equation in Eq. (3.1.23) is used to calculate hi. 
 
Closed downstream boundary conditions: 
 
At the closed downstream boundary, physical condition dictates that the velocity at the boundary is 
zero.  Therefore, supercritical flow cannot occur because c is greater or equal to zero.   For critical 
flow, Vi = 0 and hi = 0 at the closed boundary point xi.  For the subcritical flow, Vi = 0 and the first 
equation in Eq. (3.1.23) is used to calculate hi. 
 
Natural internal boundary condition at junctions: 
 
For example, consider the junction node J joined by three reaches (Fig. 3.1-3), we have one 
unknown: the water surface elevation or the stage, HJ.  The governing equation for this junction is 
 

3 3

1 1

I I
J J

IJ IJ IJ
I IJ

dV dh Q V A
dh dt

= =

= =

= =∑ ∑  (3.1.30)

for the case when the storage effect of the junction is accounted for, or 
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IJIJ

I

I
IJ AVQ  (3.1.31)
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for the case when the storage effect of the junction is small. 
 
For the node IJ, we need to set up two equations for VIJ and hIJ.  Let us say that node IJ is a 
downstream point if the flow is from the node IJ toward the junction J.  On the other hand, we say 
that the node IJ is an upstream point if the flow is from the junction J toward the node IJ.  Now we 
can set up two equations for each node IJ.  This is demonstrated as follows. 
 

J

1J 2J

3J

1 2

3
 

Fig. 3.1-3.  A Three-Reach Junction 
 
 
If IJ is a downstream point, we have three cases to consider: 
 
(1). Subcritical flow – 
 

JoIJIJ
IJ

IJIJ HZh
g

VandbaVa =++=+
2

2

11211 ω  (3.1.32)

 
(2). Supercritical flow – 
 

2222111211 baVaandbaVa IJIJIJIJ =−=+ ωω  (3.1.33)
 
(3). Critical flow – 
 

13
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11211 ==+
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IJIJ
IJIJ gA

BQandbaVa ω  (3.1.34)

 
If IJ is an upstream point, we have three cases to consider: 
 
(1) Subcritical flow - 
 

22221

2

2
baVaandHZh

g
V

IJIJJoIJIJ
IJ =−=++ ω  (3.1.35)

 
(2). Supercritical flow – 
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1
2 3

22

==++
IJ

IJIJ
JoIJIJ

IJ

gA
BQandHZh

g
V  (3.1.36)

 
(3). Critical flow – 
 

1
2 3

22

==++
IJ

IJIJ
JoIJIJ

IJ

gA
BQandHZh

g
V  (3.1.37)

 

 
Equation (3.1.30) or (3.1.31) and for I =1, 2, and 3, one of Eqs. (3.1.32) through (3.1.37) form 7 
equations that can be solved for 7 unknowns V1J, h1J, V2J, h2J, V3J, h3J, and HJ.  In theory, a 
substitution of the governing equations for the internal junction nodes into Eq. (3.1.30) or (3.1.31) 
eliminates all VIJ and hIJ, and the reduced Eq. (3.1.30) or (3.1.31) relates HJ to all unknowns at nodes 
other than that at node IJ.  However, in practice, the 7 junction equations are solved simultaneously 
with all other discretized algebraic equations.  
 
Controlled internal boundary condition at weirs: 
 
For any weir (W), there are two river/stream/canal reaches connecting to it.  The node 1W located at 
the boundary between the 1th reach and the Wth weir is termed the controlled internal boundary of the 
first reach while the node 2W is called the controlled internal boundary of the second reach (Fig. 3.1-
4).  The specification of boundary conditions for the internal boundaries separated by a weir requires 
elaboration. 
 

W

1W 2W
Reach 1 Reach 2

 
Fig. 3.1-4.  A Flow-Control Weir 

 
 

The flow configuration around the weir and its surrounding reaches may be very dynamic under 
transient flows.  Both of the water stages at nodes 1W and 2W (H1W and H2W) may be below the weir, 
both may be above the weir, or one below the weir while the other is above the weir (Fig. 3.1-5).   
Governing equations of flow at internal boundary nodes 1W and 2W depend on the changing 
dynamics of water stages around the weir.  When both stages H1W and H2W are below the height of 
the weir, the two reaches connecting the weir are decoupled.  When at least one of the stages is 
above the weir, two reaches are either sequentially coupled or fully coupled via the weir.  Here for 
sake of simplicity of discussions, we assume that the flow direction is from Reach 1 to Reach 2.  In 
other words, Reach 1 is an upstream reach and Reach 2 is a downstream reach.  If the flow direction 
is reversed, we can have the boundary condition similarly prescribed. 
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Flow Separating Weir

h1W h2W

h1W h2W

Sumerged Weir

hW h2W
h1W

Free Fall Weir

hW

 
Fig. 3.1-5.  Flow Configurations around a Weir. 

 
There five unknowns, V1W (velocity of the upstream reach node 1W), h1W (the water depth of the 
upstream node 1W), QW (flow rate over the weir), V2W (the velocity of the downstream reach node 
2W), and h2W (the water depth of the downstream node 2W); five equations must be set up for this 
weir complex consisting of a upstream reach node, a weir, and a downstream node. The governing 
equations for these five unknowns can be obtained depending on the flow conditions at the upstream 
and downstream reaches separated by a weir.  The flow condition can be supercritical, critical, or 
subcritical at node 1W and node 2W.  There are nine combinations.  Five governing equations for 
each combination are given below. 
 
Case 1: Supercritical flow at node 1W and supercritical flow at 2W (slowly varying flow) 
 

21221211112111 baVaandbaVa WWWW =−=+ ωω  (3.1.38)
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W W W W Wc W
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 (3.1.39)

 

( )

2
2

2 2 2 2 1

2W 2 2 2 2 2 2 1

2
W
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W W W W W Wc W W W

Vu A Q and h Z h H or
g

u A Q and V A V gh A F Mρ

= + + + =

= + + =
 (3.1.40)

 

where hLW is the head loss between nodes 1W and 2W and FW is the force exerted by the weir 
between nodes 1W and 2W.  For this case, the computation is straightforward.  First Eq. (3.1.38), 
which constitutes two equations for two unknowns V1W and h1W, is used to solve for these two 
unknowns.  Then the flow rate through the weir, QW, and the momentum-impulse and energy line at 
point 1W, M1W and H1W, are simply calculated with Eq. (3.1.39).  Finally, either the first two 
equations or the last two equations in Eq. (3.1.40) constitute two equations for two unknowns V2W 
and h2W.  These two unknowns are obtained by solving either first two equations or the last two 
equations in Eq. (3.1.40). 
 
Case 2: Supercritical flow at node 1W and critical flow at 2W 
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21221211112111 baVaandbaVa WWWW =−=+ ωω  (3.1.41)
 

WWW AVQ 11=  (3.1.42)
 

13
2

2
2

22 ==
W

WW
WWW gA

BQandQAV  (3.1.43)

 

For this case, the computation is straightforward.  First Eq. (3.1.41), which constitutes two equations 
for two unknowns V1W and h1W, is used to solve for these two unknowns.  Then the flow rate through 
the weir QW is simply calculated with Eq. (3.1.42).  Finally, Equation (3.1.43) constitutes two 
equations for two unknowns V2W and h2W.  These two unknowns are obtained by solving the two 
equations in Eq. (3.1.43). 
 
Case 3: Supercritical flow at node 1W and subcritical flow at 2W (Hydraulic Jump) 
 

11 1 12 1 1 21 1 22 1 2W W W Wa V a b and a V a bω ω+ = − =  (3.1.44)
 

WWW AVQ 11=  (3.1.45)
 

WWWWW QAuandbaVa ==− 222222221 ω  (3.1.46)
 

For this case, the computation is straightforward.  First Eq. (3.1.44), which constitutes two equations 
for two unknowns V1W and h1W, is used to solve for these two unknowns.  Then the flow rate through 
the weir QW is simply calculated with Eq. (3.1.45).  Finally, Equation (3.1.46) constitutes two 
equations for two unknowns V2W and h2W.  These two unknowns are obtained by solving the two 
equations in Eq. (3.1.46). 
 
Case 4: Critical flow at node 1W and supercritical flow at 2W 
 

,13
1

1
2

1
1112111 ==+

W

WW
WW gA

BQandbaVa ω  (3.1.47)
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= + + + =

= + + =
 (3.1.49)

 

For this case, the computation is straightforward.  First Eq. (3.1.47), which constitutes two equations 
for two unknowns V1W and h1W, is used to solve for these two unknowns.  Then the flow rate through 
the weir QW and the momentum-impulse and energy line at point 1W, M1W and H1W, are simply 
calculated with Eq. (3.1.48).   Finally, either the first two equations or the last two equations in Eq. 
(3.1.49) constitute two equations for two unknowns V2W and h2W.  These two unknowns are obtained 



 3-11

by solving either two equations or the last two equations in Eq. (3.1.49). 
 
Case 5: Critical flow at node 1W and critical flow at 2W 
 

,13
1

1
2

1
1112111 ==+

W

WW
WW gA

BQandbaVa ω  (3.1.50)

 

WWW AVQ 11=  (3.1.51)
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WWW gA

BQandQAV  (3.1.52)

 

For this case, the computation is straightforward.  First Eq. (3.1.50), which constitutes two equations 
for two unknowns V1W and h1W, is used to solve for these two unknowns.  Then the flow rate through 
the weir QW is simply calculated with Eq. (3.1.51).  Finally, Equation (3.1.52) constitutes two 
equations for two unknowns V2W and h2W.  These two unknowns are obtained by solving the two 
equations in Eq. (3.1.52). 
 
Case 6: Critical flow at node 1W and subcritical flow at 2W (Hydraulic Jump) 
 

,13
1

1
2

1
1112111 ==+

W

WW
WW gA

BQandbaVa ω  (3.1.53)

 

WWW AVQ 11=  (3.1.54)
 

WWWWW QAVandbaVa ==− 222222221 ω  (3.1.55)
 
For this case, the computation is straightforward.  First Eq. (3.1.53), which constitutes two equations 
for two unknowns V1W and h1W, is used to solve for these two unknowns.  Then the flow rate through 
the weir QW is simply calculated with Eq. (3.1.54).  Finally, Equation (3.1.46) constitutes two 
equations for two unknowns V2W and h2W.  These two unknowns are obtained by solving the two 
equations in Eq. (3.1.55). 
 
Case 7: Subcritical flow at node 1W and Supercritical flow at 2W (Critical must occur at the 

weir) 
 

0QAV,baVa WW1W11W112W111 =−=ω+  (3.1.56)
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 (3.1.58)

 

where hL1W is the head loss between the weir and node 1W, F1W is the force exerted by the weir 
between the weir and node 1W, hL2W is the head loss between the weir and node 2W, and F2W is the 
force exerted by the weir between the weir and node 2W.  For this case, in addition to the five 
unknowns, V1W, h1W, QW, V2W, and h2W, two more unknowns, hW and VW, appear in Eqs. (3.1.56) 
through (3.1.58).  These seven unknowns are obtained by solving seven simultaneous equations 
contained in Eqs. (3.1.56) through (3.1.58). 
 
Case 8: Subcritical flow at node 1W and critical flow at 2W 
 

0QAV,baVa WW1W11W112W111 =−=ω+  (3.1.59)
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(3.1.60

 
For this case, five equations in Eqs. (3.1.59) and (3.1.60) are solved for the five unknowns, V1W, h1W, 
QW, V2W, and h2W. 
 
Case 9: Subcritical flow at node 1W and Subcritical flow at 2W (slowly varying flow) 
 

0QAV,baVa WW1W11W112W111 =−=ω+  (3.1.61)
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 (3.1.62)

 
For this case, five equations in Eqs. (3.1.59) and (3.1.60) are solved for the five unknowns, V1W, h1W, 
QW, V2W, and h2W 
 
Controlled internal boundary condition at Gates: 
 
For any gate (G), there are two river/stream/canal reaches connecting to it.  The node 1G located at 
the boundary between the 1th reach and the Gth gate is termed the controlled internal boundary of the 
first reach while the node 2G is called the controlled internal boundary of the second reach (Fig. 3.1-
6).  The specification of boundary conditions for the internal boundaries separated by a gate can be 
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made similar to that of a weir. 
 

G

1G 2G

Reach 1 Reach 2

Gate

 
Fig. 3.1-6.  A Flow-Control Gate. 

 
 
The flow configuration around the gate and its surrounding reaches may be very dynamic under 
transient flows.  Depending on the water stages at nodes 1G and 2G (H1G and H2G), we have several 
configurations (Fig. 3.1-7).  Governing equations for flow at nodes 1G and 2G and through the gate 
depend on the changing dynamics of water stages around the gate.  These equations can be obtained 
identical to those for a weir by changing the letter from W to G.  Similar approaches can be used for 
culverts change the letter from W to C (for culverts).  The only differences among various types of 
structures are the formulation of energy losses over the structures and/or the formulation of forces 
exerting on the fluids by the structures. 
 

h1G

Free flow, not influenced by gate opening

hG

h2G
hGh1G h2G

hG
h1G h2G

hG
h1G h2G hG

h1G h2G

Submerged  flow, not influenced by gate opening

Free flow, but influenced by gate opening
Submerged flow, influenced by gate opening Decoupled flow

 
Fig. 3.1-7.  Flow Configurations around a Gate. 

 
 
3.1.2 Numerical Approximations of Diffusive Wave Approaches. 
 
Two options are provided in this report to solve the diffusive wave flow equations.  One is the finite 
element method and the other is the particle tracking method. 
 
3.1.2.1 Galerkin Finite Element Method.  Recall the diffusive wave is governed by Eq. (2.1.47) 
which is repeated here as 
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 (3.1.63)

 
Applying the Galerkin finite element method to Eq. (3.1.63), we obtain the following matrix 
equation. 
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where Ni and Nj are the base functions of nodes at xi and xj, respectively; n is the unit outward 
direction, n = 1 at a downstream point and n = -1 at an upstream point; [M] is the mass matrix, [S] is 
the stiff matrix, {H} is the solution vector of H, {Qρw} is the load vector due to density and wind 
stress effects, {QB} is the flow rate through the boundary nodes of a river/stream/canal reach, {QS} 
is the flow rate from artificial source/sink, {QR} is the flow rate from rainfall, {QE} is the flow rate 
due evapotranspiration, {QI} is the flow rate to infiltration, {Q1} is the flow rate from overland flow 
via river bank 1, and {Q2} is the flow rate from overland flow via river bank 2.  It should be noted 
that {QI} is the interaction between the river/stream/canal reach and subsurface flows and {Q1} and 
{Q2} between the river/stream/canal (via bank 1 and bank 2) and overland flows. 
 
Approximating the time derivative term in Eq. (3.1.64) with a time-weighted finite difference, we 
reduce the diffusive equation and its boundary conditions to the following matrix equation 
 

[ ]{ } { } { } { } { } { }1 2B IC H L Q Q Q Q= + + + +  (3.1.67)
in which 

[ ] [ ] [ ] { } [ ] [ ]( ) ( ){ } { } { } { } { }, 1 n
w S R E

M M
C S L S H Q Q Q Q

t t ρθ θ
⎛ ⎞

= + = − − + + + −⎜ ⎟Δ Δ⎝ ⎠
 (3.1.68)

 

where [C] is the coefficient matrix, {L} is the load vector from initial condition, density and wind 
effects, artificial sink/sources, rainfall, and evapotranspiration; Δt is the time step size; θ is the time 
weighting factor; and {H(n)} is the value of {H} at old time level n.  The global and internal 
boundary (junctions, weirs, and gates) conditions must be used to provide {QB} in Eq. (3.1.67).  The 
interaction between the overland and river/stream/canal flows must be implemented to evaluate {Q1} 
and {Q2}; and the interaction between the subsurface and river/stream/canal flows must be 
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implemented to calculate {QI}.  The interactions will be addressed in Section 3.4. 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.1.67) is 
 

, 1 1 , 1 1 2I I I I I I BI II I IC H C H L Q Q Q Q− − + = + + + +  (3.1.69)
 

where (I-1) is the corresponding interior node of the node I.  In the above equation there are two 
unknowns HI and QBI; either HI or QBI, or the relationship between HI and QBI must be specified.  
The numerical implementation of these boundary conditions are described as follows. 
 
Dirichlet-boundary condition: prescribed water depth or state 
 
If HI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,I-1, CI,I, 
CI,I+1) and  right-hand side (LI, QII, Q1I, Q2I) obtained before the implementation of boundary 
conditions for this equation are stored in a temporary array, then an identity equation is created as 
 

DIdI NIHH ∈= ,  (3.1.70)
 

where HId is the prescribed total head on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving these unknowns, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Hi’s.  After Hi’s are obtained, Eq. (3.1.69) is then 
used to back calculate ND QBI’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Hi’s 
accurately except for roundoff errors.  However, if an iterative solver is used, a stopping criteria 
must be strict enough so that the converged solution of N Hi’s are accurate enough to the exact 
solution.  With such accurate Hi’s, then one can be sure that the back-calculated ND QBI’s are 
accurate.  
 
Flux boundary condition: prescribed flow rate 
 
If QBI is given (flux boundary condition), all coefficients (CI,I-1, CI,I, CI,I+1) and  right-hand side (LI, 
QII, Q1I, Q2I) obtained before the implementation of boundary conditions for this equation are stored 
in a temporary array, then Eq. (3.1.69) is modified to incorporate the boundary conditions and used 
to solve for HI.  The modification of Eq. (3.1.69) is straightforward. Because QBI is a known 
quantity, it contributes to the load on the right hand side.  This type of boundary conditions is very 
easy to implement.  After Hi’s are obtained, the original Eq. (3.1.69), which is stored in a temporary 
array, is used to back calculate NC QBI’s on flux boundaries (where NC is the number of flux 
boundary nodes).  These back-calculated QBI’s should be theoretically identical to the input QBI’s.  
However, because of round-off errors (in the case of direct solvers) or because of stopping criteria 
(in the case of iterative solvers), the back-calculated QBI’s will be slightly different from the input 
QBI’s.  If the differences between the two are significant, it is an indication that the solvers have not 
yielded accurate solutions. 
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Water depth-dependent boundary condition: prescribed rating curve 
 
If the relationship is given between QBI and HI (rating curve boundary condition), all coefficients 
(CI,I-1, CI,I, CI,I+1) and right-hand side (LI, QII, Q1I, Q2I) obtained before the implementation of 
boundary conditions for this equation are stored in a temporary array, then Eq. (3.1.69) is modified 
to incorporate the boundary conditions and used to solve for HI.  The rating-relationship is used to 
eliminate one of the unknowns, say QBI, and the modified Eq. (3.1.69) is used to solve for, say HI.  
After HI is solved, the original Eq. (3.1.69) (recall the original Eq. (3.1.69) must be and has been 
stored in a temporary array) is used to back-calculate QBI. 
 
Junction boundary condition: 
 
If the node IJ is an internal node that connects a junction J, then node IJ is treated as an internal 
boundary node.  For example, consider three reaches with three internal nodes connecting to the 
junction J (Fig. 3.1-8).   After applying the finite element method to Eq. (3.1.63), we have a total of 
(1J + 2J + 3J) algebraic equations.  The algebraic equations for Nodes 1J, 2J, and 3J can be written 
based on Eq. (3.1.69) 
 

J

1J 2J

3J

1J-1 2J-1

3J-1
 

Fig. 3.1-8.  A Three-Reach Junction 
 
 

1 1 1 1 1 1 1 1 1
1 ,1 1 1 1 1 ,1 1 1 1 1 11 21J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + +  (3.1.71)

 
2 2 2 2 2 2 2 2 2

2 ,2 1 2 1 2 ,2 2 2 2 2 12 22J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + +  (3.1.72)
 

3 3 3 3 3 3 3 3 3
3 ,3 1 3 1 3 ,3 3 3 3 3 13 23J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + +  (3.1.73)

 

where the superscript denotes the reach number and subscript denotes local node number in a reach, 
for example, H1J

1 denotes the total head at the 1J-th node in Reach 1.  For a convenient discussion, 
let us associate each of the unknowns, H1

1, …, H1J-1
1 to each of the 1J-1 finite element equations in 

Reach 1.  Similarly, we associate each of the unknowns, H1
2, ..,  H2J-2

2 to each of the 2J-1 finite 
element equations in Reach 2 and each of the unknowns and H1

3, ..,  H3J-1
3 to each of the 3J-1 finite 

element equations in Reach 3.  The unknown, Q1J
1, Q2J

2, and Q3J
3, are absent from these (1J-1 + 2J-

1 + 3J-1) equations.  In other words, we can say each equation governs one unknown.  However, 
two unknowns, H1J

1 and Q1J
1, appear in Eq. (3.1.71).  Similarly, Equation (3.1.72) has two 

unknowns, H2J
2 and Q2J

2, and Equation (3.1.73) has two unknowns, H3J
3 and Q3J

3.  The number of 
unknowns, (1J + 2J + 3J) total heads and Q1J

1, Q2J
2, and Q3J

3, is more than the number of equations, 
(1J + 2J + 3J) finite element equations.  Three more governing equations must be set up, which can 
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be obtained based on the continuity of energy lines.  This is described as follows. 
 
Assume the entrance loss to the junction and exit loss from the junction are negligible, we have the 
following three equations 
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where A1J
1, A2J

2, and A3J
3 are the cross-sectional area at Nodes 1J of Reach 1, Node 2J of Reach 2, 

and Node 3J of Reach 3, respectively; hJ is the water depth at the Junction J; and ZoJ is the bottom 
elevation at the Junction J.  It is noted that the second terms on the left hand side of Eqs. (3.1.74) 
through (3.1.76) are generally ignored in computation implementation to give more robust solutions. 
 
The water depth at Junction J is not decoupled from river/stream/canal reaches.  The water budget 
equation for the Junction J is 
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When J

J

dV
dh

is small, the water budget Eq. (3.1.77) is not employed.  Instead, the following equation, 

resulting from the requirement that the summation of flow rates is equal to zero, is used 
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Equations (3.1.71) through (3.1.76) and Eq. (3.1.77) or Eq. (3.1.78) constitute 7 equations for seven 
unknowns, A1J

1, A2J
2, A3J

3, Q1J
1, Q2J

2, Q3J
3, and hJ.  If there are NJ junctions, there will be NJ blocks 

of seven equations.  These NJ blocks of equations should be solved iteratively along with NR block of 
finite element equations where NR is the number of reaches.  In other words, the whole system of 
algebraic equations can be solved with block iterations.  Each block of equations can be solved 
directly.  For example, each of NR block of finite element equations can be solved with an efficient 
tri-diagonal matrix solver such as the Thomas algorithm.  Each of the NJ block of seven equations 
can be solved with the Gaussian direct elimination with full pivoting. 
 
Control Structure Boundary Condition: 
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The control structures may include weirs, gates, culverts, etc.  For the two internal boundary nodes 
separated by a weir (Fig. 3.1-9), Q1W = Q2W = QW, where QW is given by 
 

)(
3
2

121212 WeirSubmergedhhhifhhhBCQ WWWWWWWWW >>−=  (3.1.79)
 

)(
3
2

33
2

1211 WeirFallFreehhifhhBCQ WWWWWWW <=  (3.1.80)
 

where CW is the weir coefficient, BW is the weir width [L].  The flow rate QW is equal to zero when 
both the upstream and downstream stages are below the weir elevation. 

 

h1W h2W

Sumerged Weir

hW h2W
h1W

Free Fall Weir

hW

 
Fig. 3.1-9.  Submerged versus Free Fall Weir. 

 
 
Similarly, for two internal boundary nodes separated by a gate, Q1G = Q2G = QG.  When the flow 
is not influenced by the gate opening (Fig. 3.1-10), the flow rate is given by 

 

h1G

Free flow, not influenced by gate opening

hG

h2G
hGh1G h2G

Submerged  flow, not influenced by gate opening  
Fig. 3.1-10.  Gate Opening Does Not Affect Flow. 
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where CG is the gate coefficient and BG is the gate width [L].  When the gate opening affects the 
flow (Fig. 3.1-11), the flow rate is given by 
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GGGGGGGGGGG hhandhhhifhhhBCQ 112121 3
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hG
h1G h2G

hG
h1G h2G

Free flow, but influenced by gate opening
Submerged flow, influenced by gate opening

 
Fig. 3.1-11.  Gate Opening Affects Flow. 

 
For two internal boundary nodes separated by a culvert, Q1C = Q2C = QC.  Various formulae for QC 
can be found in the literature. 
 
3.1.2.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the diffusive wave equation, instead of Eq. (3.1.63), 
using the definition of Q = VA, we expand Eq. (2.1.1) to yield following diffusive wave equation in 
the Lagrangian form 
 

1 2
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D xτ

∂
+ = + − + + + =

∂
 (3.1.85)

 
To use the semi-Lagrangian method to solve the diffusive wave equation, we integrate Eq. (3.1.85) 
along its characteristic line from xi at new time level to xi

* at old time level or on the boundary (Fig. 
3.1-12), we obtain 
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1

k1 k2  
Fig. 3.1-12.  Backward Particle Tracking in One Dimension. 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed (Fig. 3.1-12); Ki

(n+1), Ai
(n+1), SSi

(n+1), SRi
(n+1), SEi

(n+1), SIi
(n+1), S1i

(n+1), and S2i
(n+1) 

respectively, are the values of K, A, SS, SR, SE, SI, S1, and S2, respectively, at xi at new time level t = 
(n+1)Δt; and Ki

*, Ai
*, SSi

*, SRi
*, SEi

*, SIi
*, S1i

*, and S2i
*, respectively, are the values of K, A, SS, SR, SE, 

SI, S1, and S2, respectively, at the location xi
*.  Since the velocity V and the decay coefficient K are 

functions of A, this is a nonlinear hyperbolic problem.  Equation (3.1.86) is solved iteratively to 
yield the cross-sectional area A, and hence the water depth h.  The iteration procedure is outlined as 
follows: 
 

(i)  Given the value of A(k) at the k-th iteration, compute h and H. 
(ii)  Apply finite element method to the following equation to obtain V 
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(iii)  Perform particle tracking to locate x* and obtain all the *-superscripted quantities. 
(iv)  Apply the finite element method to the following equation to obtain K 

 

x
VK

∂
∂

=  (3.1.88)
 

(v)  Solve Eq. (3.1.86) along with the boundary condition to obtain new A(k+1) 
(vi)  Check if A(k+1) converges, if yes go to the next time step. 
(vii)  If A(k+1) does not converge,  update A with A(k)  ←  ωA(k+1) + (1-ω)A(k) and repeat 

Steps (i) through (vi). 
 
When the wave is transported out of the region at a boundary node (i.e., when N•V ≥ 0), a boundary 
condition is not needed.  When the wave is transported into the region at a node (i.e., when N•V < 
0), a boundary condition must be specified.  As in the Galerkin finite element method, three types of 



 3-21

boundary conditions may be encountered. 
 
Dirichlet boundary condition: 
 
For the Dirichlet boundary, the water depth is prescribed, thus the cross sectional area, A, is 
computed from the relationship between the cross section area versus depth curve as 
 

DIdIDIdI NIAANIHH ∈=⇒∈= ,,  (3.1.89)
 
 
Flux boundary condition: 
 
For the flux boundary, the flow rate is prescribed as function of time at the boundary node, from 
which the boundary value is computed as 
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where Qup(t), a function of time t, is the prescribed flow rate [L3/t] and V(n+1,k) is the value of V at 
new time and previous iteration. 
 
Water depth-dependent boundary condition: prescribed rating curve 
 
For the boundary where a rating curve is used to describe the relationship between water depth, h, 
and the discharge, Q, the cross sectional area, A, on the boundary is computed with 
 

)()1(),1( hfAV nkn =++  (3.1.91)
 

where f(h) is the rating curve which is a function of h.  Equation (3.1.91) is solved iteratively to yield 
A(n+1). 
 
Junction Boundary Condition: 
 
If the node IJ is an internal boundary node that connects a junction J, then HIJ is a function of water 
depth, hIJ-1, of its immediately internal node and of water surface at the junction J, HJ.  This 
functional relationship is obtained by applying the finite element method to Eq. (3.1.63) to yield the 
governing equation for Node IJ similar to Eqs. (3.1.71) through (3.73) 
 

1 1 1 1 1 1 1 1 1
1 ,1 1 1 1 1 ,1 1 1 1 1 11 21J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + +  (3.1.92)

 
2 2 2 2 2 2 2 2 2

2 ,2 1 2 1 2 ,2 2 2 2 2 12 22J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + +  (3.1.93)
 

3 3 3 3 3 3 3 3 3
3 ,3 1 3 1 3 ,3 3 3 3 3 13 23J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + +  (3.1.94)

 

where the superscript denotes the reach number and subscript denotes node number in a reach, for 
example, H1J

1 denotes the total head at the 1J-th node in Reach 1.  Equation (3.1.92) has two 
unknowns, H1J

1 and Q1J
1, the unknown H1J-1

1 is obtained by inverting A1J-1
1, which is obtained from 
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particle tracking in Reach 1.  Similarly, Equation (3.1.93) has two unknowns, H2J
2 and Q2J

2, and 
Equation (3.1.94) has two unknowns, H3J

3 and Q3J
3.  The number of unknowns (6) is more than the 

number of equations (3).  Three more governing equations must be set up, which can be obtained 
based on the continuity of energy lines.  This is described as follows. 
 
Assume the entrance loss to the junction and exit loss from the junction are negligible, we have the 
following three equations 
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where A1J
1, A2J

2, and A3J
3 are the cross-sectional area at Nodes 1J of Reach 1, Node 2J of Reach 2, 

and Node 3J of Reach 3, respectively; hJ is the water depth at the Junction J; and ZoJ is the bottom 
elevation at the Junction J.    It is noted that the second terms on the left hand side of Eqs. (3.1.95) 
through (3.1.97) are generally ignored in computation implementation to give more robust solutions. 
 
The water depth at Junction J is not decoupled from river/stream/canal reaches.  The water budget 
equation for the Junction J is 
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When J

J

dV
dh

 is small, the water budget Eq. (3.1.98) is not employed.  Instead, the following equation, 

resulting from the requirement that the summation of flow rates is equal to zero, is used 
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Equations (3.1.92) through (3.1.97) and Eq. (3.1.98) or Eq. (3.1.99) constitute 7 equations for seven 
unknowns, A1J

1, A2J
2, A3J

3, Q1J
1, Q2J

2, Q3J
3, and hJ.  These equations should be solved iteratively 

along with particle tracking for all internal nodes of the three reaches connecting the junction node J. 
 The seven linearized equations can be solved with the Gaussian direct elimination with full 
pivoting. 
 
Control structure boundary condition: 
 
To facilitate the implementation of internal boundary conditions of control structures, we discretize 
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the two internal boundary nodes of every structure with the finite element method.  Then we can 
implement the boundary conditions similar to that in finite element modeling of diffusive wave 
approaches. 
 
 
3.1.3 The Semi-Lagrangian Method for Kinematic Wave 
 
To use the Lagrangian method to solve the kinematic wave equation, Eq. (2.1.65) is rewritten in the 
Lagrangian form as follows 
 

1 2
V

S R E I
D A VKA S S S S S S where K
D xτ

∂
+ = + − + + + =

∂
 (3.1.100)

 

in which K is the decay coefficient of the wave and S is the source/sink of the wave.  Integrating Eq. 
(3.1.100) along its characteristic line from xi at new time level to xi

* (Fig. 3.1-12), we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed (Fig. 3.1-12); Ki

(n+1), Ai
(n+1), SSi

(n+1), SRi
(n+1), SEi

(n+1), SIi
(n+1), S1i

(n+1), and S2i
(n+1) 

respectively, are the values of K, A, SS, SR, SE, SI, S1, and S2, respectively, at xi at new time level t = 
(n+1)Δt; and Ki

*, Ai
*, SSi

*, SRi
*, SEi

*, SIi
*, S1i

*, and S2i
*, respectively, are the values of K, A, SS, SR, SE, 

SI, S1, and S2, respectively, at the location xi
*.  Because of density and wind effects, the velocity V 

and the decay coefficient K are functions of A, this is nonlinear problem.  However, because the 
nonlinearity due to density and wind effects are normally very weak, Equation (3.1.101) is 
considered a linear hyperbolic problem with the nonlinear effects evaluated using the values of A at 
previous time.  This equation is used to compute the cross-sectional area A, and hence the water 
depth h, at all nodes except for the upstream boundary node. 
 
Because the wave is transported into the region at an upstream node, a boundary condition must be 
specified.  The flow rate is normally given as a function of time at an upstream node, from which the 
boundary value is computed as 
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where Qup(t), a function of time t, is the prescribed flow rate [L3/t]. 
 
 
3.1.4 Numerical Approximations of Thermal Transport 
 
Two options are provided in this report to solve the thermal transport equation.  One is the finite 
element method and the other is the particle tracking method. 
 
3.1.4.1 Finite Element Method.  Recall the thermal transport equation is governed by Eq. (2.1.67) 
which is rewritten in a slightly different form as 
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Applying the finite element method to Eq. (3.1.103), we obtain the following matrix equation 
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where Wi(x) is the weighting function of node at xi; Ni(x) and Nj(x), functions of x, are the base 
functions of nodes at xi and xj, respectively; [M] is the mass matrix, [V] is the stiff matrix due to 
advective transport; [D] is the stiff matrix due to dispersion/diffusion/conduction; {T} is the solution 
vector of temperature; {ΦB} is the vector due to boundary conditions, which can contribute to load 
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vector and/or coefficient matrix; {Φa} is the load vector due to artificial energy source; {Φr} is the 
load vector due to energy in rainfall; {Φn} is the load vector due to net radiation; {Φb} is the vector 
due to backward radiation, which is a nonlinear function of temperature and contributes to both the 
load vector and coefficient matrix; {Φe} is the vector due to energy consumed for evaporation, 
which is a nonlinear function of temperature and contributes to both the load vector and coefficient 
matrix; {Φs} is the vector due to sensible heat, which is a linear function of temperature and 
contributes to both the load vector and coefficient matrix; {Φc} is the vector due to chemical 
reaction, which is not considered in this version, but can be added easily; {Φi} is the vector due to 
interaction with subsurface exfiltraing water; {Φo1} is the vector due to interaction with overland 
water via river bank 1; and {Φo2} is the vector due to interaction with overland water via river bank 
2. 
 
Approximating the time derivative term in Eq. (3.1.104) with a time-weighted finite difference, we 
reduce the advective-diffusive equation and its boundary conditions to the following matrix equation 
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where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial 
sink/sources, rainfall, and net radiation; Δt is the time step size; θ is the time weighting factor for the 
dispersion and linear terms; θv is the time weighting factor for the velocity term; and {T(n)} is the 
value of {T} at old time level n.  The global and internal boundary (junctions, weirs, and gates) 
conditions must be used to provide {ΦB} in Eq. (3.1.109).  The interaction between the overland and 
river/stream/canal flows must be implemented to evaluate {Φo1} and {Φo2}; and the interaction 
between the subsurface and river/stream/canal flows must be implemented to calculate {Φi}.  The 
interactions will be addressed in Section 3.4. 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.1.109) is 
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In the above equations there are two unknowns TI and ΦBI; either TI or ΦBI, or the relationship 
between TI and ΦBI must be specified.  The numerical implementation of these boundary conditions 
is described as follows. 
 
Direchlet boundary condition: prescribed temperature 
 
If TI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,I-1, CI,I, 
CI,I+1) and  right-hand side (LI, ΦI

b, ΦI
e, ΦI

s, ΦI
i, ΦI

o1, ΦI
o2) obtained before the implementation of 

boundary conditions for this equation are stored in a temporary array, then an identity equation is 
created as 
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DId NITT ∈= ,1  (3.1.112)
 

where TId is the prescribed temperature on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving these unknowns, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Ti’s.  After Ti’s for all nodes are solved from the 
matrix equation, Eq. (3.1.111) is then used to back calculate ND ΦBI’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Ti’s 
accurately except for roundoff errors.  However, if an iterative solver is used, stopping criteria must 
be strict enough so that the converged solutions of N Ti’s are accurate enough to the exact solution.  
With such accurate Ti’s, then can be sure that the back-calculated ND ΦBI’s are accurate.  
 
Cauchy boundary condition: prescribed heat flux 
 
If ΦBI is given (Cauchy flux boundary condition), all coefficients (CI,I-1, CI,I, CI,I+1) and  right-hand 
side (LI, ΦI

a, ΦI
r, ΦI

n, ΦI
i, ΦI

o1, ΦI
o2)  obtained before the implementation of boundary conditions for 

this equation are stored in a temporary array, then Eq. (3.1.111) is modified to incorporate the 
boundary conditions and used to solve for TI.  The modification of Eq. (3.1.111) is straightforward. 
Because ΦBI is a known quantity, it contributes to the load on the right hand side.  This type of 
boundary conditions is very easy to implement.  After Ti’s are obtained, the original Eq. (3.1.111), 
which is stored in a temporary array, is used to back calculate NC ΦBI’s on flux boundaries (where 
NC is the number of flux boundary nodes).  These back-calculated ΦBI’s should be theoretically 
identical to the input ΦBI’s.  However, because of round-off errors (in the case of direct solvers) or 
because of stopping criteria (in the case of iterative solvers), the back-calculated ΦBI’s will be 
slightly different from the input ΦBI’s.  If the differences between the two are significant, it is an 
indication that the solvers have not yielded accurate solutions. 
 
Neumann boundary condition: prescribed gradient of temperature 
 
At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature 
gradient is given.  For this case, all coefficients (CI,I-1, CI,I, CI,I+1) and  right-hand side (LI, ΦI

a, ΦI
r, 

ΦI
n, ΦI

i, ΦI
o1, ΦI

o2) obtained before the implementation of boundary conditions for this equation are 
stored in a temporary array, then Eq. (3.1.111) is modified to incorporate the boundary conditions 
and used to solve for TI.  For the Neumann boundary condition, ΦBI contributes to both the matrix 
coefficient and load vector, thus both the coefficient matrix [C] and the load vector {L} must be 
modified.  Recall 
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Apply this equation to Node I, we have 
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where nI is the unit outward normal vector at the boundary node I, ΦnbI is the Neumann boundary 
flux at node I.  Substitution of Eq. (3.1.114) into Eq. (3.1.111), we have the modified coefficient 
matrix and load vector; thus the modified Eq. (3.1.111).  This modified equation is used to solve TI.  
After TI is solved, the original Eq. (3.1.111) (recall the original Eq. (3.1.111) must be and has been 
stored in a temporary array) is used to back-calculate ΦBI. 
 
Variable Boundary Condition: 
 
At the variable boundary condition Node I, the implementation of boundary conditions can be made 
identical to that for a Cauchy boundary condition node if the flow is directed into the 
river/stream/canal reach.  If the flow is going out of the reach, the boundary condition is 
implemented similar to the implementation of Neuman boundary condition with ΦnbI = 0.  The 
assumption of zero Neumann flux implies that a Neuman node must be far away from the 
source/sink. 
 
Junction boundary condition: 
 
If the node IJ is an internal node that connects a junction J, then node IJ is treated as an internal 
boundary node.  For example, consider three reaches with three internal nodes connecting to the 
junction J (Fig. 3.1-8).   After applying the finite element method to Eq. (3.1.103), we have a total of 
(1J + 2J + 3J) algebraic equations.  The algebraic equations for Nodes 1J, 2J, and 3J can be written 
based on Eq. (3.1.111) 
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where the superscript denotes the reach number and subscript denotes local node number in a reach, 
for example, T1J

1 denotes the temperature at the 1J-th node in Reach 1.  For a convenient discussion, 
let us associate each of the unknowns, T1

1, - - T1J-1
1 to each of the 1J-1 finite element equations in 

Reach 1.  Similarly, we associate each of the unknowns, T1
2, - - T2J-2

2 to each of the 2J-1 finite 
element equations in Reach 2 and each of the unknowns and T1

3, - - T3J-1
3 to each of the 3J-1 finite 

element equations in Reach 3.  The unknown, Φ1J
1, Φ2J

2, and Φ3J
3, are absent from these (1J-1 + 2J-1 

+ 3J-1) equations.  In other words, we can say each equation governs one unknown.  However, two 
unknowns, T1J

1 and Φ1J
1, appear in Eq. (3.1.115).  Similarly, Equation (3.1.116) has two unknowns, 

T2J
2 and Φ2J

2, and Equation (3.1.117) has two unknowns, T3J
3 and Φ3J

3.   The number of unknowns, 
(1J + 2J + 3J) temperatures and Φ1J

1, Φ2J
2, and Φ3J

3, is more than the number of equations, (1J + 2J + 
3J) finite element equations.  Three more governing equations must be set up, which can be obtained 
with the assumption that the energy flux is due mainly to advection as 
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where Q1J
1, Q2J

2, and Q3J
3, respectively, are the volumetric flow rates from/to  Nodes 1J, 2J, and 3J, 

respectively, to/from the junction J [cf. Eqs. (3.1.71), (3.1.72), and (3.1.73), respectively]. 
 
Equations (3.1.118) through (3.1.120) introduce one additional unknown, TJ.  One additional 
equation must be set up which can be done based on the energy budget at the junction J.  The rate of 
change of energy at the junction J must be equal to the net energy rate from all reaches that join at J. 
  This energy budget can be written as 
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When the storage effect of the junction is small, the energy budget Eq. (3.1.121) is not employed.  
Instead, the following equation, resulting from the requirement that the summation of heat flux is 
equal to zero, is used 
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Equations (3.1.115) through (3.1.120) and Eq. (3.1.121) or Eq. (3.1.122) constitute 7 equations for 
seven unknowns, T1J

1, T2J
2, T3J

3, Φ1J
1, Φ2J

2, Φ3J
3, and TJ.  If there are NJ junctions, there will be NJ 

blocks of seven equations.  These NJ blocks of equations should be solved iteratively along with NR 
block of finite element equations where NR is the number of reaches.  In other words, the whole 
system of algebraic equations can be solved with block iterations.  Each block of equations can be 
solved directly.  For example, each of NR blocks of finite element equations can be solved with an 
efficient tri-diagonal matrix solver such as the Thomas algorithm.  Each of the NJ blocks of seven 
equations can be solved with the Gaussian direct elimination with full pivoting. 
 
Control structure boundary condition: 
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The control structures may include weirs, gates, culverts, etc.  For the two internal boundary nodes 
1S and 2S separated by a structure, the boundary conditions at these two nodes are given by 
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where Φ1S is the energy flux through node 1S; Φ2s is the energy flux through node 2S; and Q is the 
flow rate through the structure S;  sign(Q) is equal 1.0 if the flow is from node 1S to node 2S, -1.0 if 
flow is from node 2S to node 1S; T1S is the temperature at node 1S; and T2S is the temperature at 
node 2S. 
 
3.1.4.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the thermal transport equation, we expand Eq. 
(3.1.103) to yield following advection-dispersion equation in the Lagrangian form 
 

A
QVwhereDKT

Dt
TD OOISV =Φ+Φ+Φ+Φ+=+ 21  (3.1.125)

in which 

AC
S

AC
S

AC
Sand

AC
SSSSSS

x
TAD

xAC
D

x
QC

ACt
AC

AC
K

WW

o
hO

WW

o
hO

WW

i
hI

WW

s
h

e
h

b
h

n
h

r
h

a
hS

H

WW

WW

WW

WW

WW

ρρρ

ρ

ρ
ρ

ρ
ρ

ρ

2
2

1
1 ,,

,

1,11

=Φ=Φ=Φ

−−−++
=Φ

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂

∂
+

∂
∂

=

 (3.1.126)

 
To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq. 
(3.1.125) along its characteristic line from xi at new time level to xi

* (Fig. 3.1-12), we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), Φi
S(n+1), Φi

I(n+1), Φi
O1(n+1), and Φi

O2(n+1) respectively, are 
the values of K, T, D, ΦS, ΦI, ΦO1, and ΦO2, respectively, at xi at new time level t = (n+1)Δt; and Ki

*, 
Ti

*, Di
*, Φi

S*, Φi
I*, Φi

O1*, and Φi
O2*, respectively, are the values of K, T, D, ΦS, ΦI, ΦO1, and ΦO2, 

respectively, at the location xi
*.  

 
To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq. 
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(3.1.126) as 
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Applying the Galerkin finite element method to Eq. (3.1.128) at new time level (n+1), we obtain the 
following matrix equation for {D(n+1)} as 
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where the superscript (n+1) denotes the time level; Ni and Nj are the base functions of nodes at xi 
and xj, respectively. 
 
Lumping the matrix [a(n+1)], we can solve Eq. (3.1.129) for DI

(n+1) as follows 
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where aII
(n+1) is the lumped aii

(n+1).  Following the identical procedure that leads Eq. (3.1.128) to Eq. 
(3.1.134), we have 
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where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)}, 
respectively. 
 
With {D(n)} calculated with Eq. (3.1.135), {D*} can be interpolated.  Substituting Eq. (3.1.134) into 
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Eq. (3.1.127) and implementing boundary conditions given in Section 2.1.4, we obtain a system of N 
simultaneous algebraic equations N unknowns (Ti

(n+1) for i = 1, 2, .., N.)  If the dispersion/diffusion 
term is not included, then Eq. (3.1.127) is reduced to a set of N decoupled equations as 
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Equations (3.1.136) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there two possibilities: Eq. (3.1.136) is replaced with a boundary equations when the 
flow is directed into the reach or Eq. (3.1.136) is still valid when the flow is direct out of the reach.  
In other words, when the thermal energy is transported out of the region at a boundary node (i.e., 
when n•V ≥ 0), a boundary condition is not needed and Equation (3.1.136) is used to compute the 
Ti

(n+1).  When the thermal energy is transported into the region at a node (i.e., when n•V < 0), a 
boundary condition must be specified. 
 
Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the 
algebraic equation for the boundary node is obtained by applying the finite element method to the 
boundary node.    For this alternative approach, the implementation of boundary conditions at global 
boundary nodes, internal junction nodes, and internal nodes connecting to control structures is 
identical to that in the finite element approximation of solving the thermal transport equation. 
 
 
3.1.5 Numerical Approximations of Salinity Transport 
 
Two options are provided in this report to solve the salinity transport equation.  One is the finite 
element method and the other is the particle tracking method. 
 
3.1.5.1 Finite Element Method.  Recall the salinity transport equation is governed by Eq. (2.1.86) 
which is rewritten in a slightly different form as 
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Applying the finite element method to Eq. (3.1.139), we obtain the following matrix equation 
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where Wi is the weighting function of node at xi; Ni and Nj are the base functions of nodes at xi and 
xj, respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the 
stiff matrix due to dispersion/diffusion/conduction; [K] is the stiff matrix due to the linear term; {S} 
is the solution vector of salinity; {ΨB} is the vector due to boundary conditions, which can 
contribute to load vector and/or coefficient matrix; {Ψa} is the load vector due to artificial salt 
source; {Ψr} is the load vector due to salt in rainfall; {Ψi} is the vector due to interaction with 
subsurface exfiltraing water; {Ψo1} is the vector due to interaction with overland water via river 
bank 1; and {Ψo2} is the vector due to interaction with overland water via river bank 2. 
 
Approximating the time derivative term in Eq. (3.1.140) with a time-weighted finite difference, we  
reduce the advective-diffusive equation and its boundary conditions to the following matrix 
equation. 
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where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial 
sink/sources and rainfall; Δt is the time step size; θ is the time weighting factor for the dispersion 
and linear terms; θv is the time weighting factor for the velocity term; and {S(n)} is the value of {S} 
at old time level n.  The global and internal boundary (junctions, weirs, and gates) conditions must 
be used to provide {ΦB} in Eq. (3.1.144).  The interaction between the overland and 
river/stream/canal flows must be implemented to evaluate {Ψo1} and {Ψo2}; and the interaction 
between the subsurface and river/stream/canal flows must be implemented to calculate {Ψi}.  The 
interactions will be addressed in Section 3.4. 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.1.144) is 
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In the above equations there are two unknowns TI and ΦBI; either TI or ΦBI, or the relationship 
between TI and B

IΨ  must be specified.  The numerical implementation of these boundary conditions 
is described as follows. 
 
Direchlet boundary condition: prescribed salinity 
 
If SI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,I-1, CI,I, 
CI,I+1) and  right-hand side (LI, ΨI

i, ΨI
o1, ΨI

o2) obtained before the implementation of boundary 
conditions for this equation are stored in a temporary array, then an identity equation is created as 
 

DIdI NISS ∈= ,  (3.1.147)
 

where SId is the prescribed salinity on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving these unknowns, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Si’s.  After Si’s for all nodes are solved from the 
matrix equation, Eq. (3.1.146) is then used to back calculate ND ΨI

B’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Si’s 
accurately except for roundoff errors.  However, if an iterative solver is used, stopping criteria must 
be strict enough so that the converged solution of N Si’s are accurate enough to the exact solution.  
With such accurate Si�s, then can be sure that the back-calculated ND ΨI

B ‘s are accurate.  
 
Cauchy boundary condition: prescribed salt flux 
 
If ΨI

B is given (Cauchy flux boundary condition), all coefficients (CI,I-1, CI,I, CI,I+1) and  right-hand 
side (LI, ΨI

i, ΨI
o1, ΨI

o2) obtained before the implementation of boundary conditions for this equation 
are stored in a temporary array, then Eq. (3.1.146) is modified to incorporate the boundary 
conditions and used to solve for SI.  The modification of Eq. (3.1.146) is straightforward.  Because 

B
IΨ  is a known quantity, it contributes to the load on the right hand side.  This type of boundary 

conditions is very easy to implement.  After Si�s are obtained, the original Eq. (3.1.146), which is 
stored in a temporary array, isused to back calculate NC B

IΨ ’s on flux boundaries (where NC is the 
number of flux boundary nodes).  These back-calculated B

IΨ ’s should be theoretically identical to 
the input B

IΨ ’s.  However, because of round-off errors (in the case of direct solvers) or because of 
stopping criteria (in the case of iterative solvers), the back-calculated will be slightly different from 
the input B

IΨ ’s.  If the differences between the two are significant, it is an indication that the solvers 
have not yielded accurate solutions. 
 
Neumann boundary condition: prescribed gradient of salinity 
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At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature 
gradient is given.  For this case, all coefficients (CI,I-1, CI,I, CI,I+1) and  right-hand side (LI, ΨI

i, ΨI
o1, 

ΨI
o2) obtained before the implementation of boundary conditions for this equation are stored in a 

temporary array, then Eq. (3.1.146) is modified to incorporate the boundary conditions and used to 
solve for SI.  For the Neumann boundary condition, B

IΨ  contributes to both the matrix coefficient 
and load vector, thus both the coefficient matrix [C] and the load vector {L} must be modified.  
Recall 
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Apply this equation to Node I, we have 
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where nI is the unit outward normal vector at the boundary node I, nb
IΨ  is the Neumann boundary 

flux at node I.  Substitution of Eq. (3.1.149) into Eq. (3.1.146), we have the modified coefficient 
matrix and load vector; thus the modified Eq. (3.1.146).  This modified equation is used to solve SI.  
After SI is solved, the original Eq. (3.1.146) (recall the original Eq. (3.1.146) must be and has been 
stored in a temporary array) is used to back-calculate ΨI

B. 
 
Variable boundary condition: 
 
At the variable boundary condition Node I, the implementation of boundary conditions can be made 
identical to that for a Cauchy boundary condition node if the flow is directed into the 
river/stream/canal reach.  If the flow is going out of the reach, the boundary condition is 
implemented similar to the implementation of Neuman boundary condition with nb

IΨ = 0.  The 
assumption of zero Neumann flux implies that a Neuman node must be far away from the 
source/sink. 
 
Junction boundary condition: 
 
If the node IJ is an internal node that connects a junction J, then node IJ is treated as an internal 
boundary node.  For example, consider three reaches with three internal nodes connecting to the 
junction J (Fig. 3.1-8).   After applying the finite element method to Eq. (3.1.139), we have a total of 
(1J + 2J + 3J) algebraic equations.  The algebraic equations for Nodes 1J, 2J, and 3J can be written 
based on Eq. (3.1.146) 
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where the superscript denotes the reach number and subscript denotes local node number in a reach, 
for example, S1J

1 denotes the salinity at the 1J-th node in Reach 1.  For a convenient discussion, let 
us associate each of the unknowns, S1

1, …, S1J-1
1 to each of the 1J-1 finite element equations in 

Reach 1.  Similarly, we associate each of the unknowns, S1
2, …, S2J-2

2 to each of the 2J-1 finite 
element equations in Reach 2 and each of the unknowns and S1

3, …, S3J-1
3 to each of the 3J-1 finite 

element equations in Reach 3.  The unknowns, Ψ1J
1, Ψ2J

2, and Ψ3J
3, are absent from these (1J-1 + 2J-

1 + 3J-1) equations.  In other words, we can say each equation governs one unknown.  However, two 
unknowns, S1J

1 and Ψ1J
1, appear in Equation (3.1.150).  Similarly, Equation (3.1.151) has two 

unknowns, S2J
2 and Ψ2J

2, and Equation (3.1.152) has two unknowns, S3J
3 and Ψ3J

3.   The number of 
unknowns, (1J + 2J + 3J) salinities and Ψ1J

1, Ψ2J
2, and Ψ3J

3, is more than the number of equations, 
(1J + 2J + 3J) finite element equations.  Three more governing equations must be set up, which can 
be obtained with the assumption that the salt flux is due mainly to advection as 
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where Q1J
1, Q2J

2, and Q3J
3, respectively, are the volumetric flow rates from/to  Nodes 1J, 2J, and 3J, 

respectively, to/from the junction J [cf. Eqs. (3.1.71), (3.1.72), and (3.1.73), respectively]. 
 
Equations (3.1.153) through (3.1.155) introduce one additional unknown, SJ.  One additional 
equation must be set up which can be done based on the energy budget at the junction J.  The rate of 
change of energy at the junction J must be equal to the net energy rate from all reaches that join at J. 
 This energy budget can be written as 
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When the storage effect of the junction is small, the salt budget Eq. (3.1.156) is not employed.  
Instead, the following equation, resulting from the requirement that the summation of salt flux is 
equal to zero, is used 
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Equations (3.1.150) through (3.1.155) and Eq. (3.1.156) or Eq. (3.1.157) constitute 7 equations for 
seven unknowns, S1J

1, S2J
2, S3J

3, Ψ1J
1, Ψ2J

2, Ψ3J
3, and SJ.  If there are NJ junctions, there will be NJ 

blocks of seven equations.  These NJ blocks of equations should be solved iteratively along with NR 
block of finite element equations where NR is the number of reaches.  In other words, the whole 
system of algebraic equations can be solved with block iterations.  Each block of equations can be 
solved directly.  For example, each of NR blocks of finite element equations can be solved with an 
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efficient tri-diagonal matrix solver such as the Thomas algorithm.  Each of the NJ blocks of seven 
equations can be solved with the Gaussian direct elimination with full pivoting. 
 
Control structure boundary condition: 
 
The control structures may include weirs, gates, culverts, etc.  For the two internal boundary nodes 
1S and 2S separated by a structure, the boundary conditions at these two nodes are given by 
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where Ψ1S is the salt flux through node 1S; Φ2s is the salt flux through node 2S; and Q is the flow 
rate through the structure S;  sign(Q) is equal 1.0 if the flow is from node 1S to node 2S, -1.0 if flow 
is from node 2S to node 1S; S1S is the temperature at node 1S; and S2S is the temperature at node 2S. 
 
3.1.5.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the salt transport equation, we expand Eq. (3.1.139) 
to yield following advection-dispersion equation in the Lagrangian form 
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To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq. 
(3.1.160) along its characteristic line from xi at new time level to xi

* (Fig. 3.1-12), we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; Ki

(n+1), Si
(n+1), Di

(n+1), Ψi
S(n+1), Ψi

I(n+1), Ψi
O1(n+1), and Ψi

O2(n+1) respectively, are 
the values of K, S, D, ΨS, ΨI, ΨO1, and ΨO2, respectively, at xi at new time level t = (n+1)Δt; and Ki

*, 
Si

*, Di
*, Ψi

S*, Ψi
I*, Ψi

O1*, and Ψi
O2*, respectively, are the values of K, S, D, ΨS, ΨI, ΨO1, and ΨO2, 

respectively, at the location xi
*. 
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To compute the dispersion/diffusion terms Di
(n+1) and Di

*, we rewrite the second equation in Eq. 
(3.1.161) as 
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Applying the finite element method to Eq. (3.1.163) at new time level (n+1), we obtain the following 
matrix equation for {D(n+1)} as 
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where the superscript (n+1) denotes the time level; Ni and Nj are the base functions of nodes at xi 
and xj, respectively. 
 
Lumping the matrix [a(n+1)], we can solve Eq. (3.1.164) for DI

(n+1) as follows 
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where aII
(n+1) is the lumped aii

(n+1).  Following the identical procedure that leads Eq. (3.1.163) to Eq. 
(3.1.169), we have 
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where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)}, 
respectively. 
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With {D(n)} calculated with Eq. (3.1.170), {D*} can be interpolated.  Substituting Eq. (3.1.169) into 
Eq. (3.1.162) and implementing boundary conditions given in Section 2.1.4, we obtain a system of N 
simultaneous algebraic equations N unknowns (Si

(n+1) for i = 1, 2, .., N.)  If the dispersion/diffusion 
term is not included, then Eq. (3.1.162) is reduced to a set of N decoupled equations as 
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Equation (3.1.171) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there are two possibilities: Eq. (3.1.171) is replaced with a boundary equation when 
the flow is directed into the reach or Eq. (3.1.171) is still valid when the flow is direct out of the 
reach.  In other words, when the salt is transported out of the region at a boundary node (i.e., when 
N•V ≥ 0), a boundary condition is not needed and Equation (3.1.171) is used to compute the Si

(n+1).  
When the salt is transported into the region at a node (i.e., when N•V < 0), a boundary condition 
must be specified. 
 
Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the 
algebraic equation for the boundary node is obtained by applying the finite element method to the 
boundary node rather than the use of particle tracking.  For this alternative approach, the 
implementation of boundary conditions at global boundary nodes, internal junction nodes, and 
internal nodes connecting to control structures is identical to that in the finite element approximation 
of solving the salt transport equation. 
 
 

3.2 Solving the Two-Dimensional Overland Flow Equations 
 
As in solving the one-dimensional flow equations for river/stream/canal networks, we employ a 
variety of numerical approaches to solve two-dimensional overland flow equations.  For fully 
dynamic wave models, we cast the governing equations in characteristic forms and solve the 
governing equations with the hybrid Lagrangian-Eulerian finite element method.  For diffusive wave 
models, we use either the conventional finite element methods or hybrid Lagrangian-Eulerian finite 
element methods.  For kinematic wave models, we use semi-Lagrangian methods. 
 
3.2.1 The Lagrangian-Eulerian Finite Element Method for Dynamic Waves 
 
To facilitate the application of hybrid Lagrangian-Eulerian finite element method to fully dynamic 
wave models, substituting A1, A2, A3, B1, B2, and B3 in Eq. (2.2.27); R1, R2, and R3 in Eq. (2.2.9); and 
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Dx and Dy in (2.2.10) into Eqs. (2.2.28) through and (2.2.30), and rearranging the resulting equations, 
we obtain 
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where D⊗  is the diffusive transport of the vorticity wave; ±D  is the diffusive transport of the 
positive and negative gravity waves;  K is the decay coefficient for all three waves; and ⊗S , S+, and 
S- are the sources/sinks of the vorticity, positive, and negative waves, respectively. 
 
Integrating Eqs. (3.2.1) through (3.2.3) along their respective characteristic lines from x to x1*, x2*, 
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and x3* (Fig. 3.2-1), we obtain 
 

 

 
Fig. 3.2-1.  Backward Particle Tracking along Characteristic Lines in Two Dimensions. 
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where u1
*, v1

*, and Δτ1 are determined by backward tracking along the first characteristic; c2
*, u2

*, 
v2

*, and Δτ2 are determined by backward tracking along the second characteristic; c3
*, u3

*, v3
*, and 

Δτ3 are determined by backward tracking along the third characteristic; and all other variables with a 
superscript * are determined similarly at the roots of particle tracking. 
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In Eqs. (3.2.11) through (3.2.13), the primitive variables at the backward tracked locations are 
interpolated with those at the global nodes and at both new and old time levels as 
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where a1 through a8, b1 through b8, and d1 through d8 are interpolation parameters, all in the ranges 
of [0,1];  k1, k2, k3, and k4 are nodes of the element that the backward tracking, along the first 
characteristic, stops at;  j1, j2, j3, and j4 are nodes of the element that the backward tracking, along 
the second characteristic, stops at;  m1, m2, m3, and m4 are nodes of the element that the backward 
tracking, along the third characteristic, stops at (Fig. 3.2-1).  It should be noted that we may use two 
given parameters to determine where to stop in the backward tracking: one is for controlling tracking 
time and the other one is for controlling tracking distance.  After the primitive variables at the 
backward tracked points are interpolated, all other parameters (such as the decay coefficients and 
source/sink terms) are functions of these variables and can be calculated. 
 
To calculate Dx and Dy, we multiple Eqs. (3.2.5) and (3.2.6) by h to yield 
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Applying the Galerkin finite element method to Eqs. (3.2.22) and (3.2.23), we obtain the following 
matrix equations for Dx and Dy 
 

[ ]{ } [ ]{ } [ ]{ } { }xx FvQCuQBDQA =++  (3.2.24)
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[ ]{ } [ ]{ } [ ]{ } { }yy FvQEuQDDQA =++  (3.2.25)
where 
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R

QA N hN dR= ∫  (3.2.26)
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Lumping the matrix [QA], we can explicitly compute {Dx} and {Dy} in terms of {u} and {v}. 
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Following the identical procedure that leads Eqs. (3.2.22) and (3.2.23) to Eqs. (3.2.31) and (2.3.32), 
we have 
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where the superscript (n) denotes that the variables are to be evaluated at the old time level n. 
 
Similar to Eqs. (3.2.13) through (3.2.21), (Dxi

*)1, (Dxi
*)2, and (Dxi

*)3 and (Dyi
*)1, (Dyi

*)2, and (Dyi
*)3 at 

the backward tracked location are interpolated with {D} and {D(n)} as 
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Fig. 3.2-2.  Backward Tracking Along Characteristic Line to the Root in Two Dimensions 

 
 
Substituting Eqs. (3.2.13) through (3.2.21) and Eqs. (3.2.35) through (3.2.40) into Eqs. (3.2.10) 
through (3.2.12) and implementing boundary conditions given Section 2.2.1, we obtain a system of 
3N simultaneous algebraic equations for the 3N unknowns (ui for i = 1, 2, .., N, vi for i = 1, 2, .., N, 
and and ci for i = 1,2, .., N).  If the eddy diffusion terms are not included and the backward tracking 
is performed to reach the time level n (Fig. 3.2-2), then Eqs. (3.2.8) through (3.2.10) are reduced to a 
set of N decoupled triplets of equations as 
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,
,

, for all interior nodes
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where 
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Equations (3.2.41) is applied to all interior nodes without having to make any modification.  On a 
boundary point, any one of the three equations in Eq. (3.2.41) must be replaced by a boundary 
condition equation if its corresponding wave is directed into the region from the outside world.  On 
the other hand, if the corresponding wave is going out of the region, then the equation is valid.  
These conditions are addressed below for four types of physical boundaries: open upstream, open 
downstream, closed upstream, and closed downstream boundary nodes. 
 
Open upstream boundary condition: 
 
If the flow is supercritical, all three waves are directed into the region from the outside world, thus 
Eq. (3.2.41) is replaced with 
 

( ) up
yy

up
xx

up
n MghnvhMghnuhtqh =+⋅=+⋅=⋅

2
;

2
;

22
)( VnVnVn  (3.2.45)

 

where V = (u, v) is the vertically averaged velocity with u as the x-component and v the y-
component; n is the outward  unit vector normal to the boundary; qn

up(t) is the flow rate of the 
incoming fluid from the upstream; and Mx

up and My
up, respectively, are the x- and y-components, 

respectively, of the momentum-impulse from the upstream. 
 
If the flow is subcritical, one of the gravitational wave is going out of the region, thus Eq. (3.2.41) 
for the boundary point i is replaced with 
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where l  is the unit vector parallel to the boundary segment and )(upqA , a function of time t, is the 
flow rate parallel to the boundary. 
 
Open downstream boundary condition: 
 

If the flow is supercritical, all three waves are transported out of the region and Eq. (3.2.41) 
remains valid for the boundary point; thus  
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If the flow is subcritical, the vorticity wave and one the gravity waves are transported out of the 
region while the other gravity wave is transported into the region.  Under such circumstance, 
Equation (3.2.41) may be replaced with 
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where ( )hq dn
n , a function of h, is the rating curve function for the downstream boundary and hdn(t), a 

function of t, is the water depth at the downstream boundary.  As to which three equations in of Eq. 
(3.2.48) must be used depends on the physical configuration at the boundary. 
 
Closed upstream boundary condition: 
 
If the flow is supercritical, all three waves are transported from the boundary into the region of 
interest.  Since neither flow nor momentum-impulse is transported from the outside world onto the 
boundary, the following boundary condition can be used 
 

0
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;0
2

;0
22

=+⋅=+⋅=⋅
ghnvhghnuhh yx VnVnVn  (3.2.49)

 
The solution of Eq. (3.2.49) is not unique.  One of the possible solution is h = 0, u = 0, and v = 0.  If 
the flow is subcritical, one of the two gravity waves is transported out of the region, thus Equation 
(3.2.41) can be replaced with 
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Closed downstream boundary condition:  
 
At the closed downstream boundary, physical condition dictates that the normal flux should be zero. 
 In the meantime, one of the gravity wave is transported out of the region.  Thus, the water depth and 
velocity on the boundary are determined by the internal flow dynamics and the condition of zero 
normal flux.  The boundary condition can be stated as 
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3.2.2 Numerical Approximation of Diffusive Wave Equations 
 
Two options are provided in this report to solve the diffusive wave flow equations.  One is the finite 
element method and the other is the particle tracking method. 
 
3.2.2.1 Galerkin Finite Element Method.  Recall the diffusive wave is governed by Eq. (2.2.44) 
which is repeated here as 
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 (3.2.52)

 
Applying the Galerkin finite element method to Eq. (3.2.52), we obtain the following matrix 
equation 
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,    ,   ,    Si i S Ri i R Ei i E Ii i IQ N S d Q N S d Q N S d Q N S d
ℜ ℜ ℜ ℜ

= ℜ = ℜ = ℜ = ℜ∫ ∫ ∫ ∫  (3.2.55)
 

where Ni and Nj are the base functions of nodes at xi and xj, respectively; n is the outward-normal 
unit vector; [M] is the mass matrix, [S] is the stiff matrix, {H} is the solution vector of H, {Qρw} is 
the load vector due to density and wind stress effects, {QB} is the flow rate through the boundary 
nodes, {QS} is the flow rate from artificial source/sink, {QR} is the flow rate from rainfall, {QE} is 
the flow rate due to evapotranspiration, and {QI} is the flow rate to infiltration.  It should be noted 
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that {QI} is the interaction between the overland and subsurface flows. 
 
Approximating the time derivative term in Eq. (3.2.53) with a time-weighted finite difference, we 
reduce the diffusive equation and its boundary conditions to the following matrix equation 
 

[ ]{ } { } { } { }B IC H L Q Q= + +  (3.2.56)
in which 

[ ] [ ] [ ] { } [ ] ( )[ ] { } { } { } { } { }( ),   1 n
w S R E

M M
C S L S H Q Q Q Q

t t ρθ θ
⎛ ⎞

= + = − − + + + −⎜ ⎟
Δ Δ⎝ ⎠

 (3.2.57)

 

where [C] is the coefficient matrix, {L} is the load vector from initial condition, density and wind 
effects, artificial sink/sources, rainfall, and evapotranspiration; Δt is the time step size; θ is the time 
weighting factor; and {H(n)} is the value of {H} at old time level n.  The global boundary conditions 
must be used to provide {QB} in Eq. (3.2.56).  The interaction between the overland and subsurface 
flows must be implemented to calculate {QI}.  The interactions will be addressed in Section 3.4. 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.2.56) is 
 

,1 1 ,1 ,I I I I N N I II BIC H C H C H L Q Q+ + + + = + +… …  (3.2.58)
 
In the above equation there are two unknowns HI and QBI; either HI or QBI, or the relationship 
between HI and QBI must be specified.  The numerical implementation of these boundary conditions 
is described as follows. 
 
Dirichlet boundary condition: prescribed water depth or stage 
 
If HI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1,  ..., CI,I, ..., 
CI,N) and  right-hand side (LI and QII) obtained before the implementation of boundary conditions for 
this equation are stored in a temporary array, then an identity equation is created as 
 

DIdI NIHH ∈= ,  (3.2.59)
 

where HId is the prescribed total head on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving this unknown, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Hi’s.  After Hi’s are obtained, Eq. (3.2.58) is then 
used to back calculate ND QBI’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Hi�s 
accurately except for roundoff errors.  However, if an iterative solver is used, a stopping criterion 
must be strict enough so that the converged solution of N Hi’s is accurate enough to the exact 
solution.  With such accurate Hi’s, then one can be sure that the back-calculated ND QBI’s are 
accurate.  
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Flux boundary condition: prescribed flow rate 
 
If QBI is given (flux boundary condition), all coefficients (CI,1,  ..., CI,I, ..., CI,N) and the right-hand 
side (LI and QII) obtained before the implementation of boundary conditions for this equation are 
stored in a temporary array, then Eq. (3.2.58) is modified to incorporate the boundary conditions and 
used to solve for HI.  The modification of Eq. (3.2.58) is straightforward.  Because QBI is a known 
quantity, it contributes to the load on the right hand side.  This type of boundary conditions is easy to 
implement.  After Hi�s are obtained, the original Eq. (3.2.58), which is stored in a temporary array, 
is used to back calculate NC QBI’s on flux boundaries (where NC is the number of flux boundary 
nodes).  These back-calculated QBI’s should be theoretically identical to the input QBI’s.  However, 
because of round-off errors (in the case of direct solvers) or because of stopping criteria (in the case 
of iterative solvers), the back-calculated QBI’s will be slightly different from the input QBI’s.  If the 
differences between the two are significant, it is an indication that the solvers have not yielded 
accurate solutions.   
 
Water depth-dependent boundary condition: prescribed rating curve 
 
If the relationship is given between QBI and HI (rating curve boundary condition), all coefficients 
(CI,1,  ..., CI,I, ..., CI,N) and the right-hand side (LI and QII) obtained before the implementation of 
boundary conditions for this equation are stored in a temporary array, then Eq. (3.2.58) is modified 
to incorporate the boundary conditions and used to solve for HI.  The rating-relationship is used to 
eliminate one of the unknowns, say QBI, and the modified Eq. (3.2.58) is used to solve for, say HI.  
After HI is solved, the original Eq. (3.2.58) (recall the original Eq. (3.2.58) must be and has been 
stored in a temporary array) is used to back-calculate QBI. 
 
3.2.2.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the diffusive wave equation, instead of Eq. (3.2.52), 
we expand Eq. (2.2.1) to yield following diffusive wave equation in the Lagrangian form 
 

V
S R E I

D h Kh S S S S where K
Dτ

+ = + − + = ∇⋅ V  (3.2.60)
 

 
To use the semi-Lagrangian method to solve the diffusive wave equation, we integrate Eq. (3.2.60) 
along its characteristic line from xi at new time level to xi

* at old time level or on the boundary (Fig. 
3.2-3), we obtain 
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Fig. 3.2-3.  Backward Particle Tracking in Two Dimension. 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed (Fig. 3.2-3); ( 1)n

iK + ), ( 1)n
ih + , ( 1)n

SiS + , ( 1)n
RiS + , ( 1)n

EiS + , and ( 1)n
IiS + , respectively, are the 

values of K, h, SS, SR, SE, and SI, respectively, at xi at new time level t = (n+1)Δt; and *
iK , *

ih , *
SiS , 

*
RiS , *

EiS , and *
IiS , respectively, are the values of K, h, SS, SR, SE, and SI, respectively, at the location 

xi
*.  Since the velocity V and the decay coefficient K are functions of h, this is a nonlinear hyperbolic 

problem. 
 
Equation (3.2.61) is solved iteratively to yield the water depth h, and hence the water stage H.  The 
iteration procedure is outlined as follows: 
 

(i)  Guess the value of h(k) at the k-th iteration, compute H. 
(ii)  Apply finite element method to the following equation to obtain V 
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 (iii)  Perform particle tracking to locate x* and obtain all the *-superscripted quantities. 
(iv)  Apply the finite element method to the following equation to obtain K 

 
V⋅∇=K  (3.2.63)
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 (v)  Solve Eq. (3.2.61) along with the boundary condition to obtain new h(k+1) 
(vi)  Check if h(k+1) converges, if yes go to the next time step. 
(vii) If h(k+1) does not converge,  update h with h(k)  ←  ωh(k+1) + (1-ω)h(k) and repeat Steps 

(i) through (vi). 
 
When the wave is transported out of the region at a boundary node (i.e., when N•V ≥ 0), a boundary 
condition is not needed.  When the wave is transported into the region at a node (i.e., when N•V < 
0), a boundary condition must be specified.  As in the finite element method, three types of boundary 
conditions may be encountered. 
 
Dirichlet boundary condition: 
 
For the Dirichlet boundary, the water depth is prescribed as 
 

DId NIhh ∈= ,1  (3.2.64)
 
Flux boundary condition: 
 
For the flux boundary, the flow rate is prescribed as function of time at the boundary node, from 
which the boundary value is computed as 
 

( )
),1(

)1(
kn

upn

V
tq

h +
+ =  (3.2.65)

 

where qup(t), a function of time t, is the prescribed flow rate [L3/t/L] and V(n+1,k) is the value of V at 
new time and previous iteration. 
 
Water depth-dependent boundary condition: prescribed rating curve 
 
For the boundary where a rating curve is used to describe the relationship between water depth, h, 
and volumetric flow rate, q;  thus, the water depth, h, on the boundary is computed with 
 

( )hfhV nkn =++ )1(),1(  (3.2.66)
 

where f(h) is the rating curve which is a function of h.  Equation (3.1.91) is solved iteratively to 
yield h(n+1). 
 
3.2.3 The Semi-Lagrangian Method for Kinematic Wave 
 
To use the semi-Lagrangian method to solve the kinematic wave equation, Eq. (2.2.50) is rewritten 
in the Lagrangian form as follows 
 

V
S R E I

D h Kh S S S S where K
Dτ

+ = + − + = ∇⋅ V  (3.2.67)
 

in which K is the decay coefficient of the wave.  Integrating Eq. (3.1.100) along its characteristic 
line from xi at new time level  to xi

* at old time level or on the boundary (Fig. 3.2-3), we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; ( 1)n

iK + ), ( 1)n
ih + , ( 1)n

SiS + , ( 1)n
RiS + , ( 1)n

EiS + , and ( 1)n
IiS + , respectively, are the values of K, 

h, SS, SR, SE, and SI, respectively, at xi at new time level t = (n+1)Δt; and *
iK , *

ih , *
SiS , *

RiS , *
EiS , and 

*
IiS , respectively, are the values of K, h, SS, SR, SE, and SI, respectively, at the location xi

*.  Because of 
density and wind effects, the velocity V and the decay coefficient K are functions of h, this is a 
nonlinear problem.  However, because the nonlinearity due to density and wind effects are normally 
very weak, Equation (3.2.68) is considered a linear hyperbolic problem with the nonlinear effects 
evaluated using the values of h at previous time.  This equation is used to compute the water depth, 
h, at all nodes except for the upstream boundary node. 
 
Because the wave is transported into the region at an upstream node, a boundary condition must be 
specified.  The flow rate is normally given as a function of time at an upstream node, from which the 
boundary value is computed as 
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+ = n
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V
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where qup(t), a function of time t, is the prescribed flow rate [L3/t/L]. 
 
3.2.2 Numerical Approximations of Thermal Transport 
 
Two options are provided in this report to solve the thermal transport equation.  One is the finite 
element method and the other is the particle tracking method. 
 
3.2.4.1 Finite Element Method.  Recall the thermal transport equation is governed by Eq. (2.2.52) 
which is rewritten in a slightly different form as 
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 (3.2.70)

 
Applying the finite element method to Eq. (3.2.70), we obtain the following matrix equation 
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 (3.2.71)

in which 
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where Wi is the weighting function of node at xi; Ni and Nj are the base functions of nodes at xi and 
xj, respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the 
stiff matrix due to dispersion/diffusion/conduction; {T} is the solution vector of temperature; {ΦB} 
is the vector due to boundary conditions, which can contribute to load vector and/or coefficient 
matrix; {Φa} is the load vector due to artificial energy source; {Φr} is the load vector due to energy  
contained  in rainfall; {Φn} is the load vector due to net radiation; {Φb} is the vector due to 
backward radiation, which is a nonlinear function of temperature and contributes to both the load 
vector and coefficient matrix; {Φe} is the vector due to energy consumed for evaporation, which is a 
nonlinear function of temperature and contributes to both the load vector and coefficient matrix; 
{Φs} is the vector due to sensible heat, which is a linear function of temperature and contributes to 
both the load vector and coefficient matrix; {Φc} is the vector due to chemical reaction, which is not 
considered in this version, but can be added easily; and {Φi} is the vector due to interaction with 
subsurface exfiltraing water. 
 
Approximating the time derivative term in Eq. (3.2.71) with a time-weighted finite difference, we 
reduce the advective-diffusive equation and its boundary conditions to the following matrix equation 
 

[ ]{ } { } { } { } { } { } { }isebBLTC Φ+Φ−Φ−Φ−Φ−=  (3.2.76)
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where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial 
sink/sources, rainfall, and net radiation; Δt is the time step size; θ is the time weighting factor for the 
dispersion and linear terms; θv is the time weighting factor for the velocity term; and {T(n)} is the 
value of {T} at old time level n.  The global boundary conditions must be used to provide {ΦB} in 
Eq. (3.2.76).  The interaction between the overland and subsurface flows must be implemented to 
calculate {Φi}.  The interactions will be addressed in Section 3.4. 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.2.76) is 
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In the above equations there are two unknowns TI and ΦI

B; either TI or ΦI
B, or the relationship 

between TI and B
IΦ  must be specified.  The numerical implementation of these boundary conditions 

is described as follows. 
 
Direchlet boundary condition: prescribed temperature 
 
If TI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1, .., CI,I, .., 
CI,N) and the right-hand side terms (LI, ΦI

b, ΦI
e, ΦI

s, ΦI
i) obtained before the implementation of 

boundary conditions for this equation are stored in a temporary array, then an identity equation is 
created as 
 

DIdI NITT ∈= ,  (3.2.79)
 

where TId is the prescribed temperature on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving this unknown, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Ti’s.  After Ti’s for all nodes are solved from the 
matrix equation, Eq. (3.2.78) is then used to back calculate ND ΦI

B’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Ti’s 
accurately except for roundoff errors.  However, if an iterative solver is used, a stopping criterion 
must be strict enough so that the converged solution of N Ti’s are accurate enough to the exact 
solution.  With such accurate Ti’s, then can be sure that the back-calculated ND ΦI

B’s are accurate.  
 
Cauchy boundary condition: prescribed heat flux 
 
If ΦBI is given (Cauchy flux boundary condition), all coefficients (CI,1, .., CI,I, .., CI,N) and  right-hand 
side terms (LI, ΦI

a, ΦI
r, ΦI

n, ΦI
i) obtained before the implementation of boundary conditions for this 

equation are stored in a temporary array, then Eq. (3.2.78) is modified to incorporate the boundary 
conditions and used to solve for TI.  The modification of Eq. (3.2.78) is straightforward. Because ΦI

B 
is a known quantity, it contributes to the load on the right hand side.  This type of boundary 
conditions is very easy to implement.  After Ti’s are obtained, the original Eq. (3.2.78), which is 
stored in a temporary array, is used to back calculate NC ΦI

B’s on flux boundaries (where NC is the 
number of flux boundary nodes).  These back-calculated ΦI

B’s should be theoretically identical to 
the input ΦI

B’s.  However, because of round-off errors (in the case of direct solvers) or because of 
stopping criteria (in the case of iterative solvers), the back-calculated ΦI

B’s will be slightly different 
from the input ΦI

B’s.  If the differences between the two are significant, it is an indication that the 
solvers have not yielded accurate solutions. 
 
Neumann boundary condition: prescribed gradient of temperature 
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At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature 
gradient is given.  For this case, all coefficients (CI,1, .., CI,I, .., CI,N) and  right-hand side terms (LI, 
ΦI

a, ΦI
r, ΦI

n, ΦI
i) obtained before the implementation of boundary conditions for this equation are 

stored in a temporary array, then Eq. (3.2.78) is modified to incorporate the boundary conditions and 
used to solve for TI.  For the Neumann boundary condition, ΦI

B contributes to both the matrix 
coefficient and load vector, thus both the coefficient matrix [C] and the load vector {L} must be 
modified.  Recall 
 

( )dBThNTCW
B

iWWi
B
i ∫ ∇−⋅=Φ HDqn ρ  (3.2.80)

 
Substituting Eq. (2.2.58) into Eq. (3.2.80), we have 
 

{ } [ ]{ } { }
( )∫ ∫=⋅=

+≡Φ

B B
nbiijWWiji

B

dBtNLBanddBqNCWnCBwhichin

LBTCB

ϕρ,
 (3.2.81)

 

where [CB] and {LB} are the coefficient matrix and load vector due to Neumann boundary.  Adding 
the I-th equation in Eq. (3.2.81) to Eq. (3.2.78), we obtained a modified equation, which can be 
solved for solve TI.  After TI is solved, the original Eq. (3.2.78) (recall the original Eq. (3.2.78) must 
be and has been stored in a temporary array) is used to back-calculate ΦI

B. 
 
Variable boundary condition: 
 
At the variable boundary condition Node I, the implementation of boundary conditions can be made 
identical to that for a Cauchy boundary condition node if the flow is directed into the region.  If the 
flow is going out of the region, the boundary condition is implemented similar to the implementation 
of Neuman boundary condition with LBI = 0.  The assumption of zero Neumann flux implies that a 
Neuman node must be far away from the source/sink. 
 
3.2.4.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the thermal transport equation, we expand Eq. 
(3.2.70) to yield following advection-dispersion equation in the Lagrangian form 
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To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq. 
(3.2.82) along its characteristic line from xi at new time level to xi

* at old time level or on the 
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boundary (Fig. 3.2-3), we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), Φi
S(n+1), and Φi

I(n+1) respectively, are the values of K, T, 
D, ΦS, and ΦI, respectively, at xi at new time level t = (n+1)Δt; and Ki

*, Ti
*, Di

*, Φi
S*, and Φi

I*, 
respectively, are the values of K, T, D, ΦS, and ΦI, respectively, at the location xi

*.  
 
To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq. 

(3.2.83) as 
 

( )ThhDCWW ∇⋅⋅∇= HDρ  (3.2.85)
 
Applying the Galerkin finite element method to Eq. (3.2.85) at new time level (n+1), we obtain the 
following matrix equation for {D(n+1)} as 
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where the superscript (n+1) denotes the time level; N and N are the base functions of nodes at xi and 
xj, respectively. 
 
Lumping the matrix [a(n+1)], we can solve Eq. (3.2.86) for DI

(n+1) as follows 
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where aII
(n+1) is the lumped aii

(n+1).  Following the identical procedure that leads Eq. (3.2.85) to Eq. 
(3.2.91), we have 
 

int11

intint1

)()(
)(

)(
)(

)(

)()(
)(

)(

poboundaryaisIifTb
a

B
a

D

poerioranisIifTb
a

D

j

n
j

n
Ijn

II

n
In

II

n
I

j

n
j

n
Ijn

II

n
I

∑

∑

−=

−=

 (3.2.92)

 

where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)}, 
respectively. 
 
With {D(n)} calculated with Eq. (3.2.92), {D*} can be interpolated.  Substituting Eq. (3.2.91) into Eq. 
(3.2.84) and implementing boundary conditions given in Section 2.2.4, we obtain a system of N 
simultaneous algebraic equations N unknowns (Ti

(n+1) for i = 1, 2, .., N.)  If the dispersion/diffusion 
term is not included, then Eq. (3.2.84) is reduced to a set of N decoupled equations as 
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Equation (3.2.93) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there two possibilities: Eq. (3.2.93) is replaced with a boundary equation when the 
flow is directed into the region or Eq. (3.2.93) is still valid when the flow is direct out of the region.  
In other words, when the thermal energy is transported out of the region at a boundary node (i.e., 
when N•V ≥ 0), a boundary condition is not needed and Equation (3.2.93) is used to compute the 
Ti

(n+1).  When the thermal energy is transported into the region at a node (i.e., when N•V < 0), a 
boundary condition must be specified. 
 
Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the 
algebraic equation for the boundary node is obtained by applying the finite element method to the 
boundary node.    For this alternative approach, the implementation of boundary conditions at global 
boundary nodes is identical to that in the finite element approximation of solving the thermal 
transport equation. 
 
3.2.4 Numerical Approximations of Salinity Transport 
 
Two options are provided in this report to solve the salinity transport equation.  One is the finite 
element method and the other is the particle tracking method. 
 
3.2.5.1 Finite Element Method.  Recall the salinity transport equation is governed by Eq. (2.2.60) 
which is rewritten in a slightly different form as 
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Applying the finite element method to Eq. (3.2.96), we obtain the following matrix equation 
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where Wi is the weighting function of node at xi; Ni and Nj are the base functions of nodes at xi and 
xj, respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the 
stiff matrix due to dispersion/diffusion/conduction; [K] is the stiff matrix due to the linear term; {S} 
is the solution vector of salinity; {ΨB} is the vector due to boundary conditions, which can 
contribute to load vector and/or coefficient matrix; {Ψa} is the load vector due to artificial salt 
source; {Ψr} is the load vector due to salt in rainfall; {Ψe} is the vector due to evapotranspiration, 
which is most likely to be zero; and {Ψi} is the vector due to interaction with subsurface exfiltraing 
water. 
 
Approximating the time derivative term in Eq. (3.2.97) with a time-weighted finite difference, we 
reduce the advective-diffusive equation and its boundary conditions to the following matrix 
equation. 
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where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial 
sink/sources and rainfall; Δt is the time step size; θ is the time weighting factor for the dispersion 
and linear terms; θv is the time weighting factor for the velocity term; and {S(n)} is the value of {S} 
at old time level n.  The global boundary conditions must be used to provide {ΨB} in Eq. (3.2.100).  
The interaction between the overland and subsurface flows must be implemented to calculate {Ψi}.  
The interactions will be addressed in Section 3.4. 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.2.100) is 
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In the above equations there are two unknowns TI and ΨI

B; either TI or ΨI
B, or the relationship 

between TI and ΨI
B must be specified.  The numerical implementations of these boundary conditions 

are described as follows. 
 
Dirichlet boundary condition: prescribed salinity 
 
If SI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1, .., CI,I, .., 
CI,N) and the right-hand side terms (LI and ΨI

i) obtained before the implementation of boundary 
conditions for this equation are stored in a temporary array, then an identity equation is created as 
 

DIdI NISS ∈= ,  (3.2.103)
 

where SId is the prescribed salinity on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving this unknown, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Si’s.  After Si’s for all nodes are solved from the 
matrix equation, Eq. (3.2.100) is then used to back calculate ND ΨI

B’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Si’s 
accurately except for roundoff errors.  However, if an iterative solver is used, a stopping criterion 
must be strict enough so that the converged solution of N Si’s are accurate enough to the exact 
solution.  With such accurate Si’s, then can be sure that the back-calculated ND ΨBI’s are accurate.  
 
Cauchy boundary condition: prescribed salt flux 
 
If ΨI

B is given (Cauchy flux boundary condition), all coefficients (CI,1, ..,  CI,I, .., CI,N) and  the right-
hand side terms (LI and ΨI

i) obtained before the implementation of boundary conditions for this 
equation are stored in a temporary array, then Eq. (3.2.102) is modified to incorporate the boundary 
conditions and used to solve for SI.  The modification of Eq. (3.2.102) is straightforward.  Because 
ΨI

B is a known quantity, it contributes to the load on the right hand side.  This type of boundary 
conditions is very easy to implement.  After Si’s are obtained, the original Eq. (3.2.102), which is 
stored in a temporary array, is used to back calculate NC ΨI

B’s on flux boundaries (where NC is the 
number of flux boundary nodes).  These back-calculated ΨI

B’s should be theoretically identical to 
the input ΨI

B’s.  However, because of round-off errors (in the case of direct solvers) or because of 
stopping criteria (in the case of iterative solvers), the back-calculated ΨI

B’s will be slightly different 
from the input ΨI

B’s.  If the differences between the two are significant, it is an indication that the 
solvers have not yielded accurate solutions. 
 
Neumann boundary condition: prescribed gradient of salinity 
 
At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature 
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gradient is given.  For this case, all coefficients (CI,, .., CI,I, .., CI,N) and the right-hand side terms (LI 
and ΨI

i) obtained before the implementation of boundary conditions for this equation are stored in a 
temporary array, then Eq. (3.2.102) is modified to incorporate the boundary conditions and used to 
solve for SI.  For the Neumann boundary condition, ΨI

B contributes to both the matrix coefficient 
and load vector, thus both the coefficient matrix [C] and the load vector {L} must be modified.  
Recall 
 

( )∫ ∇−⋅=Ψ
B

S
ii

B
i dBShDNSW qn  (3.2.104)

 

 
Substituting Eq. (2.2.66) into Eq. (3.2.104), we have  
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where [CB] and {LB} are the coefficient matrix and load vector due to Neumann boundary.  Adding 
the I-th equation in Eq. (3.2.105) to Eq. (3.2.102), we obtained a modified equation, which can be 
solved for solve SI.  After SI is solved, the original Eq. (3.2.102) (recall the original Eq. (3.2.102) 
must be and has been stored in a temporary array) is used to back-calculate ΨI

B. 
 
Variable boundary condition: 
 
At the variable boundary condition Node I, the implementation of boundary conditions can be made 
identical to that for a Cauchy boundary condition node if the flow is directed into the 
river/stream/canal reach.  If the flow is going out of the reach, the boundary condition is 
implemented similar to the implementation of Neuman boundary condition with ΨI

nb = 0.  The 
assumption of zero Neumann flux implies that a Neuman node must be far away from the 
source/sink. 
 
3.2.5.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the salt transport equation, we expand Eq. (3.2.96) to 
yield following advection-dispersion equation in the Lagrangian form 
 

h
whereDKS

Dt
SD ISV qV =Ψ+Ψ+=+  (3.2.106)

in which 
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To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq. 
(3.2.106) along its characteristic line from xi at new time level to xi

* at old time level or on the 
boundary (Fig. 3.2-3), we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), Ψi
S(n+1), and Ψi

I(n+1) respectively, are the values of K, T, 
D, ΨS, and ΨI, respectively, at xi at new time level t = (n+1)Δt; and Ki

*, Ti
*, Di

*, Ψi
S*, and Ψi

I*, 
respectively, are the values of K, T, D, ΨS, and ΨI, respectively, at the location xi

*.  
 
To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq. 

(3.2.107) as 
 

( )ShhD S ∇⋅⋅∇= D  (3.2.109)
 

 
Applying the Galerkin finite element method to Eq. (3.2.109) at new time level (n+1), we obtain the 
following matrix equation for {D(n+1)} as 
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where the superscript (n+1) denotes the time level; N and N are the base functions of nodes at xi and 
xj, respectively. 
 
Lumping the matrix [a(n+1)], we can solve Eq. (3.2.110) for DI

(n+1) as follows 
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where aII
(n+1) is the lumped aii

(n+1).  Following the identical procedure that leads Eq. (3.2.109) to Eq. 
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(3.2.115), we have 
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where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)}, 
respectively. 
 
With {D(n)} calculated with Eq. (3.2.116), {D*} can be interpolated.  Substituting Eq. (3.2.115) into 
Eq. (3.2.108) and implementing boundary conditions given in Section 2.2.5, we obtain a system of N 
simultaneous algebraic equations N unknowns (Si

(n+1) for i = 1, 2, .., N.)  If the dispersion/diffusion 
term is not included, then Eq. (3.2.108) is reduced to a set of N decoupled equations as 
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Equation (3.2.117) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there two possibilities: Eq. (3.2.117) is replaced with a boundary equation when the 
flow is directed into the region or Eq. (3.2.117) is still valid when the flow is direct out of the region. 
 In other words, when the salt is transported out of the region at a boundary node (i.e., when N•V ≥ 
0), a boundary condition is not needed and Equation (3.2.117) is used to compute the Si

(n+1).  When 
the salt is transported into the region at a node (i.e., when N•V < 0), a boundary condition must be 
specified. 
 
Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the 
algebraic equation for the boundary node is obtained by applying the finite element method to the 
boundary node.  For this alternative approach, the implementation of boundary conditions at global 
boundary nodes is identical to that in the finite element approximation of solving the salt transport 
equation. 
 
 

3.3 Solving the Three-Dimensional Subsurface Flow Equations 
 
The Richards equation is discretized with the Galerkin finite element method in space and with the 
finite difference method in time.  In our model, the steady-state version of subsurface flow equations 
can be solved for determining the initial subsurface flow condition when boundary conditions are 
complicated and/or unsaturated zones are taken into account.  The details of solving the Richards 
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equation and the salt transport has been described in detail elsewhere (Yeh et al, 1994; Lin et al., 
1997).  The numerical solution of thermal transport equations follows similar to that for two-
dimensional thermal equation in overland flow.  These numerical solutions are summarized below 
for the completeness of this report. 
 
3.3.1 Finite Element Approximations of the Flow Equations 
 
Finite element disretization in space.  When using the finite element method, the referenced 
pressure head in Eq. (2.3.1) is approximated by: 
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where hj and Nj are the amplitude of h and the base function, respectively, at nodal point j and N is 
the total number of nodes.  After defining a residual and forcing the weighted residual to zero, the 
flow equation, Eq.(2.3.1), is approximated as: 
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In matrix form, Eq.(3.3.2) is written as: 
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where {dh/dt} and {h} are the column vectors containing the values of dh/dt and h, respectively, at 
all nodes; [M] is the mass matrix resulting from the storage term; [S] is the stiff matrix resulting 
from the action of conductivity; {Q}, {G}, and {B} are the load vectors from the internal 
source/sink, gravity force, and boundary conditions, respectively.  The mass matrix, [M], and stiff 
matrix, [S], are defined as: 
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where Re is the region of element e, Me is the set of elements that have a local side α-β coinciding 
with the global side i-j, and Nα

e is the α-th local base function of element e.  The three load vectors, 
{Q}, {G}, and {B}, are defined as: 
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where Nse is the set of boundary segments that have a local node α coinciding with the global node i, 
and Be is the length of boundary segment e. 
 
Finite element evaluation of Darcy velocity.  In most numerical models, Darcy velocity components 
are calculated numerically by taking the derivatives of the simulated h as  
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The above formulation results in velocity field which is not continuous at element boundaries and 
nodal points if the variation of h is other than linear or constants.  The alternative approach would be 
to apply the Galerkin finite element method to Eq. (2.3.3), thus one obtains 
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where the matrix [U] and the load vectors {Dx}, {Dy}, and {Dz} are given by 
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where Vx, Vy, and Vz are the Darcy velocity components along the x-, y-, and z-directions, 
respectively and i, j, and k are the unit vector along the x-, y-, and z-coordinates, respectively. 
 
Finite difference discretization in time.  We derive a matrix equation by integrating Eq. (3.3.3).  An 
important advantage in finite element approximation over the finite difference approximation is the 
inherent ability to handle complex boundaries and obtain the normal derivatives therein.  In the time 
dimension, such advantages are not evident.  Thus, finite difference methods are typically used in 
the approximation of the time derivative.  Two time-marching methods are adopted in the present 
model. 
 
The first one is the time weighted method written as: 
 

[ ] { } { }( ) [ ]{ } ( )[ ]{ } { } { } { }BGQhShShh
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Δ Δ+Δ+ ωω 1  (3.3.11)
 

where [M], [S], {Q}, {G}, and {B} are evaluated at (t + ωΔt).  In the Crank-Nicolson centered-in-
time approach ω = 0.5, in the backward-difference (implicit difference) ω = 1.0, and in the forward-
difference (explicit scheme) ω = 0.0.  The central-Nicolson algorithm has a truncation error of 
O(Δt2), but its propagation-of-error characteristics frequently lead to oscillatory nonlinear instability. 



 3-64

 Both the backward-difference and forward-difference have a truncation error of O(Δt).  The 
backward-difference is quite resistant to oscillatory nonlinear instability.  On the other hand, the 
forward difference is only conditionally stable even for linear problems, not to mention nonlinear 
problems. 
 
In the second method, the values of unknown variables are assumed to vary linearly with time during 
the time interval, Δt.  In this mid-difference method, the recurrence formula is written as: 
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where [M], [S], {Q}, and {B} are evaluated at (t+Δt/2). 
 
Equations (3.3.11) and (3.3.12) can be written as a matrix equation 
 

[ ]{ } { } { },BLhA +=  (3.3.14)
 

where [A] is the assembled coefficient matrix, {h} is the unknown vector to be found and represents 
the values of discretized pressure field at new time, {L} is the load vector due to initial conditions 
and all types of sources/sinks, and {B} is the load vector due to boundary conditions including the 
global boundary and media-interface boundaries.  Take for example, Eq. (3.3.11) with ω = 1.0, [C] 
and {L} represent the following: 
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where {h}t is the vector of the discretized pressure field at previous time. 
 
Mass lumping.  Referring to the mass matrix, [M], one may recall that this is a unit matrix if the 
finite difference formulation is used in spatial discretization.  Hence, by proper scaling, the mass 
matrix can be reduced to the finite-difference equivalent by lumping (Clough 1971).  In many cases, 
the lumped mass matrix would result in better solution, in particular, if it is used in conjunction with 
the central or backward-difference time marching (Yeh and Ward 1980).  Under such circumstances, 
it is preferred to the consistent mass matrix (mass matrix without lumping).  Therefore, options are 
provided for the lumping of the matrix [M].  More explicitly, [M] will be lumped according to: 
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Implementation of global Boundary Conditions.  For any interior node I, its algebraic equation  is 
obtained by the I-th row of Eq. (3.3.14) as 
 

INNIIIII LhAhAhA =++++ ,,11, ……  (3.3.17)
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Note that BI is absent from Eq. (3.3.17) for all interior nodes.  For the purpose of discussion, one 
may consider Eq. (3.3.17) to correspond the unknown hI (one equation, one unknown).  For any 
boundary node I, the corresponding algebraic equation from Eq. (3.3.14) is  
 

IINNIIIII BLhAhAhA +=++++ ,,11, ……  (3.3.18)
 

 
In the above equation there are two unknowns hI and BI; either hI or BI, or the relationship between 
hI and BI must be specified.  Before the implementation of global boundary and media-interface 
boundary conditions, the coefficient matrix (AI,1, .., AI,I, .., AI,N) and the right hand load term (LI) 
must be stored in a temporary array.  Then Eq. (3.3.18) is modified with the implementation of 
boundary conditions.  After the implementation, the modified equations are solved for the primary 
unknown hI’s.  The final step is to back calculate BI’s using unmodified Eq. (3.3.18). 
 
The global and interface (river-subsurface media interface or overland-subsurface media interface) 
conditions must be used to provide {B} for all boundary nodes in Eq. (3.3.18).  The interface 
boundary condition will be addressed in Sub-sections 3.4.2 through 3.4.4.  The global boundary 
conditions are addressed below. 
 
Dirichlet boundary condition: prescribed pressure head 
 
For a Dirichlet node I, we simply rewrite Eq. (3.3.18) as 
 

dI hh =  (3.3.19)
 

which is obtained by modifying both the corresponding coefficient matrix and load vector as 
 

dIINIIIIIIII hBLandAAAAA =+===== ++− 0..,,0,1,0..,,0 ,1,1,1,1,  (3.3.20)
 
Thus, it is seen that for a Dirichlet node, both the matrix coefficient and the load vector are modified. 
 
Cauchy boundary condition: prescribed total flux 
 
For the Cauchy boundary condition given by Eq.(2.3.7), we simply substitute Eq.(2.3.7) into 
Eq.(3.3.6) to yield the value of BI for the Cauchy node I: 
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Thus, the modification of Eq. (3.3.18) is to simply add BI to LI. 
 
Neumann boundary condition: prescribed gradient flux 
 
For the Neumann boundary condition given by Eq.(2.3.6), we substitute Eq.(2.3.6) into Eq.(3.3.6) to 
yield the value of BI for the Neumann node I: 
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If the hydraulic conductivity is evaluated using the value of pressure head from previous iteration, 
then this boundary condition only contribute to the modification of the load vector in Eq. (3.3.18).  
Therefore, the modification of Eq. (3.3.18) is to simply add BI to LI. 
 
Variable boundary condition: Dirichlet or Cauchy boundary condition 
 
The implementation of variable-type boundary condition is more involved.  During the iteration of 
boundary conditions on the variable boundary, one of Eqs.(2.3.9) through (2.3.12) is used at a node. 
 If either Eq.(2.3.10) or (2.3.13) is used, we substitute it into Eq.(3.3.6) to yield the value of BI for 
the variable node I: 
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which is independent of the pressure head h.  Thus, if Eq. (2.3.10) or (2.3.13) is chosen during the 
iterative process, the implementation of the boundary condition is to simply add BI to LI in Eq. 
(3.3.8) which is the corresponding algebraic equation for boundary node I.  On the other hand, if Eq. 
(2.3.9), (2.3.11), or (2.3.12) is chosen, we override Eq. (3.3.8) with an identity equation as in the 
implementation of Dirichlet boundary conditions: 
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River boundary condition: 
 
For the the river boundary condition given by Eq.(2.3.8), we simply substitute Eq.(2.3.8) into 
Eq.(3.3.6) to yield the following integrals: 
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The integrals BI and  BI,J , respectively, are added to LI and subtracted from AI,J, respectively, in Eq. 
(3.3.18) to complete the modification of this algebraic equation for the node I. 
 
After the incorporation of boundary conditions, we obtain the following matrix equation 
 

[ ]{ } { } [ ] [ ] [ ] { } { } { }[ ]BLRandBACwhereRhC +=+==  (3.3.26)
 

where [C] is the final coefficient matrix; {R} is the final right-hand side vector; and [B] and {B} the 
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coefficient matrix and load vector contributed from boundary conditions.  For  saturated-unsaturated 
flow simulations, [C] and {R} are highly nonlinear functions of the pressure head {h}. 
 
Solution of the matrix equation.  Equation (3.3.26) is in general a banded sparse matrix equation.  It 
may be solved numerically by either direct method or iteration methods.  In direct methods, a 
sequence of operation is performed only once.  This would result in an exact solution except for 
round-off error.  In this method, one is concerned with the efficiency and magnitude of round-off 
error associated with the sequence of operations.  On the other hand, in an iterative method, one 
attempts to the solution by a process of successive approximations.  This involves in making an 
initial guess, then improving the guess by some iterative process until an error criterion is obtained.  
Therefore, in this technique, one must be concerned with convergence, and the rate of convergence.  
The round-off errors tend to be self-corrected. 
 
For practical purposes, the most advantages of direct method are: (1) the efficient computation when 
the bandwidth of the matrix [C] is small, and (2) the fact that no problem of convergency is 
encountered when the matrix equation is linear or less severity in convergence than iterative 
methods even when the matrix equation is nonlinear.  The most disadvantages of direct methods are 
the excessive requirements on CPU storage and CPU time when a large number of nodes is needed 
for discretization.  On the other hand, the most advantages of iterative methods are the efficiencies in 
terms of CPU storage and CPU time when large problems are encountered.  Their most 
disadvantages are the requirements that the matrix [C] must be well conditioned to guarantee a 
convergent solution.  For three dimensional problems, the bandwidth of the matrix is usually large, 
thus the direction solution method is not practical.  Only the iterative methods are implemented in 
the three-dimensional flow module of WASH123D.  Four iteration methods are used in solving the 
linearized matrix equation:  (1) block iteration, (2) successive point iteration, (3) incomplete 
Cholesky preconditioned conjugate gradient method, and (4) algebraic multigrid method. 
 
The matrix equation, Eq. (3.326), is nonlinear because both the hydraulic conductivity and the water 
capacity are functions of the pressure head h.  To solve the nonlinear matrix equation, two 
approaches can be taken: (1) the Picard method and (2) the Newton-Ralphson method.  The Newton-
Ralphson method has a second order of convergent rate and is very robust.  However, the Newton-
Ralphson method would destroy the symmetrical property of the coefficient matrix resulting from 
the finite element approximation.  As a result the solution of the linearized matrix equation requires 
extra care.  Many of the iterative methods will not warrant a convergent solution for the non-
symmetric linearized matrix equation.  Thus, the Picard method is used in this report to solve the 
nonlinear problems. 
 
In the Picard method, an initial estimate is made of the unknown {h}.  Using this estimate, we then 
compute the coefficient matrix [C] and solve the linearized matrix equation by the method of linear 
algebra.  The new estimate is now obtained by the weighted average of the new solution and the 
previous estimate: 
 

{ } { } ( ){ }kk hhh ωω −+=+ 11(  (3.3.27)
 

where {h(k+1)} is the new estimate, {hk} is the previous estimate, {h} is the new solution, and ω is the 
iteration parameter.  The procedure is repeated until the new solution {h} is within a tolerance error. 
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 If ω is greater than or equal to 0 but is less than 1, the iteration is under-relaxation.  If ω  = 1, the 
method is the exact relaxation.  If ω is greater than 1 but less than or equal to 2, the iteration is 
termed over-relaxation.  The under-relaxation should be used to overcome cases when 
nonconvergency or the slow convergent rate is due to fluctuation rather than due to "blowup" 
computations.  Over-relaxation should be used to speed up convergent rate when it decreases 
monotonically. 
 
In summary, there are 16 optional numerical schemes here to deal with as wide a range of problems 
as possible.  These are the combinations of: (1) two ways of treating the mass matrix (lumping and 
no-lumping); (2) two ways of approximating the time derivatives (time-weighting and mid-
difference), and (3) four ways of solving the linearized matrix equation. 
 
3.3.2 Numerical Approximations of Thermal Transport Equations 
 
Two options are provided in this report to solve the thermal transport equation.  One is the finite 
element method and the other is the particle tracking method. 
 
3.3.2.1 Finite Element Method.  Recall the thermal transport equation is governed by Eq. (2.3.14) 
that is rewritten in a slightly different form as 
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Applying the finite element method to Eq. (3.3.28), we obtain the following matrix equation 
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∫ ∫ ∫=Φ=Φ=Φ
R R R

Ci
C
iri

r
iai

a
i dRHNdRHNRHN ,,  (3.3.31)

 

where Wi is the weighting function of node xi; Ni and Nj are the base functions of nodes xi and xj, 
respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the stiff 
matrix due to dispersion/diffusion/conduction; {T} is the solution vector of temperature; {ΦB} is the 
vector due to boundary conditions, which can contribute to load vector and/or coefficient matrix; 
{Φa} is the load vector due to artificial energy source; {Φr} is the load vector due to energy  
contained  in rainfall; and {Φc} is the vector due to chemical reaction, which is not considered in this 
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version, but can be added easily. 
 
Approximating the time derivative term in Eq. (3.3.29) with a time-weighted finite difference, we 
reduce the advective-diffusive equation and its boundary conditions to the following matrix equation 
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where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial 
sink/sources, rainfall, and net radiation; Δt is the time step size; θ is the time weighting factor for the 
dispersion and linear terms; θv is the time weighting factor for the velocity term; and {T(n)} is the 
value of {T} at old time level n.  The global boundary conditions must be used to provide {ΦB} in 
Eq. (3.3.32). 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.3.32) is  
 

B
IINNIIIII LTCTCTC Φ−=++++ ,,11 ....  (3.3.34)

 
In the above equations there are two unknowns TI and ΦI

B; either TI or ΦI
B, or the relationship 

between TI and ΦI
B must be specified.  The numerical implementation of these boundary 

conditions is described as follows. 
 
Direchlet boundary condition: prescribed temperature 
 
If TI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1, .., CI,I, .., 
CI,N) and the right-hand side term (LI) obtained before the implementation of boundary conditions 
for this equation are stored in a temporary array, then an identity equation is created as 
 

DIdbI NITT ∈= ,  (3.3.35)
 

where TIdb is the prescribed temperature on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving these unknowns, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Ti’s.  After Ti’s for all nodes are solved from the 
matrix equation, Eq. (3.3.34) is then used to back calculate ND ΦI

B’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Ti’s 
accurately except for roundoff errors.  However, if an iterative solver is used, a stopping criterion 
must be strict enough so that the converged solution of N Ti’s are accurate enough to the exact 
solution.  With such accurate Ti’s, then can be sure that the back-calculated ND ΦI

B’s are accurate.  
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Cauchy boundary condition: prescribed heat flux 
 
If ΦBI is given (Cauchy flux boundary condition), all coefficients (CI,1, .., CI,I, .., CI,N) and  right-hand 
side term (LI) obtained before the implementation of boundary conditions for this equation are stored 
in a temporary array, then Eq. (3.3.34) is modified to incorporate the boundary conditions and used 
to solve for TI.  The modification of Eq. (3.3.34) is straightforward. Because ΦI

B is a known 
quantity, it contributes to the load on the right hand side.  This type of boundary conditions is very 
easy to implement.  After Ti�s are obtained, the original Eq. (3.3.34), which is stored in a temporary 
array, is used to back calculate NC ΦI

B’s on flux boundaries (where NC is the number of flux 
boundary nodes). These back-calculated ΦI

B’s should be theoretically identical to the input ΦI
B’s.  

However, because of round-off errors (in the case of direct solvers) or because of stopping criteria 
(in the case of iterative solvers), the back-calculated ΦI

B’s will be slightly different from the input 
ΦI

B’s.  If the differences between the two are significant, it is an indication that the solvers have not 
yielded accurate solutions. 
 
Neumann boundary condition: prescribed gradient of temperature 
 
At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature 
gradient is given.  For this case, all coefficients (CI,1, .., CI,I, .., CI,N) and  right-hand side term 
(LI) obtained before the implementation of boundary conditions for this equation are stored in a 
temporary array, then Eq. (3.3.34) is modified to incorporate the boundary conditions and used 
to solve for TI.  For the Neumann boundary condition, ΦI

B contributes to both the matrix 
coefficient and load vector, thus both the coefficient matrix [C] and the load vector {L} must be 
modified.  Recall  
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Substituting Eq. (2.3.19) into Eq. (3.3.36), we have 
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where [CB] and {LB} are the coefficient matrix and load vector due to Neumann boundary.  Adding 
the I-th equation in Eq. (3.3.37) to Eq. (3.3.34), we obtained a modified equation, which can be 
solved for solve TI.  After TI is solved, the original Eq. (3.3.34) (recall the original Eq. (3.3.34) must 
be and has been stored in a temporary array) is used to back-calculate ΦI

B. 
 
Variable boundary condition: 
 
At the variable boundary condition Node I, the implementation of boundary conditions can be made 
identical to that for a Cauchy boundary condition node if the flow is directed into the region.  If the 
flow is going out of the region, the boundary condition is implemented similar to the implementation 
of Neuman boundary condition with LBI = 0.  The assumption of zero Neumann flux implies that a 
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Neuman node must be far away from the source/sink. 
 
Atmosphere-subsurface media interface boundary condition: 
 
At the atmosphere-media interface, the heat flux is a nonlinear function of the temperature since the 
back radiation and the heat flux due to evaporation and sensible heat are both function of 
temperature.  To implement this boundary condition, we first expand Eq. (2.3.20) in Taylor series as 
follows: 
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where T(k) is the value of T at previous iteration.  Substituting Eq. (3.3.38) into Eq. (3.3.36), we 
have 
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where [CB] and {LB} are the coefficient matrix and load vector due to the atmosphere-media 
boundary condition.  Adding the I-th equation in Eq. (3.3.39) to Eq. (3.3.34), we obtained a modified 
equation, which can be solved for solve TI.  After TI is solved, the original Eq. (3.3.34) is used to 
back-calculate ΦI

B. 
 
Subsurface-river interface boundary condition: 
 
This type of boundary condition will be addressed in Sub-Sections 3.4.3 and 3.4.4. 
 
Subsurface-overland interface boundary condition: 
 
This type of boundary condition will be addressed in Sub-Section 3.4.2. 
 
3.3.2.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the thermal transport equation, we expand Eq. 
(3.2.70) to yield following advection-dispersion equation in the Lagrangian form 
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To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq. 
(3.3.40) along its characteristic line from xi at new time level to xi

* at old time level or on the 
boundary, we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), and Φi
S(n+1), respectively, are the values of K, T, D, and 

ΦS, respectively, at xi at new time level t = (n+1)Δt; and Ki
*, Ti

*, Di
*, and Φi

S*, respectively, are the 
values of K, T, D, and ΦS, respectively, at the location xi

*.  
 
To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq. 

(3.3.41) as 
 

( ) ( )TDCC mbWW ∇⋅⋅∇=+ HDρθρ  (3.3.43)
 
Applying the Galerkin finite element method to Eq. (3.3.43) at new time level (n+1), we obtain the 
following matrix equation for {D(n+1)} as 
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where the superscript (n+1) denotes the time level; N and N are the base functions of nodes at xi and 
xj, respectively. 
 
Lumping the matrix [a(n+1)], we can solve Eq. (3.3.44) for DI

(n+1) as follows 
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where aII
(n+1) is the lumped aii

(n+1).  Following the identical procedure that leads Eq. (3.3.43) to Eq. 
(3.3.49), we have 
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where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)}, 
respectively. 
 
With {D(n)} calculated with Eq. (3.3.50), {D*} can be interpolated.  Substituting Eq. (3.3.49) into Eq. 
(3.3.42) and implementing boundary conditions given in Section 2.3.2, we obtain a system of N 
simultaneous algebraic equations N unknowns (Ti

(n+1) for i = 1, 2, .., N.)  If the dispersion/diffusion 
term is not included, then Eq. (3.3.42) is reduced to a set of N decoupled equations as 
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Equations (3.3.51) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there are two possibilities: Eq. (3.3.51) is replaced with a boundary equation when 
the flow is directed into the region or Eq. (3.3.51) is still valid when the flow is direct out of the 
region.  In other words, when the thermal energy is transported out of the region at a boundary node 
(i.e., when N•V ≥ 0), a boundary condition is not needed and Equation (3.3.51) is used to compute 
the Ti

(n+1).  When the thermal energy is transported into the region at a node (i.e., when N•V < 0), a 
boundary condition must be specified. 
 
Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the 
algebraic equation for the boundary node is obtained by applying the finite element method to the 
boundary node.    For this alternative approach, the implementation of boundary conditions at global 
boundary nodes is identical to that in the finite element approximation of solving the thermal 
transport equation. 
 
3.3.3 Numerical Approximations of Salinity Transport 
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Two options are provided in this report to solve the salinity transport equation.  One is the finite 
element method and the other is the particle tracking method. 
 
3.3.3.1 Finite Element Method.  Recall the salinity transport equation is governed by Eq. (2.3.23) 
which is rewritten in a slightly different form as 
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Applying the finite element method to Eq. (3.3.53), we obtain the following matrix equation 
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where Wi is the weighting function of node xi; Ni and Nj are the base functions of nodes xi and xj, 
respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the stiff 
matrix due to dispersion/diffusion/conduction; [K] is the stiff matrix due to the linear term; {S} is 
the solution vector of salinity; {ΨB} is the vector due to boundary conditions, which can contribute 
to load vector and/or coefficient matrix; and {Ψa} is the load vector due to artificial salt source. 
 
Approximating the time derivative term in Eq. (3.3.54) with a time-weighted finite difference, we 
reduce the advective-diffusive equation and its boundary conditions to the following matrix 
equation. 
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where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial 
sink/sources and rainfall; Δt is the time step size; θ is the time weighting factor for the dispersion 
and linear terms; θv is the time weighting factor for the velocity term; and {S(n)} is the value of {S} 
at old time level n.  The global boundary conditions must be used to provide {ΨB} in Eq. (3.3.57). 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.3.57) is  
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B
IINNIIIII LSCSCSC Ψ−=++++ ,,11, ....  (3.3.59)

 
In the above equations there are two unknowns TI and ΨI

B; either TI or ΨI
B, or the relationship 

between TI and ΨI
B must be specified.  The numerical implementation of these boundary conditions 

are described as follows. 
 
Dirichlet boundary condition: prescribed salinity 
 
If SI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1, .., CI,I, .., 
CI,N) and the right-hand side term (LI) obtained before the implementation of boundary conditions 
for this equation are stored in a temporary array, then an identity equation is created as 
 

DIdI NI,SS ∈=  (3.3.60)
 

where SId is the prescribed salinity on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving this unknowns, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Si’s.  After Si’s for all nodes are solved from the 
matrix equation, Eq. (3.3.59) is then used to back calculate ND ΨI

B’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Si’s 
accurately except for roundoff errors.  However, if an iterative solver is used, a stopping criterion 
must be strict enough so that the converged solution of N Si’s are accurate enough to the exact 
solution.  With such accurate Si’s, then can we be sure that the back-calculated ND ΨBI’s are 
accurate.  
 
Cauchy boundary condition: prescribed salt flux 
 
If ΨI

B is given (Cauchy flux boundary condition), all coefficients (CI,1, ..,  CI,I, .., CI,N) and  the right-
hand side term (LI) obtained before the implementation of boundary conditions for this equation are 
stored in a temporary array, then Eq. (3.3.59) is modified to incorporate the boundary conditions and 
used to solve for SI.  The modification of Eq. (3.3.59) is straightforward.  Because ΨI

B is a known 
quantity, it contributes to the load on the right hand side.  This type of boundary conditions is very 
easy to implement.  After Si’s are obtained, the original Eq. (3.3.59), which is stored in a temporary 
array, is used to back calculate NC ΨI

B’s on flux boundaries (where NC is the number of flux 
boundary nodes).  These back-calculated ΨI

B’s should be theoretically identical to the input ΨI
B’s.  

However, because of round-off errors (in the case of direct solvers) or because of stopping criteria 
(in the case of iterative solvers), the back-calculated ΨI

B’s will be slightly different from the input 
ΨI

B’s.  If the differences between the two are significant, it is an indication that the solvers have not 
yielded accurate solutions.   
 
Neumann boundary condition: prescribed gradient of salinity 
 
At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature 
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gradient is given.  For this case, all coefficients (CI,, .., CI,I, .., CI,N) and the right-hand side term 
(LI) obtained before the implementation of boundary conditions for this equation are stored in a 
temporary array, then Eq. (3.3.59) is modified to incorporate the boundary conditions and used 
to solve for SI.  For the Neumann boundary condition, ΨI

B contributes to both the matrix 
coefficient and load vector, thus both the coefficient matrix [C] and the load vector {L} must be 
modified.   Recall  
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Substituting Eq. (2.3.28) into Eq. (3.3.61), we have 
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where [CB] and {LB} are the coefficient matrix and load vector due to Neumann boundary.  Adding 
the I-th equation in Eq. (3.3.62) to Eq. (3.3.59), we obtained a modified equation, which can be 
solved for solve SI.  After SI is solved, the original Eq. (3.3.59) is used to back-calculate ΨI

B. 
 
Variable boundary condition:  
 
At the variable boundary condition Node I, the implementation of boundary conditions can be made 
identical to that for a Cauchy boundary condition node if the flow is directed into the 
river/stream/canal reach.  If the flow is going out of the reach, the boundary condition is 
implemented similar to the implementation of Neuman boundary condition with ΨI

nb = 0.  The 
assumption of zero Neumann flux implies that a Neuman node must be far away from the 
source/sink. 
 
Subsurface-river interface boundary condition: 
 
This type of boundary condition will be addressed in Sub-Sections 3.4.3 and 3.4.4. 
 
Subsurface-overland interface boundary condition: 
 
This type of boundary condition will be addressed in Sub-Section 3.4.2. 
 
3.3.3.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the salt transport equation, we expand Eq. (3.3.53) to 
yield following advection-dispersion equation in the Lagrangian form 
 

θ
VU =Ψ+=+ whereDKS
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To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq. 
(3.3.63) along its characteristic line from xi at new time level to xi

* at old time level or on the 
boundary, we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), and Ψi
S(n+1), respectively, are the values of K, T, D, and 

ΨS, respectively, at xi at new time level t = (n+1)Δt; and Ki
*, Ti

*, Di
*, and Ψi

S*, respectively, are the 
values of K, T, D, and ΨS, respectively, at the location xi

*.  
 
To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq. 

(3.3.64) as 
 

( )SD ∇⋅⋅∇= Dθθ  (3.3.66)
 
Applying the Galerkin finite element method to Eq. (3.3.66) at new time level (n+1), we obtain the 
following matrix equation for {D(n+1)} as 
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where the superscript (n+1) denotes the time level; N and N are the base functions of nodes at xi and 
xj, respectively. 
 
Lumping the matrix [a(n+1)], we can solve Eq. (3.2.110) for DI

(n+1) as follows 
 



 3-78

int11

intint1

)1()1(
)1(

)1(
)1(

)1(

)1()1(
)1(

)1(

poboundaryaisIifSb
a

B
a

D

poerioranisIifSb
a

D

n
j

j

n
Ijn

II

n
In

II

n
I

j

n
j

n
Ijn

II

n
I

++
+

+
+

+

++
+

+

∑

∑

−=

−=

 (3.3.72)

 

where aII
(n+1) is the lumped aii

(n+1).  Following the identical procedure that leads Eq. (3.3.66) to Eq. 
(3.3.72), we have 
 

int11

intint1

)()(
)(

)(
)(

)(

)()(
)(

)(

poboundaryaisIifSb
a

B
a

D

poerioranisIifSb
a

D

n
j

j

n
Ijn

II

n
In

II

n
I

j

n
j

n
Ijn

II

n
I

∑

∑

−=

−=

 (3.3.73)

 

where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)}, 
respectively. 
 
With {D(n)} calculated with Eq. (3.3.73), {D*} can be interpolated.  Substituting Eq. (3.3.72) into Eq. 
(3.3.65) and implementing boundary conditions given in Section 2.3.3, we obtain a system of N 
simultaneous algebraic equations N unknowns (Si

(n+1) for i = 1, 2, .., N.)  If the dispersion/diffusion 
term is not included, then Eq. (3.3.65) is reduced to a set of N decoupled equations as 
 

NibSa i
n
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 (3.3.75)

 
Equations (3.3.75) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there two possibilities: Eq. (3.3.75) is replaced with a boundary equation when the 
flow is directed into the region or Eq. (3.3.75) is still valid when the flow is direct out of the region.  
In other words, when the salt is transported out of the region at a boundary node (i.e., when N•V ≥ 
0), a boundary condition is not needed and Equation (3.3.75) is used to compute the Si

(n+1).  When 
the salt is transported into the region at a node (i.e., when N•V < 0), a boundary condition must be 
specified. 
 
Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the 
algebraic equation for the boundary node is obtained by applying the finite element method to the 
boundary node.    For this alternative approach, the implementation of boundary conditions at global 
boundary nodes is identical to that in the finite element approximation of solving the salt transport 
equation. 
 
 

3.4 Numerical Implementation of Flow Coupling among Various Media 
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This section addresses numerical implement of coupling flow simulations among various media 
including (1) between 1D river and 2D overland flows, (2) between 2D overland and 3D subsurface 
flows, (3) between 3D subsurface and 1D overland flows, and (4) among 1D river, 2D overland, and 
3D subsurface flows.   Without loss of generality, numerical implementations of coupling for water 
flow equations are heuristically given for finite element approximations of diffusive wave models.  
For Largrangian-Eulerian approximations of diffusive wave models, semi-Largrangian 
approximations of kinematic wave models, or particle tracking approximations of fully dynamic 
wave models in surface waters, the implementations of numerical coupling among various media 
remain valid. 
 
3.4.1 Coupling between 1-D River Networks and 2-D Overland Flows 
 
The interaction between one-dimensional river and two-dimensional overland flows involves two 
cases: one is between overland and river nodes (left frame in Fig. 3.4-1) and the other is between 
overland and junction nodes (right frame in Fig. 3.4-1).  For every river node (Node I in the left 
frame of Fig. 3.4-1), there will be associated with two overland nodes (Nodes J and K in the left 
frame of Fig. 3.4-1).  For every junction node (Node L in the right frame of Fig. 3.4-1), there will be 
associated with a number of overland nodes such as Nodes J, K, O, etc (right frame of Fig. 3.4-1).  It 
should be noted that nodes, such as Nodes J and K in the right frame of Figure 3.4-1, contribute flow 
to both the river as source/sink of Node I and the Junction as source/sink of Node L. 
 

IJ K

J
I

K

L

O

 
Fig. 3.4-1.  Depiction of Interacting River Nodes and Overland Nodes (left) and Junction  

Nodes and Overland Nodes (Right) 
 
 
3.4.1.1 Couple Flow Rates between the River Network and the Overland Regime.   
 
Numerical approximations of the diffusive water flow equation for one-dimensional river with finite 
element methods yield the following matrix 
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where the superscript c denotes the canal (channel, river, or stream); AIJ is the I-th row, J-th column 
of the coefficient matrix [A]; HI denotes the water surface at Node I; RI is I-th entry of the load 
vector {R}; N is the number of nodes in the canal; QI is the rates of water source/sink from/to the 
overland flow to/from canal  node I; and the superscripts, o1 and o2, respectively, denote canal bank 
1 and 2, respectively.   Every canal node I involves 3 unknowns, HI

c, QI
o1, and QI

o2.   However, Eq. 
(3.4.1) gives just one algebraic equation for every canal node I.  Clearly, two additional algebraic 
equations are need for every canal node I. 
 
Applications of finite element methods to two-dimensional diffusive wave flow equations yield the 
following matrix   
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where the superscript o denotes the overland; AIJ is the I-th row, J-th column of the coefficient 
matrix [A]; HI denotes the water surface at Node I; RI is I-th entry of the load vector {R}; M is the 
number of nodes in the overland ; and QJ and QK are the rates of water sink/source from/to the 
overland to/from the canal via nodes J and K, respectively.   Equation (3.4.2) indicates that there is 
one unknown corresponding to one algebraic equation for every interior node.  However, for every 
algebraic equation corresponding an overland-canal interface node, there are two unknowns, the 
water surface and the flow rate.  Therefore, for every overland-river interface node, one additional 
equation is needed.  Since for every canal node, there are associated two overland-interface nodes, 
four additional equations are needed for every canal node I for the four additional unknowns QI

o, 
QK

o, QI
o1, and QI

o2. 
 
The additional equations are obtained by two interface boundary conditions.  The first one is the 
continuity of flux.  The second one is the imposition of continuity of water surfaces between canal 



 3-81

and overland nodes or the formulation of flow rates.  Two of the additional equations are obtained 
from the interface condition between the canal node I and the overland node J as 
 

( )1 1
1; ,o o o c o o c

J I J I I J IQ Q H H or Q f h h= = =  (3.4.3) 
 

where f1 is a prescribed function of water depths hJ
o and hI

c at the overland node J and the canal node 
I.  The other two additional equations are obtained from the interface condition between the canal 
node I and the overland node K 
 

( )2 2
2; ,o o o c o o c

K I K I I K IQ Q H H or Q f h h= = =  (3.4.4) 
 

where f2 is a prescribed function of water depths hK
o and hI

c at the overland node K and the canal 
node I. 
 
When the direct contribution of flow from the overland regime to a junction node L (Fig. 3.4-1) is 
significant, Equations (3.1.77) or (3.1.78) must be modified  
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where Lh and V L are the water depth and volume at the junction node L, i
iLQ  is the flux contributed 

from the node iL of the reach i, o
OQ is the flux contributed from the overland node O to the junction 

and NO is the number of overland nodes interfacing with the junction L.  Additional NO unknowns 
have been introduced in Equation (3.4.5) or (3.4.6).  For each overland-junction interface node, say 
O (the right frame in Fig. 3.4-1), the finite element equation written out of Eq. (3.4.2) is 
 

1 1 2 2 .. ..o o o o o o o o o o
O O OO O OM M O OA H A H A H A H R Q+ + + + + = −  (3.4.7) 

 
It is seen that Equation (3.4.7) involves two unknowns, o

OH and o
OQ .  One equation must be 

supplemented to the finite element equation to close the system.  This equation is obtained by either 
imposing the continuity of water surfaces between nodes O and L or formulating flux as 
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where fo is a prescribed function of water depths at nodes O and L. 
 
Finally, for each reach-junction interface node, say node I (the right frame in Fig. 3.4-1) which we 
shall say Node 1L of the first reach connecting to Junction L, the formulation of 1

1LQ  (or 1
IQ )  is 

similar to that of Equation (3.4.9) as 
 

( )1 1 1
1 ,I L I I LH H or Q f h h= =  (3.4.9) 
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where the superscript 1 denotes reach number and the subscript I denote node number. 
 
3.4.1.1 Couple thermal or Salt Rate between the River Network and the Overland Regime. 
 
Numerical approximations of thermal or salt transport equation for one-dimensional river with finite 
element methods yield the following matrix 
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where the superscript c denotes the canal (channel, river, or stream); CIJ is the I-th row, J-th column 
of the coefficient matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the 
load vector {R}; N is the number of nodes in the canal; MI is the rate of energy or salt source/sink 
from/to the overland flow to/from canal  node I; and the superscripts, o1 and o2, respectively, denote 
canal bank 1 and 2, respectively.  Every canal node I involves 3 unknowns, c

IE , 1o
IM , and 2o

IM .  
However, Eq. (3.4.10) gives just one algebraic equation for every canal node I.  Clearly, two 
additional algebraic equations are need for every canal node I. 
 
Applications of finite element methods to two-dimensional thermal or salt transport equation yield 
the following matrix 
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where the superscript o denotes the overland; CIJ is the I-th row, J-th column of the coefficient 
matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the load vector {R}; M 
is the number of nodes in the overland; and MJ and MK are the rates of thermal or salt sink/source 
from/to the overland to/from the canal via nodes J and K, respectively.   Equation (3.4.11) indicates 
that there is one unknown corresponding to one algebraic equation for every interior node.  
However, for every algebraic equation corresponding to an overland-canal interface node, there are 
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two unknowns, the temperature or salinity and the thermal or salt flux.  Therefore, for every 
overland-river interface node, one additional equation is needed.  Since for every canal node, there 
are associated two overland-interface nodes, four additional equations are needed for every canal 
node I for the four additional unknowns MI

o, MK
o, MI

o1, and MI
o2. 

 
The additional equations are obtained by two interface boundary conditions.  The first one is the 
continuity of flux.  The second one is the assumption that the thermal or salinity rates through the 
interface node are due mainly to water flow (i.e., advection).  Two of the additional equations are 
obtained from the interface condition between the canal node I and the overland node J as 
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ρ
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= + + −
 (3.4.12) 

 

for thermal transport or 
 

( )( ) ( )( )( )
( )( ) ( )( )( )
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I I I J I I
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M Q sign Q E sign Q E and

M Q sign Q E sign Q E

= + + −

= + + −
 (3.4.13) 

 

for salt transport.  It should be noted that in Equations (3.4.12) and (3.4.13) 1o
IQ  = o

JQ , thus the 
continuity 1o

IM  = o
JM  is preserved. 

 
The other two additional equations are obtained from the interface condition between the canal node 
I and the overland node K as follows. 
 

( )( ) ( )( )( )
( )( ) ( )( )( )
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M C Q sign Q E sign Q E and
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ρ

ρ
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= + + −
 (3.4.14) 

 

for thermal transport or 
 

( )( ) ( )( )( )
( )( ) ( )( )( )

2 2 2 21 1 1
2
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I I I K I I

o o o o o c
K K K K K I

M Q sign Q E sign Q E and

M Q sign Q E sign Q E

= + + −

= + + −
 (3.4.15) 

 

for salt transport.  It should be noted that in Equations (3.4.12) and (3.4.13) 2o
IQ  = o

KQ , thus the 
continuity 2o

IM  = o
IM  is preserved. 

 
When the direct contribution of energy or salt from the overland regime to a junction node L (Fig. 
3.4-1) is significant, Equations (3.1.121) and (3.1.122) or Equations (3.1.156) and (3.1.157) must be 
modified  
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W Wd C Vρ 0
O O

L i o i oL
iL O iL O

i O N i O N

E M or M
dt ∈ ∈

= Φ + Φ + =∑ ∑ ∑ ∑  (3.4.16) 

 

with LE  denoting LT  (where LT  is the temperature at the junction L) for thermal transport or 
 

d V 0
O O

L i o i oL
iL O iL O

i O N i O N

S M or M
dt ∈ ∈

= Ψ + Ψ + =∑ ∑ ∑ ∑  (3.4.17) 

 

with LE  denoting LS  (where LS  is the salinity at the junction L) for salt transport.  Additional NO 
unknowns have been introduced in Equation (3.4.16) or (3.4.17).  For each overland-junction 
interface node, say O (the right frame in Fig. 3.4-1), the finite element equation written out of Eq. 
(3.4.11) is 
 

o
O

o
O

o
M

o
OM

o
O

o
OO

oo
O

oo
O MRECECECEC −=+++++ ....2211  (3.4.18) 

 
It is seen that Equation (3.4.18) involves two unknowns, EO

o and MO
o.  One equation must be 

supplemented to the finite element equation to close the system.  This equation is obtained by 
formulating energy or salt rates 
 

( )( ) ( )( )( )L
o

O
o

O
o

O
o

OWW
o

O EQsignEQsignQCM −++= 11
2
1ρ  (3.4.19) 

 

for thermal transport or 
 

( )( ) ( )( )( )L
o

O
o

O
o

O
o

O
o

O EQsignEQsignQM −++= 11
2
1

 (3.4.20) 

 

for salt transport.  Finally, the formulation of i
iLΦ  or i

iLΨ  is identical to that of o
OM  in Equation 

(3.4.19) or (3.4.20).  
 
3.4.2 Coupling between 2-D Overland and 3-D Subsurface Flows 
 
The interaction between two-dimensional overland and three-dimensional subsurface flows is rather 
simple.   For every subsurface node (Node J in Fig. 3.4-2), there will be associated an overland 
nodes (Node I in Fig. 3.4-2).   
 
3.4.2.1 Couple Flow Rates between the Overland Regime and Subsurface Media.   
 
Numerical approximations of the diffusive water flow equation for two-dimensional overland with 
finite element methods yield the following matrix 
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 (3.4.21) 

 

where the superscript o denotes the overland; AIJ is the I-th row, J-th column of the coefficient 
matrix [A]; HI denotes the water surface at Node I; RI is I-th entry of the load vector {R}; N is the 
number of nodes in the overland; and QI is the rates of water sink/source from/to the overland node I 
to/from the corresponding subsurface node (e.g., Node J in Fig. 3.4-2) due to infiltration (the 
superscripts, io, denotes the infiltration from overland).   Every overland node I involves two 
unknowns, HI

o and and QI
io.   However, Eq. (3.4.21) gives just one algebraic equation for every 

canal node I.  Clearly, one additional algebraic equation is needed every overland node I. 
 

I
J

 
Fig. 3.4-2.  Depiction of Interacting Subsurface Nodes and Overland Nodes 

 
Applications of finite element methods to the three-dimensional subsurface flow equation yield the 
following matrix   
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 (3.4.22) 

 

where the superscript so denotes the subsurface media; AIJ is the I-th row, J-th column of the 
coefficient matrix [A]; HJ denotes the total head at Node J; RJ is J-th entry of the load vector {R}; M 
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is the number of nodes in the subsurface media; and QJ is the rates of water source/sink from/to the 
overland to/from the subsurface media at node J.  Equation (3.4.22) indicates that there is one 
unknown corresponding to one algebraic equation for every interior node.  However, for every 
algebraic equation corresponding to a subsurface-overland interface node, there are two unknowns, 
the total head and the flow rate.  Therefore, for every subsurface media node interfacing with an 
overland node, one additional equation is needed.  Since for every overland node, there is associated 
one subsurface-interface node, two additional equations are needed for every overland node I for the 
two additional unknowns QI

io and QJ
s. 

 
The additional equations are obtained by the interface boundary condition between the overland 
node I and the subsurface media node J as 
 

( );s io s o io s o
J I J I I J IQ Q H H or Q K H H= = = −  (3.4.23) 

 

where K is the exchange coefficient representing the property of the medium separating the overland 
and subsurface media, but not being included as part of the media. 
 
3.4.2.2 Couple thermal or Salt Rate between the Overland Regime and Subsurface Media.   
 
Numerical approximations of thermal or salt transport equation for two-dimensional overland regime 
with finite element methods yield the following matrix 
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CCCC  (3.4.24) 

 

where the superscript o denotes the overland; CIJ is the I-th row, J-th column of the coefficient 
matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the load vector {R}; N 
is the number of nodes in the overland; and MI is the rate of energy or salt source/sink from/to the 
subsurface  to/from the overland  node I (the superscript, io, denotes the infiltration from overland).  
Every overland node I involves two unknowns, EI

o, and MI
io.   However, Eq. (3.4.24) gives just one 

algebraic equation for every canal node I.  Clearly, one additional algebraic equation is need for 
every overland node I. 
 
Applications of finite element methods to three-dimensional thermal or salt transport equations for 
subsurface media yield the following matrix  
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 (3.4.25) 

 

where the superscript s denotes the subsurface media; CIJ is the I-th row, J-th column of the 
coefficient matrix [C]; EJ denotes the temperature or salinity at Node J; RJ is J-th entry of the load 
vector {R}; M is the number of nodes in the overland ; and MJ is the rate of thermal or salt 
sink/source from/to the subsurface node J to/from the corresponding overland node I.   Equation 
(3.4.25) indicates that there is one unknown corresponding to one algebraic equation for every 
interior node.  However, for every algebraic equation corresponding an subsurface-overland 
interface node, there are two unknowns, the temperature or salinity and the thermal or salt flux.  
Therefore, for every subsurface-overland interface node, one additional equation is needed.  Since 
for every overland node, there is associated one subsurface-interface nodes, two additional equations 
are needed for every overland node I and its corresponding subsurface node J for the two additional 
unknowns MI

io and MJ
s. 

 
The additional equations are obtained from the interface condition between the overland I and the 
subsurface J as 
 

( )( ) ( )( )( )
( )( ) ( )( )( )

1 1 1
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1 1 1
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io io io s io o
I W W I I J I I

s s s s s o
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M C Q sign Q E sign Q E and
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ρ

ρ

= + + −

= + + −
 (3.4.26) 

 

for thermal transport or 
 

( )( ) ( )( )( )
( )( ) ( )( )( )

1 1 1
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s s s s s o
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M Q sign Q E sign Q E

= + + −

= + + −
 (3.4.27) 

 

for salt transport.  It should be noted that in Equations (3.4.26) or (3.4.27) io
IQ  = s

JQ , thus the 
continuity io

IM  = s
JM  is preserved. 

 
3.4.3 Coupling between 3-D Subsurface and 1-D Surface Flows 
 
The interaction between three-dimensional subsurface and one-dimensional river flows involves 
three options: (1) river is discretized as finite-width and finite-depth on the three-dimensional 
subsurface media (Fig. 3.4-3), (2) river is discretized as finite-width and zero-depth on the three-
dimensional subsurface media (Fig. 3.4-4), and (3) river is discretized as zero-width and zero-depth 
on the three-dimensional subsurface media (Fig. 3.4-5).  Option 1 is the most realistic one.  
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However, because of the computational demands, it is normally used in small scale studies involving 
the investigations of infiltration and discharge between river and subsurface media on a local scale.  
Option 2 is normally used in medium scale studies while Option 3 is normally employed in large 
scale investigations.  In Option 1, for every river node there are associated with a number of 
subsurface interfacing nodes such as K, .., J, .., and L(Fig. 3.4-3).  In Option 2, for every river node 
there are associated with three subsurface interfacing nodes K, J, and L (Fig. 3.4-4).  In Option 3, for 
every river node there is associated with one subsurface interfacing node J (Fig. 3.4-5). 
 
3.4.3.1 Couple Flow Rates between the River Network and the Subsurface Media.   
 
Numerical approximations of the diffusive water flow equation for one-dimensional river with finite 
element methods yield the following matrix 
 

I

J’s
K L

K J’s

I
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Fig. 3.4-3.  Rivers Are Discretized as Finite-Width and  

Finite-Depth on the Subsurface Media 
 

I

JK L

K J

K J

L
I
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Fig. 3.4-4.  Rivers Are Discretized as Finite-Width and 

Zero-Depth on the Subsurface Media 
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Fig. 3.4-5.  Rivers Are Discretized as Zero-Width and  

Zero-Depth on the Subsurface Media 
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 (3.4.28) 

 

where the superscript c denotes the canal (channel, river, or stream); AIJ is the I-th row, J-th column 
of the coefficient matrix [A]; HI denotes the water surface at Node I; RI is I-th entry of the load 
vector {R}; N is the number of nodes in the canal; QI is the rates of water sink/source from/to the 
river node I to/from the subsurface media.  Every canal node I involves two unknowns, HI

c and QI
ic.  

 However, Eq. (3.4.28) gives just one algebraic equation for every canal node I.  Clearly, one 
additional algebraic equation is need for every canal node I. 
 
For example, taking Option 2 where there are three nodes associated with one canal node, the 
applications of finite element methods to three-dimensional subsurface flow equations yield   
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 (3.4.29) 
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where the superscript s denotes the subsurface meida; AIJ is the I-th row, J-th column of the 
coefficient matrix [A]; HJ denotes the total head at Node J; RJ is J-th entry of the load vector {R}; M 
is the number of nodes in the subsurface media; and QJ is the rate of water source/sink from/to the 
canal to/from the subsurface via node J.   Equation (3.4.29) indicates that there is one unknown 
corresponding to one algebraic equation for every interior node.  However, for every algebraic 
equation corresponding to a subsurface-canal interface node, there are two unknowns, the total head 
and the flow rate.  Therefore, for every subsurface-river interface node, one additional equation is 
needed.  Since for every canal node, there are associated three subsurface-interface nodes, four 
additional equations are needed for every canal node I for the four additional unknowns QI

ic, QK
s, 

QJ
s, and QL

s. 
 
The additional equations are obtained the interface condition between the canal node I and the 
subsurface nodes K, J, and L as 
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+ + = + + = = −

= = + = = +
 (3.4.30) 

 

where QK
rain and QL

rain are the rainfall fluxes through nodes K and L, respectively; HK
ponding and 

HL
ponding are the allowable ponding depth at nodes K and L, respectively; and Ke is the exchange 

coefficient representing the material property of a layer separating the river and subsurface media 
but the layer is not included in the geometrical discretization. 
 
In Option 1, for every canal node I, there are associated a number of subsurface-interface nodes, say 
NS, (NS + 1) additional equations are needed for every canal node I for the additional unknowns QI

ic, 
QK

s, .., QJ
s, .., and QL

s.  These equations are listed below: 
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+ + = + +

= = − ∈
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In Option 3, for every canal node I, there are associated three subsurface-interface nodes K, J, and L 
as in Option 2.  However, while in Option 2, nodes K and J are located at the interactions of river 
banks and subsurface media, in Option 3, nodes K and L can be located far way from the river banks 
and node J interacts directly with the canal node I.  The four interaction equations are modified 
according to the continuity of fluxes as 
 

( )1 1 ; ;

;

s ic rain rain c s ic s c
J I K L I J I J I

K L

s ponding s rain s ponding s rain
K K K K L L L L

P PQ Q Q Q H H or Q K H H
E E

H H or Q Q H H or Q Q

⎛ ⎞ ⎛ ⎞
= + − + − = = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= = = =

 (3.4.32) 

 

where P is the wet perimeter of the canal and EK and EL are the element length of KJ and JL, 
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respectively.  
 
3.4.3.2 Couple thermal or Salt Rate between the River Network and the Subsurface.   
 
Numerical approximations of thermal or salt transport equation for one-dimensional river with finite 
element methods yield the following matrix 
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where the superscript c denotes the canal (channel, river, or stream); CIJ is the I-th row, J-th column 
of the coefficient matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the 
load vector {R}; N is the number of nodes in the canal; and MI

ic is the rate of energy or salt 
source/sink from/to the subsurface to/from canal  node I due to infiltration/exfiltration. Every canal 
node I involves two unknowns, EI

c and MI
ic.   However, Eq. (3.4.33) gives just one algebraic 

equation for every canal node I.  Clearly, one additional algebraic equation is need for every canal 
node I. 
 
For example, taking Option 2 where there are three nodes associated with one canal node, the 
applications of finite element methods to three-dimensional thermal or salt transport equation in the 
subsurface media yields  
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where the superscript s denotes the subsurface media; CIJ is the I-th row, J-th column of the 
coefficient matrix [C]; EJ denotes the temperature or salinity at Node J; RJ is J-th entry of the load 
vector {R}; M is the number of nodes in the overland ; and MK, MJ and ML are the rates of thermal or 
salt sink/source from/to the subsurface water to/from the canal via nodes K, J and L, respectively.  
Equation (3.4.34) indicates that there is one unknown corresponding to one algebraic equation for 
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every interior node.  However, for every algebraic equation corresponding an subsurface-canal 
interface node, there are two unknowns, the temperature or salinity and the thermal or salt flux.  
Therefore, for every subsurface-river interface node, one additional equation is needed.  Since for 
every canal node, there are associated three subsurface-interface nodes, four additional equations are 
needed for every canal node I for the four additional unknowns MI

ic, MK
s, MJ

s, and ML
s. 

 
These four additional equations are obtained by the interface condition between the canal node I and 
the subsurface nodes K, J, and L as 
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and 
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for thermal transport or 
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and 

( )( ) ( )( )( )

( )( ) ( )( )( )

( )( ) ( )( )( )c
I

s
L

s
L

s
L

s
L

s
L

c
I

s
J

s
J

s
J

s
J

s
J

c
I

s
K

s
K

s
K

s
K

s
K

EQsignEQsignQM

EQsignEQsignQM

EQsignEQsignQM

−++=

−++=

−++=

11
2
1

,11
2
1

,11
2
1

 (3.4.38) 

 
for salt transport.  For Option 1 and Option 3, the coupling can be done similarly. 
 
3.4.4 Coupling Among River, Overland, and Subsurface Flows 
 
The interaction among one-dimensional river, two-dimensional overland, and three-dimensional 
subsurface flows involves three options: (1) river is discretized as finite-width and finite-depth on 
the three-dimensional subsurface media (Fig. 3.4-6), (2) river is discretized as finite-width and zero-
depth on the three-dimensional subsurface media (Fig. 3.4-7), and (3) river is discretized as zero-
width and zero-depth on the three-dimensional subsurface media (Fig. 3.4-8).  Option 1 is the most 
realistic one.  However, because of the computational demands, it is normally used in small scale 
studies involving the investigations of infiltration and discharge between river and subsurface media 
on a local scale.  Option 2 is normally used in medium scale studies while Option 3 is normally 



 3-93

employed in large scale investigations.  In Option 1, for every river node there are associated with 
two overland nodes M and N and a number of subsurface interfacing nodes such as K. , J, .., and L 
(Fig. 3.4-6).  In Option 2,  for every river node I, there are associated with two overland nodes M and 
N and three subsurface interfacing nodes  K, J, and L (Fig. 3.4-7).  In Option 3, for every river node 
I, there is associated with two overland nodes M and N one subsurface node J (Fig. 3.4-8). 
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Fig. 3.4-6.  Interfacing Nodes for Every River Node when Rivers  

Are Discretized as Finite-Width and Finite-Depth 
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Fig. 3.4-7.  Interfacing Nodes for Every River Node when Rivers  

Are Discretized as Finite-Width and Zero-Depth 
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Fig. 3.4-8. Interfacing Nodes for Every River Node when Rivers  

Are Discretized as Zero-Width and Zero-Depth 
 
3.4.4.1 Couple Flow Rates among River, Overland, and Subsurface Media.   
 
Numerical approximations of flow equations in river, overland, and subsurface would result in a 
system of algebraic equations.  For every river node I (Fig. 3.4-7), one or two algebraic equations 
(for diffusive wave or fully dynamic wave approaches) are obtained governing the water surface 
(diffusive wave approach) or the water surface and discharge (dynamic wave approach) for the node. 
 The algebraic equation(s) also includes three additional unknowns: two are flow rates from overland 
to the river via two river banks (QI

o1 and QI
o2)and the other is the flow rate from the subsurface 

media to river via infiltration/exfiltration (QI
ic.)  In the meantime, for the overland node M that 

interfaces with the river node I and other subsurface nodes (Fig. 3.4-7), there are two additional 
unknowns besides the state variables: one is the boundary flux from the overland to the river (QM

o) 
and the other is the infiltration and/or exfiltration flux from overland to the subsurface (QM

io).  
Similarly for the overland node N that interfaces with the river node I and other subsurface nodes 
(Fig. 3.4-7), there are two additional unknowns besides the state variables: one is the boundary flux 
from the overland to the river (QN

o) and the other is the infiltration and/or exfiltration flux from 
overland to the subsurface (QN

io).  For the subsurface node K that interfaces with the river node I and 
overland node M (Fig. 3.4-7), there is one additional unknown (QK

s) beside the state variable.  
Similarly, for the subsurface nodes L that interfaces with the river node I and overland node N, there 
is one additional unknown (QL

s).  Finally for the subsurface node J that interfaces with the river node 
I, there is one additional unknown (QJ

s) beside the state variable (the pressure head or total head at 
node J).  Thus, in Option 2, one needs to set up 10 equations that describe the interactions among 
flows in river, overland, and subsurface.  These ten equations can be derived based on the continuity 
of fluxes and state variables and formulation of each flux at each individual node as follows. 
 
Interaction between Overland Node M and Canal Node I.  Two equations are obtained based on 
the continuity of flux and state variable or formulation of flux as 
 

( )1 1
1; ,o o o c o o c

M I M I I M IQ Q H H or Q f H H= = =  (3.4.39) 
 
 
Interaction between Overland Node N and Canal Node I.  Two equations are obtained based on 
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the continuity of flux and state variable or formulation of flux as 
 

( )2 2
2; ,o o o c o o c

N I N I I N IQ Q H H or Q f H H= = =  (3.4.40) 

 
Interaction between Overland Node M, Subsurface Node K, and Canal Node I.  Two equations 
are obtained based on the continuity of flux and state variable or formulation of flux as 
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Interaction between River Bank Node N, Subsurface Node L, and Canal Node I.  Two equations 
are obtained based on the continuity of flux and state variable or formulation of flux as 
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Interaction between Subsurface Node J and Canal Node I.  Two equations are obtained based on 
the continuity of flux and state variable or formulation of flux as 
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3.4.4.2 Couple thermal or Salt Rate among River, Overland, and Subsurface Media.   
 
Similar to the coupling of flows among river, overland, and subsurface media, the coupling of 
thermal or salinity transport are achieved by imposing the continuity of energy/salt fluxes and 
formulation of individual node fluxes. 
 
Interaction between Overland Node M and Canal Node I.  Two equations are obtained based on 
the continuity of fluxes and the formulation of fluxes as 
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for thermal transport or 
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for salt transport. 
 
Interaction between Overland Node N and Canal Node I.  Two equations are obtained based on 
the continuity of fluxes and the formulation of fluxes as 
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for thermal transport or 
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Interaction between Overland Node M, Subsurface Node K, and Canal Node I.  Two equations 
are obtained based on the continuity of fluxes and the formulation of fluxes as 
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for thermal transport and 
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for salt transport. 
 
Interaction between River Bank Node N, Subsurface Node L, and Canal Node I.  Two equations 
are obtained based on the continuity of fluxes and the formulation of flux as 
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for thermal transport and 
 

( )( ) ( )( )

( )( ) ( )( )

1 1 11 1
2 2 4

1 1 11 1
2 2 4

io io io o io s s ic c
N N N N N L L I I

s s s s s io o ic c
L L L L L N N I I

M sign Q Q E sign Q Q E Q E and

M sign Q Q E sign Q Q E Q E

⎧ ⎫⎛ ⎞= − + + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞= + + − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (3.4.51) 

 

for salt transport. 
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Interaction between Subsurface Node J and Canal Node I.  Two equations are obtained based on 
the continuity of fluxes and the formulation of fluxes as 
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for thermal transport and 
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for salt transport. 
 
 

3.5 Solving One-Dimensional River/Stream/Canal Network Water Quality Transport 
Equations 

 
In this section, we present the numerical approaches employed to solve the governing equations of 
reactive chemical transport in 1-D river/stream/canal networks. Ideally, one would like to use a 
numerical approach that is accurate, efficient, and robust. Depending on the specific problem at 
hand, different numerical approaches may be more suitable. For research applications, accuracy is a 
primary requirement, because one does not want to distort physics due to numerical errors. On the 
other hand, for large field-scale problems, efficiency and robustness are primary concerns as long as 
accuracy remains within the bounds of uncertainty associated with model parameters. Thus, to 
provide accuracy for research applications and efficiency and robustness for practical applications, 
three coupling strategies were investigated to deal with reactive chemistry. They are: (1) a fully-
implicit scheme, (2) a mixed predictor-corrector/operator-splitting method, and (3) an operator-
splitting method. For each time-step, we first solve the advective-dispersive transport equation with 
or without reaction terms, kinetic-variable by kinetic-variable. We then solve the reactive chemical 
system node-by-node to yield concentrations of all species.  
 
Five numerical options are provided to solve the advective-dispersive transport equations: Option 1- 
application of the Finite Element Method (FEM) to the conservative form of the transport equations, 
Option 2 - application of the FEM to the advective form of the transport equations, Option 3 - 
application of the modified Lagrangian-Eulerian (LE) approach to the Largrangian form of the 
transport equations, Option 4 - LE approach for all interior nodes and downstream boundary nodes 
with the FEM applied to the conservative form of the transport equations for the upstream flux 
boundaries, and Option 5 - LE approach for all interior and downstream boundary nodes with the 
FEM applied to the advective form of the transport equations for upstream flux boundaries. 
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3.5.1 One-Dimensional Bed Sediment Balance Equation 
 
At n+1-th time step, the continuity equation for 1-D bed sediment transport, equation (2.5.1), is 
approximated as follows. 
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n n n n n nn n

n n n n
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 (3.5.1.1)  

 
where W1 and W2 are time weighting factors satisfying 
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If the calculated Mn

n+1 < 0, assign Mn
n+1

 =0, so that solve equation (3.5.1.3) and get 
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3.5.2 Application of the Finite Element Method to the Conservative Form of the Sediment 

Transport Equations to Solve 1-D Suspended Sediment Transport 
 
Recall governing equation for 1-D suspended sediment transport, equation (2.5.10), as following. 
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Assign  
 

( )        0HS n n HSR R D P and L= − =  (3.5.2.2)  
 

where the right hand side term RHS and left hand side term LHS should be continuously calculated as 
follows. 
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Else S M M R R M

≤ = = −

> = = +
 (3.5.2.4)  

 
2

2 2 2

2 2 2
2

 0,  * ,      

 0,  ,   
n

n n n

os
S n HS HS

os os os
S S HS HS S

If S M S S and L L S

Else S M M R R M

≤ = = −

> = = +
 (3.5.2.5)  

 
Then equation (3.5.2.1) is simplified as 
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( ) ( ) *n n n
x HS n HS

AS QS SK A L S R
t x x x

∂ ∂ ∂ ∂⎛ ⎞+ − + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (3.5.2.6)  

 
Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. For 
Galerkin method, choose weighting function identical to base functions. For Petrov-Galerkin 
method, apply weighting function one-order higher than the base function to advection term. 
Integrate Equation (3.5.2.6) in the spatial dimensions over the entire region as follows. 
 

( )
1 1 1

( ) *
N N Nx x x

nn n
i x HS n i i HS

x x x

QSAS SN K A L S dx W dx N R dx
t x x x

∂∂ ∂ ∂⎡ ⎤⎛ ⎞− + + =⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦∫ ∫ ∫  (3.5.2.7)  

 

Integrating by parts, we obtain 
 

1 1 1 1

1
11

( ) *

                

N N N N

NN
N

x x x x
n i i n

i n x i HS n
x x x x

Xx
X n

i HS i n i xX
Xx

AS dW dN SN dx QS dx K A dx N L S dx
t dx dx x

SN R dx W QS N K A
x

∂ ∂
∂ ∂

∂
∂

− + +

= − +

∫ ∫ ∫ ∫

∫

 
(3.5.2.8)  

 
Approximate solution Sn by a linear combination of the base functions as shown by Equation 
(3.5.2.9). 
 

1

( ) ( )
N

n n nj j
j

S S S t N x
=

≈ = ∑
�  (3.5.2.9)  

 
Substituting Equation (3.5.2.9) into Equation (3.5.2.8), we obtain  
 

1 1 1

1 1

1

1

( ) ( )

( )

N N N

N N

x x xN
ji i

i HS j j x nj
j x x x

x xN
nj n

i j i HS i n i x
j bx x

dNA dW dNN L N dx QN dx K A dx S t
t dx dx dx

S t SN AN dx N R dx n W QS N K A
t x

=

=

⎡ ⎤⎛ ⎞∂
+ − +⎢ ⎥⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ∂ ∂⎛ ⎞+ = − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∑∫ ∫

 
(3.5.2.10)

 
Equation (3.5.2.10) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ ] n
n

SL L L S M SS B
t

∂⎧ ⎫+ + + = +⎨ ⎬∂⎩ ⎭
 (3.5.2.11)

 
The matrices [L1], [L2], [L3], [M] and load vectors {SS}, {B} are given by 
 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.2.12)

 

1

1 ( )
Nx

ij i HS j
x

AL N L N dx
t

∂
∂

= +∫  (3.5.2.13)

 

1

2
Nx

i
ij j

x

dWL QN dx
dx

= − ∫  (3.5.2.14)
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1

3
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫  (3.5.2.15)

 

1

Nx

i i HS
x

SS N R dx= ∫  (3.5.2.16)

 

n
i i n i x

b

Sn WQS N K A
x

B ∂
∂

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (3.5.2.17)

 

where all the terms listed above are calculated with the corresponding time weighting value.  
 
At n+1-th time step, equation (3.5.2.11) is transformed as 
 

{ } { } { }1 2[ ] [ ]   [ ] [ 1] [ 2] [ 3]
p

p n n
n n

S SL W S W S M SS B where L L L L
t

⎧ ⎫−
+ + = + = + +⎨ ⎬Δ⎩ ⎭

 (3.5.2.18)

 

So that 
 

{ } { }1[ } n
nCMATRX S RLD+ =  (3.5.2.19)

 

where 
 

1
[ ][ ] [ ]MCMATRX W L

t
= +

Δ
 (3.5.2.20)

 

{ } { } { } { }2
[ ] [ ] n

n
MRLD W L S SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.2.21)

 
The above equations are used to solve the suspended sediment concentration at interior nodes where 
boundary term {B} is zero. 
 
The equation employed to determine the suspended sediment at junctions can be derived based on 
the conservation law of material mass and written as follows. 
 

1

( )
( ) ( ) [( ) ( ) ]

jNJRTH
j n j s os

n j n j n j n j JTj k
k

dV S
M M R D A Flux

dt =

= + + − + ∑  (3.5.2.22)

 

where jV is the junction volume, (Sn)j is the suspended sediment concentration at the junction, (Mn
s)j 

is artificial source at the junction, (Mn
os)j is overland source at the junction, (Rn)j is erosion rate at the 

junction, (Dn)j is deposition rate at the junction, JTjA is the bed area of the junction j, NJTRHj is the 
number of river/stream reaches connected to the junction, and Fluxk is the material flux contributed 
from k-th reach to the junction.  
 

Flux nk k= −
⎛
⎝
⎜

⎞
⎠
⎟Q S K A

S
x

k
n

k
x

n
k∂

∂
 (3.5.2.23)

 
To solve equation (3.5.2.22) at n+1-th time step, assign 
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1n
j

HS j

V
L

t

+

=
Δ

 (3.5.2.24)

 

1 1 1
2 1

( )
[( ) ( ) ]

n n
j n j n n n n

HS j HS j n j n j JT j

V S
R W R W R D A

t
+ + += + + −

Δ
 (3.5.2.25)

 

where 
 

( ) ( ) [( ) - ( ) ]n s n os n n n n
HS j n j n j n j n j JT jR M M R D A= + +  (3.5.2.26)

 
Continue the calculation as follows 
 

1

1

( ) ,    ( ) 0      ( )
( )

( ) *( ) ,    ( ) 0      ( )

s s
n j s j HS j HS j n js

n j
s j n j s j HS j HS j s j

M if S R R W M
M

S S if S L L W S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.2.27)

 

1

1

( ) ,    ( ) 0      ( )
( )

( ) * ( ) ,    ( ) 0      ( )

os os
n j os j HS j HS j n jos

n j
os j n j os j HS j HS j os j

M if S R R W M
M

S S if S L L W S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.2.28)

 
Finally, the ordinary differential equation, Eq. (3.5.2.22), is reduced the algebraic equation as 
follows 
 

1

( )
jNJRTH

HS j n j k HS j
k

L S Flux R
=

− =∑  (3.5.2.29)

 

So that at junction j 
 

1
1 2

1 1

( )
j jNJRTH NJRTH

n n
HS j n j k HS j k

k k

L S W Flux R W Flux+

= =

− = +∑ ∑  (3.5.2.30)

 

 
For a reach node neighboring the junctions, assign 
 

{ } { } { }2
[ ] [ ] p

n
MRLDW W L S SS

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.5.2.31)

 
Equation (3.5.2.19) is written as  
 

{ } { } { }[ ] nCMATRX S Flux RLDW+ =  (3.5.2.32)
 
If nQ > 0, flow is going from reach to the junction 
 

k k
k nFlux nQ S=  (3.5.2.33)

 
If nQ < 0, flow is going from junction to the reach,  
 

( )k
k n jFlux nQ S=  (3.5.2.34)

 
So that equations (3.5.2.30) and (3.5.2.32) become a set of equation of (Sn)j and (Sn)k.  
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For boundary node i = b, the boundary term {B} should be calculated as follows. 
 

n n
i i n i x n x

b b

S SB n WQS N K A n QS K A
x x

∂ ∂⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5.2.35)

 
Dirichlet boundary condition 
 

( , ) n n bS S x t=  (3.5.2.36)
 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0) 
 

 ( , )      ( , )n
n x n b i n b

Sn QS AK nQS x t B nQS x t
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.2.37)

 
When Flow is going out from inside (nQ > 0) 
 

0      n
x i n

SnAK B nQS
x

∂
− = ⇒ = −

∂
 (3.5.2.38)

 
which must be assembled into the matrix for the boundary point. 
 
Cauchy boundary condition 
 

( , )      ( , ) 
n

n
n x S n b i S b

Sn QS AK Q x t B Q x t
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.2.39)

 
Neumann boundary condition 
 

( , )      ( , )
n

n
x S n b i n S b

SnAK Q x t B nQS Q x t
x

∂
− = ⇒ = − −

∂
 (3.5.2.40)

 
 
3.5.3 Application of the Finite Element Method to the Advective Form of the Transport 

Equations to Solve 1-D Suspended Sediment Transport 
 
Recall governing equation for 1-D suspended sediment transport, equation (2.5.10), as following. 
 

1 2( ) ( ) ( ) ,     [1, ]
n n n

as os osn n n
x S S S n n s

AS QS SK A M M M R D P n N
t x x x

∂ ∂ ∂ ∂⎛ ⎞+ − = + + + − ∈⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (3.5.3.1)  

 
Conversion to advection form of equation (3.5.3.1) is expressed as 
 

1 2 ( )
n n n

as os osn n n
x n S S S n n

S S S A QA Q K A S M M M R D P
t x x x t x

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞+ − + + = + + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.5.3.2)  

 
According to governing equation for 1-D flow, equation (2.1.1), assign 
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1 2( )        HS n n HS S R E IR R D P and L S S S S S S= − = + − + + +  (3.5.3.3)  
 

where the right hand side term RHS and left hand side term LHS should be continuously calculated 
in the same way as that in section 3.5.2.  Then equation (3.5.3.2) is simplified as 
 

n n n
x HS n HS

S S SA Q K A L *S R
t x x x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎛ ⎞+ − + =⎜ ⎟
⎝ ⎠

 (3.5.3.4)  

 
Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate 
Equation (3.5.3.4) in the spatial dimensions over the entire region as follows. 
 

1 1 1

*
N N Nx x x

n n n
i x HS n i i HS

x x x

S S SN A K A L S dx W Q dx N R dx
t x x x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎡ ⎤⎛ ⎞− + + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ ∫  (3.5.3.5)  

 
Integrating by parts for the dispersion/diffusion term, we obtain 
 

1 1 1 1

11

*

                             

N N N N

NN

x x x x
n n i n

i i x i HS n
x x x x

xx
n

i HS i x
xx

S S dN SN A dx W Q dx K A dx N L S dx
t x dx x

SN R dx N K A
x

∂ ∂ ∂
∂ ∂ ∂

∂
∂

+ + +

= +

∫ ∫ ∫ ∫

∫

 
(3.5.3.6)  

 
Approximate solution Sn by a linear combination of the base functions as shown by Equation 
(3.5.3.7). 
 

1

( ) ( )
N

n n nj j
j

S S S t N x
=

≈ = ∑
�  (3.5.3.7)  

 
Substituting Equation (3.5.3.7) into Equation (3.5.3.6), we obtain  
 

1 1 1

1 1

1

1

 ( )

( )

N N N

N N

x x xN
j ji

i HS j i x nj
j x x x

x xN
nj n

i j i HS i x
j bx x

dN dNdNN L N dx W Q dx K A dx S t
dx dx dx

S t SN AN dx N R dx n N K A
t x

=

=

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ∂ ∂⎛ ⎞+ = +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∑∫ ∫

 
(3.5.3.8)  

 
Equation (3.5.3.8) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ ] n
n

SL L L S M SS B
t

∂⎧ ⎫+ + + = +⎨ ⎬∂⎩ ⎭
 (3.5.3.9)  

 
The matrices [L1], [L2], [L3], [M] and load vectors {SS}, {B} are given by 
 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.3.10)

 

1

1
Nx

ij i HS j
x

L N L N dx= ∫  (3.5.3.11)
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1

2
Nx

j
ij i

x

dN
L W Q dx

dx
= ∫  (3.5.3.12)

 

1

3
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫  (3.5.3.13)

 

1

Nx

i i HS
x

SS N R dx= ∫  (3.5.3.14)

 

n
i i x

b

SB n N K A
x

∂⎛ ⎞= − −⎜ ⎟∂⎝ ⎠
 (3.5.3.15)

 

where all the terms listed above are calculated with the corresponding time weighting value.  
 
At n+1-th time step, equation (3.5.3.9) is approximated as 
 

{ } { } { }
1

1
1 2[ ] [ ]   [ ] [ 1] [ 2] [ 3]

n n
n n n n

n n
S SL W S W S M SS B where L L L L

t

+
+ ⎧ ⎫−

+ + = + = + +⎨ ⎬Δ⎩ ⎭
 (3.5.3.16)

So that 
{ } { }1[ } n

nCMATRX S RLD+ =  (3.5.3.17)
 

where 
 

1
[ ][ ] [ ]MCMATRX W L

t
= +

Δ
 (3.5.3.18)

 

{ } { } { } { }2
[ ] [ ] n

n
MRLD W L S SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.3.19)

 
The above equations are used to solve the suspended sediment concentration at interior nodes where 
boundary term {B} is zero. 
 
At internal boundary points neighboring the junctions, assign 
 

{ } { } { }2
[ ] [ ] { }p

n n
MRLDW W L S SS nQS

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.3.20)

 
Equation (3.5.3.17) is modified as  
 

{ } { } { }[ ] nCMATRX S Flux RLDW+ =  (3.5.3.21)
 

So that junction concentration can be solved by equations (3.5.2.30) and (3.5.3.21).  
 
For a global boundary node i = b, the boundary term {B} should be calculated as follows. 
 

n n
i i x x

b b

S SB n N K A n K A
x x

∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5.3.22)

 
Dirichlet boundary condition 
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( , ) n n bS S x t=  (3.5.3.23)

 
Variable boundary condition 
 
When flow is coming in from outside (nQ  <  0) 
 

 ( , )      ( , )n
n x n b i n n b

Sn QS AK nQS x t B nQS nQS x t
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.3.24)

 
When Flow is going out from inside (nQ > 0) 
 

0      0n
x i

SnAK B
x

∂
− = ⇒ =

∂
 (3.5.3.25)

 
Cauchy boundary condition 
 

n

n
n x Sn b i n S b

Sn QS AK Q (x ,t) B nQS Q (x ,t)
x

∂
∂

⎛ ⎞− = ⇒ = −⎜ ⎟
⎝ ⎠

 (3.5.3.26)

 
Neumann boundary condition 
 

( )       ( ) 
n

n
x Sn i S

SnAK Q t B Q t
x

∂
− = ⇒ = −

∂
 (3.5.3.27)

 
 
3.5.4 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form 

of the Transport Equations to Solve 1-D Suspended Sediment Transport 
 
Recall governing equation for 1-D suspended sediment transport in advection form, equation 
(3.5.3.2), as follows   
 

1 2 ( )
n n n

as os osn n n
x n s s s n n

S S S A QA Q K A S M M M R D P
t x x x t x

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞+ − + + = + + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.5.4.1)  

 
Assign and calculate RHS and LHS the same as that in section (3.5.3). Then equation (3.5.4.1) is 
simplified as 
 

*n n n
x HS n HS

S S SA Q K A L S R
t x x x

∂ ∂ ∂ ∂⎛ ⎞+ − + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (3.5.4.2)  

 
Equation (3.5.4.2) in the Lagrangian and Eulerian form is written as follows.   In the Lagrangian step 
 

=0     =0 n n n n ndS S S S SA A Q V
d t x t x

∂ ∂ ∂ ∂
τ ∂ ∂ ∂ ∂

= + ⇒ +  (3.5.4.3)  
 

where τ is the tracking time, and particle-tracking velocity V is the flow velocity.  In the Eulerian 
step 
 

*n n
x HS n HS

dS SA K A L S R
d x x

∂ ∂
τ ∂ ∂

⎛ ⎞− + =⎜ ⎟
⎝ ⎠

 (3.5.4.4)  
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Equation (3.5.4.4) written in a slightly different form is shown as follows. 
 

*n
n L

dS D K S R
dτ

− + =  (3.5.4.5)  

where 
n

x
SAD K A

x x
∂ ∂

∂ ∂
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.5.4.6)  

 

HSLK
A

=  (3.5.4.7)  
 

HS
L

RR
A

=  (3.5.4.8)  
 

 
Integrating Eq. (3.5.4.5) along a characteristic line to yield the following matrix equation as 
 

{ } { } { }

{ } { } ( ){ } { } { }

1 1 1 1
1 1

** * 1 *
2 2 1 2

[ ]          

[ ]

n n n n
n n

n
n n L L

S W D W S

S W D W KS W R W R

τ

τ

+ + + +

+

⎡ ⎤− + =⎣ ⎦Δ

+ − + +
Δ

U K

U
 

(3.5.4.9)  

 

where * corresponds to the previous time step value at the location where node i is backwardly 
tracked in the Lagrangian step, [U] is the unit matrix, and [Kn+1] is a diagonal matrix with K 
calculated at the (n+1)-th time step as its diagonal components..  
 
The diffusion term D expressed in term of Sn is solved by the following procedure.  Approximate D 
by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

D D D t N x
=

≈ = ∑  (3.5.4.10)

 
Applying the Galerkin finite element method to Eq. (3.5.4.6), we obtain 
 

1 1 1
1

( ) ( )
N N Nx x xN

n
i i j j i x

jx x x

SN ADdx N A D t N x dx N K A dx
x x=

∂ ∂⎛ ⎞= = ⎜ ⎟∂ ∂⎝ ⎠
∑∫ ∫ ∫  (3.5.4.11)

 
Integrating by parts, we obtain 
 

11 1
1

*
NN N Xx xN

i n n
i j j x i x

j Xx x

dN S SN AN dx D K A dx N K A
dx x x=

⎡ ⎤⎛ ⎞ ∂ ∂
= − +⎢ ⎥⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫  (3.5.4.12)

 
Approximate Sn by a linear combination of the base functions as follows. 
 

S S S t N xn n nj j
j

N

≈ =
=

∑
�

( ) ( )
1

 (3.5.4.13)

 
Substituting Eq. (3.5.4.13) into Eq. (3.5.4.12), we have 
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11 1
1 1

* *( )
NN N Xx xN N

ji n
i j j x n j i x

j j Xx x

dNdN SN AN dx D K A dx S N K A
dx x x= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ∂
= − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫  (3.5.4.14)

 
Assign matrices [QA], [QD] and load vector {B} as following. 
 

1

Nx

ij i j
x

QA N AN dx= ∫  (3.5.4.15)

 

1

Nx
ji

ij x
x

dNdNQD K A dx
dx dx

= ∫  (3.5.4.16)

 
n

i i x
b

SB nN K A
x

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (3.5.4.17)

 
Equation (3.5.4.14) is expressed as 
 

{ } { } { }[ ] [ ] nQA D QD S QB= − +  (3.5.4.18)
 
Lump matrix [QA] into diagonal matrix and update   
 

/ij ij iiQD QD QA=  (3.5.4.19)
 

/i i iiB QB QA=  (3.5.4.20)
 
Then 
 

{ } { } { }[ ] nD QD S B= − +  (3.5.4.21)
 
where {B} is calculated as follows 
 
Dirichlet boundary condition 
 

( ) ( , )
( , )    n j n b

n n b i i x ii

S S x t
S S x t B nN K A QA

x
−

= ⇒ =
Δ

 (3.5.4.22)

 
where j is the interior node connected to the boundary node. 
 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0) 
 

[ ]( , )    ( , )n
n x n b i n n b ii

Sn QS AK nQS x t B nQS nQS x t QA
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.4.23)

 
When Flow is going out from inside (nQ > 0) 
 

0    0n
x i

SnAK B
x

∂
− = ⇒ =

∂
 (3.5.4.24)
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Cauchy boundary condition 
 

[ ]( , )    ( , )n
n x Sn b i n Sn b ii

Sn QS AK Q x t B nQS Q x t QA
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.4.25)

 
Neumann boundary condition 
 

( , )     ( , )n
x Sn b i Sn b ii

SnAK Q x t B Q x t QA
x

∂
− = ⇒ = −

∂
 (3.5.4.26)

 
 
According to equation (3.5.4.21), Equation (3.5.4.9) can be modified as follows 
 

{ } { }1[ } n
nCMATRX S RLD+ =  (3.5.4.27)

 

where 
1 1

1 1
[ ][ ] [ ]n nUCMATRX W QD W K

τ
+ +⎡ ⎤= + + ⎣ ⎦Δ

 (3.5.4.28)

 

{ } { } { } ( ){ } { } { }** * 1 * 1
2 2 1 2 1

[ ] { }n n
n n L L

URLD S W D W KS W R W R W B
τ

+ += + − + + +
Δ

 (3.5.4.29)

 
The above equations are used to solve the suspended sediment concentration at interior nodes where 
boundary term {Bn+1} is zero. 
 

 
At the junctions, if nQ > 0, flow is going from the reach to the junction, assign 
 

{ } { } { } { }1 1
1 2 [ ]{ }n n n n

n ii n iiRLDW RLD nQS QA W B W QB S QA+ += + − −  (3.5.4.30)
 
Equation (3.5.4.30) is written as  
 

{ } { } { }1 1[ ] /n n
n iiCMATRX S Flux QA RLDW+ ++ =  (3.5.4.31)

 
If nQ < 0, flow in going from junction to the reach, apply equation (3.5.2.23)  
 

( ) ( )
( ) n j n i

i n i x

S S
Flux n Q S K A

x
−⎡ ⎤

= −⎢ ⎥Δ⎣ ⎦
 (3.5.4.32)

 

where j is the interior node connected to the junction node i. 
 
Junction concentration can be solved with equations (3.5.2.30), (3.5.4.31) and (3.5.4.32).  
 
For boundary node i = b, the boundary term {Bn+1} in equation (3.5.4.29) should be calculated as 
follows. 
 
Dirichlet boundary condition 
 

( , )n n bS S x t=  (3.5.4.33)
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The above equation is used for Dirichlet boundary node rather than equation (3.5.4.29). 
 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0), equation (3.5.4.29) cannot be applied because ∆τ 
equations zero. Applying boundary condition, we have 
 

( ) ( )
( ) ( , )n j n i

n i x n b

S S
n Q S AK nQS x t

x
−⎡ ⎤

− =⎢ ⎥Δ⎣ ⎦
 (3.5.4.34)

 

where j is the interior node connected to the boundary node i. 
 
When Flow is going out from inside (nQ > 0), the boundary term {Bn+1} in equation (3.5.4.29) 
should be calculated as follows. 
 

0    0n
x i

SnAK B
x

∂
− = ⇒ =

∂
 (3.5.4.35)

 
Cauchy boundary condition 
 
Equation (3.5.4.29) cannot be applied because ∆τ equations zero. Applying boundary condition, we 
have 
 

( ) ( )
( ) ( , )n j n i

n i x Sn b

S S
n Q S AK Q x t

x
−⎡ ⎤

− =⎢ ⎥Δ⎣ ⎦
 (3.5.4.36)

 
Neumann boundary condition 
 
The boundary term {Bn+1} in equation (3.5.4.29) should be calculated as follows. 
 

n
x Sn b

SAK Q (x ,t)     ( , )
x i Sn b iin B Q x t QA∂

∂
− = ⇒ = −  (3.5.4.37)

 
 
3.5.5 Aplication of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Conservative Form of the Transport Equations for the Upstream Flux Boundaries to 
Solve 1-D Suspended Sediment Transport 

 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.5.4, and the matrix equation for junction and 
upstream boundary nodes is obtained through the same procedure as that in section 3.5.2.  
 
 
3.5.6 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve 
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1-D Suspended Sediment Transport 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.5.4, and the matrix equation for junction and upstream 
boundary nodes is obtained through the same procedure as that in section 3.5.3. 
 
 
3.5.7 Finite Application of the Finite Element Method to the Conservative Form of the 

Transport Equations to Solve 1-D Kinetic Variable Transport 
 
3.5.7.1 Fully implicit scheme 
 
Recall the continuity equation for kinetic-variables, equation (2.5.44), can be written in slightly 
different form by expanding the time derivative term as 
 

1 2( )
n n n n n n

m m
as rs is os osn n n

n x E E E E E E
E QE EAA E K A M M M M M AR
t t x x x

⎛ ⎞∂ ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.1.1)

 

where nE  is the concentration of the n-th kinetic variable, m
nE  is the mobile concentration of the n-

th kinetic variable, 
n

as
EM  is the rate of artificial source of the n-th kinetic variable nE , 

n

rs
EM  is the 

rate of rainfall source/evaporation sink of the n-th kinetic variable nE , , 1
n

os
EM  is the rate of 

overland source from Bank 1 of the n-th kinetic variable nE , 2
n

os
EM  is the rate of overland source 

from Bank 2 of the n-th kinetic variable nE , 
n

is
EM  is the rate of exfiltration source of the n-th kinetic 

variable nE , and 
nER  and is the rate of reaction of the n-th kinetic variable nE . 

 
At (n+1)-th time step, equation (3.5.7.1.1) is approximated by 
 

1
1 2( ) ( ) ( )

n n n n n n

n n m m
as rs is os osn n n n

n x E E E E E E
E E QE EAA E K A M M M M M AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.1.2)

 

where the superscripts n and n+1 represent the time step number. Terms without superscript should be 
the corresponding average values calculated with time weighting factors W1 and W2. 
 
According to the fully-implicit scheme, equation (3.5.7.1.2) can be separated into two equations as 
follows 
 

1/ 2
1 2( ) ( ) ( )

n n n n n n

n n m m
as rs is os osn n n n

n x E E E E E E
E E QE EAA E K A M M M M M AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.1.3)

 
1 1/ 2( ) ( ) 0

n n
n nE E

t

+ +−
=

Δ
 (3.5.7.1.4)

 

First, we express En
m in terms of (En

m/En)·En to make En’s as primary dependent variables, so that 
En

n+1/2 can be solved from Eq. (3.5.7.1.3). Second, we solve equation (3.5.7.1.4) together with 
algebraic equations for equilibrium reactions using BIOGEOCHEM to obtain all individual species 
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concentrations. Iteration between these two steps is needed because the new reaction terms Rn
n+1 and 

the equation coefficients in equation (3.5.7.1.3) need to be updated with the calculation results of 
(3.5.7.1.4). To improve the standard SIA method, the nonlinear reaction terms are approximated by 
the Newton-Raphson linearization. 
 
To solve equation (3.5.7.1.3), assign 
 

0          0HS n HS nR and L= =  (3.5.7.1.5)
 
Then the right hand side RHSn and left hand side LHSn should be continuously calculated as following 
 

* ,    0    

* ,    0    

rs n

n

rs
R n R HS n HS n Ers

E m
R n R HS n HS n R

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.6)

 
* ,    0    ,

* ,    0    

as n

n

as
S n S HS n HS n Eas

E m
S n S HS n HS n S

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.7)

 

1
1

1 11

1 1 1

* ,    0    

* ,    0    

os n

n

m os
n HS n HS n Eos

E m
n HS n HS n

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.8)

 

2
2

2 22

2 2 2

* ,    0    

* ,    0    

os n

n

m os
n HS n HS n Eos

E m
n HS n HS n

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.9)

 
* ,    0    

* ,    0    

is n

n

m is
I n I HS n HS n Eis

E m
I n I HS n HS n I

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.10)

 

where rsnE  is the concentration of En in the rainfall source, esnE  is the concentration of En in the 
evaporation source, asnE  is the concentration of En in the artificial source, 1osnE  is the concentration 
of En in the overland source from bank 1, 2osnE  is the concentration of En in the overland source 
from bank 2, and isnE  is the concentration of En in the exfiltration source from subsurface media. 
 
Equation (3.5.7.1.3) is then simplified as 
 

1/ 2( ) ( ) ( ) *
n

n n m m
mn n n n

n x HS n n HS n E
E E QE EAA E K A L E R AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − + = +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.1.11)

 

Express En
m in terms of (En

m /En)En to make En’s as primary dependent variables, 
 

( )
n

m m m m
n n n n n n n

n n x x n HS n HS n E
n n n

E E E E E E EAA E Q E K A K A E L R AR
t t x E x E x x x E

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂ ∂
+ + − − + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.5.7.1.12)

 

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate 
Equation (3.5.7.1.12) in the spatial dimensions over the entire region as follows. 
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1 1

1 1

( )

( )

N N

N N

n

x xm m m
n n n n n n

i x i n x n
n nx x

x xm
n

i HS n n i HS n E
nx x

E E E E E EN A K A dx W Q E K A E dx
t x E x x E x x

E AN L E dx N R AR dx
E t

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂
− + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎛ ⎞∂
+ + = +⎜ ⎟∂⎝ ⎠

∫ ∫

∫ ∫

 
(3.5.7.1.13)

 

Integrating by parts, we obtain 
 

( )
1 1 1 1

1 1

2
2

1
1

( )

(

N N N N

N N

n

x x x xm m m
n i n n i n i n n

i x n x n
n nx x x x

Bx xm m Bmn n n n
i HS n n i HS n E i x i n i xB

n nx x B

E dN E E dW E dW E EN A dx K A dx Q E dx K A E dx
t dx E x dx E dx x

E E E EAN L E dx N R AR dx N K A W QE W K A
E t E x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ∂ ∂∂
+ + = + + − +⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫
2

1

)
Bm

n
n

B

E E
x∂

 
(3.5.7.1.14)

 

Approximate solution En by a linear combination of the base functions as follows 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N x
=

≈ = ∑  (3.5.7.1.15)

 

Substituting Equation (3.5.7.1.15) into Equation (3.5.7.1.14), we obtain 
 

1 1

1

1 1

1

( )
( )

( )

N N

N

N N

x xm m
i n i n n

j x j xN nx x nj
nj i jx xm mj xji n n

x i HS n j
n nx x

dW E dW E EQ N dx K A N dx
dx E dx x E t

E t N AN dx
tdNdN E E AK A dx N L N dx

dx E dx E t
=

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂
− +⎪ ⎪⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎡ ⎤∂ ⎛ ⎞ ∂⎪ ⎪⎝ ⎠⎝ ⎠⎢ ⎥

⎢+ ⎜ ⎟⎨ ⎬⎢ ⎥ ⎜ ⎟ ∂⎢⎛ ⎞ ⎛ ⎞∂⎪ ⎪ ⎝ ⎠⎢ ⎥ ⎣ ⎦+ + +⎜ ⎟ ⎜ ⎟⎪ ⎪⎢ ⎥∂⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

∫ ∫
∑ ∫

∫ ∫

( )
1

1

( )N

n

N

j

x m m
mn n n n

i HS E x i n x n
nx ii b

E E E EN R AR dx n N K A W QE W K A E
E x x

=

⎥ =
⎥

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
+ − − + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑

∑∫

 
(3.5.7.1.16)

 

Equation (3.5.7.1.16) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ 4] [ ] n
n

EL L L L E M S B
t

∂⎧ ⎫+ + + + = +⎨ ⎬∂⎩ ⎭
 (3.5.7.1.17)

 

The matrices [L1], [L2], [L3], [L4], [M] and load vectors {S}, {B} are given by 
 

1

1
Nx m

i n
ij j

nx

dW EL Q N dx
dx E

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫  (3.5.7.1.18)

 

1

( / )2
Nx m

i n n
ij x j

x

dW E EL K A N dx
dx x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

∫  (3.5.7.1.19)

 

1

3
Nx m

ji n
ij x

nx

dNdN EL K A dx
dx E dx

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫  (3.5.7.1.20)

 

1

4
Nx m

n
ij i HS n j

nx

E AL N L N dx
E t

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

∫  (3.5.7.1.21)

 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.7.1.22)
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( )
1

N

n

x

i i HS n E
x

S N R AR dx= +∫  (3.5.7.1.23)

 

( )m m
m n n n n

i i n i x n i x
n b

E E E EB n WQE W K A E N K A
x E x

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂
= − − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.5.7.1.24)

 

To calculate [L2] through equation (3.5.7.1.19), assign 
 

( / )m
n nE EPPX

x
∂

=
∂

 (3.5.7.1.25)

 

Then 
 

1 1

( / )N Nx x m
n n

i i
x x

E EN PPXdx N dx
x

∂
=

∂∫ ∫  (3.5.7.1.26)

 

1 11 1

N Nx x mN N
j n

i j j i
j j nx x j

dN EN N dx PPX N dx
dx E= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫  (3.5.7.1.27)

 

So that 
 

{ }[ 1] [ 2]
m

n

n

EQP PPX QP
E

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (3.5.7.1.28)

 

Lump [QP1] into diagonal matrix and assign 
 

2 1ij ij iiQP QP QP=  (3.5.7.1.29)
 

Then 
 

{ } [ ]
m

n

n

EPPX QP
E

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (3.5.7.1.30)

 

Equation (3.5.7.1.17) can be simplified as 
 

{ } { } { }[ ] [ ] ,   [ ] [ 1] [ 2] [ 3] [ 4]n
n

EL E M S B where L L L L L
t

∂⎧ ⎫+ = + = + + +⎨ ⎬∂⎩ ⎭
 (3.5.7.1.31)

 

Further,  
 

{ } { } { } { }1/ 2 1/ 2
1 2

[ ][ ]  n n n n
n n n n

ML W E W E E E S B
t

+ ++ + − = +
Δ

 (3.5.7.1.32)
 

So that   
 

{ }1/ 2[ ] { }  n
nCMATRX E RLD+ =  (3.5.7.1.33)

 

where 
 

1
[ ][ ] *[ ] MCMATRX W L

t
= +

Δ
 (3.5.7.1.34)
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{ } { } { }2
[ ]{ } [ ]  n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.7.1.35)

 

The above equations are used to solve for the kinetic variable concentration at interior nodes, where 
the boundary term {B} is zero.  
 
The equation employed to determine the kinetic variable at junctions can be derived based on the 
conservation law of material mass and written as follows. 
 

1

( )
( ) ( ) ( ) ( ) ( ) ( )

j

n n n n n

NJRTH
n j j as rs os is

j n j E j E j E j E j j E j k
k

d E dV
V E M M M M V R Flux

dt dt =

+ = + + + + + ∑  (3.5.7.1.36)

 

where jV is the junction volume, (En)j is the concentration of the n-th kinetic variable at Junction j, 

( )
n

as
E jM is the rate of artificial source of En at Junction j, ( )

n

rs
E jM is the rate of rainfall source at 

Junction j, ( )
n

os
E jM is the rate of overland source at Junction j, ( )

n

is
E jM is exfiltration source at the 

junction,  ( )
nE jR is the rate kinetic variable concentration change due to reactions at the junction, 

NJTRHj is the number of river/stream reaches connected to the junction, and Fluxk is the material 
flux of the kinetic variable contributed from the k-th reach to the junction.   
 

( )( )
m k

k m k n
k n x

EFlux n Q E K A
x

⎡ ⎤∂
= −⎢ ⎥∂⎣ ⎦

 (3.5.7.1.37)

 

At n+1-th time step, equation (3.5.7.1.36) is approximated by 
 

1

1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

j

n n n n n

n n NJRTH
n j n j j as rs os is

j n j E j E j E j E j j E j k
k

E E dV
V E M M M M V R Flux

t dt

+

=

−
+ = + + + + +

Δ ∑  (3.5.7.1.38)

 

which can be separated into two equations, according to Fully-implicit scheme, as follows 
 

1/ 2

1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

j

n n n n n

n n NJRTH
n j n j j as rs os is

j n j E j E j E j E j j E j k
k

E E dV
V E M M M M V R Flux

t dt

+

=

−
+ = + + + + +

Δ ∑  (3.5.7.1.39)

 
1 1/ 2( ) ( )

0
n n

n j n jE E
t

+ +−
=

Δ
 (3.5.7.1.40)

 

First, solve equation (3.5.7.1.39) and get (En)j
n+1/2. Second, solve equation (3.5.7.1.40) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to get the individual 
species concentration.  
 
To solve equation (3.5.7.1.39), assign 
 

( ) j
HS n j

V VL
t t

∂
= +

Δ ∂
 (3.5.7.1.41)

 

2

( )
( ) ( ) ( )

n

n n
j n j n

HS n j HS n j j E j

V E
R W R V R

t
= + +

Δ
 (3.5.7.1.42)

 
1

1 2
n n

k k kFlux W Flux W Flux+= ⋅ + ⋅  (3.5.7.1.43)
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Continue the calculation as follows 
 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) * /

as as

n

n

S j j S j HS n j HS n j S j jn nas
E j m m

S j n j S j HS j HS n j S j n n

S E if S R R W S E
M

S E if S L L W S E E

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

  (3.5.7.1.44)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) * /

os os

n

os j j os j HS n j HS n j os j jn nos
E j m m

os j n j os j HS n j HS n j os j n n

S E if S R R W S E
M

S E if S L L W S E E

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.45)

 

where ( )os jS  is the flow rate of overland source to Junction j and ( )osn jE  is the concentration of En 
in the overland source into Junction j.  
  

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) * /

rs

n

R j j R j HS n j HS n j R j n jnrs
E j m m

R j n j R j HS n j HS n j R j n n

S E if S R R W S R
M

S E if S L L W S E E

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.46)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) * /
is is

n

I j j I j HS n j HS n j I j jis n n
m mE j

I j n j I j HS n j HS n j I j n n

S E if S R R W S E
M

S E if S L L W S E E
> ⇒ = +⎧

= ⎨ ≤ ⇒ = −⎩
 (3.5.7.1.47)

 

 
Then equation (3.5.7.1.39) is approximated by 
 

1

( ) ( ) - ( )
jNJRTH

HS n j n j k HS n j
k

L E Flux R
=

=∑  (3.5.7.1.48)

 

Assign  
 

{ } { }2
[ ]{ } *[ ]  n

n
MRLDW W L E S

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.5.7.1.49)

 

Equation (3.5.7.1.33) is modified as  
 

{ }1/ 2[ ] { } { }  n
nCMATRX E Flux RLDW+ + =  (3.5.7.1.50)

 

The flux term in both equations (3.5.7.1.48) and (3.5.7.1.50) is specified as follows. 
 
If nQ > 0, flow is going from reach to the junction 
 

1/ 2
1 1/ 2

1 21/ 2

[( ) ]( ) ( ) [( ) ] ( ) [( ) ]
[( ) ]

m k n
k m k k n k n k n m k nn

k n n nk n
n

EFlux Q E W Q E W Q E
E

+
+ +

+= = +  (3.5.7.1.51)

 

where the superscript n  denotes the old time step, the superscript 1 / 2n +  denotes the intermediate 
time step,  kFlux  is the flux of the n-th kinetic variable from the k-th reach to Junction j, kQ  is the 
flow rate from the k-th reach to Junction j, ( )k

nE  is the concentration of the n-th kinetic variable of 
the k-th reach, and ( )m k

nE  is the mobile concentration of the n-th kinetic variable of the k-th reach. 
 
If nQ < 0, flow is going from junction to the reach,  
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1/ 2
1 1/ 2

1 21/ 2

[( ) ]
( ) ( ) [( ) ] ( ) [( ) ]

[( ) ]

m n
n jk m k n n k n m n

k n j n j n jn
n j

E
Flux Q E W Q E W Q E

E

+
+ +

+= − = − −  (3.5.7.1.52)

 

So that equations (3.5.7.1.48) and (3.5.7.1.50) become a set of equation of ( )n jE  and ( )k
nE .  

 
For boundary node i = b (use B as the input boundary value), the boundary term {B} should be 
continuously calculated as follows. 
 

( )          

( )

m m
m n n n n

i i n i x i x n
n b

m m m
m mn n n n n

n x x n n x
n bb

E E E EB n W QE N K A W K A E
E x x

E E E E En QE K A K A E n QE K A
E x x x

⎡ ⎤∂ ∂
= − − −⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤ ⎛ ⎞∂ ∂ ∂
= − − − = − −⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦

 
(3.5.7.1.53)

 
Dirichlet boundary condition 
 

( , )m m
n n bE E x t=  (3.5.7.1.54)

 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0) 
 

( , )    ( , )
m

m m mn
n x n b i n b

En QE AK nQE x t B nQE x t
x

⎛ ⎞∂
− = ⇒ = −⎜ ⎟∂⎝ ⎠

 (3.5.7.1.55)

 

When Flow is going out from inside (nQ > 0) 
 

0    
m

mn
x i n

EnAK B nQE
x

∂
− = ⇒ = −

∂
 (3.5.7.1.56)

 
Cauchy boundary condition 
 

( , )    ( , )
m

m n
n x En b i En b

En QE AK Q x t B Q x t
x

⎛ ⎞∂
− = ⇒ = −⎜ ⎟∂⎝ ⎠

 (3.5.7.1.57)

 
Neumann boundary condition  
 

( , )    ( , )
m

mn
x En b i n En b

EnAK Q x t B nQE Q x t
x

∂
− = ⇒ = − −

∂
 (3.5.7.1.58)

 
 
3.5.7.2 Mixed Predictor-corrector/Operator-Splitting Scheme 
 
Recall the continuity equation for kinetic-variables, equation (3.5.7.1.1), as follows. 
 

1 2( )
n n n n n n

m m
as rs is os osn n n

n x E E E E E E
E QE EAA E K A M M M M M AR
t t x x x

⎛ ⎞∂ ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.2.1)

 

At (n+1)-th time step, equation (3.5.7.2.1) is approximated by 
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1

1 2( ) ( ) ( )
n n n n n n

n n m m
as rs is os osn n n n

n x E E E E E E
E E QE EAA E K A M M M M M AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.2.2)

 

According to Mixed Predictor-corrector/Operator-Splitting Scheme, equation (3.5.7.2.2) can be 
separated into two equations as follows 
 

1/ 2
1 2( ) ( ) ( )

( ) ( )

n n n n n

n

m n m n m m
m as rs os os isn n n n
n x E E E E E

n im n
E n

E E QE EAA E K A M M M M M
t t x x x

nAAR A E
t

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

∂
+ −

∂
A

 
(3.5.7.2.3)

 
1 1/ 2

1 1[( ) ( ) ] ( ) ( )( ) ( )
n n

n m n im n
n n im n im nn n n

E E n n
E E E nA nAR R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A  (3.5.7.2.4)

 

First, solve equation (3.5.7.2.3) and obtain 1/ 2( )m n
nE + . Second, solve equation (3.5.7.2.4) together 

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain (En)n+1 
and the individual species concentration.  
 
To solve equation (3.5.7.2.3), assign and calculate RHSn and LHSn same as that in section (3.5.7.1). 
Then equation (3.5.7.2.3) is simplified as 
 

1/ 2( ) ( ) ( ) ( )
n

m n m n m m
m m n im nn n n n
n x HS n n HS n E n

E E QE EA AA E K A L E R AR E
t t x x x t

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂
+ + − + = + −⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.2.5)

 

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate 
Equation (3.5.7.2.5) in the spatial dimensions over the entire region as follows. 
 

( )
1 1 1

1

( )

N N N

N

n

mx x xm m
n mn n

i x i i HS n n
x x x

x
n im n

i HS n E n
x

QEE E AN A K A dx W dx N L E dx
t x x x t

AN R AR E dx
t

∂⎡ ⎤⎛ ⎞∂ ∂∂ ∂⎛ ⎞− + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦

∂⎛ ⎞+ −⎜ ⎟∂⎝ ⎠

∫ ∫ ∫

∫

 
(3.5.7.2.6)

 

Integrating by parts, we obtain 
 

1 1 1 1

1

2
2

1
1

              ( )

N N N N

N

n

x x x xm m
m mn i n i

i x n i HS n n
x x x x

Bx mBn im n m n
i HS n E n i n i xB

x B

E dN E dW AN A dx K A dx QE dx N L E dx
t dx x dx t

EAN R AR E dx W QE N K A
t x

∂ ∂ ∂⎛ ⎞+ − + +⎜ ⎟∂ ∂ ∂⎝ ⎠

∂∂⎛ ⎞= + − − +⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫ ∫

∫

 
(3.5.7.2.7)

 

Approximate solution En
m by a linear combination of the base functions as follows 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j

E E E t N x
=

≈ = ∑  (3.5.7.2.8)

 

Substituting Equation (3.5.7.2.8) into Equation (3.5.7.2.7), we obtain 
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1 1 1

1 1

1

1

                   ( )

( )
( )

N N N

N N

n

x x xN
j mi i

j x i HS n j nj
j x x x

x xmN
nj n im n

i j i HS n E n i n
j x x

dNdW dN AQN dx K A dx N L N dx E t
dx dx dx t

E t AN AN dx N R AR E dx n W QE
t t

=

=

⎡ ⎤⎛ ⎞∂⎛ ⎞⎢ ⎥− + + +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ∂ ∂⎛ ⎞⎢ ⎥+ = + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫
m

m n
i x

b

EN K A
x

⎡ ⎤∂
−⎢ ⎥∂⎣ ⎦

∑

 
(3.5.7.2.9)

 

Equation (3.5.7.2.9) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ ]
m

m n
n

EL L L E M S B
t

⎧ ⎫∂
+ + + = +⎨ ⎬∂⎩ ⎭

 (3.5.7.2.10)

 

The matrices [L1], [L2], [L3], [M] and load vectors {S}, {B} are given by 
 

1

1
Nx

i
ij j

x

dWL QN dx
dx

= − ∫  (3.5.7.2.11)

 

1

2
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫  (3.5.7.2.12)

 

1

3
Nx

ij i HS n j
x

AL N L N dx
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫  (3.5.7.2.13)

 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.7.2.14)

 

1

( )
N

n

x
n im n

i i HS n E n
x

AS N R AR E dx
t

∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫  (3.5.7.2.15)

 
m

m n
i i n i x

b

EB n W QE N K A
x

⎛ ⎞∂
= − −⎜ ⎟∂⎝ ⎠

 (3.5.7.2.16)

 

where all the terms listed above are calculated with the corresponding time weighting values. 
Equation (3.5.7.2.10) is then simplified as 
 

{ } { } { }[ ] [ ] ,   [ ] [ 1] [ 2] [ 3]
m

m n
n

EL E M S B where L L L L
t

⎧ ⎫∂
+ = + = + +⎨ ⎬∂⎩ ⎭

 (3.5.7.2.17)

 

Further,  
 

{ } { } { }
1/ 2

1/ 2
1 2

( ) ( )[ ] *( ) *( ) [ ]  
m n m n

m n m n n n
n n

E EL W E W E M S B
t

+
+ ⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.5.7.2.18)

 

So that 
{ }1/ 2[ ] ( ) { } m n

nCMATRX E RLD+ =  (3.5.7.2.19)

where 
 

1
[ ][ ] *[ ]MCMATRX W L

t
= +

Δ
 (3.5.7.2.20)
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{ } { } { }2
[ ]{ } *[ ] ( )  m n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.7.2.21)

 

The above equations are used to solve for the kinetic variable concentration at interior nodes, where 
the boundary term {B} is zero.  
 
For junction nodes, recall equation (3.5.7.1.38) as follows. 
 

1

1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

j

n n n n n

n n NJRTH
n j n j j as rs os is

j n j E j E j E j E j j E j k
k

E E dV
V E M M M M V R Flux

t dt

+

=

−
+ = + + + + +

Δ ∑  (3.5.7.2.22)

 

which can be separated into two equations, according to mixed Predictor-corrector/operator-splitting 
scheme, as follows 
 

1/ 2

1

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

n n n n

j

n

m n m n
n j n j j m as rs os is

j n j E j E j E j E j

NJRTH
jn im n

j E j n j k
k

E E dV
V E M M M M

t dt
dV

V R E Flux
dt

+

=

−
+ = + + + +

Δ

− + ∑

 
(3.5.7.2.23)

 
1 1/ 2

1 1( ) [( ) ( ) ] ( ) ( )
( ) ( ) ( ) ( )

n n

n m n im n
n j n j n j j jn n im n im n

j E j j E j n j n j

E E E nV nV
V R V R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A  (3.5.7.2.24)

 

First, solve equation (3.5.7.2.23) and get 1/ 2( )m n
n jE + . Second, solve equation (3.5.7.2.24) together 

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the 
individual species concentration. 
 
To solve equation (3.5.7.2.23), assign 
 

( )
n

j j
HS n j

V dV
L

t dt
= +

Δ
 (3.5.7.2.25)

 

2

( )
( )  ( ) ( ) ( )

n

n m n
j n j jn n im n

HS n j HS n j j E j n j

V E dV
R W R V R E

t dt
= + + −

Δ
 (3.5.7.2.26)

 
1

1 2
n n

k k kFlux W Flux W Flux+= ⋅ + ⋅  (3.5.7.2.27)
 

Continue the calculation as follows 
 

1

1

( ) * ( ) ,    ( ) 0    ( ) ( ) ( ) * ( )
( )

( ) * ( ) ,    ( ) 0    ( ) ( ) ( )

as as

n

S j j S j HS n j HS n j S j jn nas
E j m

S j n j S j HS n j HS n j S j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.2.28)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

os os

n

os j j os j HS n j HS n j os j jn nos
E j m

os j n j os j HS n j HS n j j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.2.29)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

rs rs

n

R j j R j HS n j HS n j R j jn nrs
E j m

R j n j R j HS n j HS n j R j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.2.30)
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1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

is is

n

I j j I j HS n j HS n j I j jn nis
E j m

I j n j I j HS n j HS n j I j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.2.31)

 

Then equation (3.5.7.2.23) is approximated by 
 

1

( ) ( ) ( )
jNJRTH

m
HS n j n j k HS n j

k

L E Flux R
=

− =∑  (3.5.7.2.32)

 

Assign 
 

{ } { }2
[ ]{ } *[ ] ( )m n

n
MRLDW W L E S

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.5.7.2.33)

 

Equation (3.5.7.2.19) is modified as  
 

{ }1/ 2[ ] ( ) { } { } m n
nCMATRX E Flux RLDW+ + =  (3.5.7.2.34)

 

The flux term in both equations (3.5.7.2.32) and (3.5.7.2.34) is specified as follows. 
 
If  nQ >0, flow is going from reach to the junction 
 

1 1/ 2
1 2( ) ( ) [( ) ] ( ) [( ) ]k m k k n m k n k n m k n

k n n nFlux Q E W Q E W Q E+ += = +  (3.5.7.2.35)
 

If nQ < 0, flow is going from junction to the reach,  
 

1 1/ 2
1 2( ) ( ) [( ) ] ( ) [( ) ]k m k n m n k n m n

k n j n j n jFlux Q E W Q E W Q E+ += − = − −  (3.5.7.2.36)
 

So that equations (3.5.7.2.32) and (3.5.7.2.34) become a set of equations of ( )m
n jE  and ( )m k

nE .  
 
For boundary node i = b, the boundary term {B} should be continuously calculated same as that 
using Fully-implicit scheme in section 3.5.5.1. 
 
 
3.5.7.3 Operator-splitting 
 
Recall the continuity equation for kinetic-variables, equation (3.5.7.1.1), as follows. 
 

1 2( )
n n n n n n

m m
as rs is os osn n n

n x E E E E E E
E QE EAA E K A M M M M M AR
t t x x x

⎛ ⎞∂ ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.3.1)

 

At (n+1)-th time step, equation (3.5.7.3.1) is approximated by 
 

1
1 2( ) ( ) ( )

n n n n n n

n n m m
as rs is os osn n n n

n x E E E E E E
E E QE EAA E K A M M M M M AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.3.2)

 

According to Operator-splitting scheme, equation (3.5.7.3.2) can be separated into two equations as 
follows 
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1/ 2
1 2( ) ( ) ( )

n n n n n

m n m n m m
m as rs os os isn n n n
n x E E E E E

E E QE EAA E K A M M M M M
t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.3.3)

 
1 1/ 2

1 1[( ) ( ) ] ( ) ( )
n

n m n im n
n im nn n n

E n
E E E nAR E

t t

+ +
+ +− + ∂

= −
Δ ∂

A  (3.5.7.3.4)

 

First, solve equation (3.5.7.3.3) and get 1/ 2( )m n
nE + . Second, solve equation (3.5.7.3.4) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain 1( )n
nE +  and 

the individual species concentration. 
 
To solve equation (3.5.7.3.3), assign and calculate RHSn and LHSn same as that in section (3.5.7.1). 
Then equation (3.5.7.3.3) is simplified as 
 

1/ 2( ) ( ) ( )m n m n m m
m mn n n n
n x HS n n HS n

E E QE EA AA E K A L E R
t t x x x t

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎛ ⎞+ + − + + =⎜ ⎟ ⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.7.3.5)

 

 
Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate 
Equation (3.5.7.3.5) in the spatial dimensions over the entire region as follows. 
 

( )
1 1 1 1

N N N Nmx x x xm m
n mn n

i x i i HS n n i HS n
x x x x

QEE E AN A K A dx W dx N L E dx N R dx
t x x x t

∂⎡ ⎤⎛ ⎞∂ ∂∂ ∂⎛ ⎞− + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫ ∫ ∫  (3.5.7.3.6)

 

Integrating by parts, we obtain 
 

1 1 1 1

1

2
2

1
1

                        

N N N N

N

x x x xm m
m mn i n i

i x n i HS n n
x x x x

Bx mBm n
i HS n i n i xB

x B

E dN E dW AN A dx K A dx QE dx N L E dx
t dx x dx t

EN R dx W QE N K A
x

∂ ∂ ∂⎛ ⎞+ − + +⎜ ⎟∂ ∂ ∂⎝ ⎠

∂
= − +

∂

∫ ∫ ∫ ∫

∫

 
(3.5.7.3.7)

 

Approximate solution m
nE  by a linear combination of the base functions as follows 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j

E E E t N x
=

≈ = ∑  (3.5.7.3.8)

 

Substituting Equation (3.5.7.3.8) into Equation (3.5.7.3.7), we obtain 
 

1 1 1

1 1

1

1

         ( )

( )

N N N

N N

x x xN
j mi i

j x i HS n j nj
j x x x

x xm mN
nj m n

i j i HS n i n i x
j x x b

dNdW dN AQN dx K A dx N L N dx E t
dx dx dx t

dE t EN AN dx N R dx n W QE N K A
dt x

=

=

⎡ ⎤⎛ ⎞∂⎛ ⎞⎢ ⎥− + + +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎡ ⎤∂
⎢ ⎥+ = − −⎜ ⎟ ⎢ ⎥⎜ ⎟ ∂⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∑∫ ∫

 
(3.5.7.3.9)

 

Equation (3.5.8.2.19) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ ]
m

m n
n

dEL L L E M S B
dt

⎧ ⎫
+ + + = +⎨ ⎬

⎩ ⎭
 (3.5.7.3.10)
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The matrices [L1], [L2], [L3], [M] and load vectors {S}, {B} are given by 
 

1

1
Nx

i
ij j

x

dWL QN dx
dx

= − ∫  (3.5.7.3.11)

 

1

2
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫  (3.5.7.3.12)

 

1

3
Nx

ij i HS n j
x

AL N L N dx
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫    (3.5.7.3.13)

 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.7.3.14)

 

1

Nx

i i HS n
x

S N R dx= ∫  (3.5.7.3.15)

 
m

m n
i i n i x

b

EB n W QE N K A
x

⎛ ⎞∂
= − −⎜ ⎟∂⎝ ⎠

 (3.5.7.3.16)

 

where all the terms listed above are calculated with the corresponding time weighting values.  
 
Equation (3.5.7.2.10) is simplified as 
 

{ } { } { }[ ] [ ] ,   [ ] [ 1] [ 2] [ 3]
m

m n
n

dEL E M S B where L L L L
dt

⎧ ⎫
+ = + = + +⎨ ⎬

⎩ ⎭
 (3.5.7.3.17)

 

Further, 
 

{ } { } { }
1/ 2

1/ 2
1 2

( ) ( )[ ] *( ) *( ) [ ]  
m n m n

m n m n n n
n n

E EL W E W E M S B
t

+
+ ⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.5.7.3.18)

So that 
{ }1/ 2[ ] ( ) { } m n

nCMATRX E RLD+ =  (3.5.7.3.19)
 

1
[ ][ ] *[ ]MCMATRX W L

t
= +

Δ
 (3.5.7.3.20)

   

{ } { } { }2
[ ]{ } *[ ] ( )  m n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.7.3.21)

 

The above equations are used to solve for the kinetic variable concentration at interior nodes, where 
the boundary term {B} is zero.  
 
For junction nodes, recall equation (3.5.7.2.22) as follows. 
 

1

1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

j

n n n n n

n n NJRTH
n j n j j as rs os is

j n j E j E j E j E j j E j k
k

E E dV
V E M M M M V R Flux

t dt

+

=

−
+ = + + + + +

Δ ∑  (3.5.7.3.22)

 

which can be separated into two equations, according to Operator-splitting scheme, as follows 
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1/ 2

1

( ) ( )
( ) ( ) ( ) ( ) ( )

j

n n n n

m n m n NJRTH
n j n j j m as rs os is

j n j E j E j E j E j k
k

E E dV
V E M M M M Flux

t dt

+

=

−
+ = + + + +

Δ ∑  (3.5.7.3.23)

 
1 1/ 2

1 1( ) [( ) ( ) ] ( )
( ) ( )

n

n m n im n
n j n j n j jn im n

j E j n j

E E E nV
V R E

t t

+ +
+ +− + ∂

= −
Δ ∂

A  (3.5.7.3.24)

 

First, solve equation (3.5.7.3.23) and get 1/ 2( )m n
n jE + . Second, solve equation (3.5.7.3.24) together 

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the 
individual species concentration and 1( ) n

n jE + . 
 
To solve equation (3.5.7.3.23), assign 
 

( )
n

j j
HS n j

V dV
L

t dt
= +

Δ
 (3.5.7.3.25)

 

2

( )
( )  ( )

n m n
j n j n

HS n j HS n j

V E
R W R

t
= +

Δ
 (3.5.7.3.26)

 
n 1 n

k 1 k 2 kFlux W Flux W Flux+= ⋅ + ⋅  (3.5.7.3.27)
 

Continue the calculation as follows 
 

1

1

( ) * ( ) ,    ( ) 0    ( ) ( ) ( ) * ( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

as as

n

S j j S j HS n j HS n j S j jn nas
E j m

S j n j S j HS n j HS n j S j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.3.28)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

os os

n

os j j os j HS n j HS n j os j jn nos
E j m

os j n j os j HS n j HS n j j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.3.29)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

rs rs

n

R j j R j HS n j HS n j R j jn nrs
E j m

R j n j R j HS n j HS n j R j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.3.30)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

is is

n

I j j I j HS n j HS n j I j jn nis
E j m

I j n j I j HS n j HS n j I j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.3.31)

 

Then equation (3.5.7.3.23) is approximated by 
 

1
( ) ( ) ( )

jNJRTH
m

HS n j n j k HS n j
k

L E Flux R
=

− =∑  (3.5.7.3.32)

Assign 

{ } { }2
[ ]{ } *[ ] ( )m n

n
MRLDW W L E S

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.5.7.3.33)

 

Equation (3.5.7.3.19) is modified as  
 

{ }1/ 2[ ] ( ) { } { } m n
nCMATRX E Flux RLDW+ + =  (3.5.7.3.34)

 

The flux term in both equation (3.5.7.3.32) and (3.5.7.3.34) is specified as follows. 



 3-124

 
If nQ > 0, flow is going from reach to the junction 
 

1 1/ 2
1 2( ) ( ) [( ) ] ( ) [( ) ]k m k k n m k n k n m k n

k n n nFlux Q E W Q E W Q E+ += = +  (3.5.7.3.35)
 

If nQ < 0, flow is going from junction to the reach,  
 

1 1/ 2
1 2( ) ( ) [( ) ] ( ) [( ) ]k m k n m n k n m n

k n j n j n jFlux Q E W Q E W Q E+ += − = − −  (3.5.7.3.36)
 

Equations (3.5.7.3.32) and (3.5.7.3.34) become a set of equation of ( )m
n jE  and ( )m k

nE .  
 
For boundary node i = b, the boundary term {B} should be continuously calculated same as that 
using Fully-implicit scheme in section 3.5.5.1. 
 
 
3.5.8 Finite Application of the Finite Element Method to the Advective Form of the 

Transport Equations to Solve 1-D Kinetic Variable 
 
3.5.8.1 Fully-implicit scheme 
 
Recall the continuity equation for kinetic-variables, equation (2.5.44), as follows. 
 

1 2( )
n n n n n n

m m
as rs is os osn n n

n x E E E E E E
E QE EAA E K A M M M M M AR
t t x x x

⎛ ⎞∂ ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.8.1.1)

 

According to the governing equation of water flow in 1-D river/stream  
 

1 2S R I
A Q S S S S S
t x

∂ ∂
+ = + + + +

∂ ∂
 (3.5.8.1.2)

 

Equation (3.5.8.1.1) can be modified as follows. 
 

1 2

1 2

( )

                   
n n n n n n

m m
mn n n

n x S R I n

as rs is os os
E E E E E E

E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.8.1.3)

 

At n+1-th time step, equation (3.5.8.1.3) is approximated by 
 

1

1 2

1 2

( ) ( ) ( )

                            
n n n n n

n n m m
mn n n n

n x R R I n

as rs is os os
E E E E E n

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.8.1.4)

 

According to Fully-implicit scheme, equation (3.5.8.1.4) can be separated into two equations as 
follows 
 

1/ 2

1 2

1 2

( ) ( ) ( )

                              
n n n n n n

n n m m
mn n n n

n x S R I n

as rs is os os
E E E E E E

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + + =⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
+ + + + +

 
(3.5.8.1.5)
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1 1/ 2( ) ( ) 0
n n

n nE E
t

+ +−
=

Δ
 (3.5.8.1.6)

 

First, solve equation (3.5.8.1.5) and get (En)n+1/2. Second, solve equation (3.5.8.1.6) together with 
algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual 
species concentration. Iteration between these two steps is needed because reaction term in equation 
(3.5.8.1.5) needs to be updated by the results of (3.5.8.1.6). 
 
To solve equation (3.5.8.1.5), assign 
 

1 20          ( )HS n HS n S R I
AR and L S S S S S
t

∂
= = + + + + −

∂
 (3.5.8.1.7)

 

Then the right hand side RHSn and left hand side LHSn should be continuously calculated same as 
that in section (3.5.7.1).  Equation (3.5.8.1.5) is then simplified as 
 

1/ 2( ) ( )
n

n n m m
mn n n n

n x HS n n HS n E
E E E EAA E Q K A L E R AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − + = +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.8.1.8)

 

Express En
m in terms of (En

m /En) En
m to make En’s as primary dependent variables, 

 

( )
n

m m m m
n n n n n n n

n n x x n HS n n HS n E
n n n

E E E E E E EAA E Q E K A K A E L E R AR
t t x E x E x x x E

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂ ∂
+ + − − + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.5.8.1.9)

 

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate 
Equation (3.5.8.1.9) in the spatial dimensions over the entire region as follows. 
 

( )

1 1

1 1

( )N N

N N

x xm m m
n n n n n n

i x i n x n
n nx x

x xm
n

i HS n n i HS n n
nx x

E E E E E EN A K A dx W Q E K A E dx
t x E x x E x x

E AN L E dx N R AR dx
E t

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂
− + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎛ ⎞∂
+ + = +⎜ ⎟∂⎝ ⎠

∫ ∫

∫ ∫

 
(3.5.8.1.10)

 

Integrating by parts, we obtain 
 

( )

1 1 1 1

1 1

1

( )

( )                      

        

N N N N

N N

N

n

x x x xm m m
n n n n n i n n

i i i n x
n nx x x x

x xm m
i n n n

x n i HS n n
nx x

x

i HS n E i x
x

E E E E E dN E EN A dx W Q dx W Q E dx K A dx
t E x x dx E x

dW E E E AK A E dx N L E dx
dx x E t

N R AR dx N K A

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

⎛ ⎞∂ ∂
+ + +⎜ ⎟∂ ∂⎝ ⎠

= + +

∫ ∫ ∫ ∫

∫ ∫

∫
2 2

11

( )
B Bm m

n n n n
i x n

n BB

E E E EW K A E
E x x

∂ ∂
+

∂ ∂

 
(3.5.8.1.11)

 

Approximate solution En by a linear combination of the base functions as follows 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N x
=

≈ = ∑  (3.5.8.1.12)

 

Substituting Equation (3.5.8.1.12) into Equation (3.5.8.1.11), we obtain 
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1 1 1

1 1

1

1

( ) ( )

( )

( )

N N N

N N

N

x x xm m m
jn n n i n n

i i j x j
N nx x x

njx xm mj ji n n
x i HS n j

n nx x

x
nj

i j
x

dNE E E dW E EW Q dx W Q N dx K A N dx
E dx x dx x

E t
dNdN E E AK A dx N L N dx

dx E dx E t

E t
N AN dx

t

=

⎧ ⎫⎡ ⎤∂ ∂
+ +⎪ ⎪⎢ ⎥

∂ ∂⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥

⎛ ⎞∂⎪ ⎪⎢ ⎥+ + +⎜ ⎟⎪ ⎪⎢ ⎥∂⎝ ⎠⎣ ⎦⎩ ⎭
⎡⎛ ⎞ ∂

+ ⎜ ⎟⎜ ⎟ ∂⎝ ⎠⎣

∫ ∫ ∫
∑

∫ ∫

∫ ( )
1

1

( )N

n

x m mN
n n n n

i HS n E i x i x n
j nx b

E E E EN R AR dx n N K A W K A E
E x x=

⎤ ⎡ ⎤∂ ∂
⎢ ⎥ = + + +⎢ ⎥∂ ∂⎢ ⎥ ⎣ ⎦⎦

∑ ∑∫

 
(3.5.8.1.13)

 

Equation (3.5.8.1.13) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ 4] [ 5] [ ] n
n

EL L L L L E M S B
t

∂⎧ ⎫+ + + + + = +⎨ ⎬∂⎩ ⎭
 (3.5.8.1.14)

 

The matrices [L1], [L2], [L3], [L4], [L5], [M] and load vectors {S}, {B} are given by 
 

1

1
Nx m

jn
ij i

nx

dNEL W Q dx
E dx

= ∫  (3.5.8.1.15)

 

1

( )2
Nx m

n n
ij i j

x

E EL W Q N dx
x

∂
=

∂∫  (3.5.8.1.16)

 

1

( / )3
Nx m

i n n
ij x j

x

dW E EL K A N dx
dx x

∂
=

∂∫  (3.5.8.1.17)

 

1

4
Nx m

ji n
ij x

nx

dNdN EL K A dx
dx E dx

= ∫  (3.5.8.1.18)

 

1

5
Nx m

n
ij i HS n j

nx

E AL N L N dx
E t

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

∫  (3.5.8.1.19)

 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.8.1.20)

 

( )
1

N

n

x

i i HS n E
x

S N R AR dx= +∫  (3.5.8.1.21)

 

( )m m
n n n n

i i x i x n
n b

E E E EB n N K A W K A E
E x x

⎡ ⎤∂ ∂
= +⎢ ⎥∂ ∂⎣ ⎦

 (3.5.8.1.22)

 

Equation (3.5.8.1.14) is then simplified as 
 

{ } { } { }[ ] [ ] ,   [ ] [ 1] [ 2] [ 3] [ 4] [ 5]n
n

EL E M S B where L L L L L L
t

∂⎧ ⎫+ = + = + + + +⎨ ⎬∂⎩ ⎭
 (3.5.8.1.23)

 

Further,  
 

{ } { } { } { }1/ 2 1/ 2
1 2

[ ][ ] * *  n n n n
n n n n

ML W E W E E E S B
t

+ ++ + − = +
Δ

 (3.5.8.1.24)

So that 
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{ }1/ 2[ ] { }n
nCMATRX E RLD+ =  (3.5.8.1.25)

where 

1
[ ][ ] *[ ]MCMATRX W L

t
= +

Δ
 (3.5.8.1.26)

 

{ } { } { }2
[ ] { } *[ ] n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.8.1.27)

 

The above equations are used to solve for the kinetic variable concentration at interior nodes, where 
the boundary term {B} is zero.  
 
At the junction nodes, assign  
 

{ } { }2
[ ] { } *[ ] { } n m

n n
MRLDW W L E S nQE

t
= − + +

Δ
 (3.5.8.1.28)

 

Equation (3.5.8.1.25) is modified as  
 

{ }1/ 2[ ] { }n
nCMATRX E Flux RLDW+ + =  (3.5.8.1.29)

 

Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.1.48), 
and (3.5.8.1.29). 
 
For boundary node i = b, the boundary term {B} should be continuously calculated as follows. 
 

( ) ( )m m m m m
n n n n n n n n n

i i x i x n x x n x
n n bb b

E E E E E E E E EB N K A W K A E n K A K A E n K A
E x x E x x x

⎡ ⎤ ⎡ ⎤ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= + = + = ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦ ⎣ ⎦

 (3.5.8.1.30)

 
Dirichlet boundary condition 
 

( , )m m
n n bE E x t=  (3.5.8.1.31)

 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0) 
 

( , )    ( , )
m

m m m mn
n x n b i n n b

En QE AK nQE x t B nQE nQE x t
x

⎛ ⎞∂
− = ⇒ = −⎜ ⎟∂⎝ ⎠

 (3.5.8.1.32)

 

When Flow is going out from inside (nQ > 0) 
 

m
n

x i
EnAK 0 B 0

x
∂

∂
− = ⇒ =  (3.5.8.1.33)

 
Cauchy boundary condition 
 

( , )    ( , )
m

m mn
n x En b i n En b

En QE AK Q x t B nQE Q x t
x

⎛ ⎞∂
− = ⇒ = −⎜ ⎟∂⎝ ⎠

 (3.5.8.1.34)
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Neumann boundary condition 
 

( , )     ( , ) 
m

n
x En b i En b

EnAK Q x t B Q x t
x

∂
− = ⇒ = −

∂
 (3.5.8.1.35)

 
3.5.8.2 Mixed Predictor-corrector/Operator-Splitting Scheme 
 
Recall the continuity equation for kinetic-variables, equation (3.5.8.1.3), as follows. 
 

1 2

1 2

( )

n n n n n n

m m
mn n n

n x S R I n

as rs is os os
E E E E E E

E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + + =⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
+ + + + +

 
(3.5.8.2.1)

 

At n+1-th time step, equation (3.5.8.2.1) is approximated by 
 

1

1 2

1 2

( ) ( ) ( )

                            
n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.8.2.2)

 

According to mixed predictor corrector/operator-splitting scheme, equation (3.5.8.2.2) can be 
separated into two equations as follows 
 

1

1 2

1 2

( ) ( ) ( )

                            ( )
n n n n n n

m n m n m m
m mn n n n
n x S R I n

as rs os os is n im n
E E E E E E n

E E E EA AA E Q K A S S S S S E
t t x x x t

AM M M M M AR E
t

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
∂

= + + + + + −
∂

 
(3.5.8.2.3)

 
1 1/ 2

1 1[( ) ( ) ] ( ) ( )( ) ( )
n n

n m n im n
n n im n im nn n n

E E n n
E E E nA nAR R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A  (3.5.8.2.4)

 

First, solve equation (3.5.8.2.3) and get 1/ 2( )m n
nE + . Second, solve equation (3.5.8.2.4) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain 1n
nE +  and the 

individual species concentration. 
 
To solve equation (3.5.8.2.3), assign and calculate RHSn and LHSn in the same way as that in Section 
(3.5.7.2).  Equation (3.5.8.2.3) is then simplified as 
 

1/ 2( ) ( ) ( )
n n n

m n m n m m
m m n im nn n n n
n x HS n HS E n

E E E EA AA E Q K A L E R AR E
t t x x x t

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂
+ + − + = + −⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.8.2.5)

 

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. For 
Galerkin method, choose weighting function identical to base functions. Integrate Equation 
(3.5.8.2.5) in the spatial dimensions over the entire region as follows. 
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1 1 1

1

( ) ( )

N N N

n

N

n n

x x xm m m
mn n n

i x i i HS n
x x x

x
n im n

i HS E n
x

E E E AN A K A dx W Q dx N L E dx
t x x x t

AN R A R E dx
t

⎡ ⎤⎛ ⎞∂ ∂ ∂∂ ∂⎛ ⎞− + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦

∂⎡ ⎤+ −⎢ ⎥∂⎣ ⎦

∫ ∫ ∫

∫

 
(3.5.8.2.6)

 

Integrating by parts, we obtain 
 

1 1 1 1

1

2

1

                        ( ) ( )

N N N N

n

N

n n

x x x xm m m
mn i n n

i x i i HS n
x x x x

Bx m
n im n n

i HS E n i x
x B

E dN E E AN A dx K A dx W Q dx N L E dx
t dx x x t

EAN R A R E dx N K A
t x

∂ ∂ ∂ ∂⎛ ⎞+ + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂∂⎡ ⎤= + − +⎢ ⎥∂ ∂⎣ ⎦

∫ ∫ ∫ ∫

∫

 
(3.5.8.2.7)

 

Approximate solution En
m by a linear combination of the base functions as follows 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j

E E E t N x
=

≈ = ∑  (3.5.8.2.8)

 

Substituting Equation (3.5.8.2.8) into Equation (3.5.8.2.7), we obtain 
 

1 1 1

1 1

1

1

           ( )

( )
( ) ( )

N N N

n

N N

n n

x x xN
j j mi

i x i HS j nj
j x x x

x xm mN
nj n im n n

i j i HS E n i x
j x x

dN dNdN AW Q dx K A dx N L N dx E t
dx dx dx t

E t EAN AN dx N R A R E dx n N K A
t t x

=

=

⎡ ⎤⎛ ⎞∂⎛ ⎞⎢ ⎥+ + +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ∂ ⎛ ∂∂⎡ ⎤⎢ ⎥+ = + − +⎜ ⎟ ⎢ ⎥⎜ ⎟ ∂ ∂ ∂⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫
b

⎞
⎜ ⎟
⎝ ⎠

∑

 
(3.5.8.2.9)

 

Equation (3.5.8.2.9) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ ]
m

m n
n

EL L L E M S B
t

⎧ ⎫∂
+ + + = +⎨ ⎬

∂⎩ ⎭
 (3.5.8.2.10)

 

The matrices [L1], [L2], [L3], [M] and load vectors {S}, {B} are given by 
 

1

1
Nx

j
ij i

x

dN
L W Q dx

dx
= ∫  (3.5.8.2.11)

 

1

2
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫  (3.5.8.2.12)

 

1

3
N

n

x

ij i HS j
x

AL N L N dx
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫  (3.5.8.2.13)

 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.8.2.14)

 

1

( ) ( )
N

n n

x
n im n

i i HS E n
x

AS N R A R E dx
t

∂⎡ ⎤= + −⎢ ⎥∂⎣ ⎦∫  (3.5.8.2.15)
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m
n

i i x
b

EB n N K A
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (3.5.8.2.16)

 

where all the terms listed above are calculated with the corresponding time weighting values. 
Equation (3.5.8.2.10) is then simplified as 
 

{ } { } { }[ ] [ ] ,   [ ] [ 1] [ 2] [ 3]
m

m n
n

EL E M S B where L L L L
t

⎧ ⎫∂
+ = + = + +⎨ ⎬∂⎩ ⎭

 (3.5.8.2.17)

 

Further,  
 

{ } { } { }
1/ 2

1/ 2
1 2

( ) ( )[ ] *( ) *( ) [ ]  
m n m n

m n m n n n
n n

E EL W E W E M S B
t

+
+ ⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.5.8.2.18)

So that 
{ }1/ 2[ ] ( ) { } m n

nCMATRX E RLD+ =  (3.5.8.2.19)

where 

1
[ ][ ] [ ]  MCMATRX W L

t
= +

Δ
 (3.5.8.2.20)

 

{ } { } { }2
[ ] { } [ ] ( )m n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.8.2.21)

 

The above equations are used to solve for the kinetic variable concentration at interior nodes where 
boundary term {B} is zero. 
 
For junction nodes, assign  
 

{ } { }2
[ ] { } [ ] ( ) { }m n m

n n
MRLDW W L E S nQE

t
= − + +

Δ
 (3.5.8.2.22)

 

Equation (3.5.8.2.18) is modified as 
 

{ }1/ 2[ ] ( ) { }m n
nCMATRX E Flux RLDW+ + =  (3.5.8.2.23)

 

Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.2.32) 
and (3.5.8.2.23). 
 
For boundary node i = b, the boundary term {B} should be continuously calculated same as that 
using Fully-implicit scheme in section (3.5.8.1). 
 
3.5.8.3 Operator-splitting 
 
Recall the continuity equation for kinetic-variables, equation (3.5.8.1.3), as follows. 
 

1 2

1 2

( )

n n n n n n

m m
mn n n

n x S R I n

as rs is os os
E E E E E E

E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + + =⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
+ + + + +

 
(3.5.8.3.1)

 

At n+1-th time step, equation (3.5.8.3.1) is approximated by 
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1

1 2

1 2

( ) ( ) ( )

                            
n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.8.3.2)

 

According to Operator-splitting scheme, equation (3.5.8.3.2) can be separated into two equations as 
follows 
 

1

1 2

1 2

( ) ( ) ( )

                            
n n n n n

m n m n m m
m mn n n n
n x S R I n

as rs os os is
E E E E E

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + +

 
(3.5.8.3.3)

 
1 1/ 2

1 1[( ) ( ) ] ( ) ( )
n

n m n im n
n im nn n n

E n
E E E nAR E

t t

+ +
+ +− + ∂

= −
Δ ∂

A  (3.5.8.3.4)

 

First, solve equation (3.5.8.3.3) and get 1/ 2( )m n
nE + . Second, solve equation (3.5.8.3.4) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain 1( )n
nE +  and 

the individual species concentration. 
 
To solve equation (3.5.8.3.3), assign and calculate RHSn and LHSn same as that in section (3.5.8.1). 
Equation (3.5.8.3.3) is then simplified as 
 

1/ 2( ) ( )
n n

m n m n m m
m mn n n n
n x HS n HS

E E E EAA E Q K A L E R
t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − + =⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.8.3.5)

 
Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. For 
Galerkin method, choose weighting function identical to base functions. Integrate Equation 
(3.5.8.3.5) in the spatial dimensions over the entire region as follows. 
 

1 1 1 1

N N N N

n n

x x x xm m m
mn n n

i x i i HS n i HS
x x x x

E E E AN A K A dx W Q dx N L E dx N R dx
t x x x t

⎡ ⎤⎛ ⎞∂ ∂ ∂∂ ∂⎛ ⎞− + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫ ∫ ∫  (3.5.8.3.6)

 

Integrating by parts, we obtain 
 

1 1 1 1

1

2

1

                               

N N N N

n

N

n

x x x xm m m
mn i n n

i x i i HS n
x x x x

Bx m
n

i HS i x
x B

E dN E E AN A dx K A dx W Q dx N L E dx
t dx x x t

EN R dx N K A
x

∂ ∂ ∂ ∂⎛ ⎞+ + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂
= +

∂

∫ ∫ ∫ ∫

∫

 
(3.5.8.3.7)

 

Approximate solution En
m by a linear combination of the base functions as follows 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j

E E E t N x
=

≈ = ∑  (3.5.8.3.8)

 

Substituting Equation (3.5.8.3.8) into Equation (3.5.8.3.7), we obtain 
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1 1 1

1 1

1

1

( )

( )

N N N

n

N N

n

x x xN
j j mi

i x i HS j nj
j x x x

x xm mN
nj n

i j i HS i x
j x x b

dN dNdN AW Q dx K A dx N L N dx E t
dx dx dx t

E t EN AN dx N R dx n N K A
t x

=

=

⎡ ⎤⎛ ⎞∂⎛ ⎞⎢ ⎥+ + +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ∂ ⎛ ⎞∂
⎢ ⎥+ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∑∫ ∫

 
(3.5.8.3.9)

 

Equation (3.5.8.3.9) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ ]
m

m n
n

EL L L E M S B
t

⎧ ⎫∂
+ + + = +⎨ ⎬∂⎩ ⎭

 (3.5.8.3.10)

 

The matrices [L1], [L2], [L3], [M] and load vectors {S}, {B} are given by 
 

1

1
Nx

j
ij i

x

dN
L W Q dx

dx
= ∫  (3.5.8.3.11)

 

1

2
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫  (3.5.8.3.12)

 

1

3
N

n

x

ij i HS j
x

AL N L N dx
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫  (3.5.8.3.13)

 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.8.3.14)

 

1

N

n

x

i i HS
x

S N R dx= ∫  (3.5.8.3.15)

 
m

n
i i x

b

EB n N K A
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (3.5.8.3.16)

 

where all the terms listed above are calculated with the corresponding time weighting values. 
Equation (3.5.8.3.10) is then simplified as 
 

{ } { } { }[ ] [ ] ,   [ ] [ 1] [ 2] [ 3]
m

m n
n

EL E M S B where L L L L
t

⎧ ⎫∂
+ = + = + +⎨ ⎬∂⎩ ⎭

 (3.5.8.3.17)

 

Further, 
 

{ } { } { }
1/ 2

1/ 2
1 2

( ) ( )[ ] *( ) *( ) [ ]
m n m n

m n m n n n
n n

E EL W E W E M S B
t

+
+ ⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.5.8.3.18)

So that 
{ }1/ 2

n[ ] (E ) { }m nCMATRX RLD+ =  (3.5.8.3.19)

where 

1
[ ][ ] [ ]MCMATRX W L

t
= +

Δ
 (3.5.8.3.20)

 

{ } { } { }2
[ ] { } [ ] ( )m n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.8.3.21)
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The above equations are used to solve for the kinetic variable concentration at interior nodes where 
boundary term {B} is zero. 
 
For junction nodes, assign  
 

{ } { }2
[ ] { } [ ] ( ) { }m n m

n n
MRLDW W L E S nQE

t
= − + +

Δ
 (3.5.8.3.22)

 

Equation (3.5.8.3.18) is modified as 
 

{ }1/ 2[ ] ( ) { }m n
nCMATRX E Flux RLDW+ + =  (3.5.8.3.23)

 

Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.3.33) 
and (3.5.8.3.23). 
 
For boundary node i = b, the boundary term {B} should be continuously calculated same as that 
using Fully-implicit scheme in section (3.5.8.1). 
 
 
3.5.9 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form 

of the Transport Equations 
 
3.5.9.1 Fully-implicit scheme 
 
The continuity equation for kinetic-variables in advective form at (n+1)-th time step, is shown as 
follows. 
 

1

1 2

1 2

( ) ( ) ( )

                            
n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.9.1.1)

 
 

 [Option 1] 
 
Express En

m in terms of En
m /En*En to make En’s as primary dependent variables, equation 

(3.5.9.1.1) is modified as 
 

1

1 2
1 2

( ) ( )

( )
n n n n n n

m m
n n

n nn n
n n n n

n x

m
as rs os os isn

S R I n E E E E E E
n

E EE E
E E A E EA E Q K A

t t x x x

A ES S S S S E M M M M M AR
t E

+

⎛ ⎞
∂ ∂⎜ ⎟− ∂ ∂ ⎜ ⎟+ + − +

Δ ∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟
⎝ ⎠

∂⎡ ⎤+ + + + − = + + + + +⎢ ⎥∂⎣ ⎦

 
(3.5.9.1.2)

 

According to Fully-implicit scheme, equation (3.5.9.1.2) can be separated into two equations as 
follows 
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1/ 2

1 2
1 2

( ) ( )

( )
n n n n n n

m m
n n

n nn n
n n n n

n x

m
as rs os os isn

S R I n E E E E E E
n

E EE E
E E A E EA E Q K A

t t x x x

A ES S S S S E M M M M M AR
t E

+

⎛ ⎞
∂ ∂⎜ ⎟− ∂ ∂ ⎜ ⎟+ + − +

Δ ∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟
⎝ ⎠

∂⎡ ⎤+ + + + − = + + + + +⎢ ⎥∂⎣ ⎦

 
(3.5.9.1.3)

 
1 1/ 2( ) ( ) 0

n n
n nE E

t

+ +−
=

Δ
 (3.5.9.1.4)

 

First, solve equation (3.5.9.1.3) and get (En)n+1/2. Second, solve equation (3.5.9.1.4) together with 
algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual 
species concentration. Iteration between these two steps is needed because reaction term in equation 
(3.5.9.1.3) needs to be updated by the results of (3.5.9.1.4). 
 
To solve equation (3.5.9.1.3), assign 
 

1 20          ( )
n n

m
n

HS HS S R I
n

A ER and L S S S S S
t E

∂⎡ ⎤= = + + + + −⎢ ⎥∂⎣ ⎦
 (3.5.9.1.5)

 
Then the right hand side RHSn and left hand side LHSn should be continuously calculated as following. 
 

* ,    0    

* ,    0    

rs n

n

rs
R n R HS n HS n Ers

E m
R n R HS n HS n R

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.6)

 
* ,    0    ,

* ,    0    

as n

n

as
S n S HS n HS n Eas

E m
S n S HS n HS n S

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.7)

 

1
1

1 11

1 1 1

* ,    0    

* ,    0    

os n

n

m os
n HS n HS n Eos

E m
n HS n HS n

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.8)

 

2
2

2 22

2 2 2

* ,    0    

* ,    0    

os n

n

m os
n HS n HS n Eos

E m
n HS n HS n

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.9)

 
* ,    0    

* ,    0    

is n

n

m is
I n I HS n HS n Eis

E m
I n I HS n HS n I

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.10)

 

Equation (3.5.9.1.3) is then simplified as 
 

1/ 2( ) ( )

n n n

m
n

n n m m
n n n n n nn

n x x
n n

m m
n n

n n
x HS n HS E

E
E E A E E E EEA E Q K A K A

t t E x x x E x

E E
E EQ K A L E R AR
x x x

+

⎛ ⎞
∂⎜ ⎟ ⎛ ⎞− ∂ ∂ ∂ ∂⎜ ⎟+ + − − +⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎜ ⎟ ⎝ ⎠

⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞
∂ ∂⎢ ⎥⎜ ⎟∂⎢ ⎥⎜ ⎟− + = +

∂ ∂ ∂⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 
(3.5.9.1.11)
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Assign the true transport velocity Vtrue as follows. 
 

m m
n n

true x
n n

E EAV Q K A
E x E

⎛ ⎞∂
= − ⎜ ⎟∂ ⎝ ⎠

 (3.5.9.1.12)

 
m

n
true x

n

EK K
E

=  (3.5.9.1.13)

 

n

m m
n n

x HS
n n

E EL Q K A L
x E x x E

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= − +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.5.9.1.14)

 

Then equation (3.5.9.1.11) is simplified as 
 

1/ 2( ) ( )
n n

n n
n n n n

true true n HS E
E E E E AA AV K A L E R AR

t x x x t

+ − ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − + + = +⎜ ⎟ ⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5.9.1.15)

 

Equation (13.5.7.1.15) in the Lagrangian and Eulerian form is as follows. 
 

1/ 2( ) ( ) 0
n n

n n n n
true

dE E E EV
d t xτ

+ − ∂
= + =

Δ ∂
 (3.5.9.1.16)

 

n n

n n
true n HS E

dE E AA K A L E R AR
d x x tτ

∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + + = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5.9.1.17)

 

First, solve equation (3.5.9.1.16) to obtain the Lagrangian values by particle tracking. Then, deal 
with Eulerian equation (3.5.9.1.17) by finite element method. 
 
Equation (3.5.9.1.17) written in a slightly different form is shown as follows. 
 

n
n L

dE D KE R
dτ

− + =  (3.5.9.1.18)

where 
1 n

true
ED K A

A x x
∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠

 (3.5.9.1.19)

 
A L
tK
A

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠=  (3.5.9.1.20)

 

n nHS E
L

R AR
R

A
+

=  (3.5.9.1.21)

 

Equation (3.5.9.1.18) written in matrix form is then expressed as 
 

{ } { } { } { } { } ( ){ } { } { }*1/ 2 1 1 1/ 2 * * 1 *
1 1 2 2 1 2

[ ] [ ]n n n n n
n n n n L L

U UE W D W K E E W D W KE W R W R
τ τ

+ + + + +⎡ ⎤− + = + − + +⎣ ⎦Δ Δ
 (3.5.9.1.22)

 

where [Kn+1] is the diagonal matrix with K calculated at the (n+1)-th time step as its components, the 
diffusion term D expressed in term of En is solved by the following procedure. 
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Approximate D by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

D D D t N x
=

≈ = ∑  (3.5.9.1.23)
 

According to equation (3.5.9.1.19), the integration of equation (3.5.9.1.22) can be written as 
 

1 1 1
1

( ) ( )
N N Nx x xN

n
i i j j i true

jx x x

EN ADdx N A D t N x dx N K A dx
x x=

∂ ∂⎛ ⎞= = ⎜ ⎟∂ ∂⎝ ⎠
∑∫ ∫ ∫  (3.5.9.1.24)

 

Integrating by parts, we obtain 
 

1 1

2

1 1

( )
N N Bx xN

i n n
i j j true i true

j Bx x

dN E EN AN dx D K A dx N K A
dx x x=

⎡ ⎤⎛ ⎞ ∂ ∂
= − +⎢ ⎥⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫  (3.5.9.1.25)

 

Approximate En by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N x
=

≈ = ∑  (3.5.9.1.26)
 

Equation (3.5.9.1.25) is further expressed as                                
 

1 1

2

1 1 1

( ) ( )
N N Bx xN N

ji n
i j j true n j i true

j j Bx x

dNdN EN AN dx D K A dx E N K A
dx x x= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ∂
= − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫  (3.5.9.1.27)

 

Assign matrices [A1] and [A2] and load vector {B1} as following 
 

1

1
Nx

ij i j
x

A N AN dx= ∫  (3.5.9.1.28)

 

1

2 ( )
Nx

ji
ij true

x

dNdNA K A dx
dx dx

= ∫  (3.5.9.1.29)

 

1 n
i i true

b

EB nN K A
x

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (3.5.9.1.30)

 

Equation (3.5.9.1.27) is expressed as 
 

{ } { } { }[ 1] [ 2] 1nA D A E B= − +  (3.5.9.1.31)
 

Lump matrix [A1] into diagonal matrix and assign   
 

2 / 1ij ij iiQE A A=  (3.5.9.1.32)
 

1 / 1i i iiB B A=  (3.5.9.1.33)
Then 

{ } { } { }[ ] nD QE E B= − +  (3.5.9.1.34)
 

where boundary term {B} is calculated as follows 
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1 1
m m

n n
i i x ii i x n ii

nb b

E EB nN K A A nN K A E A
x x E

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂= − ⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
 (3.5.9.1.35)

 

Dirichlet boundary condition 
 

( )

( , )   

( ) ( , ) ( ) ( )
1 1

m m
n n b

m m m m
n j n b n n j n n i

i i x ii i x n iii

E E x t

E E x t E E E E
B nN K A A nN K A E A

x x

= ⇒

− −
= −

Δ Δ

 (3.5.9.1.36)

 

where j is the interior node connected to the boundary node. 
 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0) 
 

( )

( , )    

( ) ( )
( , ) 1 1

m
m mn

n x n b

m m
n n j n n im m

i n n b ii i x n iii

En QE AK nQE x t
x

E E E E
B nQE nQE x t A nN K A E A

x

⎛ ⎞∂
− = ⇒⎜ ⎟∂⎝ ⎠

−
⎡ ⎤= − −⎣ ⎦ Δ

 
(3.5.9.1.37)

 

where j is the interior node connected to the boundary node. 
 
When Flow is going out from inside (nQ > 0) 
 

( )
( ) ( )

0    1
m mm

n n j n n in
x i i x n iii

E E E EEnAK B nN K A E A
xx

−∂
− = ⇒ = −

Δ∂
 (3.5.9.1.38)

 

where j is the interior node connected to the boundary node. 
 
Cauchy boundary condition 
 

( )

( , )  

( ) ( )
  ( , ) 1 1

m
m n

n x En b

m m
n n j n n im

i n En b ii i x n iii

En QE AK Q x t
x

E E E E
B nQE Q x t A nN K A E A

x

⎛ ⎞∂
− = ⇒⎜ ⎟∂⎝ ⎠

−
⎡ ⎤= − −⎣ ⎦ Δ

 
(3.5.9.1.39)

 

where j is the interior node connected to the boundary node. 
 
Neumann boundary condition 
 

( )
( ) ( )

( , )     ( , ) 1
m mm

n n j n n in
x En b i En b i x n iii

E E E EEnAK Q x t B Q x t nN K A E A
xx

−∂
− = ⇒ = − −

Δ∂
 (3.5.9.1.40)

 

where j is the interior node connected to the boundary node. 
 
Equation (3.5.9.1.22) can be written as matrix equation as following 
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{ } { } { }

{ } ( ){ } { } { } { } { }

1/ 2 1 1/ 2 1 1/ 2
1 1

** * 1 * 1
2 2 1 2 1

[ ] [ ]

[ ]

n n n n n
n n n

n n
n n L L

U E W QE E W K E

U E W KE W D W R W R W B

τ

τ

+ + + + +

+ +

⎡ ⎤+ + ⎣ ⎦Δ

= − + + + +
Δ

 
(3.5.9.1.41)

 
 

 [Option 2] 
 
Express En

m in terms of En-En
m and En

m/En*En to make En’s as primary dependent variables, equation 
(3.5.9.1.1) is modified as 
 

1

1 2

1 2

( ) ( ) ( )

n n n n n n

n n m
n n n n n

n x S R I n
n

im im
as rs os os isn n

x E E E E E E

E E A E E A EA E Q K A S S S S S E
t t x x x t E

E EQ K A M M M M M AR
x x x

+ − ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂ ∂
= − + + + + + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

 
(3.5.9.1.42)

 

According to Fully-implicit scheme, equation (3.5.9.1.42) can be separated into two equations as 
follows 
 

1/ 2

1 2

1 2

( ) ( ) ( )

n n n n n n

n n m
n n n n n

n x S R I n
n

im im
as rs os os isn n

x E E E E E E

E E A E E A EA E Q K A S S S S S E
t t x x x t E

E EQ K A M M M M M AR
x x x

+ − ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂ ∂
= − + + + + + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

 
(3.5.9.1.43)

 
1 1/ 2( ) ( ) 0

n n
n nE E

t

+ +−
=

Δ
 (3.5.9.1.44)

 

First, solve equation (3.5.9.1.43) and get 1/ 2n
nE + . Second, solve equation (3.5.9.1.44) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual 
species concentration and 1( )n

nE + . Iteration between these two steps is needed because reaction term 
in equation (3.5.9.1.43) needs to be updated by the results of (3.5.9.1.44). 
 
To solve equation (3.5.9.1.43), assign 
 

1 20          ( )
n n

m
n

HS HS S R I
n

A ER and L S S S S S
t E

∂⎡ ⎤= = + + + + −⎢ ⎥∂⎣ ⎦
 (3.5.9.1.45)

 
Then the right hand side RHSn and left hand side LHSn should be continuously calculated as following. 
 

* ,    0    

* ,    0    *

rs n n n

n

n n

rs
R R HS HS Enrs

E m m
R n R HS HS R n n

S E if S R R M
M

S E if S L L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.46)

 

* ,    0    ,

* ,    0    *

as n n n

n

n

as
S S HS HS Enas

E m m
S n S n HS S n n

S E if S R R M
M

S E if S LHS L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.47)

 

1
1

1 11

1 1 1

* ,    0    

* ,    0    *

os n n n

n

n n

m os
n HS HS Eos

E m m
n HS HS n n

S E if S R R M
M

S E if S L L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.48)
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2
2

2 22

2 2 2

* ,    0    

* ,    0    *

os n n n

n

n n

m os
n HS HS Eos

E m m
n HS HS n n

S E if S R R M
M

S E if S L L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.49)

 
* ,    0    

* ,    0    *

is n n n

n

n n

m is
I n I HS HS Eis

E m m
I n I HS HS I n n

S E if S R R M
M

S E if S L L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.50)

 

Equation (3.5.9.1.43) is then simplified as 
 

1/ 2( ) ( )
n n n

n n im im
n n n n n n

n x HS n x HS E
E E A E E E EA E Q K A L E Q K A R AR

t t x x x x x x

+ ⎡ ⎤⎛ ⎞− ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + − + = − + +⎢ ⎥⎜ ⎟ ⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
 (3.5.9.1.51)

 

Assign the true transport velocity Vtrue as follows. 
 

trueAV Q=  (3.5.9.1.52)
 

Then equation (3.5.9.1.51) is simplified as 
 

1/ 2( ) ( )
n n n

n n im im
nn n n n n n

true x HS n x HS E
E E E E A E EA A V K A L E Q K A R AR

t x x x t x x x

+ ⎡ ⎤⎛ ⎞− ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − + + = − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 (3.5.9.1.53)

 

Equation (13.5.9.1.53) in the Lagrangian and Eulerian form is as follows. 
 

1/ 2( ) ( ) 0
n n

n n n n
true

dE E E EV
d t xτ

+ − ∂
= + =

Δ ∂
 (3.5.9.1.54)

 

n n

im im
n n n n

x HS n x HS n E
dE E A E EA K A L E Q K A R AR
d x x t x x xτ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + + = − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 (3.5.9.1.55)

 

First, solve equation (3.5.9.1.54) to obtain the Lagrangian values by particle tracking. Then, deal 
with Eulerian equation (3.5.9.1.55) by finite element method. 
 
Equation (3.5.9.1.55) written in a slightly different form is shown as follows. 
 

*n
n L

dE D K E T R
dτ

− + = +  (3.5.9.1.56)

where 
1 n

x
ED K A

A x x
∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠

 (3.5.9.1.57)

 

nHS
AL
tK

A

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠=  (3.5.9.1.58)

 

n nHS E
L

R AR
R

A
+

=  (3.5.9.1.59)

 

1 im im
n n

x
E ET Q K A

A x x x
⎡ ⎤⎛ ⎞∂ ∂ ∂

= −⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
 (3.5.9.1.60)

 



 3-140

Equation (3.5.9.1.56) written in matrix form is then expressed as 
 

{ } { } { }

{ } { } ( ){ } { } { } { } { }

1/ 2 1 1 1/ 2
1 1

** * 1 * 1 *
2 2 1 2 1 2

[ ]                      

[ ]

n n n n
n n

n n
n n L L

U E W D W K E

U E W D W KE W T W T W R W R

τ

τ

+ + + +

+ +

⎡ ⎤− + =⎣ ⎦Δ

+ − + + + +
Δ

 
(3.5.9.1.61)

 

where [Kn+1] is the diagonal matrix with K calculated at (n+1)-th time step as its components, the 
diffusion term D  expressed in term of nE  and term T  expressed in term of im

nE  is solved by the 
following procedure. 
 
Approximate D  by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

D D D t N x
=

≈ = ∑  (3.5.9.1.62)

 

According to equation (3.5.9.1.57), the integration of equation (3.5.9.1.62) can be written as 
 

1 1 1
1

( ) ( )
N N Nx x xN

n
i i j j i x

jx x x

EN ADdx N A D t N x dx N K A dx
x x=

∂ ∂⎛ ⎞= = ⎜ ⎟∂ ∂⎝ ⎠
∑∫ ∫ ∫  (3.5.9.1.63)

 

Integrating by parts, we obtain 
 

1 1

2

1 1

( )
N N Bx xN

i n n
i j j x i x

j Bx x

dN E EN AN dx D K A dx N K A
dx x x=

⎡ ⎤⎛ ⎞ ∂ ∂
= − +⎢ ⎥⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫  (3.5.9.1.64)

 

Approximate nE  by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N x
=

≈ = ∑  (3.5.9.1.65)

 

Equation (3.5.9.1.64) is further expressed as                                
 

1 1

2

1 1 1

( ) ( )
N N Bx xN N

ji n
i j j x n j i x

j j Bx x

dNdN EN AN dx D K A dx E N K A
dx x x= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ∂
= − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫  (3.5.9.1.66)

 

Assign matrices [ 1A ] and [ 2A ] and load vector { 1B } as following 
 

1

1
Nx

ij i j
x

A N AN dx= ∫  (3.5.9.1.67)

 

1

2 ( )
Nx

ji
ij x

x

dNdNA K A dx
dx dx

= ∫  (3.5.9.1.68)

 

1 n
i i x

b

EB nN K A
x

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (3.5.9.1.69)

 

Equation (3.5.9.1.66) is expressed as 
 

{ } { } { }[ 1] [ 2] 1nA D A E B= − +  (3.5.9.1.70)
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Lump matrix [A1] into diagonal matrix and assign   
 

2 / 1ij ij iiQE A A=  (3.5.9.1.71)
 

1 1 / 1i i iiQB B A=  (3.5.9.1.72)
Then 

{ } { } { }[ ] 1nD QE E QB= − +  (3.5.9.1.73)
 

Approximate T by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

T T T t N x
=

≈ = ∑  (3.5.9.1.74)

 

According to equation (3.5.9.1.60), the integration of equation (3.5.9.1.74) can be written as 
 

1 1 1
1

( ) ( )
N N Nx x x im imN

n n
i i j j i x

jx x x

E EN ATdx N A T t N x dx N Q K A dx
x x x=

⎡ ⎤⎛ ⎞∂ ∂ ∂
= = −⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

∑∫ ∫ ∫  (3.5.9.1.75)

 

Integrating by parts, we obtain 
 

1 1 1

2

1 1

N N N
Bx x xim im imN

n i n n
i j j i x i x

j x x x B

E dN E EN AN dx T N Q dx K A dx N K A
x dx x x=

⎡ ⎤⎛ ⎞ ∂ ∂ ∂
= + +⎢ ⎥⎜ ⎟⎜ ⎟ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫  (3.5.9.1.76)

 
Approximate En

im by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

im im im
n n nj j

j

E E E t N x
=

≈ = ∑  (3.5.9.1.77)

 

Equation (3.5.9.1.76) is further expressed as                                
 

N N

1 1

N

1

x xN N
j im

i j j i n j
j 1 j 1x x

B2x imN
j imi n

x n j i x
j 1 x B1

dN
N AN dx T N Q dx (E )

dx

dNdN EK A dx (E ) N K A
dx dx x

∂
∂

= =

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
=⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑∫ ∫

∑ ∫

 
(3.5.9.1.78)

 

Assign matrices [A3], and load vector {B2} as following 
 

1

3
Nx

j
ij i

x

dN
A N Q dx

dx
= ∫  (3.5.9.1.79)

 

2 -
im

n
i i x

b

EB nN K A
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (3.5.9.1.80)

Assign   
( 2 3 ) / 1ij ij ij iiQT A A A= +  (3.5.9.1.81)

 
2 2 / 1i i iiQB B A=  (3.5.9.1.82)

 

Equation (3.5.9.1.78) is expressed as 
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{ } { } { }[ ] 2im
nT QT E QB= +  (3.5.9.1.83)

So that  
{ } { } { } { } { }[ ] [ ] im

n nD T QE E QT E B+ = − + +  (3.5.9.1.84)
 

where boundary term {B} is calculated as follows 
 

1 2 1
m

n
i i i x ii

b

EB QB QB nK A A
x

⎛ ⎞∂
= + = ⎜ ⎟∂⎝ ⎠

 (3.5.9.1.85)

 
Dirichlet boundary condition 
 

( ) ( , )
( , )    1

m m
n j n bm m

n n b i i x ii

E E x t
E E x t B nN K A A

x
−

= ⇒ =
Δ

 (3.5.9.1.86)

 

where j is the interior node connected to the boundary node. 
 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0) 
 

( , )    ( , ) 1
m

m m m mn
n x n b i n n b ii

En QE AK nQE x t B nQE nQE x t A
x

⎛ ⎞∂ ⎡ ⎤− = ⇒ = −⎜ ⎟ ⎣ ⎦∂⎝ ⎠
 (3.5.9.1.87)

 

When Flow is going out from inside (nQ > 0) 
 

0    0
m

n
x i

EnAK B
x

∂
− = ⇒ =

∂
 (3.5.9.1.88)

 
Cauchy boundary condition 
 

( , )    ( , ) 1
m

m mn
n x En b i n En b ii

En QE AK Q x t B nQE Q x t A
x

⎛ ⎞∂ ⎡ ⎤− = ⇒ = −⎜ ⎟ ⎣ ⎦∂⎝ ⎠
 (3.5.9.1.89)

 
Neumann boundary condition 
 

( , )     ( , ) 
m

n
x En b i En b

EnAK Q x t B Q x t
x

∂
− = ⇒ = −

∂
 (3.5.9.1.90)

 

Equation (3.5.9.1.61) can be written as matrix equation as following 
 

{ } { } { } ( ){ }
{ } ( ){ } { } { }( ) { } { } { }

1/ 21/ 2 1 1/ 2 1 1/ 2 1
1 1 1

** * * 1 * 1
2 2 1 2 1

[ ] [ ] [ ]

[ ]

nn n n n n n im
n n n n

n n
n n L L

U E W QE E W K E W QT E

U E W KE W D T W R W R W B

τ

τ

++ + + + + +

+ +

⎡ ⎤+ + −⎣ ⎦Δ

= − + + + + +
Δ

 
(3.5.9.1.91)

So that 
{ }1/ 2[ ] { }n

nCMATRX E RLD+ =  (3.5.9.1.92)

where 
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1 1 1
1 1 1

[ ][ ] [ ] [ ]
im

n n n n

n

EUCMATRX W QE W K W QT
Eτ

+ + +⎡ ⎤= + + −⎣ ⎦Δ
 (3.5.9.1.93)

 

{ } ( ){ } { } { }( ) { } { } { }** * * 1 * 1
2 2 1 2 1

[ ]{ } n n
n n L L

URLD E W KE W D T W R W R W B
τ

+ += − + + + + +
Δ

 (3.5.9.1.94)
 

 
At junctions, if nQ > 0, flow is going from reach to the junction. Assign 
 

{ } { } { } { }1 1 1
1 21 1

nm
m n n nn

n ii x ii
ERLDW RLD nQE A W B W nK A A

x
+ + +

⎧ ⎫⎛ ⎞∂⎪ ⎪= + − − ⎨ ⎬⎜ ⎟∂⎝ ⎠⎪ ⎪⎩ ⎭

 (3.5.9.1.95)

 

Equation (3.5.9.1.89) is modified as  
 

{ }1/ 2
n[ ] E / 1 { }n

iiCMATRX Flux A RLDW+ + =  (3.5.9.1.96)
 
 

If nQ < 0, flow is going from junction to the reach, apply equation (3.5.7.1.57),  
 

( ) ( )
( )

m m
n j n im

i n i x

E E
Flux n Q E K A

x
⎡ ⎤−

= −⎢ ⎥
Δ⎢ ⎥⎣ ⎦

 (3.5.9.1.97)

 

So that junction concentration and flux can be solved by the matrix equation assembled with 
equation (3.5.7.1.48), (3.5.9.1.96) and (3.5.9.1.97). 
 
3.5.9.2 Mixed Predictor-corrector/Operator-Splitting Scheme 
 
The continuity equation for kinetic-variables in advective form is shown as follows. 
 

1 2

1 2

( )

                   
n n n n n n

m m
mn n n

n x S R I n

as rs os os is
E E E E E E

E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.9.2.1)

 

At (n+1)-th time step, equation (3.5.9.2.1) is approximated by 
 

1

1 2

1 2

( ) ( ) ( )

                            
n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.9.2.2)

 

According to Mixed Predictor-corrector/Operator-Splitting Scheme, equation (3.5.9.2.2) can be 
separated into two equations as follows 
 

1/ 2

1 2

1 2

( ) ( ) ( )

                              ( )
n n n n n n

m n m n m m
m mn n n n
n x S R I n

as rs os os is n im n
E E E E E E n

E E A E E AA E Q K A S S S S S E
t t x x x t

AM M M M M AR E
t

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
∂

= + + + + + −
∂

 
(3.5.9.2.3)

 
1 1/ 2

1 1[( ) ( ) ] ( ) ( )( ) ( )
n n

n m n im n
n n im n im nn n n

E E n n
E E E nA nAR R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A  (3.5.9.2.4)
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First, solve equation (3.5.9.2.3) and get 1/ 2( )m n
nE + . Second, solve equation (3.5.9.2.4) together 

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the 
individual species concentration.  
 
To solve equation (3.5.9.2.3), assign and calculate RHSn and LHSn the same as that in section (3.5.7.2). 
 Equation (3.5.9.2.3) is then simplified as 
 

1/ 2( ) ( ) ( )
n n

m n m n m m
m m n im nn n n n
n x HS n HS n n

E E A E E AA E Q K A L E R AR E
t t x x x t

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂
+ + − + = + −⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.9.2.5)

 

Assign the true transport velocity Vtrue as follows. 
 

trueAV Q=  (3.5.9.2.6)
 

Then equation (3.5.9.2.5) is simplified as 
 

1/ 2( ) ( ) ( )
n n n

m n m n m m
m n im nn n n n

true x HS n HS E n
E E E E A AA AV K A L E R AR E

t x x x t t

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎛ ⎞+ − + + = + −⎜ ⎟⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.9.2.7)

 

Equation (3.5.9.2.7) in the Lagrangian and Eulerian form is as follows. 
 

1/ 2( ) ( ) 0
m m n m n m

n n n n
true

dE E E EV
d t xτ

+ − ∂
= + =

Δ ∂
 (3.5.9.2.8)

 

( )
n n n

m m
m n im nn n

x HS n HS E n
dE E A AA K A L E R AR E
d x x t tτ

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞− + + = + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.9.2.9)

 

First, solve equation (3.5.9.2.8) to obtain the Lagrangian values by particle tracking. Then, deal with 
Eulerian equation (3.5.9.2.9) by finite element method. 
 
Equation (3.5.9.2.9) written in a slightly different form is shown as follows. 
 

*
m

mn
n L

dE D K E R
dτ

− + =  (3.5.9.2.10)

where 
1 m

n
x

ED K A
A x x

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

 (3.5.9.2.11)

 

nHS
AL
tK

A

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠=  (3.5.9.2.12)

 

( )
n n

n im n
HS E n

L

AR AR E
tR

A

∂
+ −

∂=  (3.5.9.2.13)

 

Equation (3.5.9.2.10) written in matrix form is then expressed as 
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( ){ } { } ( ){ }
( ){ } { } ( ){ } { } { }

1/ 2 1/ 21 1
1 1

* ** 1 *
2 2 1 2

[ ]  

[ ]

n nm n n m
n n

m m n
n n L L

U E W D W K E

U E W D W KE W R W R

τ

τ

+ ++ +

+

⎡ ⎤− + =⎣ ⎦Δ

+ − + +
Δ

 
(3.5.9.2.14)

 

According to section 3.5.9.1,  
 

{ } { } { }[ ] m
nD QE E B= − +  (3.5.9.2.15)

 

where [QE] and {B} are the same as those in section 3.5.9.1. 
 
Equation (3.5.9.2.14) can be written as matrix equation as following 
 

( ){ } ( ){ } ( ){ }
( ){ } ( ){ } { } { } { } { }

1/ 2 1/ 2 1/ 21 1
1 1

* * * 1 * 1
2 2 1 2 1

[ ]          [ ]

[ ]

n n nm n m n m
n n n

m m n n
n n L L

U E W QE E W K E

U E W KE W D W R W R W B

τ

τ

+ + ++ +

+ +

⎡ ⎤+ + ⎣ ⎦Δ

= − + + + +
Δ

 
(3.5.9.2.16)

So that 
( ){ }1/ 2

[ ] { }
nm

nCMATRX E RLD
+

=  (3.5.9.2.17)

where 
1 1

1 1
[ ][ ] [ ]n nUCMATRX W QE W K

τ
+ +⎡ ⎤= + + ⎣ ⎦Δ

 (3.5.9.2.18)
 

( ){ } ( ){ } { } { } { } { }* * * 1 * 1
2 2 1 2 1

[ ]{ } m m n n
n n L L

URLD E W KE W D W R W R W B
τ

+ += − + + + +
Δ

 (3.5.9.2.19)
 

 
At junctions, if nQ > 0, flow is going from reach to the junction. Assign 
 

{ } { } { } { }1 1 1
1 21 1

nm
m n n nn

n ii x ii
ERLDW RLD nQE A W B W nK A A

x
+ + +

⎧ ⎫⎛ ⎞∂⎪ ⎪= + − − ⎨ ⎬⎜ ⎟∂⎝ ⎠⎪ ⎪⎩ ⎭

 (3.5.9.2.20)

 

Equation (3.5.9.1.17) is modified as  
 

{ }1/ 2[ ] ( ) 1 { }m n
n iiCMATRX E Flux A RLDW+ + =  (3.5.9.2.21)

 

If nQ < 0, flow is going from junction to the reach, apply equation (3.5.7.1.37),  
 

( ) ( )
( )

m m
n j n im

i n i x

E E
Flux n Q E K A

x
⎡ ⎤−

= −⎢ ⎥
Δ⎢ ⎥⎣ ⎦

 (3.5.9.2.22)

 

Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.2.32), 
(3.5.9.2.21) and (3.5.9.2.22). 
 
 
3.5.9.3 Operator-Splitting 
 
The continuity equation for kinetic-variables in advective form is shown as follows. 
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1 2

1 2

( )

                   
n n n n n n

m m
mn n n

n x S R I n

as rs os os is
E E E E E E

E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.9.3.1)

 

At n+1-th time step, equation (3.5.9.3.1) is approximated by 
 

1

1 2

1 2

( ) ( ) ( )

                            
n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.9.3.2)

 

According to Operator-splitting scheme, equation (3.5.9.3.2) can be separated into two equations as 
follows 
 

1/ 2

1 2

1 2

( ) ( ) ( )

                              
n n n n n

m n m n m m
m mn n n n
n x S R I n

as rs os os is
E E E E E

E E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + +

 
(3.5.9.3.3)

 
1 1/ 2

1 1( ) [( ) ( ) ] ( ) ( )
n

n m n im n
n im nn n n

E n
E E E nAAR E

t t

+ +
+ +− + ∂

= −
Δ ∂

A  (3.5.9.3.4)

 

First, solve equation (3.5.9.3.3) and get 1/ 2( )m n
nE + . Second, solve equation (3.5.9.3.4) together 

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the 
individual species concentration.  
 
To solve equation (3.5.9.3.3), assign and calculate RHSn and LHSn the same as that in section (3.5.8.1). 
Equation (3.5.9.3.3) is then simplified as 
 

1/ 2( ) ( )
n n

m n m n m m
m mn n n n
n x HS n HS

E E A E EA E Q K A L E R
t t x x x

+ ⎛ ⎞− ∂ ∂ ∂ ∂
+ + − + =⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.9.3.5)

 

Assign the true transport velocity Vtrue as follows. 
 

trueAV Q=  (3.5.9.3.6)
 

Then equation (3.5.9.3.5) is simplified as 
 

1/ 2( ) ( )
n n

m n m n m m
mn n n n

true x HS n HS
E E E E AA AV K A L E R

t x x x t

+ ⎛ ⎞− ∂ ∂ ∂ ∂⎛ ⎞+ − + + =⎜ ⎟⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.9.3.7)

 

Equation (3.5.9.3.7) in the Lagrangian and Eulerian form is as follows. 
 

1/ 2( ) ( ) 0
m m n m n m

n n n n
true

dE E E EV
d t xτ

+ − ∂
= + =

Δ ∂
 (3.5.9.3.8)

 

n n

m m
mn n

x HS n HS
dE E AA K A L E R
d x x tτ

⎛ ⎞∂ ∂ ∂⎛ ⎞− + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.9.3.9)

 

First, solve equation (3.5.9.3.8) to obtain the lagrangian values by particle tracking. Then, deal with 
Eulerian equation (3.5.9.3.9) by finite element method. 
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Equation (3.5.9.3.9) written in a slightly different form is shown as follows. 
 

*
m

mn
n L

dE D K E R
dτ

− + =  (3.5.9.3.10)

where 
1 m

n
x

ED K A
A x x

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

 (3.5.9.3.11)

 

nHS
AL
tK

A

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠=  (3.5.9.3.12)

 

nHS
L

R
R

A
=  (3.5.9.3.13)

 

Equation (3.5.9.3.10) written in matrix form is then expressed as 
 

( ){ } { } ( ){ }
[ ] ( ){ } { } ( ){ } { } { }

1/ 2 1/ 21 1
1 1

* ** 1 *
2 2 1 2

[ ]       
n nm n n m

n n

m m n
n n L L

U E W D W K E

U
E W D W KE W R W R

τ

τ

+ ++ +

+

⎡ ⎤− + =⎣ ⎦Δ

+ − + +
Δ

 
(3.5.9.3.14)

 

According to section 3.5.9.1,  
 

{ } { } { }[ ] m
nD QE E B= − +  (3.5.9.3.15)

 

where [QE] and {B} are the same as those in section 3.5.9.1. 
 
Equation (3.5.9.3.14) can be written as matrix equation as following 
 

( ){ } ( ){ } ( ){ }
[ ] ( ){ } ( ){ } { } { } { } { }

1/ 2 1/ 2 1/ 21 1
1 1

* * * 1 * 1
2 2 1 2 1

[ ]        [ ]
n n nm n m n m

n n n

m m n n
n n L L

U E W QE E W K E

U
E W KE W D W R W R W B

τ

τ

+ + ++ +

+ +

⎡ ⎤+ + ⎣ ⎦Δ

= − + + + +
Δ

 
(3.5.9.3.16)

So that 
( ){ }1/ 2

[ ] { }
nm

nCMATRX E RLD
+

=  (3.5.9.3.17)

where 
n+1 1

1 1
[ ][ ] [QE ] nUCMATRX W W K

τ
+⎡ ⎤= + + ⎣ ⎦Δ

 (3.5.9.3.18)
 

[ ] ( ){ } ( ){ } { } { } { } { }* * * 1 * n+1
2 2 1 2 1{ } Bm m n

n n L L

U
RLD E W KE W D W R W R W

τ
+= − + + + +

Δ
 (3.5.9.3.19)

 

At junctions, if nQ > 0, flow is going from reach to the junction. Assign 
 

{ } { } { } { }1 1 1
1 21 1

nm
m n n nn

n ii x ii
ERLDW RLD nQE A W B W nK A A

x
+ + +

⎧ ⎫⎛ ⎞∂⎪ ⎪= + − − ⎨ ⎬⎜ ⎟∂⎝ ⎠⎪ ⎪⎩ ⎭

 (3.5.9.3.20)

 

Equation (3.5.9.1.19) is modified as  
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{ }1/ 2[ ] ( ) 1 { }m n
n iiCMATRX E Flux A RLDW+ + =  (3.5.9.3.21)

 

If nQ < 0, flow is going from junction to the reach, apply equation (3.5.7.1.37),  
 

( ) ( )
( )

m m
n j n im

i n i x

E E
Flux n Q E K A

x
⎡ ⎤−

= −⎢ ⎥
Δ⎢ ⎥⎣ ⎦

 (3.5.9.3.22)

 

 
Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.3.32), 
(3.5.9.3.21) and (3.5.9.3.22). 
 
 
3.5.10 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Conservative Form of the Transport Equations for the Upstream Flux Boundaries to 
Solve 1-D Kinetic Variable Transport 

 
3.5.10.1 Fully-Implicit Scheme 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.5.9.1, and the matrix equation for junction and 
upstream boundary nodes is obtained through the same procedure as that in section 3.5.7.1.  
 
3.5.10.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.5.9.2, and the matrix equation for junction and 
upstream boundary nodes is obtained through the same procedure as that in section 3.5.7.2.  
 
3.5.10.3 Operator-Splitting Approach 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.5.9.3, and the matrix equation for junction and 
upstream boundary nodes is obtained through the same procedure as that in section 3.5.7.3.  
 
 
3.5.11 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve 
1-D Kinetic Variable Transport 

 
3.5.11.1 Fully-Implicit Scheme 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.5.9.1, and the matrix equation for junction and 
upstream boundary nodes is obtained through the same procedure as that in section 3.5.8.1.  
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3.5.11.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.5.9.2, and the matrix equation for junction and 
upstream boundary nodes is obtained through the same procedure as that in section 3.5.8.2.  
 
3.5.11.3 Operator-Splitting Approach 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.5.9.3, and the matrix equation for junction and upstream 
boundary nodes is obtained through the same procedure as that in section 3.5.8.3 
 
 

3.6 Solving Two-Dimensional Overland Water Quality Transport Equations 
 
In this section, we present the numerical approaches employed to solve the governing equations of 
reactive chemical transport. Ideally, one would like to use a numerical approach that is accurate, 
efficient, and robust. Depending on the specific problem at hand, different numerical approaches 
may be more suitable. For research applications, accuracy is a primary requirement, because one 
does not want to distort physics due to numerical errors. On the other hand, for large field-scale 
problems, efficiency and robustness are primary concerns as long as accuracy remains within the 
bounds of uncertainty associated with model parameters. Thus, to provide accuracy for research 
applications and efficiency and robustness for practical applications, three coupling strategies were 
investigated to deal with reactive chemistry. They are: (1) a fully-implicit scheme, (2) a mixed 
predictor-corrector/operator-splitting method, and (3) an operator-splitting method. For each time-
tep, we first solve the advective-dispersive transport equation with or without reaction terms, 
kinetic-variable by kinetic-variable. We then solve the reactive chemical system node-by-node to 
yield concentrations of all species.  
 
Five numerical options are provided to solve the advective-dispersive transport equations: Option 1- 
application of the Finite Element Method (FEM) to the conservative form of the transport equations, 
Option 2 - application of the FEM to the advective form of the transport equations, Option 3 - 
application of the modified Lagrangian-Eulerian (LE) approach to the Largrangian form of the 
transport equations, Option 4 - LE approach for all interior nodes and downstream boundary nodes 
with the FEM applied to the conservative form of the transport equations for the upstream flux 
boundaries, and Option 5 - LE approach for all interior and downstream boundary nodes with the 
FEM applied to the advective form of the transport equations for upstream flux boundaries. 
 
 
3.6.1 Two-Dimensional Bed Sediment Balance Equation 
 
At n+1-th time step, the continuity equation for 2-D bed sediment transport, equation (3.2.1), is 
approximated as 
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1
1 1

1 2( ) ( )
n n

n n n nn n
n n n n

M M W D R W D R
t

+
+ +−

≈ − + −
Δ

 (3.6.1.1)  
 

So that 
( ) ( )1 1 1

1 2
n n n n n n

n n n n n nM M W D R t W D R t+ + += + − Δ + − Δ  (3.6.1.2)  
 

If the calculated 1n
nM +  < 0, assign 1n

nM +  = 0, so that  
 

( ) ( ) ( )1 1 1
1 2 1/ /n n n n n n

n n n n n nR M M W t W D R W D+ + +≈ − Δ + − +  (3.6.1.3)  
 
 
3.6.2 Application of the Finite Element Method to the Conservative Form of the Transport 

Equations to Solve 2-D Suspended Sediment Transport 
 
Recall the governing equation for 2-D suspended sediment transport, equation (2.6.10), as follows 
 

( ) ( ) ( ) ,  [1, ]as rs
n n

n
n n n n sS S

hS S h S M M R D n N
t

∂
∂

+ ∇ ⋅ − ∇ ⋅ ⋅∇ = + + − ∈q K  (3.6.2.1)  
 

Assign and calculate the right hand side term RHS and left hand side term LHS as follows. 
 

  0      

(1) :    0,   ,      *  

(2) :    0,   ,      *

HS HS n n

as
S HS HS S HS HS S n

rs
R HS HS R HS HS R n

Assign L and R R D then continuously calculate

If S L L S ELSE R R S S

If S L L S ELSE R R S S

= = −

≤ = − = +

≤ = − = +

 (3.6.2.2)  

 

where  as
nS is the concentration of the n-th fraction suspended sediment in the artificial source and 

 rs
nS is the concentration of the n-th fraction suspended sediment in the rainfall source.  Then 

equation (3.6.2.1) is modified as 
 

( ) ( ) ( ) *n
n n HS n HS

hS S h S L S R
t

∂
+ ∇ ⋅ − ∇⋅ ⋅∇ + =

∂
q K  (3.6.2.3)  

 

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport 
equation: choose weighting function identical to base function. For Petriov-Galerkin method, apply 
weighting function one-order higher than the base function to advection term. Integrate equation 
(3.6.2.3) in the spatial dimensions over the entire region as follows. 
 

( ) ( ) *  ( )  n
i n HS n i n i HS

R R R

hSN h S L S dR W S dR N R dR
t

∂⎡ ⎤− ∇⋅ ⋅∇ + + ∇⋅ =⎢ ⎥∂⎣ ⎦∫ ∫ ∫K q  (3.6.2.4)  

 

Further, we obtain 
 

( )   ( )  *

                   ( ) 

n
i i n i n i HS n

R R R R

i HS i n i n
R B B

hSN dR W S dR N h S dR N L S dR
t

N R dR W S dB N h S dB

∂
− ∇ ⋅ + ∇ ⋅ ⋅∇ +

∂

= − ⋅ + ⋅ ⋅∇

∫ ∫ ∫ ∫

∫ ∫ ∫

q K

n q n K

 
(3.6.2.5)  

 

Approximate solution Sn by a linear combination of the base functions as shown by equation 
(3.6.2.6). 
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1

ˆ ( ) ( )
N

n n nj j
j

S S S t N R
=

≈ = ∑  (3.6.2.6)  

 

Substituting equation (3.6.2.6) into equation (3.6.2.5), we obtain 
 

1

1

  ( )    ( )

( )
  ( )

N

i HS j i j i j nj
j R R R

N
nj

i j i HS i n i n
j R R B

hN L N dR W N dR N h N dR S t
t

dS t
N hN dR N R dR W S N h S dB

dt

=

=

⎧ ⎫⎡ ⎤∂⎪ ⎪+ − ∇ ⋅ + ∇ ⋅ ⋅∇⎨ ⎬⎢ ⎥∂⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤⎛ ⎞

+ = − ⋅ − ⋅∇⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫ ∫

q K

n q K

 
(3.6.2.7)  

 

Equation (3.6.2.7) can be written in matrix form as  
 

[ 1] ([ 1] [ 2] [ 3]){ } { } { }n
n

dSCMATRX Q Q Q S SS B
dt

⎧ ⎫ + + + = +⎨ ⎬
⎩ ⎭

 (3.6.2.8)  

 

where the matrices [CMATRX1], [Q1], [Q2], [Q3] and load vectors {RLD}, and {B} are given by  
 

1ij i j
R

CMATRX N hN dR= ∫  
(3.6.2.9)  

 

1 ( )ij i HS j
R

hQ N L N dR
t

∂
= +

∂∫  (3.6.2.10)

 

2ij i j
R

Q W N dR= − ∇ ⋅∫ q  
(3.6.2.11)

 

3ij i j
R

Q N h N dR= − ∇ ⋅ ⋅ ∇∫ K  
(3.6.2.12)

 

ij i HS
R

SS N R dR= ∫  
(3.6.2.13)

 

( )i i n i n
B

B n W S N h S dB= − ⋅ − ⋅ ∇∫ q K  
(3.6.2.14)

 

where all the integrations are evaluated with the corresponding time weighting values. 
 
At n+1-th time step, equation (3.6.2.8) is approximated as  
 

1
1

1 2[ 1] [ 2]{ } { } { }
n n

n nn n
n n

S SCMATRX CMATRX W S W S SS B
t

+
+⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.6.2.15)

where 
[ 2] [ 1] [ 2] [ 3]CMATRX Q Q Q= + +  (3.6.2.16)

So that  
1[ ]{ } { } { }n

nCMATRX S RLD QB+ = +  (3.6.2.17)
where 
 

1
[ 1][ ] [ 2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.2.18)
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2
[ 1]{ } [ 2] { } { }n

n
CMATRXRLD W CMATRX S SS

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.6.2.19)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
 
Dirichlet boundary condition 
 

( , , )n n b bS S x y t=  (3.6.2.20)
 
Variable boundary condition 
 
< Case 1 > Flow is going in from outside (n·q < 0). 
 

( )
B

( , , )    ( , , )n n n b b i i n b bS h S S x y t B W S x y t dB⋅ − ⋅∇ = ⋅ ⇒ = − ⋅∫n q K n q n q  
(3.6.2.21)

 

< Case 2 > Flow is going out from inside (n·q > 0). 
 

( )
B

0    n i i nh S B W S dB− ⋅ ⋅∇ = ⇒ = − ⋅∫n K n q  
(3.6.2.22)

 
Cauchy boundary condition 
 

( )
B

( , , )    ( , , )n n S n b b i i S n b bS h S Q x y t B WQ x y t dB⋅ − ⋅∇ = ⇒ = −∫n q K  
(3.6.2.23)

 
Neumann boundary condition 
 

( )
B B

( , , )    ( , , )n S n b b i i n i S n b bh S Q x y t B W S dB N Q x y t dB− ⋅ ⋅ ∇ = ⇒ = − ⋅ +∫ ∫n K n q  
(3.6.2.24)

 
River/stream-overland interface boundary condition  
 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

1

1

B

1 1 1 ( , , )  
2

1  1 1 ( , , )
2

D
n n n n b b

D
i i n n b b

S h S sign S sign S x y t

B W sign S sign S x y t dB

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⇒ = − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫

n q K n q n q n q

n q n q n q

 
(3.6.2.25)

 
 
3.6.3 Application of the Finite Element Method to the Advective Form of the Transport 

Equations to Solve 2-D Suspended Sediment Transport 
 
Conversion of the governing equation for 2-D suspended sediment transport, equation (2.6.10), to 
advection form is expressed as 
 

( ) as rs
n n

n
n n n n nS S

S hh S h S S M M R D
t t

∂ ∂⎛ ⎞+ ⋅∇ − ∇ ⋅ ⋅∇ + + ∇ ⋅ = + + −⎜ ⎟∂ ∂⎝ ⎠
q K q  (3.6.3.1)  

 
 

According to governing equation for 2-D water flow, equation (2.2.1), assign and calculate the right-
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hand side term RHS and left hand side term LHS as follows. 
 

Assign  -   and  then continuously calculate

(1) :    0,   ,      *  

(2) :    0,   ,      *

HS S R E I HS n n
as

S HS HS S HS HS S n

rs
R HS HS R HS HS R n

L S S S S R R D

If S L L S ELSE R R S S

If S L L S ELSE R R S S

= + + = −

≤ = − = +

≤ = − = +

 (3.6.3.2)  

 

Then equation (3.6.3.1) is modified as 
 

( ) *n
n n HS n HS

Sh S h S L S R
t

∂
+ ⋅∇ − ∇ ⋅ ⋅∇ + =

∂
q K  (3.6.3.3)  

 

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport 
equation. Integrate equation (3.6.3.3) in the spatial dimensions over the entire region as follows. 
 

( ) *n
i n HS n i n i HS

R R R

SN h h S L S dR W S dR N R dR
t

∂⎡ ⎤− ∇⋅ ⋅∇ + + ⋅∇ =⎢ ⎥∂⎣ ⎦∫ ∫ ∫K q  (3.6.3.4)  

 

Further, we obtain 
 

( )  *

                       ( ) 

n
i i n i n i HS n

R R R R

i HS i n
R B

SN h dR W S dR N h S dR N L S dR
t

N R dR N h S dB

∂
+ ⋅∇ + ∇ ⋅ ⋅∇ +

∂

= + ⋅ ⋅∇

∫ ∫ ∫ ∫

∫ ∫

q K

n K

 
(3.6.3.5)  

 

Approximate solution Sn by a linear combination of the base functions as shown by equation 
(3.6.3.6). 
 

1

ˆ ( ) ( )
N

n n nj j
j

S S S t N R
=

≈ = ∑  (3.6.3.6)  

 

Substituting equation (3.6.3.6) into equation (3.6.3.5), we obtain 
 

( )
1

1

( )

( )
 ( )

N

i HS j i j i j nj
j R R R

N
nj

i j i HS i n
j R R B

N L N dR W N dR N h N dR S t

dS t
N hN dR N R dR N h S dB

dt

=

=

⎧ ⎫⎡ ⎤⎪ ⎪+ ⋅∇ + ∇ ⋅ ⋅∇⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤⎛ ⎞
+ = + ⋅ ⋅∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫ ∫

q K

n K

 
(3.6.3.7)  

 

Equation (3.6.3.7) can be written in matrix form as  
 

[ 1] ([ 1] [ 2] [ 3]){ } { } { }n
n

dSCMATRX Q Q Q S SS B
dt

⎧ ⎫ + + + = +⎨ ⎬
⎩ ⎭

 (3.6.3.8)  

 

where the matrices [CMATRX1], [Q1], [Q2], [Q3] and load vectors {RLD}, and {B} are given by  
 

1ij i j
R

CMATRX N hN dR= ∫  
(3.6.3.9)  

 

1ij i HS j
R

Q N L N dR= ∫  
(3.6.3.10)

 

2ij i j
R

Q W N dR= ⋅ ∇∫ q  
(3.6.3.11)
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3ij i j
R

Q N h N dR= − ∇ ⋅ ⋅ ∇∫ K  
(3.6.3.12)

 

ij i HS
R

SS N R dR= ∫  
(3.6.3.13)

 

( )i i n
B

B N h S dB= ⋅ ⋅ ∇∫ n K  
(3.6.3.14)

 

where all the integrations are evaluated with the corresponding time weighting values. 
 
At n+1-th time step, equation (3.6.3.8) is approximated as  
 

1
1

1 2[ 1] [ 2]{ } { } { }
n n

n nn n
n n

S SCMATRX CMATRX W S W S SS B
t

+
+⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.6.3.15)

 

where 
 

[ 2] [ 1] [ 2] [ 3]CMATRX Q Q Q= + +  (3.6.3.16)
 

So that  
 

1[ ]{ } { } { }n
nCMATRX S RLD QB+ = +  (3.6.3.17)

 

where 
 

1
[ 1][ ] [ 2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.3.18)

 

2
[ 1]{ } [ 2] { } { }n

n
CMATRXRLD W CMATRX S SS

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.6.3.19)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
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Dirichlet boundary condition 
 

( , , )n n b bS S x y t=  (3.6.3.20)
 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·q < 0) 
 

( ) ( , , )    ( , , )n n n b b i i n i n b b
B B

S h S S x y t B N S dB N S x y t dB⋅ − ⋅∇ = ⋅ ⇒ = ⋅ − ⋅∫ ∫n q K n q n q n q  
(3.6.3.21)

 

< Case 2 > Flow is going out from inside (n·q > 0): 
 

( ) 0    0n ih S B− ⋅ ⋅∇ = ⇒ =n K  (3.6.3.22)
 
Cauchy boundary condition 
 

( ) ( , , )    ( , , )n n S n b b i i n i S n b b
B B

qS h S Q x y t B N S dB N Q x y t dB⋅ − ⋅∇ = ⇒ = ⋅ −∫ ∫n K n q  
(3.6.3.23)

 
Neumann boundary condition 
 

( ) ( , , )    ( , , )n S n b b i i S n b b
B

h S Q x y t B N Q x y t dB− ⋅ ⋅ ∇ = ⇒ = −∫n K  
(3.6.3.24)

 
River/stream-overland interface boundary condition  
 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

1

1

1        1 1 ( , , )  
2

1  1 1 ( , , )
2

D
n n n n b b

D
i i n i n n b b

B B

S h S sign S sign S x y t

B N S dB N sign S sign S x y t dB

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⇒ = ⋅ − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫

n q K n q n q n q

n q n q n q n q

 
(3.6.3.25)

 
 
3.6.4 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form 

of the Transport Equations to Solve 2-D Suspended Sediment Transport 
 
Recall governing equation for 2-D suspended sediment transport in advection form, equation 
(3.6.3.1), as follows   
 

n n nS (h S ) S asn
n n n

S hh M R D
t t

∂ ∂
∂ ∂

⎛ ⎞+ ⋅∇ − ∇ ⋅ ⋅∇ + + ∇ ⋅ = + −⎜ ⎟
⎝ ⎠

q K q  (3.6.4.1)  

 

Assign and calculate RHS and LHS in the same way as that in section 3.6.3. Then equation (3.6.4.1) is 
simplified as 
 

n n nS (h S ) *Sn
HS HS

Sh L R
t

∂
∂

+ ⋅∇ − ∇ ⋅ ⋅∇ + =q K  (3.6.4.2)  
 

Equation (3.6.4.2) in the Lagrangian and Eulerian form is written as follows.  
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In lagrangian step, 
 

0    0n n n
n n

dS S Sh h S S
d t tτ

∂ ∂
= + ⋅∇ = ⇒ + ⋅∇ =

∂ ∂
q v  (3.6.4.3)  

 

where particle-tracking velocity v is the flow velocity.  
 
In Eulerian step,  
 

n n(h S ) *Sn
HS HS

dSh L R
dτ

− ∇⋅ ⋅∇ + =K  (3.6.4.4)  
 

where Δτ is the tracking time, * corresponds to the previous time step value at the location where 
node i is tracked through particle tracking in Lagrangian step. 
 
Equation (3.6.4.4) written in a slightly different form is shown as  
 

n*SndS D K RL
dτ

− + =  (3.6.4.5)  

where 
1 ( )nD h S
h

= ∇⋅ ⋅∇K  (3.6.4.6)  
 

HSLK
h

=  (3.6.4.7)  
 

HSRRL
h

=  (3.6.4.8)  
 

Equation (3.6.4.5) written in matrix form is then expressed as 
 

{ } { } { }

{ } { } ( ){ } { } { }

1 1 1 1
1 1

** * 1 *
2 2 1 2

[ ]          

[ ]

n n n n
n n

n
n n

U S W D W K S

U S W D W KS W RL W RL

τ

τ

+ + + +

+

⎡ ⎤− + =⎣ ⎦Δ

+ − + +
Δ

 
(3.6.4.9)  

 

where [Kn+1] is a diagonal matrix with K calculated at n+1-th time step as its diagonal components..  
 
The diffusion term D expressed in term of Sn is solved by the following procedure. 
 
Approximate D by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

D D D t N R
=

≈ = ∑  (3.6.4.10)

 

where N is the number of nodes. According to equation (3.6.4.6), the integration of equation 
(3.6.4.10) can be written as 
 

1

( ) ( ) ( )
N

i i j j i n
jR R R

N hDdR N h D t N R dR N h S dR
=

= = ∇ ⋅ ⋅ ∇∑∫ ∫ ∫ K  (3.6.4.11)
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Further, we obtain 
 

1

* ( ) ( )
N

i j j i n i n
j R R B

N hN dR D N h S dR N h S dB
=

⎡ ⎤⎛ ⎞
= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∫ ∫ ∫K n K  (3.6.4.12)

 

Approximate Sn by a linear combination of the base functions as follows. 
 

1

( ) ( )
N

n n nj j
j

S S S t N R
=

≈ = ∑
�  (3.6.4.13)

 

Equation (3.6.4.12) is further expressed as 
 

1 1

* ( ) *( ) ( )
N N

i j j i j n j i n
j jR R B

N hN dR D N h N dR S N h S dB
= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= − ∇ ⋅ ⋅ ∇ + ⋅ ⋅∇⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ ∑∫ ∫ ∫K n K  (3.6.4.14)

 

Assign matrices [QA] and [QD] and load vector {QB} as following. 
 

ij i j
R

QA N hN dR= ∫  
(3.6.4.15)

 

( )ij i j
R

QD N h N dR= ∇ ⋅ ⋅∇∫ K  
(3.6.4.16)

 

( )i i n
B

QB N h S dB= ⋅ ⋅∇∫n K  
(3.6.4.17)

 

Equation (3.6.4.14) is expressed as 
 

{ } { } { }[ ] [ ] nQA D QD S QB= − +  (3.6.4.18)
 

Lump matrix [QA] into diagonal matrix and update   
 

/ij ij iiQD QD QA=  (3.6.4.19)
 

/i i iiB QB QA=  (3.6.4.20)
 

Then 
 

{ } { } { }[ ] nD QD S B= − +  (3.6.4.21)
 

According to equation (3.6.4.21), Equation (3.6.4.9) can be modified as following 
 

{ } { }1[ } n
nCMATRX S RLD+ =  (3.6.4.22)

 

where 
 

1 1
1 1

[ ][ ] [ ]n nUCMATRX W QD W K
τ

+ +⎡ ⎤= + + ⎣ ⎦Δ
 (3.6.4.23)

 

{ } { } { } ( ){ } { } { }** * 1 * 1
2 2 1 2 1

[ ] { }n n
n n

URLD S W D W KS W RL W RL W B
τ

+ += + − + + +
Δ

 (3.6.4.24)
 

For interior nodes, the boundary term {B} is zero. For boundary node i = b, {B} should be 
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calculated as follows. 
 
Dirichlet boundary condition 
 

( , , )    ( )n n b b i i n ii
B

S S x y t B N h S dB QA= ⇒ = ⋅ ⋅∇∫n K  
(3.6.4.25)

 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·q < 0) 
 

( )                 ( , , )

  ( , , )
n n n b b

i i n ii i n b b ii
B B

S h S S x y t

B N S dB QA N S x y t dB QA

⋅ − ⋅∇ = ⋅

⇒ = ⋅ − ⋅∫ ∫
n q K n q

n q n q
 (3.6.4.26)

 

< Case 2 > Flow is going out from inside (n·q > 0): 
 

( ) 0    0n ih S B− ⋅ ⋅∇ = ⇒ =n K  (3.6.4.27)
 
Cauchy boundary condition 
 

( )                ( , , )

  ( , , )
n n S n b b

i i n ii i S n b b ii
B B

S h S Q x y t

B N S dB QA N Q x y t dB QA

⋅ − ⋅∇ =

⇒ = ⋅ −∫ ∫
n q K

n q
 (3.6.4.28)

 
Neumann boundary condition 
 

( ) ( , , )    ( , , )n S n b b i i S n b b ii
B

h S Q x y t B N Q x y t dB QA− ⋅ ⋅ ∇ = ⇒ = −∫n K  
(3.6.4.29)

 
River/stream-overland interface boundary condition  
 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

1

1

1                  1 1 ( , , )  
2

1  1 1 ( , , )
2

D
n n n n b b

D
i i n ii i n n b b ii

B B

S h S sign S sign S x y t

B N S dB QA N sign S sign S x y t dB QA

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⇒ = ⋅ − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫

n q K n q n q n q

n q n q n q n q

 
(3.6.4.30)

 

 
At upstream flux boundary nodes, equation (3.6.4.9) cannot be applied because Δτ equals zero. 
Thus, we propose a modified LE approach in which the matrix equation for upstream boundary 
nodes is obtained by explicitly applying the finite element method to the boundary conditions. 
Applying FEM at the upstream variable boundary side, we get  
 

( ) ( , , )i n n i n b b
B B

N S h S dB N S x y t dB⋅ − ⋅∇ = ⋅∫ ∫n q K n q  (3.6.4.31)

 

So that the following matrix equation can be assembled at the upstream variable boundary node 
 

[ ]{ } [ ]{ }nQF S QB B=  (3.6.4.32)
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in which 

( )ij i j i j
B

QF N N N h N dB= ⋅ − ⋅ ⋅∇∫ n q n K  (3.6.4.33)

 

ij i j
B

QB N N dB= ⋅∫ n q  (3.6.4.34)

 

( , , ) i n b bB S x y t=  (3.6.4.35)
 

Similarly, equation (3.6.2.32) can be applied to Cauchy boundary with [QB] and {B} defined 
differently as  
 

ij i j
B

QB N N dB= ∫  (3.6.4.36)

 

( , , ) 
ni S b bB Q x y t=  (3.6.4.37)

 
At upstream river/stream-overland interface boundary, [QB] is calculated by equation (3.6.2.34), and 
{B} is defined as  
 

1 ( , , ) D
i n b bB S x y t=  (3.6.4.38)

 
 
3.6.5 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Conservative Form of the Transport Equations for the Upstream Flux Boundaries to 
Solve 2-D Suspended Sediment Transport 

 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.6.4, and the matrix equation for upstream 
boundary nodes is obtained through the same procedure as that in section 3.6.2.  
 
 
3.6.6 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve 
2-D Suspended Sediment Transport 

 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.6.4, and the matrix equation for upstream boundary nodes is 
obtained through the same procedure as that in section 3.6.3. 
 
 
3.6.7 Application of the Finite Element Method to the Conservative Form of the Transport 

Equations to Solve 2-D Kinetic Variable Transport 
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3.6.7.1 Fully-implicit scheme 
 
Recall the governing equation for 2-D kinetic variable transport, equation (2.6.46), as follows 
 

( ) ( ) ,  [1,  ]  as rs is nn n n

m mn
n n n E EE E E

E hh E E h E M M M hR n M N
t t

∂ ∂
∂ ∂

+ + ∇⋅ − ∇⋅ ⋅∇ = + + + ∈ −q K  (3.6.7.1.1)

 

At n+1-th time step, equation (3.6.7.1.1) is approximated by 
 

1( ) ( ) ( ) ( ) as rs is nn n n

n n
m mn n

n n n EE E E

E E hh E qE hK E M M M hR
t t

∂
∂

+ −
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + + +

Δ
 (3.6.7.1.2)

 

where the superscripts n and n+1 represent the time step number. Terms without superscript should 
be the corresponding average values calculated with time weighting factors W1 and W2.  
 
According to Fully-implicit scheme, equation (3.6.7.1.2) can be separated into two equations as 
follows 
 

1/ 2( ) ( ) ( ) ( ) as rs is nn n n

n n
m mn n

n n n EE E E

E E hh E E h E M M M hR
t t

∂
∂

+ −
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + + +

Δ
q K  (3.6.7.1.3)

 
1 1/ 2( ) ( ) 0

n n
n nE E

t

+ +−
=

Δ
 (3.6.7.1.4)

 

First, we express En
m in terms of (En

m/En)·En to make En’s as primary dependent variables, so that 
En

n+1/2 can be solved through equation (3.6.7.1.3). Second, we solve equation (3.6.7.1.4) together 
with algebraic equations for equilibrium reactions using BIOGEOCHEM to obtain all individual 
species concentrations. Iteration between these two steps is needed because the new reaction terms 
RAn

n+1 and the equation coefficients in equation (3.6.7.1.3) need to be updated by the calculation 
results of (3.6.7.1.4). To improve the standard SIA method, the nonlinear reaction terms are 
approximated by the Newton-Raphson linearization. 
 
To solve equation (3.6.7.1.3), assign 
 

0          0HS HSR and L= =  (3.6.7.1.5)
 

Then the right hand side RHS and left hand side LHS should be continuously calculated as following. 
 

* ,    0    

* ,    0    

rs n

n

rs
R n R HS n HS n Ers

E m
R n R HS n HS n R

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.7.1.6)

 
* ,    0    ,

* ,    0    

as n

n

as
S n S HS n HS n Eas

E m
S n S HS n HS n S

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.7.1.7)

 
* ,    0    

* ,    0    

is n

n

m is
I n I HS n HS n Eis

E m
I n I HS n HS n I

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.7.1.8)

 

Equation (3.6.7.1.3) is then simplified as: 
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1/ 2( ) ( ) ( ) ( )
n

n n
m m mn n

n n n HS n HS E
E E hh E E h E L E R hR

t t
∂
∂

+ −
+ + ∇ ⋅ − ∇ ⋅ ⋅∇ + = +

Δ
q K  (3.6.7.1.9)

 

Express En
m in terms of (En

m /En) En
m to make En’s as primary dependent variables, 

 
1/ 2( ) ( )

 
n

n n m m
n n n n

n n
n n

m m
n n

n HS n HS E
n n

E E E Eh E h E
t E E

E E hh E L E R hR
E E t

∂
∂

+ ⎛ ⎞ ⎛ ⎞−
+ ∇ ⋅ − ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞
− ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

q K

K

 
(3.6.7.1.10)

 

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport 
equation. Integrate equation (3.6.7.1.10) in the spatial dimensions over the entire region as follows. 
 

                                   ( )
n

m m m
n n n n

i n i n n
n n nR R

m
n

HS n i HS E
nR Ri

E E E EN h h E dR W E h E dR
t E E E

E hN L E dR N R hR dR
E t

∂
∂

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ⎪ ⎪− ∇ ⋅ ⋅ ∇ + ∇ ⋅ − ∇ ⋅ ⋅ ∇⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
⎛ ⎞

+ + = +⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫

K q K
 

(3.6.7.1.11)

 

Further, we obtain 
 

                                        ( )

           

n

m m m
n n n n

i i n i n i n
n n nR R R R

m
n

HS n i HS E
nR Ri

m
n

i n
nB

E E E EN h dR W E dR N h E dR W h E dR
t E E E

E hN L E dR N R hR dR
E t

EW E dB
E

∂
∂

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
− ∇ ⋅ + ∇ ⋅ ⋅ ∇ + ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
+ + = +⎜ ⎟

⎝ ⎠

− ⋅

∫ ∫ ∫ ∫

∫ ∫

∫

q K K

n q
m m

n n
i n i n

n nB B

E EN h E dB W h E dB
E E

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫n K n K

 
(3.6.7.1.12)

 

Approximate solution En by a linear combination of the base functions as follows 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N R
=

≈ = ∑  (3.6.7.1.13)

 

Substituting Equation (3.6.7.1.13) into Equation (3.6.7.1.12), we obtain 
 

1

         ( )

( )
                  

m m
n n

i j i jN
n nR R

njm mj n n
i j HS j

n nR R i

nj
i j

R

E EW N dR W h N dR
E E

E t
E E hN h N dR N L N dR
E E t

E t
N hN dR

t

∂
∂

=

⎧ ⎫⎡ ⎤⎡ ⎤⎛ ⎞
− ∇ ⋅ + ∇ ⋅ ⋅ ∇⎪ ⎪⎢ ⎥⎢ ⎥⎜ ⎟

⎪ ⎪⎝ ⎠⎢ ⎥⎣ ⎦
⎨ ⎬⎢ ⎥⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥+ ∇ ⋅ ⋅ ∇ + +⎜ ⎟ ⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

⎡ ⎤∂⎛ ⎞
+ ⎢⎜ ⎟ ∂⎢⎝ ⎠⎣ ⎦

∫ ∫
∑

∫ ∫

∫

q K

K

( )
1

n

N

i HS E
j R

m m m
n n n

i n i n i n
n n nB B B

N R hR dR

E E EW E dB N h E dB W h E dB
E E E

=

= +⎥
⎥

⎡ ⎤⎛ ⎞ ⎛ ⎞
− ⋅ + ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∫

∫ ∫ ∫n q n K n K

 (3.6.7.1.14)

 

Equation (3.6.7.1.14) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 1] [ 2] [ 3] [ 4]n
n

ECMATRX Q Q Q Q E SS B
t

∂⎧ ⎫ + + + + = +⎨ ⎬∂⎩ ⎭
 (3.6.7.1.15)
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The matrices [CMATRX1],  [Q1], [Q2], [Q3], [Q4], and load vectors {SS}, {B} are given by 
 

1ij i j
R

CMATRX N hN dR= ∫  
(3.6.7.1.16)

 

1
m

n
ij i j

nR

EQ W N dR
E

= − ∇ ⋅∫ q  (3.6.7.1.17)

 

2
m

n
ij i j

nR

EQ W h N dR
E

⎡ ⎤⎛ ⎞
= ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫ K  (3.6.7.1.18)

 

3
m

n
ij i j

nR

EQ N h N dR
E

⎛ ⎞
= ∇ ⋅ ⋅ ∇⎜ ⎟

⎝ ⎠
∫ K  (3.6.7.1.19)

 

4
m

n
ij HS j

nR i

E hQ N L N dR
E t

∂
∂

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∫  (3.6.7.1.20)

 

( )ni i HS E
R

SS N R hR dR= +∫  
(3.6.7.1.21)

 
m m m

n n n
i i n i n i n

n n nB B B

E E EB W E dB N h E dB W h E dB
E E E

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − ⋅ + ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫ ∫n q n K n K  (3.6.7.1.22)

 

Equation (3.6.7.1.15) is then simplified as 
 

{ } { } { }[ 1] [ 2]n
n

ECMATRX CMATRX E SS B
t

∂⎧ ⎫ + = +⎨ ⎬∂⎩ ⎭
 (3.6.7.1.23)

where 
[ 2] [ 1] [ 2] [ 3] [ 4]CMATRX Q Q Q Q= + + +  (3.6.7.1.24)

 

Further,                                        
 

( ) ( ) { } { }
1/ 2

1/ 2
1 2

{ } { }
[ 1] [ 2] { } { }  

n n
n n n n

n n

E E
CMATRX CMATRX W E W E SS B

t

+
+

−
+ + = +

Δ
 (3.6.7.1.25)

So that   
{ }1/ 2[ ] { }  n

nCMATRX E RLD+ =  (3.6.7.1.26)

where 

1
[ 1][ ] *[ 2] CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.7.1.27)

 

{ } { } { }2
[ 1]{ } *[ 2]  n

n
CMATRXRLD W CMATRX E SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.6.7.1.28)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
 

( )m m
i i n i n

B B

B W E dB N h E dB= − ⋅ + ⋅ ⋅∇∫ ∫n q n K  
(3.6.7.1.29)

 
Dirichlet boundary condition 
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( , , )m m

n n b bE E x y t=  (3.6.7.1.30)
 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·q <0) 
 

( ) ( , , )     ( , , )m m m m
n n n b b i i n b b

B

E h E E x y t B W E x y t dB⋅ − ⋅∇ = ⋅ ⇒ = − ⋅∫n q K n q n q  
(3.6.7.1.31)

 

< Case 2 > Flow is going out from inside (n·q > 0): 
 

( ) 0    m m
n i i n

B

h E B W E dB− ⋅ ⋅∇ = ⇒ = − ⋅∫n K n q  
(3.6.7.1.32)

 
Cauchy boundary condition 
 

( ) ( , , )    ( , , )m m m m
n n En b b i i En b b

B

E h E Q x y t B W Q x y t dB⋅ − ⋅∇ = ⇒ = −∫q Kn  
(3.6.7.1.33)

 
Neumann boundary condition 
 

( ) ( , , )     ( , , )m m m
n En b b i i n i En b b

B B

h E Q x y t B W E dB N Q x y t dB− ⋅ ⋅ ∇ = ⇒ = − ⋅ −∫ ∫n K n q  
(3.6.7.1.34)

 
River/stream-overland interface boundary condition  
 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

1

1

1 1 1 ( , , )
2

1      1 1 ( , , )
2

mm m m D
n n n n b b

mm D
i i n n b b

B

E h E sign E sign E x y t

B W sign E sign E x y t dB

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⇒ = − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫

n q K n q n q n q

n q n q n q

 
(3.6.7.1.35)

 

Note: In the equation (3.6.7.1.18), assign  
 
 
3.6.7.2 Mixed Predictor-corrector/Operator-splitting scheme 
 
Recall the governing equation for 2-D kinetic variable transport at n+1-th time step, equation 
(3.6.7.1.2), as follows 
 

1( ) ( ) ( ) ( ) as rs is nn n n

n n
m mn n

n n n EE E E

E E hh E E h E M M M hR
t t

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + + +

Δ ∂
q K  (3.6.7.2.1)

 

According to mixed Predictor-corrector/Operator-splitting scheme, equation (3.6.7.2.1) can be 
separated into two equations as follows 
 

( )

1/ 2( ) ( ) ( ) ( )

( )as rs is nn n n

m n m n
m m mn n
n n n

n im n
E nE E E

E E hh E E h E
t t

hM M M h R E
t

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ =

Δ ∂
∂

+ + + −
∂

q K  
(3.6.7.2.2)
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1 1/ 2
1 1[( ) ( ) ] ( ) ( )( ) ( ) ( )

n n

n m n im n
n n im n im nn n n

E E n n
E E E n h n hhR h R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A  (3.6.7.2.3)

 

First, solve equation (3.6.7.2.2) and get (En
m)n+1/2. Second, solve equation (3.6.7.2.3) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual 
species concentration.  
 
Assign and calculate the right hand side RHS and left hand side LHS the same as that in section 
3.6.7.1, equation (3.6.7.2.2) is then simplified as: 
 

( )
1/ 2( ) ( ) ( ) ( ) ( )

n

m n m n nm m m im nn n
n n HS n HS E n

E E h hh E h E L E R h R E
t t t

+ − ∂ ∂⎛ ⎞+ ∇ ⋅ − ∇ ⋅ ⋅∇ + + = + −⎜ ⎟Δ ∂ ∂⎝ ⎠
q K  (3.6.7.2.4)

 

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport 
equation. Integrate equation (3.6.7.2.4) in the spatial dimensions over the entire region as follows 
 

( ) ( )

          ( )
n

m
n m mn

i n i n
R R

m n im n
i HS n i HS E n

R R

EN h h E dR W E dR
t

h hN L E dR N R hR E dR
t t

⎡ ⎤∂
− ∇ ⋅ ⋅ ∇ + ∇ ⋅⎢ ⎥∂⎣ ⎦

∂ ∂⎛ ⎞ ⎛ ⎞+ + = + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

K q
 

(3.6.7.2.5)

 

Further, we obtain 
 

( )

( )        ( )
n

m
m m mn

i i n i n i HS n
R R R R

n im n m m
i HS E n i n i n

R B B

E hN h dR W E dR N h E dR N L E dR
t t

hN R hR E dR W E dB N h E dB
t

∂ ∂⎛ ⎞− ∇ ⋅ + ∇ ⋅ ⋅∇ + +⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞= + − − ⋅ + ⋅ ⋅∇⎜ ⎟∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫ ∫

q K

n q n K

 
(3.6.7.2.6)

 

Approximate solution En
m by a linear combination of the base functions as follows 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j

E E E t N R
=

≈ = ∑  (3.6.7.2.7)

 

Substituting Equation (3.6.7.2.7) into Equation (3.6.7.2.6), we obtain 
 

( )
1

1

( )

( )
            ( )

                         

n

N
m

i j i j i HS j nj
j R R R

mN
njn n im n

i j i HS E n
j R R

m
i n

hW N dR N h N dR N L N dR E t
t

E t hN h N dR N R hR E dR
t t

W E dB

=

=

⎧ ⎫⎡ ⎤∂⎪ ⎪⎛ ⎞− ∇ ⋅ + ∇ ⋅ ⋅∇ + +⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤∂⎛ ⎞ ∂⎛ ⎞+ = + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

− ⋅

∑ ∫ ∫ ∫

∑ ∫ ∫

q K

n q ( )m
i n

B B

N h E dB+ ⋅ ⋅∇∫ ∫n K

 
(3.6.7.2.8)

 

Equation (3.6.7.2.8) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 1] [ 3] [ 4]
m

mn
n

ECMATRX Q Q Q E SS B
t

⎧ ⎫∂
+ + + = +⎨ ⎬∂⎩ ⎭

 (3.6.7.2.9)

 

The matrices [CMATRX1],  [Q1], [Q3], [Q4], and load vectors {SS}, {B} are given by 
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1ij i j
R

CMATRX N hN dR= ∫  
(3.6.7.2.10)

 

1ij i j
R

Q W N dR= − ∇ ⋅∫ q  
(3.6.7.2.11)

 

( )3ij i j
R

Q N h N dR= ∇ ⋅ ⋅ ∇∫ K  
(3.6.7.2.12)

 

4ij HS j
iR

hQ N L N dR
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫  (3.6.7.2.13)

 

( )
n

n im n
i i HS E n

R

hSS N R hR E dR
t

∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫  (3.6.7.2.14)

 

( )m m
i i n i n

B B

B W E dB N h E dB= − ⋅ + ⋅ ⋅∇∫ ∫n q n K  
(3.6.7.2.15)

 

Equation (3.6.7.2.9) is then simplified as 
 

{ } { } { }[ 1] [ 2]n
n

ECMATRX CMATRX E SS B
t

∂⎧ ⎫ + = +⎨ ⎬∂⎩ ⎭
 (3.6.7.2.16)

where 
[ 2] [ 1] [ 3] [ 4]CMATRX Q Q Q= + +  (3.6.7.2.17)

 

Further,  
 

{ } { }

1/ 2

1/ 2
1 2

{( ) } {( ) }
             [ 1]

[ 2] {( ) } {( ) }  

m n m n
n n

m n m n
n n

E E
CMATRX

t
CMATRX W E W E SS B

+

+

⎡ ⎤−⎣ ⎦
Δ

⎡ ⎤+ + = +⎣ ⎦

 
(3.6.7.2.18)

So that 
{ }1/ 2[ ] ( ) { }m n

nCMATRX E RLD+ =  (3.6.7.2.19)

where 

1
[ 1][ ] *[ 2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.7.2.20)

 

{ } { } { }2
[ 1]{ } *[ 2] ( )m n

n
CMATRXRLD W CMATRX E SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.6.7.2.21)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is the same as that in section 3.6.7.1. 
 
3.6.7.3 Operator-splitting scheme 
 
Recall the governing equation for 2-D kinetic variable transport at n+1-th time step, equation 
(3.6.7.1.2), as follows 
 

1( ) ( ) ( ) ( ) as rs is nn n n

n n
m mn n

n n n EE E E

E E hh E E h E M M M hR
t t

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + + +

Δ ∂
q K  (3.6.7.3.1)

 

According to Operator-splitting scheme, equation (3.6.7.3.1) can be separated into two equations as 
follows 
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1/ 2( ) ( ) ( ) ( ) as rs is

n n n

m n m n
m m mn n
n n n E E E

E E hh E E h E M M M
t t

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + +

Δ ∂
q K  (3.6.7.3.2)

 
1 1/ 2

1 1( ) [( ) ( ) ] ( )
n

n m n im n
n im nn n n

E n
E E E nhhR E

t t

+ +
+ +− + ∂

= −
Δ ∂

A  (3.6.7.3.3)

 

First, solve equation (3.6.7.3.2) and get (En
m)n+1/2. Second, solve equation (3.6.7.3.3) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual 
species concentration.  
 
Equation (3.6.7.3.2) can be solved through the same procedure as that in section 3.6.7.2, except for 
the load vectors {SS}, which is calculated by the following equation. 
 

1

e

e

M
e

i i HS
e R

SS N R dR
=

= ∑ ∫  (3.6.7.3.4)

 
 
3.6.8 Application of the Finite Element Method to the Advective Form of the Transport 

Equations to Solve 2-D Kinetic Variable Transport 
 
3.6.8.1 Fully-implicit scheme 
 
Conversion of the equation for 2-D kinetic variable transport Fully-implicit scheme transport step, 
equation (3.6.7.1.3), to advection form is expressed as 
 

( )
1/ 2( ) ( ) ( )

as rs is nn n n

n n
m m mn n

n n n n

EE E E

E E hh E E h E E
t t

M M M hR

+ − ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅ ∇ + ∇ ⋅ =

Δ ∂
+ + +

q K q  (3.6.8.1.1)

 

where S R Ih t S S S∂ ∂ + ∇⋅ = + +q  according to governing equation for 2-D flow. 
 
To solve equation (3.6.8.1.1), assign 
 

0          HS HS S R IR and L S S S h t= = + + − ∂ ∂  (3.6.8.1.2)
 

Then the right hand side RHS and left hand side LHS should be continuously calculated the same as 
that in section 3.6.7.1. Equation (3.6.8.1.1) is then simplified as: 
 

( )
n

m m mn
n n n HS n HS E

E hh E E h E L E R hR
t t

∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + = +

∂ ∂
q K  (3.6.8.1.3)

 

Express En
m in terms of (En

m /En) En
m to make En’s as primary dependent variables, 

 

        

n

m m
n n n

n n
n n

m m
n n

n HS n H E
n n

E E Eh E h E
t E E

E E hh E L E R S hR
E E t

⎛ ⎞ ⎛ ⎞∂
+ ⋅ ∇ − ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
−∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

q K

K

 
(3.6.8.1.4)
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Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport 
equation. Integrate equation (3.6.8.1.4) in the spatial dimensions over the entire region as follows. 
 

                                    ( )  
n

m m m
n n n n

i n i n n
n n nR R

m
n

i HS n i HS E
nR R

E E E EN h h E dR W E h E dR
t E E E

E hN L E dR N R hR dR
E t

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ⎪ ⎪− ∇ ⋅ ⋅ ∇ + ⋅ ∇ − ∇ ⋅ ⋅ ∇⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
⎛ ⎞∂

+ + = +⎜ ⎟∂⎝ ⎠

∫ ∫

∫ ∫

K q K
 

(3.6.8.1.5)

 

Further, we obtain 
 

              

                      

( )
n

m m
n n n

i i n i n
n nR R R

m m
n n

i n i HS n
n nR R

m
n

i HS E i n i
nR B

E E EN h dR W E dR N h E dR
t E E

E E hW h E dR N L E dR
E E t

EN R hR dR n N hK E dB n W h
E

⎛ ⎞∂
− ⋅∇ + ∇ ⋅ ⋅ ∇⎜ ⎟∂ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
+ ∇ ⋅ ⋅ ∇ + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
= + + ⋅ ⋅ ∇ + ⋅⎜ ⎟

⎝ ⎠

∫ ∫ ∫

∫ ∫

∫ ∫

q K

K

m
n

n
nB

EK E dB
E

⎡ ⎤⎛ ⎞
⋅ ∇⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫

 
(3.6.8.1.6)

 

Approximate solution En by a linear combination of the base functions as follows 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N R
=

≈ = ∑  (3.6.8.1.7)

 

Substituting Equation (3.6.8.1.7) into Equation (3.6.8.1.6), we obtain 
 

1

( )

                             

m m m
n n n

i j i j i jN
n n nR R R

njm mj n n
i j i HS j

n nR R

i j

E E EW N dR W N dR W h N dR
E E E

E t
E E hN h N dR N L N dR
E E t

N hN d

=

⎧ ⎫⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞
⋅ ∇ + ⋅ ∇ + ∇ ⋅ ⋅ ∇⎪ ⎪⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟

⎪ ⎪⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
⎨ ⎬⎢ ⎥⎛ ⎞ ⎛ ⎞∂⎪ ⎪⎢ ⎥+ ∇ ⋅ ⋅ ∇ + +⎜ ⎟ ⎜ ⎟⎪ ⎪⎢ ⎥∂⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

+

∫ ∫ ∫
∑

∫ ∫

q q K

K

( )
1

( )

                          

n

N
nj

i HS E
j R R

m m
n n

i n i n
n nB B

E t
R N R hR dR

t

E En N h E dB n W h E dB
E E

=

⎡ ⎤∂⎛ ⎞
= +⎢ ⎥⎜ ⎟ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∫ ∫

∫ ∫K K

 (3.6.8.1.8)

 

Equation (3.6.8.1.8) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 1] [ 2] [ 3] [ 4] [ 5]n
n

ECMATRX Q Q Q Q Q E SS B
t

∂⎧ ⎫ + + + + + = +⎨ ⎬∂⎩ ⎭
 (3.6.8.1.9)

 

The matrices [CMATRX1],  [Q1], [Q2], [Q3], [Q4], [Q5], and load vectors {SS}, {B} are given by 
 

1ij i j
R

CMATRX N hN dR= ∫  
(3.6.8.1.10)

 

1
m

n
ij i j

nR

EQ W N dR
E

= ⋅ ∇∫ q  (3.6.8.1.11)
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2
m

n
ij i j

nR

EQ W N dR
E

⎛ ⎞
= ⋅ ∇⎜ ⎟

⎝ ⎠
∫ q  (3.6.8.1.12)

 

3
m

n
ij i j

nR

EQ W h N dR
E

⎡ ⎤⎛ ⎞
= ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫ K  (3.6.8.1.13)

 

4
m

n
ij i j

nR

EQ N h N dR
E

⎛ ⎞
= ∇ ⋅ ⋅ ∇⎜ ⎟

⎝ ⎠
∫ K  (3.6.8.1.14)

 

5
m

n
ij i HS j

nR

E hQ N L N dR
E t

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

∫  (3.6.8.1.15)

 

( )ni i HS E
R

SS N R hR dR= +∫  
(3.6.8.1.16)

 
m m

n n
i i n i n

n nB B

E EB N h E dB W h E dB
E E

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫n K n K  (3.6.8.1.17)

 

Equation (3.6.8.1.9) is then simplified as 
 

{ } { } { }[ 1] [ 2]n
n

ECMATRX CMATRX E SS B
t

∂⎧ ⎫ + = +⎨ ⎬∂⎩ ⎭
 (3.6.8.1.18)

where 
[ 2] [ 1] [ 2] [ 3] [ 4] [ 5]CMATRX Q Q Q Q Q= + + + +  (3.6.8.1.19)

 

Further,  
 

( ) ( ) { } { }
1/ 2

1/ 2
1 2

{ } { }
[ 1] [ 2] { } { }

n n
n n n n

n n

E E
CMATRX CMATRX W E W E SS B

t

+
+

−
+ + = +

Δ
 (3.6.8.1.20)

So that 
{ }1/ 2[ ] { }n

nCMATRX E RLD+ =  (3.6.8.1.21)

where 

1
[ 1][ ] *[ 2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.8.1.22)

 

{ } { } { }n
2 n

[CMATRX1]{RLD} W *[CMATRX2] E SS B  
t

⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠
 (3.6.8.1.23)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
 

( )m
i i n

B

B N h E dB= ⋅ ⋅∇∫ n K  
(3.6.8.1.24)

 
Dirichlet boundary condition 
 

( , , )m m
n n b bE E x y t=  (3.6.8.1.25)

 
Variable boundary condition 
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< Case 1 > when flow is going in from outside (n·q < 0) 
 

( ) ( , , )    ( , , )m m m m m
n n n b b i i n i n b b

B B

E h E E x y t B N E dB N E x y t dB⋅ − ⋅∇ = ⋅ ⇒ = ⋅ − ⋅∫ ∫n q K n q n q n q  
(3.6.8.1.26)

 

< Case 2 > Flow is going out from inside (n·q > 0): 
 

( ) 0    0m
n ih E B− ⋅ ⋅∇ = ⇒ =n K  (3.6.8.1.27)

 
Cauchy boundary condition 
 

( ) ( , , )    ( , , )m m m m m
n n En b b i i n i En b b

B B

E h E Q x y t B N E dB N Q x y t dB⋅ − ⋅∇ = ⇒ = ⋅ −∫ ∫n q K n q  
(3.6.8.1.28)

 
Neumann boundary condition 
 

( ) ( , , )    ( , , )m m m
n En b b i i En b b

B

h E Q x y t B N Q x y t dB− ⋅ ⋅∇ = ⇒ = −∫n K  
(3.6.8.1.29)

 
River/stream-overland interface boundary condition  
 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

1

1

1 1 1 ( , , )   
2
1 1 1 ( , , )
2

mm m m D
n n n n b b

mm m D
i i n i n n b b

B B

E h E sign E sign E x y t

B N E dB N sign E sign E x y t dB

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅ ⇒⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= ⋅ − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫

n q K n q n q n q

n q n q n q n q

 
(3.6.8.1.30)

 
 
3.6.8.2 Mixed Predictor-corrector/Operator-splitting scheme 
 
Conversion of the equation for 2-D kinetic variable transport mixed Predictor-corrector/Operator-
splitting scheme transport step, equation (3.6.7.2.3), to advection form is expressed as 
 

( )
1/ 2( ) ( ) ( )

( )as rs is nn n n

m n m n
m m m mn n
n n n n

n im n
E nE E E

E E hh E E h E E
t t

hM M M hR E
t

+ − ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅∇ + ∇ ⋅ =

Δ ∂
∂

+ + + −
∂

q K q  
(3.6.8.2.1)

 

where S R Ih t S S S∂ ∂ + ∇⋅ = + +q  according to governing equation for 2-D flow. 
 
To solve equation (3.6.8.2.1), assign the right hand side RHS and left hand side LHS the same as that 
in section 3.6.8.1. Equation (3.6.8.2.1) is then simplified as: 
 

( ) ( )
n

m
m m m m n im nn
n n n HS n HS E n

E h hh E E h E L E R hR E
t t t

∂ ∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + = + −

∂ ∂ ∂
q K  (3.6.8.2.2)

 

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport 
equation. Integrate equation (3.6.8.2.4) in the spatial dimensions over the entire region as follows. 
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( )

      ( )  
n

m
m mn

i n i n
R R

m n im n
i HS n i HS E n

R R

EN h h E dR W E dR
t

h hN L E dR N R hR E dR
t t

⎡ ⎤∂
− ∇ ⋅ ⋅ ∇ + ⋅ ∇⎢ ⎥∂⎣ ⎦

∂ ∂⎛ ⎞ ⎛ ⎞+ + = + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

K q
 

(3.6.8.2.3)

 

Further, we obtain 
 

( )

( )                        ( )
n

m
m m mn

i i n i n i HS n
R R R R

n im n m
i HS E n i n

R B

E hN h dR W E dR N h E dR N L E dR
t t

hN R hR E dR n N hK E dB
t

∂ ∂⎛ ⎞− ⋅∇ + ∇ ⋅ ⋅∇ + +⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞= + − + ⋅ ⋅∇⎜ ⎟∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫

q K
 

(3.6.8.2.4)

 

Approximate solution En
m by a linear combination of the base functions as follows 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j

E E E t N R
=

≈ = ∑  (3.6.8.2.5)

 

Substituting Equation (3.6.8.2.5) into Equation (3.6.8.2.4), we obtain 
 

( )

( )

1

1

        ( )

( )
( )

n

N
m

i j i j i HS j nj
j R R R

mN
nj n im n m

i j i HS E n i n
j R R B

hW N dR N h N dR N L N dR E t
t

E t hN hN dR N R hR E dR N h E dB
t t

=

=

⎧ ⎫⎡ ⎤∂⎪ ⎪⎛ ⎞⋅∇ + ∇ ⋅ ⋅∇ + +⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤∂⎛ ⎞ ∂⎛ ⎞+ = + − + ⋅ ⋅∇⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫ ∫

q K

n K

 
(3.6.8.2.6)

 

Equation (3.6.8.2.6) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 1] [ 4] [ 5]n
n

ECMATRX Q Q Q E SS B
t

∂⎧ ⎫ + + + = +⎨ ⎬∂⎩ ⎭
 (3.6.8.2.7)

 

The matrices [CMATRX1],  [Q1], [Q4], [Q5], and load vectors {SS}, {B} are given by 
 

1ij i j
R

CMATRX N hN dR= ∫  
(3.6.8.2.8)

 

1ij i j
R

Q W N dR= ⋅∇∫ q  
(3.6.8.2.9)

 

( )4ij i j
R

Q N h N dR= ∇ ⋅ ⋅ ∇∫ K  
(3.6.8.2.10)

 

5ij i HS j
R

hQ N L N dR
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫  (3.6.8.2.11)

 

( )
n

n im n
i i HS E n

R

hSS N R hR E dR
t

∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫  (3.6.8.2.12)

 

( )i i n
B

B N h E dB= ⋅ ⋅∇∫ n K  
(3.6.8.2.13)

 

Equation (3.6.8.2.7) is then simplified as 
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{ } { } { }[ 1] [ 2]n
n

ECMATRX CMATRX E SS B
t

∂⎧ ⎫ + = +⎨ ⎬∂⎩ ⎭
 (3.6.8.2.14)

where 
[ 2] [ 1] [ 4] [ 5]CMATRX Q Q Q= + +  (3.6.8.2.15)

 

Further,  
 

( ) ( ) { } { }
1/ 2

1/ 2
1 2

{ } { }
[ 1] [ 2] { } { }

n n
n n n n

n n

E E
CMATRX CMATRX W E W E SS B

t

+
+

−
+ + = +

Δ
 (3.6.8.2.16)

So that 
{ }1/ 2[ ] { }n

nCMATRX E RLD+ =  (3.6.8.2.17)

where 

1
[ 1][ ] *[ 2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.8.2.18)

 

{ } { } { }2
[ 1]{ } *[ 2] n

n
CMATRXRLD W CMATRX E SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.6.8.2.19)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition calculated the same as that in section 3.6.8.1. 
 
3.6.8.3 Operator-splitting scheme 
 
Conversion of the equation for 2-D kinetic variable transport operator spitting scheme transport step, 
equation (3.6.7.3.3), to advection form is expressed as 
 

( )
1/ 2( ) ( ) ( ) as rs is

n n n

m n m n
m m m mn n
n n n n E E E

E E hh E E h E E M M M
t t

+ − ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅ ∇ + ∇ ⋅ = + +

Δ ∂
q K q  (3.6.8.3.1)

 

where S R Ih t q S S S∂ ∂ + ∇⋅ = + +  according to governing equation for 2-D flow. 
 
Equation (3.6.8.3.1) can be solved through the same procedure as that in section 3.6.8.2, except for 
the load vectors {SS}, which is calculated by the following equation. 
 

1

e

e

M
e

i i HS
e R

SS N R dR
=

= ∑ ∫  (3.6.8.3.2)

 
 
3.6.9 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form 

of the Transport Equations to Solve 2-D Kinetic Variable Transport 
 
3.6.9.1 Fully-implicit scheme 
 
Recall the equation for 2-D kinetic variable transport Fully-implicit scheme transport step in 
advection form, equation (3.6.8.1.1), as follows   
 

( )
1/ 2( ) ( ) ( ) as rs is nn n n

n n
m m mn n

n n n n EE E E

E E hh E E h E E M M M hR
t t

+ − ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅ ∇ + ∇ ⋅ = + + +

Δ ∂
q K q  (3.6.9.1.1)
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Express En
m in terms of (En

m/En)En or En-En
im to make En’s as primary dependent variables, equation 

(3.6.9.1.1) is modified as  
 

( ) ( )

( )

        

as rs is nn n n

m
n n

n n n n
n

im im
n n EE E E

E h Eh E E h E E
t t E

E h E M M M hR

∂ ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅ ∇ + ∇ ⋅

∂ ∂

= ⋅ ∇ − ∇ ⋅ ⋅ ∇ + + +

q K q

q K

 
(3.6.9.1.2)

 

To solve equation (3.6.9.1.2), assign 
 

( )0          m
HS HS S R I n nR and L S S S h t E E= = + + − ∂ ∂  (3.6.9.1.3)

 

Then the right hand side RHS and left hand side LHS should be continuously calculated as following. 
 

* ,    0    

* ,    0    

rs n

n

rs
R n R HS n HS n Ers

E m
R n R HS n HS n R

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.9.1.4)

 
* ,    0    ,

* ,    0    

as n

n

as
S n S HS n HS n Eas

E m
S n S HS n HS n S

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.9.1.5)

 
* ,    0    

* ,    0    

is n

n

m is
I n I HS n HS n Eis

E m
I n I HS n HS n I

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.9.1.6)

 

Equation (3.6.8.1.1) is then simplified as: 
 

( )( )
n

im imn
n n n HS n n n HS E

E hh E E h E L E E h E R hR
t t

∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + = ⋅∇ − ∇ ⋅ ⋅∇ + +

∂ ∂
q K q K  (3.6.9.1.7)

 

Assign the true transport velocity vtrue as follows 
 

trueh =v q  (3.6.9.1.8)
 

Equation (3.6.9.1.7) in the Lagrangian and Eulerian form is written as follows. In Lagrangian step, 
 

true0    0n n n n
n n

dE E dE Eh h E E
d t d tτ τ

∂ ∂
= + ⋅∇ = ⇒ = + ⋅∇ =

∂ ∂
q v  (3.6.9.1.9)

 

In Eulerian step, 
 

( )( )
n

im imn
n HS n n n HS E

dE hh h E L E E h E R hR
d tτ

∂⎛ ⎞− ∇⋅ ⋅∇ + + = ⋅∇ − ∇⋅ ⋅∇ + +⎜ ⎟∂⎝ ⎠
K q K  (3.6.9.1.10)

 

Equation (3.6.9.1.10) written in a slightly different form is shown as  
 

n
n L

dE D KE T R
dτ

− + = +  (3.6.9.1.11)

where 
1 ( )nD h E
h

= ∇⋅ ⋅∇K  (3.6.9.1.12)
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HS
hL
tK

h

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠=  (3.6.9.1.13)

 

nHS E
L

R hR
R

h
+

=  (3.6.9.1.14)

 

( )1 im im
n nT E h E

h
⎡ ⎤= ⋅∇ − ∇⋅ ⋅∇⎣ ⎦q K  (3.6.9.1.15)

 

According to section 3.6.4,  
 

{ } { } { }[ 1] [ 2] 1nA D A E B= − +  (3.6.9.1.16)
where 

1ij i j
R

A N hN dR= ∫  
(3.6.9.1.17)

 

2 ( )ij i j
R

A N h N dR= ∇ ⋅ ⋅∇∫ K  
(3.6.9.1.18)

 

1 ( )i i n
B

B N h E dB= ⋅ ⋅∇∫n K  
(3.6.9.1.19)

 
Lump matrix [A1] into diagonal matrix and assign   
 

2 / 1ij ij iiQE A A=  (3.6.9.1.20)
 

1 1 / 1i i iiQB B A=  (3.6.9.1.21)
Then 

{ } { }{ 1} 1D D QB= +  (3.6.9.1.22)
where 

{ }{ 1} [ ] nD QE E= −  (3.6.9.1.23)
 

Approximate T by a linear combination of the base functions as follows: 
 

1

ˆ ( ) ( )
N

j j
j

T T T t N R
=

≈ = ∑  (3.6.9.1.24)

 

According to equation (3.6.9.1.24), the integration of equation (3.6.9.1.15) can be written as 
 

( )
1

( ) ( )
N

im im
i i j j i n n

jR R R

N hTdR N h T t N R dR N E h E dR
=

⎡ ⎤= = ⋅∇ − ∇ ⋅ ⋅ ∇⎣ ⎦∑∫ ∫ ∫ q K  (3.6.9.1.25)

 

Further, we obtain 
 

( ) ( )
1

N
im im im

i j j i n i n i n
j R R R B

N hN dR T N E dR N h E dR N h E dB
=

⎡ ⎤⎛ ⎞
= ⋅ ∇ + ∇ ⋅ ⋅ ∇ − ⋅ ⋅∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∫ ∫ ∫ ∫q K n K  (3.6.9.1.26)

 

Approximate En
im by a linear combination of the base functions as follows: 
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1

ˆ ( ) ( )
N

im im im
n n nj j

j

E E E t N R
=

≈ = ∑  (3.6.9.1.27)

 

Equation (3.6.9.1.26) is further expressed as                                
 

( ) ( )

1 1

1

      ( )

( )

N N
im

i j j i j n j
j jR R

N
im im

i j n j i n
j R B

N hN dR T N N dR E

N h N dR E N h E dB

= =

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅∇⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞

+ ∇ ⋅ ⋅ ∇ − ⋅ ⋅∇⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑∫ ∫

∑ ∫ ∫

q

K n K

 
(3.6.9.1.28)

 

Assign matrices [A3], and load vector {B2} as following 
 

3ij i j
R

A N N dR= ⋅ ∇∫ q  
(3.6.9.1.29)

 

( )2 im
i i n

B

B N h E dB= − ⋅ ⋅∇∫n K  
(3.6.9.1.30)

 

Assign   
 

( 2 3 ) / 1ij ij ij iiQT A A A= +  (3.6.9.1.31)
 

2 2 / 1i i iiQB B A=  (3.6.9.1.32)
 

Equation (3.6.9.1.28) is expressed as 
 

{ } { }{ 1} 2T T QB= +  (3.6.9.1.33)
where 

{ }{ 1} [ ] im
nT QT E=  (3.6.9.1.34)

 

So that equation (3.6.9.1.11) is then expressed as 
 

1 1n
n L

dE D KE T R B
dτ

− + = + +  (3.6.9.1.35)
 

where B=B1+B2. For boundary node i = b, the boundary term {B} should be calculated as follows. 
 
For Dirichlet boundary condition 
 

( )( , , )    1m m m
n n b b i i n ii

B

E E x y t B N h E dB A= ⇒ = ⋅ ⋅ ∇∫ n K  
(3.6.9.1.36)

 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·q < 0) 
 

( )         ( , , )  

1 ( , , ) 1

m m m
n n n b b

m m
i i n ii i n b b ii

B B

E h E E x y t

B N E dB A N E x y t dB A

⋅ − ⋅∇ = ⋅ ⇒

= ⋅ − ⋅∫ ∫

n q K n q

n q n q
 (3.6.9.1.37)

 

< Case 2 > Flow is going out from inside (n·q > 0): 



 3-175

 
( , , ) 0    0m

n b b ih E x y t B⎡ ⎤− ⋅ ⋅∇ = ⇒ =⎣ ⎦n K  (3.6.9.1.38)

 
Cauchy boundary condition 
 

1

         ( , , ) ( , , ) ( )

        ( , , ) ( )

( )

m m
n b b n b b b

m
i i n b b b ii

B

N
m

i j nj ii i ii
j B B

E x y t h E x y t q t

B N E x y t q t dB QA

N N dB E t QA N dB B QA
=

⎡ ⎤⋅ − ⋅∇ =⎣ ⎦

⎡ ⎤⇒ = ⋅ −⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅ −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∑ ∫ ∫

n q K

n q

n q

 

(3.6.9.1.39)

 
Neumann boundary condition 
 

( , , ) ( )    ( )m
n b b b i i b ii i ii

B B

h E x y t q t B N q t dB QA N dB B QA
⎛ ⎞

⎡ ⎤− ⋅ ⋅ ∇ = ⇒ = − = − ⎜ ⎟⎣ ⎦
⎝ ⎠

∫ ∫n K  (3.6.9.1.40)

 
River/stream-overland interface boundary condition  
 

1

  ( , , ) ( , , ) ( ( ))  

   ( , , ) ( ( ))

( )

m m
n b b n b b b b

m
i i n b b b b ii

B

N
m

i j nj ii i ii
j B B

E x y t h E x y t q h t

B N E x y t q h t dB QA

N N dB E t QA N dB B QA
=

⎡ ⎤⋅ − ⋅∇ = ⇒⎣ ⎦

⎡ ⎤= ⋅ −⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅ −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∑ ∫ ∫

n q K

n q

n q

 

(3.6.9.1.41)

 

Equation (3.6.9.1.35) written in matrix form is then expressed as 
 

( ) { } { }
{ } { } { } { } { } { }

* * * *
1 2 1 2

* * *
1 2 1 2 1 2

[ ] { } { } { 1} { 1 } [ ]{ } [ ]{ }

            1 1

TT
n n n n

U E E W D W D W K U E W K U E

W T W T W RL W RL W B W B
τ

− − − + +
Δ

= + + + + +

 (3.6.9.1.42)

 

At upstream flux boundary nodes, equation (3.6.9.1.42) cannot be applied because Δτ equals zero. 
Thus, we propose a modified LE approach in which the matrix equation for upstream boundary 
nodes is obtained by explicitly applying the finite element method to the boundary conditions. For 
example, at the upstream variable boundary 
 

( ) ( , , )m m m
i n n i n b b

B B

N n qE hK E dB N n qE x y t dB⋅ − ⋅∇ = ⋅∫ ∫  (3.6.9.1.43)

 

So that the following matrix equation can be assembled at the boundary nodes 
 

[ ]{ } [ ]{ }m
nQF E QB B=  (3.6.9.1.44)

in which 

( )ij i j i j
B

QF N N N h N dB= ⋅ − ⋅ ⋅∇∫ n q n K  (3.6.9.1.45)
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ij i j
B

QB N N dB= ⋅∫ n q  (3.6.9.1.46)

 

( , , ) m
i n b bB E x y t=  (3.6.9.1.47)

 
3.6.9.2 Mixed Predictor-corrector/Operator-splitting scheme 
 
Recall the simplified equation for 2-D kinetic variable transport mixed Predictor-corrector/Operator-
splitting scheme transport step in advection form, equation (3.6.8.2.2), as follows   
 

( ) ( )
n

m
m m m n im nn

n n HS n HS E n
E h hh E h E L E R hR E

t t t
∂ ∂ ∂⎛ ⎞+ ⋅∇ − ∇ ⋅ ⋅∇ + + = + −⎜ ⎟∂ ∂ ∂⎝ ⎠

q K  (3.6.9.2.1)

 

Assign the true transport velocity vtrue as follows 
 

1
1 2

n n
trueh W W+= = +v q q q  (3.6.9.2.2)

 

Equation (3.6.9.2.1) in the Lagrangian and Eulerian form is written as follows. In lagrangian step, 
 

0    0
m m m

m mn n n
n true n

dE E Eh h E E
d t tτ

∂ ∂
= + ⋅∇ = ⇒ + ⋅∇ =

∂ ∂
q v  (3.6.9.2.3)

 

In Eulerian step, 
 

( ) ( )
n

m
m m n im nn

n HS n HS E n
dE h hh h E L E R hR E
d t tτ

∂ ∂⎛ ⎞− ∇⋅ ⋅∇ + + = + −⎜ ⎟∂ ∂⎝ ⎠
K  (3.6.9.2.4)

 

Equation (3.6.9.3.4) written in a slightly different form is shown as  
 

*
m

mn
n L

dE D K E R
dτ

− + =  (3.6.9.2.5)

where 
1 ( )m

nD h E
h

= ∇⋅ ⋅∇K  (3.6.9.2.6)
 

HS
hL
tK

h

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠=  (3.6.9.2.7)

 

( )
n

n im n
HS E n

L

hR hR E
tR

h

∂+ −
∂=  (3.6.9.2.8)

 

Equation (3.6.9.2.5) written in matrix form is then expressed as 
 

( ) { } { }
{ } ( ){ }

TTm m* * m * m*
n n 1 2 1 n 2 n

*
1 L 2 L

[U] {E } {E } W {D} W {D } W K [U]{E } W K [U]{E }

                                      W R W R
τ

− − − + +
Δ

= +

 (3.6.9.2.9)

 

Same as that in section 3.6.9.1,  
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{ } { } { }[ ] m
nD QD E QB= − +  (3.6.9.2.10)

 

At upstream flux boundary nodes, equation (3.6.9.2.9) cannot be applied because Δτ equals zero. 
Thus, we propose a modified LE approach in which the matrix equation for upstream boundary 
nodes is obtained by explicitly applying the finite element method to the boundary conditions. 
 
3.6.9.3 Operator-splitting scheme 
 
Equation (3.6.8.3.2) can be solved through the same procedure as that in section 3.6.9.2, except that 
 

HS
L

RR
h

=  (3.6.9.3.1)

 
 
3.6.10 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Conservative Form of the Transport Equations for the Upstream Flux Boundaries to 
Solve 2-D Kinetic Variable Transport 

 
3.6.10.1 Fully-Implicit Scheme 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.6.9.1, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.6.7.1.  
 
3.6.10.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.6.9.2, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.6.7.2.  
 
3.6.10.3 Operator-Splitting Approach 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.6.9.3, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.6.7.3.  
 
 
3.6.11 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve 
2-D Kinetic Variable Transport 

 
3.6.11.1 Fully-Implicit Scheme 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
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the same procedure as that in section 3.6.9.1, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.6.8.1.  
 
3.6.11.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.6.9.2, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.6.8.2.  
 
3.6.11.3 Operator-Splitting Approach 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.6.9.3, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.6.8.3. 
 
 

3.7 Solving Three-Dimensional Subsurface Water Quality Transport Equations 
 
In this section, we present the numerical approaches employed to solve the governing equations of 
reactive chemical transport. Ideally, one would like to use a numerical approach that is accurate, 
efficient, and robust. Depending on the specific problem at hand, different numerical approaches 
may be more suitable. For research applications, accuracy is a primary requirement, because one 
does not want to distort physics due to numerical errors. On the other hand, for large field-scale 
problems, efficiency and robustness are primary concerns as long as accuracy remains within the 
bounds of uncertainty associated with model parameters. Thus, to provide accuracy for research 
applications and efficiency and robustness for practical applications, three coupling strategies were 
investigated to deal with reactive chemistry. They are: (1) a fully-implicit scheme, (2) a mixed 
predictor-corrector/operator-splitting method, and (3) an operator-splitting method. For each time-
step, we first solve the advective-dispersive transport equation with or without reaction terms, 
kinetic-variable by kinetic-variable. We then solve the reactive chemical system node-by-node to 
yield concentrations of all species.  
 
Five numerical options are provided to solve the advective-dispersive transport equations: Option 1- 
application of the Finite Element Method (FEM) to the conservative form of the transport equations, 
Option 2 - application of the FEM to the advective form of the transport equations, Option 3 - 
application of the modified Lagrangian-Eulerian (LE) approach to the Largrangian form of the 
transport equations, Option 4 - LE approach for all interior nodes and downstream boundary nodes 
with the FEM applied to the conservative form of the transport equations for the upstream flux 
boundaries, and Option 5 - LE approach for all interior and downstream boundary nodes with the 
FEM applied to the advective form of the transport equations for upstream flux boundaries. 
 
 
3.7.1 Application of the Finite Element Method to the Conservative Form of the Reactive 

Chemical Transport Equations 
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3.7.1.1 Fully-Implicit Scheme 
 
Assign the right-hand side term RHS and left hand side term LHS as follows. 
 

 0,    ,    ,    0

 0,    ,    0,    
n

asn n

as m
E n HS HS

as as
E HS HS En

If q M qE L q R

Else q M qE L R M

≤ = = − =

> = = =
 (3.7.1.1.1)

 
Then equation (2.7.22) is modified as 
 

( ) ( )
n

m m mn
n n n HS n HS E

E E E E L E R R
t t

θθ θ θ∂ ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅∇ + = +

∂ ∂
V D  (3.7.1.1.2)

 

According to the fully-implicit scheme, equation (3.7.1.1.2) can be separated into two equations as 
follows. 
 

1/ 2

( ) ( )
n

n n
m m mn n

n n n HS n HS E
E E E E E L E R R

t t
θθ θ θ

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅∇ + = +

Δ ∂
V D  (3.7.1.1.3)

 
1 1/ 2

0
n n

n nE E
t

+ +−
=

Δ
 (3.7.1.1.4)

 

First, we express En
m in terms of (En

m/En)·En or (En–En
im) to make En’s as primary dependent 

variables, so that En
n+1/2 can be solved through equation (3.7.1.1.3). It is noted that the approach of 

expressing En
m in terms of (En

m/En)·En improves model accuracy but is less robust than the approach 
of expressing En

m in terms of (En–En
im) taken in Yeh et al. [2004]. Second, we solve equation 

(3.7.1.1.4) together with algebraic equations for equilibrium reactions using BIOGEOCHEM [Fang 
et al., 2003] to obtain all individual species concentrations. Iteration between these two steps is 
needed because the new reaction terms RAn

n+1 and the equation coefficients in equation (3.7.1.1.3) 
need to be updated by the calculation results of (3.7.1.1.4). To improve the standard SIA method, the 
nonlinear reaction terms are approximated by the Newton-Raphson linearization. 
 
Option 1: Express En

m in terms of (En
m /En) En

m  
 

     

 
n

m m
n n n

n n
n n

m m
n n

n HS n HS E
n n

E E EE E
t E E

E EE L E R R
E E t

θ θ

θθ θ

⎛ ⎞ ⎛ ⎞∂
+ ∇ ⋅ − ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
− ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

V D

D
 (3.7.1.1.5)

 

Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport 
equation: choose weighting function identical to base function. For Petriov-Galerkin method, apply 
weighting function one-order higher than the base function to advection term. Integrate equation 
(3.7.1.1.5) in the spatial dimensions over the entire region as follows. 
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( )     
n

m m
n n n

i n HS n
n nR

m m
n n

i n n i HS E
n nR R

E E EN E L E dR
t E E t

E EW E E dR N R R dR
E E

θθ θ

θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
− ∇ ⋅ ⋅ ∇ + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪+ ∇ ⋅ − ∇ ⋅ ⋅ ∇ = +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∫

∫ ∫

D

V D

 (3.7.1.1.6)

 

Further, we obtain 
 

          

( )

 

n

m m
n n n

i i n i n
n nR R R

m m
n n

i n i HS n i HS E
n nR R R

m m m
n n n

i n i n i
n n nB B

E E EN dR W E dR N E dR
t E E

E EW E dR N L E dR N R R dR
E E t

E E EW E dB N E dB W
E E E

θ θ

θθ θ

θ θ

⎛ ⎞∂
− ∇ ⋅ + ∇ ⋅ ⋅ ∇⎜ ⎟∂ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
+ ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
− ⋅ + ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎜ ⎟

⎝ ⎠

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

V D

D

n V n D n D n
B

E dB
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫

 (3.7.1.1.7)

 

Approximate solution En by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N R
=

≈ = ∑  (3.7.1.1.8)

 

Substituting equation (3.7.1.1.8) into equation (3.7.1.1.7), we obtain 
 

1

1

( )
                                   

( )  

    

N
nj

i j
j R

m mN
n n

i j i j nj
j n nR R

m m
n n

i j i HS
n nR R

E t
N N dR

t

E EW N dR W N dR E t
E E

E EN N dR N L
E E

θ

θ

θθ

=

=

⎡ ⎤∂⎛ ⎞
⎢ ⎥⎜ ⎟ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎧ ⎫⎧ ⎫⎡ ⎤⎛ ⎞⎪⎪ ⎪ ⎪+ − ∇ ⋅ + ∇ ⋅ ⋅ ∇⎨⎨ ⎬ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭⎩ ⎭

⎛ ⎞ ∂
+ ∇ ⋅ ⋅ ∇ + +⎜ ⎟

⎝ ⎠

∑ ∫

∑ ∫ ∫

∫ ∫

V D

D

( )
1

( )  

 ( )     
n

N

j nj
j

m m
i HS E i n i n

R B B

N dR E t
t

N R R dR W E dB N E dBθ θ

=

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪
⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

= + − ⋅ + ⋅ ⋅∇

∑

∫ ∫ ∫n V n D

 (3.7.1.1.9)

 

Equation (3.7.1.1.9) can be written in matrix form as  
 

{ } { }[ 1] [ 2] [ 3] { } { }n
n n

EQ Q E Q E RLS B
t

∂⎧ ⎫ + + = +⎨ ⎬∂⎩ ⎭
 (3.7.1.1.10)

 

where the matrices [Q1], [Q2], [Q3] and load vectors {RLS}, and {B} are given by  
 

1ij i j
R

Q N N dRθ= ∫  (3.7.1.1.11)
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2
m m

n n
ij i j i j

n nR R

E EQ W N dR W N dR
E E

θ
⎡ ⎤⎛ ⎞

= − ∇ ⋅ + ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫ ∫V D  (3.7.1.1.12)

 

3
m m

n n
ij i j i HS j

n nR R

E EQ N N dR N L N dR
E E t

θθ
⎛ ⎞ ⎛ ⎞∂

= ∇ ⋅ ⋅ ∇ + +⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
∫ ∫D  (3.7.1.1.13)

 

( )
ni i HS E

R

RLS N R R dRθ= +∫  (3.7.1.1.14)

 

( )  m m
i i n i n

B B

B W E dB N E dBθ= − ⋅ + ⋅ ⋅∇∫ ∫n V n D  (3.7.1.1.15)

 

At n+1-th time step, equation (3.7.1.1.10) is approximated as  
 

{ } { } { } { }
{ } { }

1/ 2
1 1/ 2

1 2

1 1/ 2
1 2

1 1
1 2 1 2

  
[ 1] [ 2 ]   [ 2 ]  

                    [ 3 ]   [ 3 ]  

              { } { } { } { }

n n
n n n n n n

V n V n

n n n n
n n

n n n n

E E
Q W Q E W Q E

t
W Q E W Q E

W RLS W RLS W B W B

+
+ +

+ +

+ +

−
+ +

Δ
+ +

= + + +

 
(3.7.1.1.16)

 

where WV1, WV2, W1 and W2 are time weighting factors, matrices and vectors with superscripts n+1 
and n are evaluated over the region at the new time step n+1 and at the old time step n, respectively. 
 
So that  

{ }

{ }

1 1 1/ 2
1 1

1 1
2 2 1 2 1 2

[ 1] [ 2 ] [ 3 ]  

[ 1] [ 2 ] [ 3 ]  { } { } { } { }

n n n
V n

n n n n n n n
V n

Q W Q W Q E
t
Q W Q W Q E W SS W SS W B W B

t

+ + +

+ +

⎛ ⎞+ +⎜ ⎟Δ⎝ ⎠
⎛ ⎞= − − + + + +⎜ ⎟Δ⎝ ⎠

 (3.7.1.1.17)

 

 
Option 2: Express En

m in terms of En-En
im  

 
Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport 
equation. Integrate equation (3.7.1.1.3) in the spatial dimensions over the entire region as follows. 
 

( ) ( ) 

                                   ( )     
n

m m mn
i n n HS n i n

R R

i HS E
R

EN E E L E dR W E dR
t t

N R R dR

θθ θ

θ

∂ ∂⎡ ⎤ ⎡ ⎤+ − ∇ ⋅ ⋅ + + ∇ ⋅⎢ ⎥ ⎣ ⎦∂ ∂⎣ ⎦

= +

∫ ∫

∫

D V
 (3.7.1.1.18)

 

Further, we obtain 
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( )

( )

 

      ( )  
n

m m mn
i n i n i n i HS n

R R R R

m m
i HS E i n i n

R B B

EN E dR W E dR N E dR N L E dR
t t

N R R dR W E dB N E dB

θθ θ

θ θ

∂ ∂⎛ ⎞+ − ∇ ⋅ + ∇ ⋅ ⋅∇ +⎜ ⎟∂ ∂⎝ ⎠

= + − ⋅ + ⋅ ⋅∇

∫ ∫ ∫ ∫

∫ ∫ ∫

V D

n V n D
 (3.7.1.1.19)

 

Approximate solution En by a linear combination of the base functions as equation (3.7.1.1.8).  
Substituting equation (3.7.1.1.8) into equation (3.7.1.1.19), we obtain 
 

( )

1 1

1 1

( )
    ( )  +

( ) ( )  

( )  
n

N N
njn m

i j i j nj
j jR R

N N
m

i j nj i j i HS j nj
j jR R R

i HS E i
R

E t
N N dR W N dR E t

t

N N dR E t N N dR N L N dR E t
t

N R R dR W

θ

θ θ

θ

= =

= =

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞
+ − ∇ ⋅⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎡ ⎤∂ ⎪ ⎪+ ∇ ⋅ ⋅ ∇ +⎢ ⎥ ⎨ ⎬⎜ ⎟ ⎢ ⎥∂⎢ ⎥ ⎪ ⎪⎝ ⎠ ⎣ ⎦⎩ ⎭⎣ ⎦

= + − ⋅

∑ ∑∫ ∫

∑ ∑∫ ∫ ∫

∫

V

D

n V ( )  m m
n i n

B B

E dB N E dBθ+ ⋅ ⋅∇∫ ∫ n D

 (3.7.1.1.20)

 

Equation (3.7.1.1.20) can be written in matrix form as  
 

{ } { } { }[ 1] [ 4] [ 2] [ 3] { } { }m mn
n n n

EQ Q E Q E Q E RLS B
t

∂⎧ ⎫ + + + = +⎨ ⎬∂⎩ ⎭
 (3.7.1.1.21)

 

where the matrices [Q1], [Q4], [Q2], [Q3] and load vectors {RLS}, and {B} are given by  
 

1 , 4ij i j ij i j
R R

Q N N dR Q N N dR
t
θθ ∂

= =
∂∫ ∫  (3.7.1.1.22)

 

2ij i j
R

Q W N dR= − ∇ ⋅∫ V  (3.7.1.1.23)

 

( )3ij i j i HS j
R R

Q N N dR N L N dRθ= ∇ ⋅ ⋅∇ +∫ ∫D  (3.7.1.1.24)

 

( )
ni i HS E

R

RLS N R R dRθ= +∫  (3.7.1.1.25)

 

( ) m m
i i n i n

B B

B W E dB N E dBθ= − ⋅ + ⋅ ⋅∇∫ ∫n V n D  (3.7.1.1.26)

 

Express En
m in terms of En-En

im, equation (3.7.1.1.21) is modified as 
 

{ } { } { } { } { }[ 1] [ 4] [ 2] [ 3] [ 2] [ 3]

{ } { }

im imn
n n n n n

EQ Q E Q E Q E Q E Q E
t

RLS B

∂⎧ ⎫ + + + = +⎨ ⎬∂⎩ ⎭
+ +

 (3.7.1.1.27)

 

At n+1-th time step, equation (3.7.1.1.27) is approximated as  
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{ } { } { } { } { }

{ } { } ( ){ }
( ){ } ( ){ } ( ){ }

1/ 2
1/ 2 1 1/ 2

1 2

1/ 21 1/ 2 1
1 2 1

1/ 21
2 1 2

1 1
1 2 1 2

  
[ 1] [ 4]  [ 2 ]   [ 2 ]  

[ 3 ]   [ 3 ]  [ 2 ]   

[ 2 ]  [ 3 ]   [ 3 ]  

{ } { } { }

n n
n n n n n n n

n V n V n

nn n n n n im
n n V n

n n nn im n im n im
V n n n

n n n

E E
Q Q E W Q E W Q E

t

W Q E W Q E W Q E

W Q E W Q E W Q E

W RLS W RLS W B W

+
+ + +

++ + +

++

+ +

−
+ + +

Δ

+ + =

+ + +

+ + + + { }nB

 (3.7.1.1.28)

 

So that  
 

{ } { }

( ) ( ){ } ( ) ( ){ }

1 1 1/ 2
1 1

1/ 21 1
2 2 1 1

1 1
1 2 1 2

[ 1] [ 1][ 4] [ 2 ] [ 3 ]   

[ 2 ] [ 3 ] *  [ 2 ] [ 3 ]  

{ } { } { } { }

n n n n
V n n

n nn n m n n im
V n V n

n n n n

Q QQ W Q W Q E E
t t

W Q W Q E W Q W Q E

W SS W SS W B W B

+ + +

++ +

+ +

⎛ ⎞+ + + = −⎜ ⎟Δ Δ⎝ ⎠

+ + + +

+ + +

 
(3.7.1.1.29)

 
 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
 
Dirichlet boundary condition 
 

( , , , )m m
n n b b bE E x y z t=  (3.7.1.1.30)

 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·V <0) 
 

( ) ( , , , )    ( , , , )m m m m
n n n b b b i i n b b bE E E x y z t B N E x y z t dBθ⋅ − ⋅∇ = ⋅ ⇒ = − ⋅∫

B

n V D n V n V  (3.7.1.1.31)

 

< Case 2 > Flow is going out from inside (n·V > 0): 
 

( ) 0    m m
n i i n

B

E B N E dBθ− ⋅ ⋅∇ = ⇒ = − ⋅∫n D n V  (3.7.1.1.32)

 
Cauchy boundary condition 
 

( ) ( , , , )     ( , , , )m m
n n

m m
n n b b b i i b b bE E

B

E E Q x y z t B N Q x y z t dBθ⋅ − ⋅∇ = ⇒ = −∫n V D  (3.7.1.1.33)

 
Neumann boundary condition 
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            ( ) ( , , , )

  ( , , , )

m
n

m
n

m
n b b bE

m
i i n i b b bE

B B

E Q x y z t

B N E dB N Q x y z t dB

θ− ⋅ ⋅∇ =

⇒ = − ⋅ −∫ ∫

n D

n V
 (3.7.1.1.34)

 
River/stream-subsurface interface boundary condition  
 

( ){ }
( ){ }

1

1

                               ( )

       [1 ( )] [1 ( )]   
2

 [1 ( )] [1 ( )]
2

m m
n n

Dm m
n n

Dm m
i i n n

B

E E

sign E sign E

B N sign E sign E dB

θ⋅ − ⋅∇
⋅

= + ⋅ + − ⋅ ⇒

⋅
= − + ⋅ + − ⋅∫

n V D
n V n V n V

n V n V n V

 
(3.7.1.1.35)

 
Overland-subsurface interface boundary condition  
 

( ){ }
( ){ }

2

2

                               ( )

       [1 ( )] [1 ( )]    
2

 [1 ( )] [1 ( )]
2

m m
n n

Dm m
n n

Dm m
i i n n

B

E E

sign E sign E

B N sign E sign E dB

θ⋅ − ⋅∇
⋅

= + ⋅ + − ⋅ ⇒

⋅
= − + ⋅ + − ⋅∫

n V D
n V n V n V

n V n V n V

 
(3.7.1.1.36)

 
3.7.1.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
According to the mixed predictor-corrector (on reaction rates) and operator-splitting (on immobile 
part of the kinetic variable) method, equation (3.7.1.1.2) can be separated into two equations as 
follows. 
 

( ) ( )1/ 2

( ) ( ) 

                    ( )
n

n nm m
n n m m m

n n n

m n im n
HS n HS E n

E E
E E E

t t

L E R R E
t

θθ θ

θθ

+
− ∂

+ + ∇ ⋅ − ∇ ⋅ ⋅∇
Δ ∂

∂
+ = + −

∂

V D
 (3.7.1.2.1)

 
1 1/ 2 1/ 2

1 1[( ) ( ) ] ( ) ( )
n n

n m n im n
n n im n im nn n n

E E n n
E E E n nR R E E

t t t
θ θθ θ

+ + +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A
 (3.7.1.2.2)

 
First, solve equation (3.7.1.2.1) and get (En

m)n+1/2. Second, solve equation (3.7.1.2.2) together with 
algebraic equations representing equilibrium reactions using BIOGEOCHM scheme to obtain the 
individual species concentration.  
 
Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport 
equation. Integrate equation (3.7.1.2.1) in the spatial dimensions over the entire region as follows. 
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( )

   ( )
n

m
m mn

i n HS n
R

m n im n
i n i HS E n

R R

EN E L E dR
t t

W E dR N R R E dR
t

θθ θ

θθ

⎡ ⎤∂ ∂⎛ ⎞− ∇ ⋅ ⋅ ∇ + +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
∂⎛ ⎞+ ∇ ⋅ = + −⎜ ⎟∂⎝ ⎠

∫

∫ ∫

D

V
 (3.7.1.2.3)

 

Further, we obtain 
 

( )

         ( ) ( )
n

m
m m mn

i i n i n i HS n
R R R R

n im n m m
i HS E n i n i n

R B B

EN dR W E dR N E dR N L E dR
t t

N R R E dR W E dB N E dB
t

θθ θ

θθ θ

∂ ∂⎛ ⎞− ∇ ⋅ + ∇ ⋅ ⋅∇ + +⎜ ⎟∂ ∂⎝ ⎠
∂⎛ ⎞= + − − ⋅ + ⋅ ⋅∇⎜ ⎟∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫ ∫

V D

n V n D
 (3.7.1.2.4)

 

Approximate solution En
m by a linear combination of the base functions as follows. 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j
E E E t N R

=

≈ = ∑  (3.7.1.2.5)

 

Substituting equation (3.7.1.2.5) into equation (3.7.1.2.4), we obtain 
 

1 1

1

( )
         ( )

            ( ) ( )

( )
n

mN N
nj m

i j i j nj
j jR R

N
m

i j i HS j nj
j R R

n im n
i HS E n

R

E t
N N dR W N dR E t

t

N N dR N L N dR E t
t

N R R E dR
t

θ

θθ

θθ

= =

=

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞
− ∇ ⋅⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤∂⎪ ⎪⎛ ⎞+ ∇ ⋅ ⋅∇ + +⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∂⎛ ⎞= + − −⎜ ⎟∂⎝ ⎠

∑ ∑∫ ∫

∑ ∫ ∫

∫

V

D

( )m m
i n i n

B B

W E dB N E dBθ⋅ + ⋅ ⋅∇∫ ∫n V n D

 (3.7.1.2.6)

 

Equation (3.7.1.2.6) can be written in matrix form as  
 

{ } { }[ 1] [ 2]  [ 3]  { } { }
m

m mn
n n

dEQ Q E Q E RLS B
dt

⎧ ⎫
+ + = +⎨ ⎬

⎩ ⎭
 (3.7.1.2.7)

 

where the matrices [Q1], [Q2], and [Q3],  and load vectors {RLS} and {B} are given by  
 

1ij i j
R

Q N N dRθ= ∫  (3.7.1.2.8)

 

2ij i j
R

Q W N dR= − ∇ ⋅∫ V  (3.7.1.2.9)

 

( )3ij i j i HS j
R R

Q N N dR N L N dR
t
θθ ∂⎛ ⎞= ∇ ⋅ ⋅∇ + +⎜ ⎟∂⎝ ⎠∫ ∫D  (3.7.1.2.10)
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( )
n

n im n
i i HS E n

R

RLS N R R E dR
t
θθ ∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫  (3.7.1.2.11)

 

( )m m
i i n i n

B

B W E dB N E dBθ= − ⋅ + ⋅ ⋅∇∫ ∫
B

n V n D  (3.7.1.2.12)

 

At n+1-th time step, equation (3.7.1.2.7) is approximated as  
 

( ){ } ( ){ } ( ){ } ( ){ }
( ){ } ( ){ }

 1/ 2  

 1/ 2  1
1 2

 1/ 2  1 1 1
1 2 1 2 1 2

  
        [ 1] [ 2 ]  [ 2 ]  

[ 3 ]  [ 3 ]  { } { } { } { }

n nm m
n n n nn m n m

V n V n

n nn m n m n n n n
n n

E E
Q W Q E W Q E

t

W Q E W Q E W RLS W RLS W B W B

+

++

++ + +

−
+ +

Δ

+ + = + + +

 (3.7.1.2.13)

 

So that  
 

( ){ }
( ){ }

 1/ 21 1
1 1 2 2

 1 1
1 2 1 2

[ 1] [ 1][ 2 ] [ 3 ]  [ 2 ] [ 3 ] *

 { } { } { } { }

nn n m n n
V n V

nm n n n n
n

Q QW Q W Q E W Q W Q
t t

E W RLS W RLS W B W B

++ +

+ +

⎛ ⎞ ⎛ ⎞+ + = − −⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

+ + + +
 (3.7.1.2.14)

 

The boundary term {B} is calculated according to the specified boundary conditions the same as that 
in section 3.7.1.1. 
 
3.7.1.3 Operator-Splitting Approach 
 
According to the operator-splitting approach, equation (3.7.1.1.2) can be separated into two 
equations as follows. 
 

( ) ( )1/ 2

( ) ( )
n nm m

n n m m m
n n HS n HS

E E
E E L E R

t t
θθ θ

+
− ∂⎛ ⎞+ ∇ ⋅ − ∇⋅ ⋅∇ + + =⎜ ⎟Δ ∂⎝ ⎠

V D  (3.7.1.3.1)

 
1 1/ 2

1 1[( ) ( ) ] ( )
n

n m n im n
n im nn n n

E n
E E E nR E

t t
θθ

+ +
+ +− + ∂

= −
Δ ∂

A
 (3.7.1.3.2)

 

First, solve equation (3.7.1.3.1) and get (En
m)n+1/2. Second, solve equation (3.7.1.3.2) together with 

algebraic equations representing equilibrium reactions using BIOGEOCHM scheme to obtain the 
individual species concentration.  

Equation (3.7.1.3.1) can be solved through the same procedure as that in section 4.1.2, except for the 
load vectors {RLS}, which is calculated by the following equation. 
 

i i HS
R

RLS N R dR= ∫  (3.7.1.3.3)

 
 
3.7.2 Application of the Finite Element Method to the Advective Form of the Reactive 
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Transport Equations 
 
3.7.2.1 Fully-Implicit Scheme 
 
Conversion of equation (2.7.22) to advection form is expressed as 
 

( ) ( ) ,    [1, - ]as nn

m m mn
n n n n E EE

E E E E E M R n M N
t t

θθ θ θ∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + ∇ ⋅ = + ∈

∂ ∂
V D V  (3.7.2.1.1)

 

According to equation (2.3.1), the right-hand side term RHS and left hand side term LHS can be 
assigned as follows. 
 

 0,   ,    ,    0

 0,   ,  ,    

as
n

as as as
n n n

m
n HSE

o

HS HSE E E
o

hIf q M qE L n F RHS
t

hElse q M M L q n F R M
t

ρ
ρ

ρ
ρ

⎛ ⎞⎛ ⎞ ∂
≤ = = − − =⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ∂
> = = − − =⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

V

V

iA

iA

 (3.7.2.1.2)

 

Then equation (3.7.2.1.1) is modified as 
 

( )
n

m m mn
n n n HS n HS E

E E E E L E R R
t t

θθ θ θ∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + = +

∂ ∂
V D  (3.7.2.1.3)

 

According to the fully-implicit scheme, equation (3.7.2.1.3) can be separated into two equations as 
follows. 
 

1/ 2

( ) *
n

n n
m m mn n

n n n HS n HS E
E E E E E L E R R

t t
θθ θ θ

+ − ∂
+ + ⋅∇ − ∇⋅ ⋅∇ + = +

Δ ∂
V D  (3.7.2.1.4)

 
1 1/ 2

0
n n

n nE E
t

+ +−
=

Δ
 (3.7.2.1.5)

 

First, solve equation (3.7.2.1.4) and get (En)n+1/2. Second, solve equation (3.7.2.1.5) together with 
algebraic equations representing equilibrium reactions using BIOGEOCHEM scheme to obtain the 
individual species concentration. Iteration is needed because reaction term in equation (3.7.2.1.4) 
needs to be updated by the results of (3.7.2.1.5). 
 
Option 1: Express En

m in terms of (En
m/En) En 

 

       

 
n

m m
n n n

n n
n n

m m
n n

n HS n HS E
n n

E E EE E
t E E

E EE L E R R
E E t

θ θ

θθ θ

⎛ ⎞ ⎛ ⎞∂
+ ⋅∇ − ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
− ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

V D

D
 (3.7.2.1.6)

 

Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport 
equation. Integrate equation (3.7.2.1.6) in the spatial dimensions over the entire region as follows. 
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( )
n

m m
n n n

i n HS n
n nR

m m
n n

i n n i HS E
n nR R

E E EN E L E dR
t E E t

E EW E E dR N R R dR
E E

θθ θ

θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
− ∇ ⋅ ⋅ ∇ + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪+ ⋅∇ − ∇ ⋅ ⋅ ∇ = +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∫

∫ ∫

D

V D

 (3.7.2.1.7)

                   

Further, we obtain 
 

        

( )

            

n

m m
n n n

i n i n
n nR R R

m m
n n

i n i HS n i HS E
n nR R R

m m
n n

i n i
n nB

E E EN dR W E dR N E dR
t E E

E EW E dR N L E dR N R R dR
E E t

E EN E dB W
E E

θ θ

θθ θ

θ θ

⎛ ⎞ ⎛ ⎞∂
+ ⋅∇ + ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
+ ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛
+ ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎜ ⎟

⎝ ⎠ ⎝

∫ ∫ ∫

∫ ∫ ∫

∫

iV D

D

n D n D n
B

E dB
⎡ ⎤⎞
⎢ ⎥⎜ ⎟

⎠⎣ ⎦
∫

 (3.7.2.1.8)

 

Approximate solution En by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N R
=

≈ = ∑  (3.7.2.1.9)

 

Substituting equation (3.7.2.1.9) into equation (3.7.2.1.8), we obtain 
 

1 1

1

( )
                 ( )  

 ( ) ( )

mN N
nj n

i j i j nj
j j nR R

m mN
n n

i j nj i j nj
j n nR R

E t EN N dR W N dR E t
t E

E EW N dR E t W N dR E t
E E

θ

θ

= =

=

⎧ ⎫⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞⎪ ⎪+ ⋅ ∇⎢ ⎥ ⎨ ⎬⎜ ⎟ ⎢ ⎥⎜ ⎟∂⎢ ⎥ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎩ ⎭
⎧⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪⎪ ⎪+ ⋅ ∇ + ∇ ⋅ ⋅ ∇⎢ ⎥ ⎨⎨ ⎬⎜ ⎟ ⎢ ⎥⎜ ⎟

⎢ ⎥ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎩ ⎭⎩

∑ ∑∫ ∫

∑ ∫ ∫

V

V D

( )

1

1

               ( )  

                           ( )   
n

N

j

m mN
n n

i j i HS j nj
j n nR R

m
i HS E i n

R B

E EN N dR N L N dR E t
E E t

N R R dR N E dB

θθ

θ θ

=

=

⎫⎪
⎬

⎪ ⎪⎭
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂⎪ ⎪+ ∇ ⋅ ⋅ ∇ + +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

= + + ⋅ ⋅∇

∑

∑ ∫ ∫

∫ ∫

D

n D

 (3.7.2.1.10)

 

Equation (3.7.2.1.10) can be written in matrix form as  
 

{ } { }[ 1] [ 2] [ 3] { } { }n
n n

EQ Q E Q E RLS B
t

∂⎧ ⎫ + + = +⎨ ⎬∂⎩ ⎭
 (3.7.2.1.11)

 

where the matrices [Q1], [Q2], [Q3] and load vectors {SS}, and {B} are given by  
 

1 n
ij i j

R

Q N N dRθ= ∫  (3.7.2.1.12)
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                2
m

n
ij i j

nR

m m
n n

i j i j
n nR R

EQ W N dR
E

E EW N dR W N dR
E E

θ

⎛ ⎞
= ⋅ ∇⎜ ⎟

⎝ ⎠
⎡ ⎤⎛ ⎞

+ ⋅ ∇ + ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫

∫ ∫

V

V D
 (3.7.2.1.13)

 

3
m m

n n
ij i j i HS j

n nR R

E EQ N N dR N L N dR
E E t

θθ
⎛ ⎞ ⎛ ⎞∂

= ∇ ⋅ ⋅ ∇ + +⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
∫ ∫D  (3.7.2.1.14)

 

( )
ni i HS E

R

RLS N R R dRθ= +∫  (3.7.2.1.15)

 

( )m
i i n

B

B N E dBθ= ⋅ ⋅∇∫n D  (3.7.2.1.16)

 

At n+1-th time step, equation (3.7.2.1.11) is approximated as  
 

{ } { } { } { } { }
{ }

1/ 2
1 1/ 2 1 1/ 2

1 2 1

1 1
2 1 2 1 2

  
[ 1] [ 2 ]  [ 2 ]  [ 3 ]   

[ 3 ]  { } { } { } { }

n n
n n n n n n n n

V n V n n

n n n n n n
n

E E
Q W Q E W Q E W Q E

t
W Q E W RLS W RLS W B W B

+
+ + + +

+ +

−
+ + +

Δ
+ = + + +

 (3.7.2.1.17)

 

So that  
 

{ } { }1 1 1/ 2
1 1 2 2

1 1
1 2 1 2

[ 1] [ 1][ 2 ] [ 3 ]  [ 2 ] [ 3 ]  

{ } { } { } { }

n n n n n n
V n V n

n n n n

Q QW Q W Q E W Q W Q E
t t

W RLS W RLS W B W B

+ + +

+ +

⎛ ⎞ ⎛ ⎞+ + = − −⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠
+ + + +

 (3.7.2.1.18)

 

 
Option 2: Express En

m in terms of En-En
im  

 
Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport 
equation. Integrate equation (3.7.2.1.6) in the spatial dimensions over the entire region as follows. 
 

( )

( )
n

m m mn
i n n HS n i n

R R

i HS E
R

EN E E L E dR W E dR
t t

N R R dR

θθ θ

θ

∂ ∂⎡ ⎤+ − ∇ ⋅ ⋅ ∇ + ⋅ + ⋅∇ =⎢ ⎥∂ ∂⎣ ⎦

+

∫ ∫

∫

D V
 (3.7.2.1.19)

 

Further, we obtain 
 

( )

( )

 

( )
n

m mn
i i n i n i n

R R R R

m m
i HS n i HS E i n

R R B

EN dR N E dR W E dR N E dR
t t

N L E dR N R R dR N E dB

θθ θ

θ θ

∂ ∂
+ + ⋅∇ + ∇ ⋅ ⋅∇ +

∂ ∂

⋅ = + + ⋅ ⋅∇

∫ ∫ ∫ ∫

∫ ∫ ∫

V D

n D
 (3.7.2.1.20)
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Approximate solution En by a linear combination of the base functions as equation (3.7.2.1.9). 
Substituting equation (3.7.2.1.9) into equation (3.7.2.1.20), we obtain 
 

( )

1 1

1 1

( )
 + ( )

( )  + ( )  

     ( )  
n

N N
nj

i j i j nj
j jR R

N N
m m

i j nj i j i HS j nj
j jR R R

i HS E
R

E t
N N dR N N E t dR

t t

W N dR E t N N dR N L N dR E t

N R R dR N

θθ

θ

θ

= =

= =

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞∂
+⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪⋅∇ ∇ ⋅ ⋅∇ +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

= + + ⋅

∑ ∑∫ ∫

∑ ∑∫ ∫ ∫

∫

V D

n ( )  m
i n

B

E dBθ ⋅∇∫ D

 (3.7.2.1.21)

 

Equation (3.7.2.1.21) can be written in matrix form as  
 

{ } { } { }[ 1] [ 4] [ 2] [ 3] { } { }m mn
n n n

EQ Q E Q E Q E RLS B
t

∂⎧ ⎫ + + + = +⎨ ⎬∂⎩ ⎭
 (3.7.2.1.22)

 

where the matrices [Q1], [Q2], [Q3] and load vectors {SS}, and {B} are given by  
 

1 , 4ij i j ij i j
R R

Q N N dR Q N N dR
t
θθ ∂

= =
∂∫ ∫  (3.7.2.1.23)

 

2ij i j
R

Q W N dR= ⋅∇∫ V  (3.7.2.1.24)

 

( )3ij i j i HS j
R R

Q N N dR N L N dRθ= ∇ ⋅ ⋅∇ +∫ ∫D  (3.7.2.1.25)

 

( )
ni i HS E

R

RLS N R R dRθ= +∫  (3.7.2.1.26)

 

( )m
i i n

B

B N E dBθ= ⋅ ⋅∇∫ n D  (3.7.2.1.27)

 

Express En
m in terms of En-En

im, equation (3.7.2.1.22) is modified as 
 

{ } { } { }

{ } { }

[ 1] [ 4] [ 2] [ 3]

[ 2] [ 3] { } { }

n
n n n

im im
n n

EQ Q E Q E Q E
t

Q E Q E RLS B

∂⎧ ⎫ + + + =⎨ ⎬∂⎩ ⎭

+ + +
 (3.7.2.1.28)

 

At n+1-th time step, equation (3.7.2.1.28) is approximated as  
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{ } { } { } { } { }

{ } { } ( ){ }
( ){ } ( ){ } ( ){ }

1/ 2
1/ 2 1 1/ 2

1 2

1/ 21 1/ 2 1
1 2 1

1/ 21
2 1 2

1 1
1 2 1 2

  
[ 1] [ 4]  [ 2 ]   [ 2 ]  

[ 3 ]   [ 3 ]  [ 2 ]   

[ 2 ]  [ 3 ]   [ 3 ]  

{ } { } { }

n n
n n n n n n n

n V n V n

nn n n n n im
n n V n

n n nn im n im n im
V n n n

n n n

E E
Q Q E W Q E W Q E

t

W Q E W Q E W Q E

W Q E W Q E W Q E

W RLS W RLS W B W

+
+ + +

++ + +

++

+ +

−
+ + +

Δ

+ + =

+ + +

+ + + + { }nB

 (3.7.2.1.29)

 

So that  
 

{ } { }

( ) ( ){ } ( ) ( ){ }

1 1 1/ 2
1 1

1/ 2

2 2 1 1

1 1
1 2 1 2

[ 1] [ 1][ 4] [ 2 ] [ 3 ]   

[ 2 ] [ 3 ]  [ 2 ] [ 3 ]  

{ } { } { } { }

n n n n
V n n

n nn n m n n im
V n V n

n n n n

Q QQ W Q W Q E E
t t

W Q W Q E W Q W Q E

W RLS W RLS W B W B

+ + +

+

+ +

⎛ ⎞+ + + =⎜ ⎟Δ Δ⎝ ⎠

− + + + +

+ + +

 
(3.7.2.1.30)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
 
Dirichlet boundary condition 
 

( , , , )m m
n n b b bE E x y z t=  (3.7.2.1.31)

 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·V < 0) 
 

     ( ) ( , , , )

  ( , , , )

m m m
n n n b b b

m m
i i n i n b b b

E E E x y z t

B N E dB N E x y z t dB

θ⋅ − ⋅∇ = ⋅

⇒ = ⋅ − ⋅∫ ∫
B B

n V D n V

n V n V  (3.7.2.1.32)

 

< Case 2 > Flow is going out from inside (n·V > 0): 
 

( ) 0    0m
n iE Bθ− ⋅ ⋅∇ = ⇒ =n D  (3.7.2.1.33)

 
Cauchy boundary condition 
 

     ( ) ( , , , )

   ( , , , )

m
n

m
n

m m
n n b b bE

m
i i n i b b bE

B

n E E Q x y z t

B N E dB N Q x y z t dB

θ⋅ − ⋅∇ =

⇒ = ⋅ −∫ ∫
B

V D

n V
 (3.7.2.1.34)

 
Neumann boundary condition 
 

( ) ( , , , )     ( , , , )m m
n n

m
n b b b i i b b bE E

B

E Q x y z t B N Q x y z t dBθ− ⋅ ⋅∇ = ⇒ = −∫n D  (3.7.2.1.35)
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River/stream-subsurface interface boundary condition  
 

( ){ }
( ){ }

1

1

( )  [1 ( )] [1 ( )]   
2

 [1 ( )] [1 ( )]
2

Dm m m m
n n n n

Dm m m
i i n i n n

B B

E E sign E sign E

B N E dB N sign E sign E dB

θ ⋅
⋅ − ⋅∇ = + ⋅ + − ⋅ ⇒

⋅
= ⋅ − + ⋅ + − ⋅∫ ∫

n Vn V D n V n V

n Vn V n V n V
 (3.7.2.1.36)

 
Overland-subsurface interface boundary condition  
 

( ){ }
( ){ }

2

2

( )  [1 ( )] [1 ( )]   
2

 [1 ( )] [1 ( )]
2

Dm m m m
n n n n

Dm m m
i i n i n n

B

E E sign E sign E

B N E dB N sign E sign E dB

θ ⋅
⋅ − ⋅∇ = + ⋅ + − ⇒

⋅
= ⋅ − + ⋅ + − ⋅∫ ∫

B

n Vn V D n V n × V

n Vn V n V n V
 (3.7.2.1.37)

 
3.7.2.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
According to the mixed predictor-corrector (on reaction rates) and operator-splitting (on immobile 
part of the kinetic variable) method, equation (3.7.2.1.3) can be separated into two equations as 
follows. 
 

( ) ( )1/ 2

( )

( )
n

n nm m
n n m m m m

n n n HS n

n im n
HS E n

E E
E E E L E

t t

R R E
t

θθ θ

θθ

+
− ∂

+ + ⋅∇ − ∇ ⋅ ⋅∇ + =
Δ ∂

∂
+ −

∂

V D
 (3.7.2.2.1)

 
1 1/ 2

1 1[( ) ( ) ] ( ) ( )
n n

n m n im n
n n im n im nn n n

E E n n
E E E n nR R E E

t t t
θ θ+ +

+ +− + ∂ ∂
= − − +

Δ ∂ ∂
A A

 (3.7.2.2.2)

 

First, solve equation (3.7.2.2.1) and get (En
m)n+1/2. Second, solve equation (3.7.2.2.2) together with 

algebraic equations representing equilibrium reactions using BIOGEOCHM scheme to obtain the 
individual species concentration.  
 
Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport 
equation. Integrate equation (3.7.2.2.1) in the spatial dimensions over the entire region as follows. 
 

( )

( )
n

m
m m mn

i n HS n i n
R R

n im n
i HS E n

R

EN E L E dR W E dR
t t

N R R E dR
t

θθ θ

θθ

⎡ ⎤∂ ∂⎛ ⎞− ∇ ⋅ ⋅ ∇ + + + ⋅∇ =⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
∂⎛ ⎞+ −⎜ ⎟∂⎝ ⎠

∫ ∫

∫

D V
 (3.7.2.2.3)

 

Further, we obtain 
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( )

                     ( ) ( )
n

m
m m mn

i i n i n i HS n
R R R R

n im n m
i HS E n i n

R B

EN dR W E dR N E dR N L E dR
t t

N R R E dR N E dB
t

θθ θ

θθ θ

∂ ∂⎛ ⎞+ ⋅∇ + ∇ ⋅ ⋅∇ + +⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞= + − + ⋅ ⋅∇⎜ ⎟∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫

V D

n D
 (3.7.2.2.4)

 

Approximate solution En
m by a linear combination of the base functions as follows. 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j
E E E t N R

=

≈ = ∑  (3.7.2.2.5)

 

Substituting equation (3.7.2.2.5) into equation (3.7.2.2.4), we obtain 
 

1 1

1

( )
( )

    ( ) ( )

       ( ) (
n

mN N
njn m

i j i j nj
j jR R

N
m

i j i HS j nj
j R R

n im n
i HS E n i

R B

E t
N N dR W N dR E t

t

N N dR N L N dR E t
t

N R R E dR N
t

θ

θθ

θθ θ

= =

=

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞
+ ⋅ ∇⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤∂⎪ ⎪⎛ ⎞+ ∇ ⋅ ⋅∇ + +⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∂⎛ ⎞= + − + ⋅⎜ ⎟∂⎝ ⎠

∑ ∑∫ ∫

∑ ∫ ∫

∫ ∫

V

D

n D )m
nE dB⋅ ∇

 (3.7.2.2.6)

 

Equation (3.7.2.2.6) can be written in matrix form as  
 

{ } { }[ 1] [ 2]  [ 3]  { } { }
m

m mn
n n

dEQ Q E Q E RLS B
dt

⎧ ⎫
+ + = +⎨ ⎬

⎩ ⎭
 (3.7.2.2.7)

 

where the matrices [Q1], [Q2], and [Q3],  and load vectors {RLS} and {B} are given by  
 

1ij i j
R

Q N N dRθ= ∫  (3.7.2.2.8)

 

2ij i j
R

Q W N dR= ⋅∇∫ V  (3.7.2.2.9)

 

( )3ij i j i HS j
R R

Q N N dR N L N dR
t
θθ ∂⎛ ⎞= ∇ ⋅ ⋅∇ + +⎜ ⎟∂⎝ ⎠∫ ∫D  (3.7.2.2.10)

 

( )
n

n im n
i i HS E n

R

RLS N R R E dR
t
θθ ∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫  (3.7.2.2.11)

 

( )m
i i n

B

B N E dBθ= ⋅ ⋅∇∫n D  (3.7.2.2.12)

 

At n+1-th time step, equation (3.7.2.2.7) is approximated as  
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( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }

 1/ 2  

 1/ 21
1

  1/ 2  1
2 1 2

1 1
1 2 1 2

  
       [ 1] [ 2 ]  

[ 2 ]  [ 3 ]  [ 3 ]  

              { } { } { } { }

n nm m
n n nn m

V n

n n nn m n m n m
V n n n

n n n n

E E
Q W Q E

t

W Q E W Q E W Q E

W RLS W RLS W B W B

+

++

++

+ +

−
+

Δ

+ + +

= + + +

 
(3.7.2.2.13)

 

So that  
 

( ){ }
( ){ }

 1/ 21 1
1 1 2 2

 1 1
1 2 1 2

[ 1 ] [ 1 ][ 2 ] [ 3 ]  [ 2 ] [ 3 ] *

 { } { } { } { }

n nnn n m n n
V n V

nm n n n n
n

Q QW Q W Q E W Q W Q
t t

E W RLS W RLS W B W B

++ +

+ +

⎛ ⎞ ⎛ ⎞
+ + = − −⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

+ + + +

 (3.7.2.2.14)

 

The boundary term {B} is calculated according the same as that in section 3.7.2.1. 
 
3.7.3 Operator-Splitting Approach 
 
According to the operator-splitting approach, equation (3.7.2.1.2) can be separated into two 
equations as follows. 
 

( ) ( )1/ 2

( )
n nm m

n n m m m
n n HS n HS

E E
E E L E R

t t
θθ θ

+
− ∂⎛ ⎞+ ⋅∇ − ∇ ⋅ ⋅∇ + + =⎜ ⎟Δ ∂⎝ ⎠

V D  (3.7.2.3.1)

 
1 1/ 2

1 1[( ) ( ) ] ( )
n

n m n im n
n im nn n n

E n
E E E nR E

t t
θ+ +

+ +− + ∂
= −

Δ ∂
A

 (3.7.2.3.2)

 

First, solve equation (3.7.2.3.1) and get (En
m)n+1/2. Second, solve equation (3.7.2.3.2) together with 

algebraic equations representing equilibrium reactions using BIOGEOCHM scheme to obtain the 
individual species concentration.  

Equation (3.7.2.3.1) can be solved through the same procedure as that in section 4.1.2, except for the 
load vectors {RLS}, which is calculated by the following equation. 
 

i i HS
R

RLS N R dR= ∫  (3.7.2.3.3)

 
 
3.7.4 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form 

of the Reactive Transport Equations 
 
3.7.4.1 Fully-Implicit Scheme 
 
Option 1: Express En

m in terms of (En
m /En) En 

 
Express En

m in terms of (En
m/En) En to make En’s as primary dependent variables, equation 
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(3.7.2.1.4) is modified as 
 

( ) -

n

m m m
n n n n

n n n
n n n

m m m
n n n

HS n HS E
n n n

E E E EE E E
t t E E E

E E EL E R R
E E E

θθ θ θ

θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
+ + ⋅ ∇ ⋅ ∇ − ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⋅∇ − ∇ ⋅ ⋅ ∇ + = +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

V D D

V D

 (3.7.3.1.1)

 

Assign the particle tracking velocity Vtrack as follows 
 

1 -
m m

n n
track

n n

E E
E E

θ
θ

⎡ ⎤⎛ ⎞
= ⋅ ∇⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
V V D  (3.7.3.1.2)

 

Equation (3.7.3.1.1) in Lagrangian-Eulerian form is written as  
 
In Lagrangian step, 
 

0n n
track n

DE E E
D tτ

∂
= + ⋅∇ =

∂
V  (3.7.3.1.3)

 

In Eulerian step, 
 

n
n L

DE D KE R
Dτ

− + =  (3.7.3.1.4)

where 
m

n
n

n

ED E
E

θ θ
⎛ ⎞

= ∇ ⋅ ⋅∇⎜ ⎟
⎝ ⎠

D  (3.7.3.1.5)

 

1 m m m
n n n

HS
n n n

E E EK L
E E t E

θθ
θ

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂⎪ ⎪= ⋅ ∇ − ∇ ⋅ ⋅ ∇ + +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
V D  (3.7.3.1.6)

 

( )1
nL HS ER R Rθ

θ
= +  (3.7.3.1.7)

 

The integration of equation (3.7.3.1.5) can be written as 
 

( ) ( )
m m

n n
i i n i n

n nR R B

E EN DdR N E dR N E dB
E E

θ θ θ= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇∫ ∫ ∫D n D  (3.7.3.1.8)

 

Approximate D and En by linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

D D D t N R
=

≈ = ∑  (3.7.3.1.9)
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1

ˆ ( ) ( )
N

n n nj j
j

E E E t N R
=

≈ = ∑  (3.7.3.1.10)

 

Put Equations (3.7.3.1.9) and (3.7.3.1.10) into Equation (3.7.3.1.8), we obtain 
 

1

1

                              

( ) ( )

N

i j j
j R

m mN
n n

i j nj i n
j n nR B

N N dR D

E EN N dR E N E dB
E E

θ

θ θ

=

=

⎡ ⎤⎛ ⎞
∗⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫

∑ ∫ ∫D n D

 (3.7.3.1.11)

 

Assign matrices [QA] and [QD] and load vector {B} as following. 
 

ij i j
R

QA N N dRθ= ∫  (3.7.3.1.12)

 

( )
m

n
ij i j

nR

EQD N N dR
E

θ= ∇ ⋅ ⋅∇∫ D  (3.7.3.1.13)

 

( )
m

n
i i n

nB

EB N E dB
E

θ= ⋅ ⋅∇∫n D  (3.7.3.1.14)

 

Equation (3.7.3.1.11) is expressed as 
 

[ ]{ } [ ]{ } { }nQA D QD E B= − +  (3.7.3.1.15)
 

Lump matrix [QA] into diagonal matrix and update   
 

ij ij iiQD QD QA=  (3.7.3.1.16)
 

( ) ( )
m

m n
i i n ii i n ii

nB B

EB N E dB QA N E dB QA
E

θ θ= ⋅ ⋅∇ − ⋅ ⋅∇∫ ∫n D n D  (3.7.3.1.17)

 

Then 
 

{ } [ ]{ } { }nD QD E B= − +  (3.7.3.1.18)
 

 
Equation (3.7.3.1.4) written in matrix form is then expressed as 
 

{ }

{ } [ ]{ }( ) { } { } { }

1 1 1/ 2
1 1

** * 1 * 1
2 2 1 2 1

[ ]                     [ ]  

[ ]    { }    

n n n
n

m n n
n n L L

U W QD W K E

U E W K E W D W R W R W B

τ

τ

+ + +

+ +

⎛ ⎞⎡ ⎤+ + =⎜ ⎟⎣ ⎦Δ⎝ ⎠

− + + + +
Δ

 (3.7.3.1.19)

 

where [U] is the unit matrix, Δτ is the tracking time, W1 and W2 are time weighting factors,  matrices 
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and vectors with n+1 and n+1/2 are evaluated over the region at the new time step n+1. Matrices and 
vectors with superscript * corresponds to the n-th time step values interpolated at the location where 
a node is tracked through particle tracking in Lagrangian step. 
 
For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
 
Dirichlet boundary condition 
 

( , , , )  

( ) ( )

m m
n n b b b

m
m n

i i n ii i n ii
nB B

E E x y z t

EB N E dB QA N E dB QA
E

θ θ

= ⇒

= ⋅ ⋅∇ − ⋅ ⋅∇∫ ∫n D n D
 (3.7.3.1.20)

 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·V < 0) 
 

( ) ( , , , )     

( , , , ) ( )

m m m m
n n n b b b i i n ii

m
m n

i n b b b ii i n ii
nB B

E E VE x y z t B N E dB QA

EN E x y z t dB QA N E dB QA
E

θ

θ

⋅ − ⋅∇ = ⋅ ⇒ = ⋅

− ⋅ − ⋅ ⋅∇

∫

∫ ∫

B

n V D n n V

n V n D
 (3.7.3.1.21)

 

< Case 2 > Flow is going out from inside (n·V > 0): 
 

   ( ) 0      ( )
m

m n
n i i n ii

nB

EE B N E dB QA
E

θ θ− ⋅ ⋅∇ = ⇒ = − ⋅ ⋅∇∫n D n D  (3.7.3.1.22)

 
Cauchy boundary condition 
 

( ) ( , , , )     

( , , , ) ( )

m
n

m
n

m m m
n n b b b i i n iiE

B
m

n
i b b b ii i n iiE

nB B

n VE D E Q x y z t B N E dB QA

EN Q x y z t dB QA N E dB QA
E

θ

θ

⋅ − ⋅∇ = ⇒ = ⋅

− − ⋅ ⋅∇

∫

∫ ∫

n V

n D
 (3.7.3.1.23)

 
Neumann boundary condition 
 

( ) ( , , , )    ( , , , )

( )

m m
n n

m
n b b b i i b b b iiE E

B
m

n
i n ii

nB

E Q x y z t B N Q x y z t dB QA

EN E dB QA
E

θ

θ

− ⋅ ⋅∇ = ⇒ = −

− ⋅ ⋅∇

∫

∫

n D

n D
 (3.7.3.1.24)

 
River/stream-subsurface interface boundary condition  
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( ){ }

( ){ }

1

1

( )  [1 ( )] [1 ( )]
2

   ( )

 [1 ( )] [1 ( )]
2

Dm m m m
n n n n

m
m n

i i n ii i n ii
nB B

Dm m
i n n ii

B

E E sign E sign E

EB N E dB QA N E dB QA
E

N sign E sign E dB QA

θ

θ

⋅
⋅ − ⋅∇ = + ⋅ + − ⋅

⇒ = ⋅ − ⋅ ⋅∇

⋅− + ⋅ + − ⋅

∫ ∫

∫

n Vn V D n V n V

n V n D

n V n V n V

 (3.7.3.1.25)

 
Overland-subsurface interface boundary condition  
 

( ){ }

( ){ }

2

2

( )  [1 ( )] [1 ( )]
2

   ( )

 [1 ( )] [1 ( )]
2

Dm m m m
n n n n

m
m n

i i n ii i n ii
nB B

Dm m
i n n ii

B

E E sign E sign E

EB N E dB QA N E dB QA
E

N sign E sign E dB QA

θ

θ

⋅
⋅ − ⋅∇ = + ⋅ + − ⋅

⇒ = ⋅ − ⋅ ⋅∇

⋅− + ⋅ + − ⋅

∫ ∫

∫

n Vn V D n V n V

n V n D

n V n V n V

 (3.7.3.1.26)

 

 
Option 2: Express En

m in terms of En-En
m  

 
Express En

m in terms of En-En
m to make En’s as primary dependent variables, equation (3.7.2.1.4) 

is modified as 
 

( )

( )
 

n

n
n n n HS n

im im im
n n HS n HS E

E E E E L E
t t

E E L E R R

θθ θ

θ θ

∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ +

∂ ∂
= ⋅∇ − ∇ ⋅ ⋅∇ + + +

V D

V D
 (3.7.3.1.27)

 

Assign the particle tracking velocity Vtrack as follows 
 

1
track θ

=V V  (3.7.3.1.28)

 

 
Equation (3.7.3.1.27) in Lagrangian-Eulerian form is written as  
 
In Lagrangian step, 
 

0n n
track n

DE E E
D tτ

∂
= + ⋅∇ =

∂
V  (3.7.3.1.29)

 

In Eulerian step, 
 

n
n L

DE D KE T R
Dτ

− + = +  (3.7.3.1.30)

where 
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( )nD Eθ θ= ∇ ⋅ ⋅∇D  (3.7.3.1.31)
 

HSL
tK

θ

θ

∂+
∂=  

(3.7.3.1.32)

 

( )im im
n nT E Eθ θ= ⋅∇ − ∇ ⋅ ⋅∇V D  (3.7.3.1.33)

 

( )1
n

im
L HS n HS EnR L E R Rθ

θ
= + +  (3.7.3.1.34)

 

 
The integration of equation (3.7.3.1.31) can be written as 
 

( ) ( )i i n i n
R R B

N DdR N E dR N E dBθ θ θ= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇∫ ∫ ∫D n D  (3.7.3.1.35)

 

Approximate D and En by linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

D D D t N R
=

≈ = ∑  (3.7.3.1.36)

 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N R
=

≈ = ∑  (3.7.3.1.37)

 

Put Equations (3.7.3.1.36) and (3.7.3.1.37) into Equation (3.7.3.1.35), we obtain 
 

1

1

                              

( ) ( )

N

i j j
j R

N

i j nj i n
j R B

N N dR D

N N dR E N E dB

θ

θ θ

=

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫

∑ ∫ ∫D n D

 (3.7.3.1.38)

 

Assign matrices [QA] and [QD] and load vector {B} as following. 
 

ij i j
R

QA N N dRθ= ∫  (3.7.3.1.39)

 

( )ij i j
R

QD N N dRθ= ∇ ⋅ ⋅∇∫ D  (3.7.3.1.40)

 

1 ( )i i n
B

B N E dBθ= ⋅ ⋅∇∫ n D  (3.7.3.1.41)

 
 

Equation (3.7.3.1.31) is expressed as 
 



 3-200

[ ]{ } [ ]{ } { 1}nQA D QD E B= − +  (3.7.3.1.42)
 

Similarly, 
 

[ ]{ } [ ]{ } { 2}im
nQA T QT E B= +  (3.7.3.1.43)

where 
( )ij i j i j

R R

QT N N dR N N dRθ= ⋅∇ − ∇ ⋅ ⋅∇∫ ∫V D  (3.7.3.1.44)

 

2 ( )im
i i n

B

B N E dBθ= − ⋅ ⋅∇∫ n D  (3.7.3.1.45)

 

Lump matrix [QA] into diagonal matrix and update   
 

ij ij iiQD QD QA=  (3.7.3.1.46)
 

1 1i i iiB B QA=  (3.7.3.1.47)
 

ij ij iiQT QT QA=  (3.7.3.1.48)
 

2 2i i iiB B QA=  (3.7.3.1.49)
 

Then 
 

{ } [ ]{ } { 1}nD QD E B= − +  (3.7.3.1.50)
 

{ } [ ]{ } { 2}im
nT QT E B= +  (3.7.3.1.51)

 

 
Assign  
 

1 2 ( )m
i i i i n ii

B

B B B N E dB QAθ= + = ⋅ ⋅∇∫ n D  (3.7.3.1.52)

So that  
{ } { } [ ]{ } [ ]{ } { }im

n nD T QD E QT E B+ = − + +  (3.7.3.1.53)
 

 
Equation (3.7.3.1.30) written in matrix form is then expressed as 
 

{ } { } [ ]{ }( )

( ){ } { } { } { }

1 1 1/ 2
1 1 2

 11 * 1 1
1 2 1 2 1

[ ] [ ]        [ ]      

[ ]  ({ } { })    

n n n
n n n

nn im n n
n L L

U UW QD W K E E W K E

W QT E W D T W R W R W B

τ τ
∗+ + + ∗

++ + ∗ +

⎛ ⎞⎡ ⎤+ + = −⎜ ⎟⎣ ⎦Δ Δ⎝ ⎠

+ + + + + +

 (3.7.3.1.54)

 

 
For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
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Dirichlet boundary condition 
 

( , , , )    ( )m m m
n n b b b i i n ii

B

E E x y z t B N E dB QAθ= ⇒ = ⋅ ⋅∇∫ n D  (3.7.3.1.55)

 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·V < 0) 
 

               ( ) ( , , , )

  ( , , , )

m m m
n n n b b b

m m
i i n ii i n b b b ii

B

E E E x y z t

B N E dB QA N E x y z t dB QA

θ⋅ − ⋅∇ = ⋅

⇒ = ⋅ − ⋅∫ ∫
B

n V D n V

n V n V  (3.7.3.1.56)

 

< Case 2 > Flow is going out from inside (n·V > 0): 
 

   ( ) 0      0m
n in E Bθ− ⋅ ⋅∇ = ⇒ =D  (3.7.3.1.57)

 
Cauchy boundary condition 
 

               ( ) ( , , , )

   ( , , , )

m
n

m
n

m m
n n b b bE

m
i i n ii i b b b iiE

B B

E E Q x y z t

B N E dB QA N Q x y z t dB QA

θ⋅ − ⋅∇ =

⇒ = ⋅ −∫ ∫

n V D

n V
 (3.7.3.1.58)

 
Neumann boundary condition 
 

( ) ( , , , )    ( , , , )m m
n n

m
n b b b i i b b b iiE E

B

E Q x y z t B N Q x y z t dB QAθ− ⋅ ⋅∇ = ⇒ = −∫n D  (3.7.3.1.59)

 
River/stream-subsurface interface boundary condition  
 

( ){ }

( ){ }

1

1

( )  [1 ( )] [1 ( )]
2

                                     

       [1 ( )] [1 ( )]
2

Dm m m m
n n n n

m
i i n ii

B

Dm m
i n n ii

B

E E sign E sign E

B N E dB QA

N sign E sign E dB QA

θ ⋅
⋅ − ⋅ ∇ = + ⋅ + − ⋅

⇒ = ⋅

⋅− + ⋅ + − ⋅

∫

∫

n Vn V D n V n V

n V

n V n V n V

 (3.7.3.1.60)

 
Overland-subsurface interface boundary condition  
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( ){ }

( ){ }

2

2

( )  [1 ( )] [1 ( )]
2

                                     

       [1 ( )] [1 ( )]
2

Dm m m m
n n n n

m
i i n ii

B

Dm m
i n n ii

B

E E sign E sign E

B N E dB QA

N sign E sign E dB QA

θ ⋅
⋅ − ⋅∇ = + ⋅ + − ⋅

⇒ = ⋅

⋅− + ⋅ + − ⋅

∫

∫

n Vn V D n V n V

n V

n V n V n V

 (3.7.3.1.61)

 

 
At upstream flux boundary nodes, equation (3.7.3.1.19) and (3.7.3.1.54) cannot be applied because 
Δτ equals zero. Thus, we propose a modified LE approach in which the matrix equation for upstream 
boundary nodes is obtained by explicitly applying the finite element method to the boundary 
conditions. For example, at the upstream variable boundary 
 

( ) ( , , , )m m m
i n n i n b b b

B B

N E E dB N E x y z t dBθ⋅ − ⋅∇ = ⋅∫ ∫n V D n V  (3.7.3.1.62)

 

So that the following matrix equation can be assembled at the boundary nodes 
 

[ ]{ } [ ]{ }m
nQF E QB B=  (3.7.3.1.63)

in which 
 

( )ij i j i j
B

QF N N N N dBθ= ⋅ − ⋅ ⋅∇∫ n V n D  (3.7.3.1.64)

 

ij i j
B

QB N N dB= ⋅∫ n V  (3.7.3.1.65)

 

( , , , )m
j n j b b bB E x y z t=  (3.7.3.1.66)

 

where ( , , , )m
n j b b bE x y z t   is the value of ( , , , )m

n b b bE x y z t  evaluated at point j. 
 
3.7.4.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
Equation (3.7.2.2.1) in Lagrangian-Eulerian form is written as follows. 
 
In Lagrangian step, 
 

0
m m

mn n
track n

DE E E
D tτ

∂
= + ⋅∇ =

∂
V  (3.7.3.2.1)

 

where particle tracking velocity is Vtrack is defined in Equation (3.7.3.1.28) . 
 
In Eulerian step, 
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m
mn

n L
DE D KE R
Dτ

− + =  (3.7.3.2.2)

where 
( )m

nD Eθ θ= ∇ ⋅ ⋅∇D  (3.7.3.2.3)
 

HSL
tK

θ

θ

∂+
∂=  

(3.7.3.2.4)

 

1 ( )
n

n im n
L HS E nR R R E

t
θθ

θ
∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

 (3.7.3.2.5)

 

 
According to equation (3.7.3.1.50) 
 

[ ]{ } [ ]{ } { }m
nQA D QD E B= − +  (3.7.3.2.6)

 
n

ij i j
R

QA N N dRθ= ∫  (3.7.3.2.7)

 

( )ij i j
R

QD N N dRθ= ∇ ⋅ ⋅∇∫ D  (3.7.3.2.8)

 

( )m
i i n

B

B n N E dBθ= ⋅ ⋅∇∫ D  (3.7.3.2.9)

 

 
Lump matrix [QA] into diagonal matrix and update   
 

ij ij iiQD QD QA=  (3.7.3.2.10)
 

i i iiB B QA=  (3.7.3.2.11)
 

Then 
 

{ } [ ]{ } { }m
nD QD E B= − +  (3.7.3.2.12)

 

 
Equation (3.7.3.2.2) written in matrix form is then expressed as 
 

( ){ } ( ){ }
{ } [ ]{ }( ) { } { } { }

1/ 21 1
1 1

1 1
2 2 1 2 1

[ ] [ ]      [ ] [ ]   

     

nn n m m
n n

m n n
n

U UW QD W K E E

W D W K E W RL W RL W B

τ τ
+ ∗+ +

∗
∗ + ∗ +

⎛ ⎞+ + =⎜ ⎟Δ Δ⎝ ⎠

+ − + + +

 (3.7.3.2.13)

 

 
At upstream flux boundary nodes, equation (3.7.3.2.13) cannot be applied because Δτ equals zero. 
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Thus, we propose a modified LE approach in which the matrix equation for upstream boundary 
nodes is obtained by explicitly applying the finite element method to the boundary conditions as in 
Section 3.7.3.1. 
 
3.7.4.3 Operator-Splitting Approach 
 
Equation (3.7.2.3.1) can be solved through the same procedure as that in section 4.5.2, except that 
 

HS
n

RRL
θ

=  (3.7.3.3.1)

 
 
3.7.5 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Conservative Form of the Reactive Transport Equations for the Upstream Flux 
Boundaries 

 
3.7.5.1 Fully-Implicit Scheme 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.7.3.1, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.7.1.1.  
 
3.7.5.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.7.3.2, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.7.1.2.  
 
3.7.5.3 Operator-Splitting Approach 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.7.3.3, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.7.1.3.  
 
 
3.7.6 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Advective Form of the Reactive Transport Equations for the Upstream Flux 
Boundaries 

 
3.7.6.1 Fully-Implicit Scheme 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.7.3.1, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.7.2.1.  
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3.7.6.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.7.3.2, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.7.2.2.  
 
3.7.6.3 Operator-Splitting Approach 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.7.3.3, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.7.2.3. 
 
 

3.8 Numerical Implementation of Reactive Transport Coupling among Various Media 
 
This section addresses numerical implement of coupling reactive chemical transport simulations 
among various media including (1) between 1D river and 2D surface runoff, (2) between 2D surface 
runoff and 3D subsurface media, (3) between 3D subsurface media and 1D river networks, and (4) 
among 1D river networks, 2D surface runoff, and 3D subsurface media.   For sediment transport 
simulations, only the coupling between 1D river network and 2D surface runoff is needed, which is 
similar to the coupling of reactive chemical transport between the two media.  Without loss of 
generality, numerical implementations of coupling for scalar transport (including sediment and 
kinetic-variable transport) are heuristically given for finite element approximations of the 
conservative form of transport equations.  For Largrangian-Eulerian approximations or finite 
element approximation of the advective form of transport equations, the implementations of 
numerical coupling among various media remain valid except care must be taken that the fluxes 
denote the total fluxes of advective and dispersive/diffusive fluxes. 
 
 
3.8.1 Coupling between 1D-River and 2D-Overland Water Quality Transport 
 
The interaction between one-dimensional river and two-dimensional surface runoff involves two 
cases: one is between surface runoff and river nodes (left frame in Fig. 3.8-1) and the other is 
between surface runoff and junction nodes (right frame in Fig. 3.8-1).  For every river node (Node I 
in the left frame of Fig. 3.8-1), there will be associated with two overland nodes (Nodes J and K in 
the left frame of Fig. 3.8-1).  For every junction node (Node L in the right frame of Fig. 3.8-1), there 
will be associated with a number of overland nodes such as Nodes J, K, O, etc (right frame of Fig. 
3.8-1).  It should be noted that nodes, such as Nodes J and K in the right frame of Figure 3.8-1, 
contribute fluxes to both the river as source/sink of Node I and the Junction as source/sink of Node 
L. 
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Fig. 3.8-1.  Depiction of Interacting River Nodes and Overland Nodes (left) and Junction  

Node and Overland Nodes (Right) 
 
Numerical approximations of suspended-sediment or kinetic-variable transport equations for one-
dimensional river with finite element methods yield the following matrix 
 

1 1

2 2

1 2 1

c c

c c

c c c c c c
I I I IN I I

c c
N N

E R

E R

C C C C E R

E R

⎧ ⎫ ⎧− − − − − − − − − − − − − −⎡ ⎤
⎪ ⎪ ⎪⎢ ⎥− − − − − − − − − − − − − − ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥− − − − − − − − − − − − − − − − − −
⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪− − − − − − =⎨ ⎬ ⎨⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥ − − − −− − − − − − − − − − − − − − ⎪ ⎪⎢ ⎥

− − − −− − − − − − − − − − − − − − ⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥− − − − − − − − − − − − − −⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩

1 2
1 1

1 2
2 2

1 2

01 2

o o

o o

o o
I I

o
N N

M M

M M

M M

M M

⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪− − − −
⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪+ +⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪− − − −⎪ ⎪ ⎪ ⎪ ⎪ ⎪

− − − −⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎭ ⎩ ⎭ ⎩ ⎭

 (3.8.1) 

 
where the superscript c denotes the canal (channel, river, or stream); CIJ is the I-th row, J-th column 
of the coefficient matrix [C]; EI denotes the concentration of a suspended sediment or a kinetic 
variable at Node I; RI is I-th entry of the load vector {R}; N is the number of nodes in the canal; MI 
is the rate of suspended-sediment or kinetic-variable source/sink from (to) the overland flow to 
(from)canal  node I; and the superscripts, o1 and o2, respectively, denote canal bank 1 and 2, 
respectively.  Every canal node I involves 3 unknowns, EI

c, MI
o1, and MI

o2.  However, Eq. (3.8.1) 
gives just one algebraic equation for every canal node I.  Clearly, two additional algebraic equations 
are need for every canal node I.  It should be noted that MI

o1 and MI
o2denote the following 

integrations in transforming Eq. (2.5.10) and its initial and boundary conditions or Eq. (2.5.44) and 
its initial and boundary conditions to Eq. (3.8.1) 
 

1 1

1 1 2 2    
N N

n n

X X
o os o os

I I S I I S
X X

M N M dx and M N M dx= =∫ ∫  (3.8.2) 

 

for the transport of the n-th suspended-sediment fraction 
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1 1

1 1 2 2    
N N

i i

X X
o os o os

I I E I I E
X X

M N M dx and M N M dx= =∫ ∫  (3.8.3) 

 

for the transport of the i-th kinetic variable. 
 
Applications of finite element methods to two-dimensional suspended-sediment or kinetic-variable 
transport equation yield the following matrix   
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where the superscript o denotes the overland; CIJ is the I-th row, J-th column of the coefficient 
matrix [C]; EI denotes the concentration of suspended sediment or kinetic variable at Node I; RI is I-
th entry of the load vector {R}; M is the number of nodes in the overland ; and MJ and MK are the 
fluxes [M/t] of suspended sediment or kinetic variable from (to) the overland to (from) the canal via 
nodes J and K, respectively.   Equation (3.8.4) indicates that there is one unknown corresponding to 
one algebraic equation for every interior node.  However, for every algebraic equation corresponding 
to an overland-canal interface node, there are two unknowns, the concentration of suspended 
sediment or kinetic variable and the sediment or chemical fluxes.  Therefore, for every overland-
river interface node, one additional equation is needed.  Since for every canal node, there are 
associated two overland-interface nodes, four additional equations are needed for every canal node I 
for the four additional unknowns MJ

o, MK
o, MI

o1, and MI
o2. 

 
Before we proceed further, let us refresh ourselves that MJ

o and MK
o denote the following integration 

in transforming Eq. (2.6.10) and its initial and boundary conditions or Eq. (2.6.46) and its initial and 
boundary conditions to Eq. (3.8.4) 
 

( ) ( )    o o
J J n J n K K n K n

B B

M W S N h S dB and M W S N h S dB= − ∇ = − ∇∫ ∫n q K n q Ki i i i  (3.8.5) 

 

for the transport of the n-th suspended-sediment fraction 
 

( ) ( )    o m m o m m
J J i J i K K i K i

B B

M W E N h E dB and M W E N h E dB= − ∇ = − ∇∫ ∫n q K n q Ki i i i  (3.8.6) 

 

for the transport of the i-th kinetic variable. 
 
The additional equations are obtained from two interface boundary conditions: one is the continuity 
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of flux and the other is the assumption that the flux of suspended sediments or kinetic variables 
through the interface node is due mainly to water flow (i.e., advection).  Two of the four additional 
equations are obtained from the interface condition between the canal node I and the overland node J 
as 
 

( )( ) ( )( )( )c
I

o
J

o
J

o
J

o
J

o
J

o
I

o
J EQsignEQsignQMandMM −++== 11

2
11  (3.8.7) 

 

For suspended sediment transport, o
JE and c

IE  denote 
 

o o c c
J n J I nIE S and E S= =  (3.8.8) 

 

where o
n JS  is the concentration of the suspended sediment of the n-th fraction at Node J in the 

overland domain and c
n IS  is the concentration of the suspended sediment of the n-th fraction at 

Node I in the canal domain.  For the transport of kinetic variables, o
JE and c

IE  denote 
 

o m o c m c
J i J I i IE E and E E= =  (3.8.9) 

 

where m o
i JE  is the concentration of the mobile portion of the i-th kinetic variable at Node J in the 

overland domain and m c
i IE  is the concentration of the mobile portion of the i-th kinetic variable at 

Node I in the canal domain. 
 
The other two additional equations are obtained from the interface condition between the canal Node 
I and the overland Node K as follows 
 

( )( ) ( )( )( )1 1 1 1
2

o o o o o o o c
K I K K K K K IM M and M Q sign Q E sign Q E= = + + −  (3.8.10) 

 

The definition of o
KE  is similar to that of o

JE . 
 
When the direct contribution of suspended sediment or chemicals from the overland regime to a 
junction node L (Fig. 3.8-1) is significant, the mass balance equation can be written as 
 

d V 0
O O

L i o i oL
iL O iL O

i O N i O N

E M or M
dt ∈ ∈

= Ψ + Ψ + =∑ ∑ ∑ ∑  (3.8.11) 

 

where V L  is the volume of the L-th junction, i
iLΨ  is the mass flux from the iL-th node of i-th reach 

to the L-th junction, and o
OM  is the mass flux from the O-th node of the overland regime (superscript 

o t represent overland regime).  Additional NO unknowns have been introduced in Equation (3.8.11). 
 For each overland-junction interface node, say O (the right frame in Fig. 3.8.1), the finite element 
equation written out of Eq. (3.8.4) is 
 

o
O

o
O

o
M

o
OM

o
O

o
OO

oo
O

oo
O MRECECECEC −=+++++ ....2211  (3.8.12) 
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It is seen that Equation (3.4.17) involves two unknowns, o
OE  and o

OM .  One equation must be 
supplemented to the finite element equation to close the system.  This equation is obtained by 
formulating fluxes as 
 

( )( ) ( )( )( )L
o

O
o

O
o

O
o

O
o

O EQsignEQsignQM −++= 11
2
1

 (3.8.13) 

 

Equations (3.8.11), (3.8.12), and (3.8.13) for a system of equations for the set of unknowns LE ,  
o

OE  and o
OM . 

 
 
3.8.2 Coupling between 2D-Overalnd  and 3D-Subsurface  Water Quality Transport 
 
The interaction between two-dimensional overland and three-dimensional subsurface water quality 
transport is not as straightforward as that between 1D-river and 2D-overland regime because the i-th 
kinetic variable in the 2D-voerland is not necessary to have the same set of species as the i-th kinetic 
variable in the 3D-subsurface media.   We will assume that there is no exchange of suspended 
sediment between 2D-overland and 3D-subsurface media.  Only exchanges of aqueous-phase species 
take place.  For every subsurface node (Node J in Fig. 3.8-2), there will be associated an overland 
nodes (Node I in Fig. 3.8-2).   
 

I
J

 
Fig. 3.8-2.  Depiction of Interacting Subsurface Nodes and Overland Nodes 

 
Numerical approximations of kinetic-variable transport equation for two-dimensional overland 
regime with finite element methods yield the following matrix 
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where the superscript o denotes the overland; CIJ is the I-th row, J-th column of the coefficient 
matrix [C]; EI denotes the concentration of a kinetic variable at Node I; RI is I-th entry of the load 
vector {R}; N is the number of nodes in the overland; and MI is the rate of the kinetic-variable 
source/sink from (to) the subsurface to (from) the overland  node I (the superscript, io, denotes the 
exfiltration from subsurface media to overland).  Every overland node I involves two unknowns, EI

o, 
and MI

io.   However, Eq. (3.8.14) gives just one algebraic equation for every canal node I.  Clearly, 
one additional algebraic equation is need for every overland node I.  To formulate this equation, it is 
noted that, for the i-th overland kinetic variable, io

IM  is the source/sink rate of the i-th kinetic 
variable at the I-th node due to infiltration (negative value) or exfitration (positive value).  This 
equation is obtained as follows 
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I I I ij jJ I ij jI

j M j M
M Q sign Q a C sign Q a C

∈ ∈
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⎝ ⎠
∑ ∑  (3.8.15) 

 

where Ma is the set of aqueous species, o
ija  is the ij-th entry of the decomposed unit matrix via 

diagonalization of the reaction network in the overland domain, s
jJC  is the concentration of the j-th 

subsurface species at the J-th node of the subsurface domain, and o
jIC  is the concentration of the j-th 

overland species at the I-th node of the overland domain.  
 
Applications of finite element methods to three-dimensional kinetic-variable transport equations for 
subsurface media yield the following matrix  
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 (3.8.16) 

 

where the superscript s denotes the subsurface media; CIJ is the I-th row, J-th column of the 
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coefficient matrix [C]; EJ denotes the temperature or salinity at Node J; RJ is J-th entry of the load 
vector {R}; M is the number of nodes in the subsurface; and MJ is the rate of thermal or salt 
sink/source from/to the subsurface node J to/from the corresponding overland node I.   Equation 
(3.8.15) indicates that there is one unknown corresponding to one algebraic equation for every 
interior node.  However, for every algebraic equation corresponding to a subsurface-overland 
interface node, there are two unknowns, the concentration of the i-th subsurface kinetic variable at 
node J, s

JE , and its flux, s
JM .   Therefore, one additional equation is needed.  This equation is 

obtained from  
 

( )( ) ( )( )1( ) 1 1
2

a a

s s s s s s s o
J J J ij jJ J ij jI

j M j M
M Q sign Q a C sign Q a C

∈ ∈

⎛ ⎞
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⎝ ⎠
∑ ∑  (3.8.17) 

 

where s
ija  is the ij-th entry of the decomposed unit matrix via diagonalization of the reaction network 

in the subsurface media. 
 
 
3.8.3 Coupling between 3-D Subsurface and 1-D Surface Flows 
 
The interaction between three-dimensional subsurface and one-dimensional river water quality 
transport involves three options: (1) river is discretized as finite-width and finite-depth on the three-
dimensional subsurface media (Fig. 3.8-3), (2) river is discretized as finite-width and zero-depth on 
the three-dimensional subsurface media (Fig. 3.4-4), and (3) river is discretized as zero-width and 
zero-depth on the three-dimensional subsurface media (Fig. 3.4-5).  Option 1 is the most realistic 
one.  However, because of the computational demands, it is normally used in small scale studies 
involving the investigations of infiltration and discharge between river and subsurface media on a 
local scale.  Option 2 is normally used in medium scale studies while Option 3 is normally employed 
in large scale investigations.  In Option 1, for every river node there are associated with a number of 
subsurface interfacing nodes such as K, .., J, .., and L(Fig. 3.8-3).  In Option 2, for every river node 
there are associated with three subsurface interfacing nodes K, J, and L (Fig. 3.8-4).  In Option 3, for 
every river node there is associated with one subsurface interfacing node J (Fig. 3.8-5). 
 

I

J’s
K L

K J’s

I
L

 
Fig. 3.8-3.  Rivers Are Discretized as Finite-Width and 

Finite-Depth on the Subsurface Media 
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Fig. 3.8-4.  Rivers Are Discretized as Finite-Width and  

Zero-Depth on the Subsurface Media 
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Fig. 3.8-5.  Rivers Are Discretized as Zero-Width and  

Zero-Depth on the Subsurface Media 
 
 
Numerical approximations of i-th kinetic-variable transport equation for one-dimensional river with 
finite element methods yield the following matrix 
 

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

+

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

ic
N

ic
I

ic

ic

c
N

c
I

c

c

c
N

c
I

c

c

c
IN

c
II

c
I

c
I

M

M

M

M

R

R

R

R

E

E

E

E

CCCC

2

1

2

1

2

1

21  (3.8.18) 

 
where the superscript c denotes the canal (channel, river, or stream); CIJ is the I-th row, J-th column 
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of the coefficient matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the 
load vector {R}; N is the number of nodes in the canal; and MI

ic is the mass rate of the kinetic-
variable source/sink from (to) the subsurface to (from) canal  node I due to infiltration/exfiltration.  
Every canal node I involves two unknowns, EI

c and MI
ic.   However, Eq. (3.8.18) gives just one 

algebraic equation for every canal node I.  Clearly, one additional algebraic equation is need for 
every canal node I. 
 
For example, taking Option 2 where there are three nodes associated with one canal node, the 
applications of finite element methods to three-dimensional kinetic-variable transport equation in the 
subsurface media yields  
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where the superscript s denotes the subsurface media; CIJ is the I-th row, J-th column of the 
coefficient matrix [C]; EJ denotes the temperature or salinity at Node J; RJ is J-th entry of the load 
vector {R}; M is the number of nodes in the overland ; and MK, MJ and ML are the rates of thermal or 
salt sink/source from/to the subsurface water to/from the canal via nodes K, J and L, respectively.   
Equation (3.8.19) indicates that there is one unknown corresponding to one algebraic equation for 
every interior node.  However, for every algebraic equation corresponding a subsurface-canal 
interface node, there are two unknowns, concentration of the kinetic variable and its flux.  Therefore, 
for every subsurface-river interface node, one additional equation is needed.  Since for every canal 
node, there are associated three subsurface-interface nodes, four additional equations are needed for 
every canal node I for the four additional unknowns MI

ic, MK
s, MJ

s, and ML
s. 

 
These four additional equations are obtained with the assumptions that only aqueous species are 
involved in the exchange between the canal node I and the subsurface nodes K, J, and L and the 
exchange is mainly due to advection.  These assumptions result in the following four equations: 
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where Ma is the set of aqueous species, c
ija  is the ij-th entry of the decomposed unit matrix via 

diagonalization of the reaction network in the canal domain, c
jIC  is the concentration of the j-th 

canal species at the I-th node of the canal domain, s
jJC  is the concentration of the j-th subsurface 

species at the J-th node of the subsurface domain, s
jKC  is the concentration of the j-th subsurface 

species at the K-th node of the subsurface domain, s
jLC  is the concentration of the j-th subsurface 

species at the L-th node of the subsurface domain, rain
jKC  is the concentration of the j-th species of the 

rainfall that falls on the K-th node of the subsurface domain, rain
jLC  is the concentration of the j-th 

species of the rainfall that falls on the L-th node of the subsurface domain, and s
ija  is the ij-th entry 

of the decomposed unit matrix via diagonalization of the reaction network in the subsurface domain. 
 
 
3.8.4 Coupling Among River, Overland, and Subsurface Flows 
 
The interaction among one-dimensional river, two-dimensional overland, and three-dimensional 
subsurface flows involves three options: (1) river is discretized as finite-width and finite-depth on 
the three-dimensional subsurface media (Fig. 3.8-6), (2) river is discretized as finite-width and zero-
depth on the three-dimensional subsurface media (Fig. 3.8-7), and (3) river is discretized as zero-
width and zero-depth on the three-dimensional subsurface media (Fig. 3.4-8).  Option 1 is the most 
realistic one.  However, because of the computational demands, it is normally used in small scale 
studies involving the investigations of infiltration and discharge between river and subsurface media 
on a local scale.  Option 2 is normally used in medium scale studies while Option 3 is normally 
employed in large scale investigations.  In Option 1, for every river node there are associated with 
two overland nodes M and N and a number of subsurface interfacing nodes such as K. , J, .., and L 
(Fig. 3.8-6).  In Option 2,  for every river node I, there are associated with two overland nodes M and 
N and three subsurface interfacing nodes  K, J, and L (Fig. 3.4-7).  In Option 3, for every river node 
I, there is associated with two overland nodes M and N one subsurface node J (Fig. 3.8-8). 
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Fig. 3.8-6.  Interfacing Nodes for Every River Node when Rivers  

Are Discretized as Finite-Width and Finite-Depth 
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Fig. 3.8-7.  Interfacing Nodes for Every River Node when Rivers  

Are Discretized as Finite-Width and Zero-Depth 
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Fig. 3.8-8.  Interfacing Nodes for Every River Node when Rivers  

Are Discretized as Zero-Width and Zero-Depth 
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Similar to the coupling of salt transport among river, overland, and subsurface media, the coupling 
of water quality transport is achieved by imposing the continuity of water quality fluxes and 
formulation of individual node fluxes. 
 
Interaction between Overland Node M and Canal Node I.  Two equations are obtained based on 
the continuity of fluxes and the formulation of fluxes as 
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Interaction between Overland Node N and Canal Node I.  Two equations are obtained based on 
the continuity of fluxes and the formulation of fluxes as 
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Interaction between Overland Node M, Subsurface Node K, and Canal Node I.  Two equations 
are obtained based on the continuity of fluxes and the formulation of fluxes as 
 

( )( ) ( )( )

( )( ) ( )( )

1 1 11 1
2 2 4

1 1 11 1
2 2 4

a a a

a a a

io io io o o io s o s ic o c c
M M M ij jM M K ij jK I ij jI I

j M j M j M

s s s s s s io s o ic s c
K K K ij jK K M ij jM I ij jI

j M j M j M

M sign Q Q a C sign Q Q a C Q a C E

and

M sign Q Q a C sign Q Q a C Q a C

∈ ∈ ∈

∈ ∈ ∈

⎧ ⎫⎛ ⎞⎪ ⎪= − + + −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

⎧ ⎛ ⎞⎪= + + − +⎜ ⎟⎨ ⎜ ⎟⎪ ⎝ ⎠⎩

∑ ∑ ∑

∑ ∑ ∑
⎫⎪
⎬
⎪⎭

 (3.8.26) 

 

where Ma is the set of aqueous species, o
ija  is the ij-th entry of the decomposed unit matrix via 

diagonalization of the reaction network in the overland domain. 
 
Interaction between River Bank Node N, Subsurface Node L, and Canal Node I.  Two equations 
are obtained based on the continuity of fluxes and the formulation of fluxes 
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Interaction between Subsurface Node J and Canal Node I.  Two equations are obtained based on 
the continuity of fluxes and the formulation of fluxes as 
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3.9 Vastly Different Time Scales among Various Media 
 
The time scales for hydrology and hydraulics and water quality transport in river/stream/canal 
networks, overland regime and subsurface media are vastly different.  The time scale for flow and 
transport may be in the order of seconds and minutes in 1D-river/stream/canal networks, minutes in 
2D-overland regime, and hours, days or even weeks in 3D-subsurface media.  To handle this kind of 
very different time-scale problems, the approach of using variable time-step sizes among different 
domains is taken.  Figure 3.9-1 shows the model structure of over-all coupling between various 
interfacial media.   In Figure 3.9-1, Δt = GT is the global time-step size (it is noted that total 
simulation time may consist of several Δt’s); GTS is the number of time steps in each GT and ΔtGT is 
the time-step size; 3DF is the number of time steps for 3D flow simulations in each GT and Δt3DF is 
time step size; 2DF is the number of time steps for 2D flow simulations and Δt2DF is the time step 
size;  1DF is the number of time steps for 1D flow simulations and Δt1DF is the time step size.   
 
Figures 3.9-2 shows the detail structure on 1D only river/stream/canal networks simulations. For 
flow computation in one time step, we first linearize all coefficients in and boundary conditions (by 
linearize boundary conditions, we mean, for example, to fix variable-type boundary conditions if 
they are prescribed) for the governing equations using previous iterates and solve the linearized 
equations within the nonlinear loop.  Within the nonlinear loop, first solve flow equations to obtain 
HQW1, where HQW1 is the water depth and discharge for the 1D case; then for every several flow 
time steps, solve salinity and thermal transport equation to yield C1 and T1, where C1 and T1 are the 
salt concentration and temperature, respectively.  When fluid flow and salt and thermal transport are 
solved to convergences, repeat one more nonlinear loop to provide flow fields (i.e., HQW1) for the 
simulation of reactive chemical transport.  The solution of reactive chemical transport would render 
CR1, where CR1 is the concentration of reactive biogeochemical species for 1D.  After density-
dependent flow fields, salinity, temperature, and reactive chemical transport are solved, proceed to 
the next time step.  Figures 3.9-3 and 3.9-4 show detail computational structures for simulations in 
2D overland and 3D subsurface media, respectively.  
 
Figures 3.9-5, 3.9-6, and 3.9-7 show detail structures for simulating in coupled 1D and 2D, coupled 
2D and 3D, and coupled 3D and 1D flow and transport, respectively.   In all eight figures, the 
naming convention of the state-variables is systematic combination of H, Q, C, T, CR, R, W, P, 0, 1, 
2, and 3.  H denotes water depth or head, Q denotes discharge, C denote salt concentration, T denote 
temperature, CR denote concentration of reactive entities, R denotes source/sinks, W denotes 
working iterative values, P denotes previous time, 0 denote initial values, 1 denote 1D, 2 denotes 2D, 
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and 3 denotes 3D.  For example, HQW1 (at convergence, HQW1 would be HQ1) is the water depth 
and discharge of the iterative working values for 1D case;  CR2 is the concentrations of reactive 
entities for 2D cases;  TP1 is the temperature at the previous time step for 1D cases.   DIV denotes 
the divergence of the velocity, i.e. DIV = ∇⋅V. 
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Global time step loop, ΔtGT = GT/GTS

I. Global nonlinear iteration loop:
linearize model coefficients and fix interface/variable-type

boundary conditions based on the previous nonlinear iterate

Global period loop, Δt = GT

Density-, temperature-
dependent 1DF

(Δt1DF = ΔtGT*GTS/1DF)

Density-, temperature-
dependent 2DF

(Δt2DF = ΔtGT*GTS/2DF)

Density-, temperature-
dependent 3DF

(Δt3DF = ΔtGT*GTS/3DF)

Interface Coupling

To obtain a convergent
flow solution within
one global time step

Note: ΔtGT = Δt3DF for (1) 3D only, (2) 1D/3D, (3) 2D/3D, and (4) 1D/2D/3D simulations.
                = Δt2DF for (1) 2D only and (2) 1D/2D simulations.
                = Δt1Df for 1D simulations only.

To obtain flow and
transport solutions

within one global time step

2D/3D 3D/1D

2D/1D

II. Repeat the last global nonlinear iteration with nonlinear reactive
transport equations also solved in respective transport time step loops

 
Fig. 3.9-1.   Overall Coupled Structure of WASH123D 
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Global (1DF) time step loop, ΔtGT = Δt1DF = GT/GTS

Global period loop, Δt = GT

To obtain a convergent
flow solution within

one global (1DF) time step

To obtain flow and transport
solutions within one global

(1DF) time step

Solving linearized 1D flow equation

Solving linear 1D salt transport equation

Solving linear 1D heat transfer equation

1DT time step loop (Δt1DT = Δt1DF*1DF/1DT)

II. Repeat the last global nonlinear iteration with nonlinear reactive
transport equations also solved in the 1D transport

time step loop  (within a 1DF time step)

I. Global nonlinear iteration loop:
linearize model coefficients and fix variable-type boundary

conditions based on the previous nonlinear iterate
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CP1 = C1, TP1=T1
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CR1

  
Fig. 3.9-2.  Computation Structure of WASH123D for 1D only Simulations 
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Global (2DF) time step loop, ΔtGT = Δt2DF = GT/GTS

Global period loop, Δt = GT

To obtain a convergent
flow solution within

one global (2DF) time step

To obtain flow and transport
solutions within one global

(2DF) time step

Solving linearized 2D flow equation

Solving linear 2D salt transport equation

Solving linear 2D heat transfer equation

2DT time step loop (Δt2DT = Δt2DF*2DF/2DT)

II. Repeat the last global nonlinear iteration with nonlinear reactive
transport equations also solved in the 2D transport

time step loop  (within a 2DF time step)

I. Global nonlinear iteration loop:
linearize model coefficients and fix variable-type boundary

conditions based on the previous nonlinear iterate
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Fig. 3.9-3.  Computation Structure of WASH123D for 2D only Simulations 
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Global (3DF) time step loop, ΔtGT = Δt3DF = GT/GTS

Global period loop, Δt = GT

To obtain a convergent
flow solution within

one global (3DF) time step

To obtain flow and transport
solutions within one global

(3DF) time step
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Solving linear 3D salt transport equation

Solving linear 3D heat transfer equation

3DT time step loop (Δt3DT = Δt3DF*3DF/3DT)
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I. Global nonlinear iteration loop:
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Fig. 3.9-4.  Computation Structure of WASH123D for 3D only Simulations 
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Global (2DF) time step loop, ΔtGT = Δt2DF = GT/GTS

Global period loop, Δt = GT

To obtain a convergent
flow solution within

one global (2DF) time step

II. Repeat the last global nonlinear iteration with nonlinear reactive
transport equations also solved in respective transport

time step loops  (within a 2DF time step)
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Solving linear 2D heat transfer equation

2DT time step loop (Δt2DT = Δt2DF*2DF/2DT)
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Solving linear 1D salt transport equation

Solving linear 1D heat transfer equation

1DT time step loop (Δt1DT = Δt1DF*1DF/1DT)

I. Global nonlinear iteration loop:
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Fig. 3.9-5.  Computation Structure of WASH123D for Coupled 1D/2D Simulations 
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Global (3DF) time step loop, ΔtGT = Δt3DF = GT/GTS

Global period loop, Δt = GT
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Fig. 3.9-6.  Computation Structure of WASH123D for Coupled 2D/3D Simulations 
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Global (3DF) time step loop, ΔtGT = Δt3DF = GT/GTS

Global period loop, Δt = GT

To obtain a convergent
flow solution within
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Fig. 3.9-7.  Computation Structure of WASH123D for Coupled 3D/1D Simulations 



Global (3DF) time step loop, tGT = t3DF = GT/GTS

Global period loop, t = GT
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Fig. 3.9-8.  Computation Structure of WASH123D for Coupled 1D/2D/3D Simulations
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4 HYDRLOGY AND HYHRAULICS FLOW EXAMPLES 

 
 
In this chapter, we are to present a total of 17 problems to demonstrate the design capability of 
WASH123D, to show the needs of various approaches to simulate flow river network and overland 
flow problems, and to illustrate some realistic problems using WASH123D.  Section 4.1 present 7 
examples to demonstrate the design capability and flexibility of seven flow modules in WASH123D. 
Section 4.2 includes four simple example problems to show possible differences in simulations using 
the kinematics-wave, diffusive-wave, and fully dynamic-wave approaches. Section 4.3 include six 
realistic-real world examples to illustrate the types of flow problems WASH123D can deal with. 
 
 
4.1 Design Capability of WASH123D 
 
Seven examples are used in this section to demonstrate the design flexibility to simulate hydrology 
and hydraulics in WASH123D.  Example 1 is to simulate hydraulics in one-dimensional flows in 
river/stream/canal networks.  Example 2 is to simulate two-dimensional overland flows in a complex 
topography.  Example 3 is to model three-dimensional variably saturated flows in subsurface media. 
 Example 4 is to simulate coupled one-dimensional river flow and two-dimensional overland flow.  
Example 5 is to model coupled two-dimensional overland and three-dimensional subsurface flow.  
Example 6 is to simulate coupled three-dimensional subsurface and one-dimensional river flows.  
Example 7 is to simulate one-dimensional river, two-dimensional overland, and three-dimensional 
subsurface flow problems. 
 
 
4.1.1 One-Dimensional Flows in River/Stream/Canal Networks 
 
This example simulates water flow in a channel network system in order to investigate how the 
change of upstream headwater would affect the downstream flow at various locations.  The system 
was composed of five channel reaches that were connected via two junctions (Fig. 4.1.1-1).  Reaches 
1, 2, and 4 were 100 m long, and each was discretized with 11 nodes and 10 elements: Nodes 1 
through 11 for Reach 1, 12 through 22 for Reach 2, and 44 through 54 for Reach 4.  Reaches 3 and 5 
were 200 m long, and each was discretized with 21 nodes and 20 elements: Nodes 23 through 43 for 
Reach 3, and 55 through 75 for Reach 5.  In this case, Nodes 11, 12, and 23 were associated with 
with Junction 1, while Nodes 43, 54, and 55 with Junction 2, where zero capacity was assumed for 
both junctions.  
 
Reaches 1 and 3 had a uniform channel width of 10 m, a uniform bottom elevation slope of -0.001 
along the downstream direction, and a constant Manning’s roughness of 0.03.  Reaches 2, 4, and 5 
had a narrower channel width of 5 m, same bottom elevation slope at -0.001, and a higher Manning’s 
roughness of 0.035.  Initially, the network was dry everywhere.  As the simulation starts, a uniform 
rainfall of 10-4 m/s was applied on all Reaches.  At Nodes 1 and 44, both served as upstream 
boundary nodes, water stage was controlled.  Figures 4.1.1-2 and 4.1.1-3 depicted the time-
dependent water depth controlled at Nodes 1 (single hump) and 44 (double humps), respectively. A 
depth-dependent outgoing normal flux, as shown in Figure 4.1.1-4, was applied at the two 
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downstream boundary nodes (i.e., Nodes 22 and 75).  No infiltration was considered.  A two-hour 
simulation was performed with a fixed time step size of 0.002 and 0.001 second used for time 
periods of 0 through 10 min and 10 min through 2 hrs, respectively.  The semi-Lagrangian approach 
was used to solve the 1-D diffusion flow equation. 
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Fig.  4.1.1-1.   Channel Network Configuration of Example 4.1.1 
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Fig.  4.1.1-2.   Water Depth at Node 1 for Example 4.1.1 
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Fig.  4.1.1-3.   Water Depth at Node 44 for Example 4.1.1 
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Fig.  4.1.1-4.   Water Depth Dependent Outgoing Normal Flux for Example 4.1.1 
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Figure 4.1.1-5 plots the water stage change at nodes 5, 17, 26, 40, 48, and 70 during the simulation 
period.  It is observed that the change of headwater at Node 44 at time = 3,000 s (i.e., the second 
hump) not only affected nearby downstream locations (Nodes 48, 40, and 70) but also had influence 
on those far-away location (Nodes 26, 17, and 5), even some of them were upstream nodes (e.g., 
Node 5).  This result demonstrates how headwater control may impact the flow in the whole channel 
network system when the bottom elevation slope of the system is small (0.001 in this case).  It also 
indicates that WASH123D can be used to deal with water management issues on a design level.   
Table 4.1.1-1 presents partial numerical results of water depth at Time = 7,200 s. 
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Fig.  4.1.1-5.   Water Stages at Various Locations for Example 4.1.1 
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Table  4.1.1-1   Partial numerical results of water depth distribution at Time = 7,200 s 

 
Node ID Water Depth [m] 

1 0.30000000E+000 
2  0.30500313E+000 
3  0.31027116E+000 
4  0.31560379E+000 
5  0.32115150E+000 
6  0.32679867E+000 
7  0.33262904E+000 
8  0.33857747E+000 
9  0.34468589E+000 

10  0.35092209E+000 
11  0.35729881E+000 
12  0.35729881E+000 
13  0.35044212E+000 
14  0.34308253E+000 
15  0.33470995E+000 
16  0.32577832E+000 
17  0.31517319E+000 
18  0.30385018E+000 
19  0.28953972E+000 
20  0.27406891E+000 
. . 
. . 

41  0.26021083E+000 
42  0.24632798E+000 
43  0.22884521E+000 
44  0.10000000E+000 
45  0.13593196E+000 
46  0.14919869E+000 
47  0.16705594E+000 
48  0.17672218E+000 
49  0.18889280E+000 
50  0.19708776E+000 
. . 
. . 

70  0.18695757E+000 
71  0.17995510E+000 
72  0.16943911E+000 
73  0.15877223E+000 
74  0.13962945E+000 
75  0.11806921E+000 

 
 
4.1.2 Two-Dimensional Overland Flows Complex Topography. 
 
TIn this example, 2-D overland flow on a region of non-uniform slope was computed by solving the 
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2-D depth-average diffusion wave equation with the semi-Lagrangian approach.  The computational 
domain embraces a rectangular area of 800 m wide (in the y direction) and 1,500 m long (in the x 
direction), which was discretized with 24,022 triangular elements and 12,242 nodes (Fig. 4.1.2-1). 
 

 
Fig.  4.1.2-1.   Domain Discretization of Example 4.1.2 

 
 
The Manning's roughness was set to 0.025 throughout the entire domain.  A time-dependent rainfall 
rate was applied to the whole region and is given in Figure 4.1.2-2.   For a computation, a time-
dependent water stage boundary condition (Fig. 4.1.2-3) was applied to the boundary nodes on the 
left side (i.e., x = 0 m), a water depth-dependent outgoing normal flux boundary condition (Fig. 
4.1.2-4) was applied to the downstream boundary element sides (i.e., x = 1,500 m), and a zero water 
depth boundary condition was applied to the other two sides (i.e., y = 100 m and 900 m).  
 
Water depth was set to 0.001m initially throughout the region. Variable time step sizes of 0.1 s, 0.2 
second, and 0.1 second were used from time periods of 0 through 600 seconds, 600 through 2,400 
seconds, and 2,400 through 3,600 seconds, respectively.  Simulation results of water depth and flow 
velocity were shown in Figures 4.1.2-5 and 4.1.2-6, respectively.  The reasonable result shown in 
this example demonstrates the capability of WASH123D in computing overland flow with complex 
terrain.  Table 4.1.2-1 also lists partial numerical results of water depth at Time = 1,800 seconds and 
3,600 seconds, respectively. 
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Fig.  4.1.2-2.   Time-dependent Rainfall for Example 4.1.2 
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Fig.  4.1.2-3.   Time-dependent Upstream Water Stage for Example 4.1.2 
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Fig.  4.1.2-4.   Water Depth-Dependent Downstream Flux Rate for Example 4.1.2 
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Time = 600 s     Time = 1,200 s 

  
 

Time = 1,800 s     Time = 2,400 s 

  
 

Time = 3,000 s     Time = 3,600 s 

   
 

Fig.  4.1.2-5.   Water Depth Distribution at Various Times for Example 4.1.2 
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Fig.  4.1.2-6.   Flow Velocity Distribution at Various Times for Example 4.1.2 
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Table  4.1.2-1   Partial numerical results of water depth at Time = 1,800 s and 3,600 s 
 

Time [s] 1,800 3,600 
Water Depth [m] Node 1 0.00000000E+000 0.00000000E+000 

Node 2 0.26090607E-002 0.10483699E-002 
Node 3 0.96222901E-002 0.10416206E-002 
Node 4 0.49737288E-002 0.10289529E-002 
Node 5 0.51648537E-002 0.10290203E-002 
Node 6 0.49025188E-002 0.10295436E-002 
Node 7 0.44320597E-002 0.10298545E-002 
Node 8 0.41718356E-002 0.10299471E-002 
Node 9 0.40598833E-002 0.10300189E-002 
Node 10 0.39577560E-002 0.10299620E-002 
Node 11 0.39489289E-002 0.10299892E-002 
Node 12 0.39715800E-002 0.10299585E-002 
Node 13 0.39699679E-002 0.10299746E-002 
Node 14 0.39984312E-002 0.10301055E-002 
Node 15 0.40032635E-002 0.10300571E-002 
Node 16 0.39609258E-002 0.10298948E-002 
Node 17 0.40035252E-002 0.10300201E-002 
Node 18 0.40222042E-002 0.10300089E-002 
Node 19 0.40323242E-002 0.10299806E-002 
Node 20 0.40586892E-002 0.10299574E-002 
Node 21 0.40794709E-002 0.10300354E-002 
Node 22 0.40799779E-002 0.10300547E-002 
Node 23 0.41178206E-002 0.10300545E-002 
Node 24 0.40928576E-002 0.10299279E-002 
Node 25 0.41204993E-002 0.10299628E-002 
Node 26 0.41837656E-002 0.10300589E-002 
Node 27 0.41255215E-002 0.10298985E-002 
Node 28 0.41787453E-002 0.10300411E-002 
Node 29 0.41646828E-002 0.10299727E-002 
Node 30 0.41751149E-002 0.10299484E-002 
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4.1.3 Three-Dimensional Variably Saturated Flows in Subsurface Media. 
 
This example was designed to demonstrate a 3-D flow simulation with the 3DFEMWATER model 
(Yeh, 1987).  Since the computational results from our watershed model matches that from 
3DFEMWATER perfectly, the 3-D subsurface flow module of WASH123D is verified with this 
example. 
 
The dimension and discretization of the domain of interest are depicted in Figures 4.1.3-1 and 4.1.3-
2, respectively.  It was bounded on the left (x = 0 m) and right (x = 1,000 m) by hydraulically 
connected rivers; on the front (y = -400 m), back (y = 400 m), and bottom (z = 0 m) by impervious 
aquifuges; and on the top (z = 72 m) by an air-soil interface.  A pumping well was placed at (x,y) = 
(540,0), and the screen of the well was from z = 0 through 30 m.  Water table was assumed to be 
horizontal and was 60 m above the bottom of the aquifer before pumping.  The saturated hydraulic 
conductivity has components Kxx = 5 m/d (= 0.208 m/hr), K  = 0.5 m/d (= 0.0208 m/hr), and Kyy zz = 2 
m/d (= 0.083 m/hr). The porosity of the medium was 0.25 and the field capacity was 0.0125.  The 
following three equations were employed to describe the unsaturated hydraulic properties.  They 
were translated into x-y series that can be used in the WASH123D input file to represent pressure 
head-dependent moisture content, relative conductivity, and water capacity, respectively (i.e., θ vs. 
h, Kr vs. h, and dθ/dh vs. h). 
 

( ) 2
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hh h

βθ θ θ θ
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where θ  (= 0.25) is the porosity; θs r (= 0.0125) is the minimum moisture content that is associated 
with the minimum pressure head ha (= 0.0);  α (= 0.5) and β (= 2.0) are the parameters used to 
compute the moisture content and relative hydraulic conductivity. 
 
Because the example problem was symmetric about the pumping well in the y direction, the 
computational domain was taken as x ∈ [0 m, 1000 m], y ∈ [0 m, 400 m], z ∈ [0 m, 72 m].  The 
boundary conditions were given as shown in Figure 4.1.3-3: pressure head maintained at 30 m at the 
pumping well during pumping; pressure head assumed hydrostatic on two vertical planes at (1) x = 0 
m and z ∈ [0 m, 60 m] and (2) x = 1000 m and z ∈ [0 m, 60 m]; no flux imposed on all other 
boundary faces.  
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Fig.  4.1.3-1.   Domain and Descretization of Example 4.1.3 

 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

106 107 108 109 110 111 112 113 114 115 116117118 119 120 121 122 123 124 125 126

127 128 129 130 131 132 133 134 135 136 137138139 140 141 142 143 144 145 146 147

148 149 150 151 152 153 154 155 156 157 158159160 161 162 163 164 165 166 167 168

169 170 171 172 173 174 175 176 177 178 179180181 182 183 184 185 186 187 188 189

190 191 192 193 194 195 196 197 198 199 200201202 203 204 205 206 207 208 209 210

211 212 213 214 215 216 217 218 219 220 221222223 224 225 226 227 228 229 230 231

252

273

294

315

336

357

378

399

420

441

442 443 444 445 446 447 448 449 450 451 452453454 455 456 457 458 459 460 461 462

483

504

525

546

567

588

609

630

651

672

673 674 675 676 677 678 679 680 681 682 683684685 686 687 688 689 690 691 692 693

714

735

756

777

798

819

840

861

882

903

904 905 906 907 908 909 910 911 912 913 914915916 917 918 919 920 921 922 923 924

945

966

987

1008

1029

1050

1071

1092

1113

1134

1135 1136 113711381139 1140 1141 1142 1143 1144114511461147 1148 1149 1150 1151 1152 1153 1154 1155

1176

1197

1218

1239

1260

1281

1302

1323

1344

1365

1366 1367 136813691370 1371 1372 1373 1374 1375137613771378 1379 1380 1381 1382 1383 1384 1385 1386

1407

1428

1449

1470

1491

1512

1533

1554

1575

1596

1597 1598 159916001601 1602 1603 1604 1605 1606160716081609 1610 1611 1612 1613 1614 1615 1616 1617

1638

1659

1680

1701

1722

1743

1764

1785

1806

1827

1828 1829 183018311832 1833 1834 1835 1836 1837183818391840 1841 1842 1843 1844 1845 1846 1847 1848

1869

1890

1911

1932

1953

1974

1995

2016

2037

2058

2059 2060 206120622063 2064 2065 2066 2067 2068206920702071 2072 2073 2074 2075 2076 2077 2078 2079

X

Y

Z

 
Fig.  4.1.3-2.   Node Numbering for Example 4.1.3
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Fig.  4.1.3-3.   Dirichlet Boundary Conditions for Example 4.1.3 

 
The steady-state solution was determined with the absolute error tolerance of pressure head of 0.01 
m and 0.00001 m for nonlinear iterations and linear matrix solvers, respectively.  Simulation results 
of total head and flow velocity were shown in Figure 4.1.3-4 and Figure 4.1.3-5, respectively.   
Table 4.1.3-1 shows partial numerical results of pressure head that are corresponding to Figure 
4.1.3-4. 
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Fig.  4.1.3-4.   Total Head Distribution for Example 4.1.3 
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Fig.  4.1.3-5.   Flow Velocity Distribution for Example 4.1.3 

 
 

Table  4.1.3-1   Partial Numerical Results of Pressure Head 
 

Node ID Pressure Head [m] Node ID Pressure Head [m] 
1 0.60000000E+002 211 -0.12140085E+002  
2 0.58755458E+002 212 -0.13229426E+002 
3 0.57839757E+002 213 -0.14165134E+002 
4 0.57072146E+002  214 -0.14927611E+002 
5 0.56255441E+002 215 -0.15744612E+002 
6 0.54376744E+002 216 -0.17622228E+002 
7 0.52233408E+002 217 -0.19744420E+002 
8 0.50117077E+002 218 -0.21763400E+002 
9 0.46862747E+002 219 -0.24469933E+002 

10 0.40317625E+002 220 -0.27569262E+002 
11 0.30000000E+002 221 -0.28751296E+002 
12 0.38291482E+002 222 -0.27948658E+002 
13 0.43660431E+002 223 -0.26172644E+002 
14 0.48621638E+002 224 -0.23011554E+002 
15 0.51443050E+002 225 -0.20489174E+002 
16 0.53448674E+002 226 -0.18539230E+002 
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4.1.4 Coupled One-Dimensional and Two-Dimensional Flows. 
 
This example demonstrates the capability of WASH123D in handling coupled 1-D channel and 2-D 
overland flow problems.  Here we considered a spreader canal that was expected to distribute water 
to its downstream overland regime.  The 2-D overland domain was discretized with 151 elements 
and 171 nodes, and the 1-D spreader canal was composed of 11 elements and 12 nodes (Fig.4.1.4-1). 
 In WASH123D, all 2-D elements that are connected to 1-D nodes are defined as channel-related 
elements, and they are not included in 2-D overland computation.  Therefore, the 2-D computational 
domain contained 127 (= 151 - 24) 2-D elements and 159 (= 171 - 12) 2-D nodes.  The canal was 2 
m wide and its cross-sectional area was proportional to its depth.  The canal was as deep as 0.1 m at 
the entrance (i.e. the first 1-D node, marked in red in Fig. 4.1.4-1) and as shallow as 0.025 m at the 
turning point near Node 123 (i.e., the 6-th 1-D node). 
 

 
Fig.  4.1.4-1.   Discretization and Surface Elevation of Example 4.1.4 

 
 
The Manning’s roughness was set to 0.01 for both 2-D overland and 1-D canal flow.  In computing 
2-D overland flow, a Dirichlet boundary condition of zero depth was specified for Nodes 1, 12, 23, 
34, 45, 60, 74, 87, and 171; a depth-dependent flux boundary condition was given on the bottom 

 4-15



boundary (i.e., the boundary that emprises Nodes 11, 22, 33, …, 167); and a channel-overland 
interaction boundary condition was specified for the channel-related overland boundary sides, which 
included a depth-dependent flux when flow was from overland to canal and a canal stage condition 
when flooding occurred.  A time-dependent water depth was controlled at the upstream 1-D node 
(i.e., the entrance, Fig. 4.1.4-2), and a zero-velocity condition was applied at the downstream dead-
end node. 
 

Time (sec)

D
ep

th
(m

)

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 220000

0.005

0.01

0.015

0.02

0.025

 
Fig.  4.1.4-2.   Time-dependent Water Depth at the Upstream Canal Node for Example 4.1.4 

 
 
Initially, the overland domain was completely dry, while a constant depth of 0.02 m was given for 
the 1-D spreader canal so that water flow from the spreader canal to its downstream overland regime 
can be expected within a short period of time, which allowed us to verify the algorithm of coupling 
1-D channel and 2-D overland flow effectively.  A constant rainfall rate of 10-8 m/s was then applied 
throughout the entire simulation period of 21,600 seconds (6 hours).  The time-step size for 
computing 2-D overland flow was 4 seconds, and each 2-D time step contained four 1-D time steps. 
 
Figure 4.1.4-3 plots the variation of water depth with time at four 1-D canal nodes: 3, 6, 9, and 12.  
Also, a dash line that represents the bank height over which canal water will overflow to the 
downstream overland regime is given as reference for each node (marked with respective colors), 
except for Node 3 where the associated bank height is 0.09 m (see the first plot in Figure 4.1.4-5 
also).  Figure 4.1.4-4 provides a zoom-in plot of Figure 4.1.4-3 for the period of time from 0 through 
750 s, where the three plus symbols indicate the moments that water started to flow from canal to 
overland at Nodes 6, 9, and 12.  It is consistent with what is plotted in Figure 4.1.4-5, where the 
computed water depth and flow direction distribution of overland flow is given.  The first plot in 
Figure 4.1.4-44 also provides the information of bank height of each channel-related overland 
boundary nodes. 
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Fig.  4.1.4-3.   Computed Water Depth at Various 1-D Canal Locations for Example 4.1.4  

(Time = 0 through 21,600 s) 
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Fig.  4.1.4-4.  Computed Water Depth at Various 1-D Canal Locations for Example 4.1.4  

(Time = 0 through 750 s). 
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Time = 400 s     Time = 600 s 

 
 

Time = 1,200 s    Time = 2,400 s 

 
 

Time = 3,600 s    Time = 7,200 s 
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Time = 10,800 s    Time = 16,200 s 

 
 

Time = 21,600 s 

 
 

Fig.  4.1.4-5.   Distribution of Water Depth and Flow Direction in the Land Surface  
at Various Times for Example 4.1.4 
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4.1.5 Coupled Two-Dimensional and Three-Dimensional Flows. 
 
This example is designed to test coupled overland/subsurface flow within a hypothetic domain, 
where ground surface has a gradually changing slope in the x-direction (Fig. 4.1.5-1).  Figure 4.5-1 
depicts the simulation domain, dimension, and discretization of the example, where the dimension in 
the z direction is magnified five times for better visualization. 
 

 
Fig.  4.1.5-1.   Domain, Dimension, and Discretization of Example 4.1.5-1 

 
 
The subsurface porous medium is uniformly distributed throughout the entire domain and the 
corresponding saturated hydraulic conductivity has components Kxx = 2x10-4 m/s, K  = 10-5

yy  m/s, 
and Kzz = 10-5 m/s.  The following soil characteristic equations are used to describe the hydraulic 
properties in unsaturated zones. 
 

0.3                                   0
0.15 0.0015( 100)     100 0
0.15                                 100

if h
h if h

if h

θ
θ
θ

= <
= + + − <
= <

<
−

 (4.1.5.1)
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+
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= < −

h <  (4.1.5.2)

 

0.0    0    or   100;   0.0015    100 0d dif h if h if h
dh dh
θ θ
= < < − = − < <  (4.1.5.3)

 

 
In this example, the initial flow condition was computed by solving the steady-state flow governing 
equation based on the given boundary conditions: an impermeable boundary condition applied to the 
front (y = 0 m), back (y = 100 m), and bottom (z = 0 m) boundaries; a total head of 26 m specified 
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on the lower part of the left boundary (x = 0 m and z ≤ 26 m); a total head of 13 m specified on the 
lower part of the right boundary (x = 1000 m and z ≤ 13 m); a variable boundary condition of a zero 
ponding depth and a zero rainfall rate used for the top boundary (i.e., the ground surface, Figure 
4.1.5-2).  
 

X

Y

Z

 
Fig.  4.1.5-2.   The Setup of Boundary Conditions for Example 4.1.5  

(Dirichlet boundary nodes are marked in red and variable-boundary sides are marked in yellow) 
 
As the six-hour transient simulation began, we had a rainfall of 2x10-5 m/s during the first twenty 
minutes, followed by a no-rain period of one hour, a rain of 10-5 m/s for 1 hour, and 1.5x10-5 m/s 
afterwards till the end of the simulation (time = 6 hours).  The overland water depth was set to zero 
on the highest location (i.e., at x = 0 m) to mimic a water divide, while a depth-dependent flux was 
given as the boundary condition to characterize water flow at the lowest location (i.e., at x = 1,000 
m).  The rest of the overland boundary (i.e., at y = 0 m and y = 100 m) was assumed streamline 
boundary and no-through flux boundary condition was applied.  During the transient simulation, the 
computed overland water depth was used as the ponding depth for implementing the variable 
boundary condition on the top boundary in computing 3-D subsurface flow.  The remaining 
boundary conditions for computed 3-D subsurface flow were set identical to those mentioned above 
for the initial steady-state simulation.  The Manning’s roughness was 0.02.  The diffusion wave 
model was used to compute overland flow.  An absolute error of 10-4 m was used to determine 
convergence for 2-D overland flow, and absolute errors of 10-3 m and 10-6 m were employed to settle 
nonlinear convergent solutions and linearized convergent solutions, respectively, in computing 3-D 
subsurface flow.  The time step sizes for 3-D and 2-D computation were 10 seconds and 2 seconds, 
respectively.  
 
Simulation results of subsurface pressure head/flow velocity and overland water depth are plotted in 
Figures 4.1.5-3 and 4.1.5-4, respectively.  In Figure 4.1.5-3, the unsaturated zone is highlighted with 
white color.  Although there was no water observed on ground surface from Time = 0 through 7,200 
seconds due to infiltration, the time-dependent rainfall has changed the elevation of water table 
during this period of time.  The constant rainfall rate after Time = 4,800 seconds not only raised 

 4-21



water table but also generated surface runoff after the soil could no longer take all the rainfall, and 
we observed water depth on ground surface at both Time = 10,800 seconds and 21,600 second.  
Figures 4.1.5-3 and 4.1.5-4 show consistent results for this coupled 2-D/3-D example.  Table 1 gives 
the numerical results of water depth along the x direction that are corresponding to Figure 4.1.5-4. 
 

Time = 0 s 

 
 
 

Time = 1,200 s 
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Time = 4,800 s 

 
 
 

Time = 7,200 s 

 
 

Time = 10,800 s 
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Time = 21,600 s 

 
 

Fig.  4.1.5-3.   Pressure Head Distribution at Various Times for Example 4.1.5 
 

 
 

Time = 1,200 s 

 
 
 

Time = 4,800 s 
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Time = 7,200 s 

 
 

Time = 10,800 s 

 
 

Time = 21,600 s 

 
 

Fig.  4.1.5-4.   Overland Water Depth Distribution at Various Times for Example 4.1.5 
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Table  4.1.5-1   Partial Results of Water Depth along the x-Direction for Example 4.1.5 
Time [s] 1,200 4,800 7,200 10,800 21,600 

Water 
Depth 

[m] 

X = 0 0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 

0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 

0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 
0.000000E+00 

0.000000E+000 
0.000000E+000 
0.000000E+000 
0.000000E+000 
0.494521E-003 
0.295229E-002 
0.552909E-002 
0.790493E-002 
0.991641E-002 
0.119154E-001 
0.137984E-001 
0.150824E-001 
0.162323E-001 
0.172655E-001 
0.170996E-001 
0.166321E-001 
0.165685E-001 
0.162621E-001 
0.158421E-001 
0.150275E-001 
0.142089E-001 

0.000000E+000 
X = 10 0.566370E-003 

0.150968E-002 
0.285450E-002 
0.458664E-002 
0.665658E-002 
0.894692E-002 
0.111607E-001 
0.131597E-001 
0.152891E-001 
0.173210E-001 
0.186713E-001 

X = 30 
X = 60 

X = 100 
X = 150 
X = 210 
X = 280 
X = 350 
X = 420 
X = 500 
X = 580 
X = 650  0.199247E-001 
X = 720  0.210734E-001 
X = 790  0.207789E-001 
X = 840  0.201513E-001 
X = 880  0.200295E-001 
X = 920  0.196289E-001 
X = 950  0.191035E-001 
X = 980  0.181227E-001 
X = 1000  0.171431E-001 

 
 
 
4.1.6 Coupled Three-Dimensional and One-Dimensional Flows. 
 
This example is designed to simulate a losing stream passing through an underlying unconfined 
aquifer.  The 3-D subsurface domain is represented by a 900 m x 800 m x 50 m area with a sloped 
land surface and the porous media extends to 50 m below land surface.   A stream is located at the 
center of the domain (Fig.4.1.6-1).  The saturated hydraulic conductivity of the soil is K -4=1.0xx  m/s, 
Kyy=1.0-5 m/s and Kzz=5.0-6 m/s.  The effective porosity is 0.3. The unsaturated characteristic 
functions are linear. 
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Fig.  4.1.6-1.    3-D Finite Element Mesh of Example 4.1.6 

 
At the beginning of the simulation, a constant total head of 35 m is applied to the aquifer. A total 
head of 35 m was also applied as specified head boundary conditions to the lower part of the 
subsurface boundaries at the location of both stream ends. Other subsurface boundary surfaces were 
either variable boundary (top surface) or impermeable (other sides). 
 
The stream is initially dry. An unsaturated zone hydraulically separates the stream and the aquifer. 
The length of the stream is 900 m. It was divided into 9 elements and 10 nodes. The bottom slope is 
5/1,000. The cross-section is rectangular.  The Manning’s n is 0.03. 
   
A discharge hydrograph is applied at the upstream end of the stream (Fig.4.1.6-2). The inflow 
hydrograph has a peak discharge of 40 m3/s and duration of 7,200 seconds (2 hours).  A rating curve 
was applied at the stream outlet.   The total simulation time is 14,200 seconds (4 hours). A time step 
of 600 sec and 10 sec were used for 3-D subsurface and channel flows, respectively. 
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Fig.  4.1.6-2.   Inflow Hydrograph for Example 4.1.6 

 
The simulation results show that the saturated area in the subsurface domain expanded along the 
stream due to seepage from the channel (Fig. 4.1.6-4 and 4.1.6-5). The outflow hydrograph was 
modified by the infiltration into the subsurface. The peak discharge at x=600.0 m was less than the 
peak value without infiltration. And the time to peak was also delayed (Fig. 4.1.6-3). 
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Fig.  4.1.6-3.   Discharge Hydrograph (x = 0 and x = 600 m) for Example 4.1.6 
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Fig.  4.1.6-4.   Pressure Head Distribution at X = 500 m (Time=14,200 seconds) 
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Fig.  4.1.6-5.   Pressure Head Distribution at Y=430 m (time=14,200 seconds) 
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4.1.7 Coupled One-Dimensional, Two-Dimensional, and Three-Dimensional Flows. 
 
This example demonstrates the capability of WASH123D in handling coupled 1-D channel, 2-D 
overland, and 3-D variably saturated subsurface flow problems.  A spreader canal that was consisted 
of an upstream boundary node, a downstream boundary node, a junction, and a dead end was 
assumed in a hypothetic watershed.  The 2-D overland domain was discretized with 154 elements 
and 175 nodes, and the 1-D spreader canal was composed of 14 elements and 17 nodes, where 1-D 
Nodes 1 through 6 were included in the first reach, 7 through 13 in the second reach, 14 through 17 
in the third reach, and 1-D Nodes 6, 7, and 14 connected at the junction (Fig. 4.1.7-1).  By excluding 
those 2-D nodes that coincided with 1-D nodes, the 2-D computational domain contained 124 (= 154 
- 30) 2-D elements and 160 (= 175 - 15) 2-D nodes.  The canal was 4 m wide for the first reach, 2 m 
wide for the second and third reaches, and its cross-sectional area was proportional to its depth.  The 
canal was as deep as 0.1 m at the entrance (i.e. the first 1-D node, written in red in Fig. 4.1.7-1) and 
as shallow as 0.025 m at the junction.  Figure 4.1.7-1 also provides the figures of bank height for all 
channel-related overland nodes (written in dark blue).   The 3-D domain contained 1,050 nodes and 
770 elements (Fig. 4.1.7-2), where the overland/canal domain coincided with its top boundary (i.e., 
ground surface). 
 

 
Fig.  4.1.7-1.   1-D/2-D Discretization and Surface Elevation of Example 4.1.7 
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Fig.  4.1.7-2.   3-D Discretization of Example 4.1.7 

 
To compute 3-D subsurface flow, a total head of 10.01 m was specified on the northern boundary 
and 9.5 m on the southern boundary.  The east, west, and bottom boundaries were assumed 
impermeable.  The Manning’s roughness was set to 0.01 for both 2-D overland and 1-D canal flow.  
In computing 2-D overland flow, a Dirichlet boundary condition of zero depth was specified for 
Nodes 1, 9, 10, 11, 12, 13, 14, and 15, which represented high grounds; a depth-dependent flux 
boundary condition was given on the low ground (or south) boundary (i.e., the boundary that 
emprises Nodes 159, 158, 157, …, 169); and a channel-overland interaction boundary condition was 
specified for the channel-related overland boundary sides, which included a depth-dependent flux 
when flow was from overland to canal and a canal stage condition when flooding occurred.  A time-
dependent water depth was controlled at both the upstream and downstream 1-D nodes (i.e., Nodes 1 
and 17 in red in Fig. 4.1.7-1), which started at 0.01 m at time = 0 second, then increased linearly to 
0.04 m at time = 1,800 seconds, and stayed at 0.04 m for the rest of the simulation (i.e., to time = 
14,400 s).  A zero-velocity condition was applied at the dead-end node. 
 
The initial subsurface head distribution (Fig. 4.1.7-3) was computed by solving for a steady-state 
subsurface flow solution, where Dirichlet boundary conditions were applied to the north and the 
south boundaries as mentioned above, a rainfall rate of 10-8 m/s was assumed as the variable 
boundary flux on the top boundary, and a ponding depth of 0.01m was enforced and applied to those 
subsurface boundary nodes that were corresponding to 1-D canal nodes.  At the beginning of the 
simulation, the overland domain was completely dry, while a constant depth of 0.01 m was assumed 
at every node in the 1-D spreader canal.  A constant rainfall rate of 10-7 m/s was applied throughout 
the entire simulation period of 14,400 seconds.  The time-step size was set to 50 seconds for 
computing 3-D subsurface flow, 10 seconds for 2-D overland flow, and 2 seconds for 1-D channel 
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flow.  It is noted that after the transient simulation began, the top boundary of 3-D subsurface served 
as the interface between surface and subsurface domains, and the boundary condition that was 
applied on it depended on both rainfall and water depth on ground surface. 
 
 

 
Fig.  4.1.7-3.   The Computed Initial Steady-State Pressure Head Distribution of Example 4.1.7 

 
 
Figure 4.1.7-4 plots the variation of water depth with time at five 1-D canal nodes: 3, 6, 9, 12, and 
15.  Also, a dash line that represents the bank height over which canal water will overflow to the 
downstream overland regime is given as reference for Nodes 6, 9, 12, and 15 (marked with 
respective colors).  The bank height was 0.09 m for Node 3, which is out of scale in Figure 4.1.7-4.  
Figure 4.1.7-5 provides a zoom-in plot of Figure 4.1.7-4 for the period of Time = 0 through 2,000 s, 
where the four “X” symbols indicate the moments that water started to flow from canal to overland 
at Nodes 6, 9, 12, and 15. 
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Fig.  4.1.7-4.   Computed Water Depth at Various 1-D Canal Locations for Example 4.1.7 

(Time = 0 through 14,400 s). 
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Fig.  4.1.7-5.   Computed Water Depth at Various 1-D Canal Locations for Example 4.1.7  

(Time = 0 through 750 s) 
 
 
Figure 4.1.7-6 plots the distribution of water depth in the overland domain at various times.  Figures 
4.1.7-7 and 4.1.7-8 plot the distribution of subsurface pressure head on several x and y, respectively, 
cross sections at various times, where the unsaturated zone is highlighted in white and water table is 
marked in red. 
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Time = 1,200 s     Time = 2,400 s 

  
 

Time = 3,600 s     Time = 4,800 s 

  
 

Time = 6,000 s     Time = 7,200 s 

  
Fig.  4.1.7-6.   Computed Distribution of Water Depth of Overland at Various Times  

(Example 4.1.7, Part 1) 
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Time = 10,800 s     Time = 12,000 s 

  
 

Time = 13,200 s     Time = 14,400 s 

  
Fig.  4.1.7-6.   Computed Distribution of Water Depth of Overland at Various Times  

(Example 4.1.7, Part 2) 
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Fig.  4.1.7-7.   Computed Pressure Head Distribution on Several X Cross Sections at Various 

Times (Example 4.1.7, Part 1) 
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Fig. 4.1.7-7.   Computed Pressure Head Distribution on Several X Cross Sections at Various 

Times (Example 4.1.7, Part 2) 
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Fig.  4.1.7-8.   Computed Pressure Head Distribution on Several Y Cross Sections at Various 

Times (Example 4.1.7, Part 1) 
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Fig. 4.1.7-8.   Computed Pressure Head Distribution on Several Y Cross Sections at Various 

Times (Example 4.1.7, Part 2) 
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It is observed from Figure4.1.7-4 that the 1-D canal flow may be considered to be reaching a steady 
state after time = 3,000 seconds.  However, the change of water depth and pressure head with time in 
Figures 4.1.7-6 and in Figures 4.1.7-7 and 4.1.7-8, respectively, shows that 2-D overland flow and  
3-D subsurface flow have not reached a steady state even at the end of the simulation.   
 
From Figure 4.1.7-6, it is observed that the overland water seems to be confined within a certain 
region during Time = 2,400 s through Time = 7,200 s and during Time = 12,000 s through Time = 
14,400 s.  After a close examination on the numerical results, we determine that this confinement 
was caused by infiltration at the respective downstream locations, which was greatly influenced by 
the Dirichlet boundary condition (total head = 9.5 m) that was specified on the southern boundary.  
As time passes, infiltration from overland to subsurface raised water table, and the overland water 
front moved further downstream when water table arose to near ground surface and water coming in 
from the upstream could overcome infiltration. 
 
Figures 4.1.7-6 through 4.1.7-8 show consistent results between overland water depth and 
subsurface pressure head.  This has verified that we have successfully implemented the coupling of 
surface and subsurface flow in WASH123D. 
 
 
4.2 Three Optional Approaches to Modeling Flow in WASH123D 
 
Three approaches are taken to model flow problems in WASH123D: kinematics-wave, diffusive-
wave, and fully dynamic-wave models.  In this section, four example problems are presented to 
show possible differences in simulations using these three different approaches and to illustrate that 
only fully dynamic-wave approaches can be taken to model very rapidly varying transient flow 
problems.   
 
 
4.2.1 One-Dimensional River Flows 
 
Three cases are presented for the one-dimensional problems in the river/stream/canal system.  Case 1 
is a steady-state subcritical flow problem, which shows there are some errors in the diffusive wave 
approximation even for this simple problem.  Case 2 is a steady-state mixed subcritical and 
supercritical problem, which is designed to demonstrate the magnitude of errors introduced with the 
diffusive wave approximation.  Case 3 is a steady-state, mixed subcritical and supercritical problem 
with a hydraulic jump.  This problem demonstrates that the diffusive wave approximation is not 
adequate for this complicated problem.  In all three cases, steady-state simulations were achieved via 
transient simulations with constant boundary and source conditions. 
 
1.  Subcritical Flow.  This is the test problem published by MacDonald et al. (1997), where an 
analytical solution for the problem is available.  The channel is rectangular with a width of 10 m. 
The total length is 1,000 m. A constant flow of 20 m3/s passes through. The flow is subcritical over 
the entire channel. A water depth of 0.748409 m is specified at the downstream outlet. The 
Manning’s n value is 0.03. The bed slope is given by an analytical function of the water depth.  
Simulated steady-state profiles of water depth with diffusive wave (DIW) and fully dynamic wave 
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(FDW) approaches are given in Figure 4.2.1-1.  It is seen that the FDW approach yields excellently 
accurate results while the DIW approach produces some errors. 
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Fig.  4.2.1-1.   Comparison of Simulated Water Depth Profile with Exact Solutions 

 
2.  Mixed Subcritical and Supercrical Flow.  This test case was described in MacDonald et al. 
(1997).  A 1,000 m of rectangular channel with a width of 10 m is given a constant flow rate of 20 
m3/s.  The bottom slope is variable such that the flow condition at the inflow is subcritical and is 
supercritical at the outlet.  The Manning’s n value is 0.02.   For the dynamic wave approach, one 
inflow boundary condition is specified at the upstream and no boundary condition is needed at the 
downstream since supercritical flows occur therein.  For diffusive wave model, two boundary 
conditions must be given: one is the upstream boundary condition where the inflow rate is prescribed 
as in the case of FDW approach and the other is the downstream boundary condition.  In this case, 
the known water depth at outlet is specified as the Dirichlet boundary conditions.  
 
The dynamic wave model is able to solve this mixed flow problem with good accuracy (Fig. 4.2.1-
2).  No numerical instabilities have been encountered. The diffusive wave model also provides 
satisfactory results (4% error in water depth). The Froude number profile plot shown in Figure 4.2.1-
3 confirms the mixed flow condition.  It is interesting to note that the DIW model requires more 
input data than the FDW model, yet yields poorer simulations. 
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Fig.  4.2.1-2.   Comparison of Simulated Water Depth Profile with Exact Solutions 
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Fig.  4.2.1-3.   Froude Number Profile 

 
 
3.  Mixed Subcritical and Supercrical Flow with Hydraulic Jump.  This test case was described in 
MacDonald et al. (1997).  The channel is trapezoidal with a total length of 1,000 m.  The upstream 
inflow is a constant discharge 20 m3/s.  At the downstream outlet, a specified water depth of 
1.349963 m is applied.  The side slope of the trapezoidal cross-section is 1:1.  The Manning’s n 
value is 0.02.  There is an abrupt change in the bed slope at x = 500 m, causing a hydraulic jump.  
The bottom elevation and bed slope were given in MacDonald et al. (1997).  Both inflow and 
outflow boundaries are subcritical.  The analytical solution of the steady state water depth is 
provided in MacDonald et al. (1997) 
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This is a non-trivial problem with source terms (roughness and bed slope) and is more realistic in 
testing the performance of the FEM based method of characteristics.  As expected, the accuracy of 
the diffusive wave approximation for this mixed flow case is not satisfactory.  The error induced by 

iffusive wave approximation is high at the supercritical zone (Fig. 4.2.1-4). 
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Fig.  4.2.1-4.   Comparison of Simulated Water Depth Profile with Exact Solution 

.2.2 Two-Dimensional Overland Flows. 

tation for dynamic, diffusive and kinematic wave models. The average bottom slope is 
.00133. 

 

 

 
 
4
 
A rainfall-runoff process on an impervious curved surface is simulated (Fig. 4.2.2-1). The domain is 
150 m x 40 m.  The bottom elevation ranges from 0.11 m to 0.31 m over a horizontal length of 150 
m.  The overland domain is divided into 80 elements and 105 nodes.  A specified water depth of 0.1 
m is applied to the downstream end boundary. All other sides are assumed to be no-flow boundaries. 
 A Manning’s n value of 0.02 is used. The rainfall intensity is 3.0-5 m/s for 1,800 seconds (30 
minutes).  The purpose of this numerical experiment is to compare the simulation results obtained 
with different computational methods for 2-D overland flow and validate the numerical 
implemen
0

 4-43



 
Fig.  4.2.2-1.   Topography of the Land Surface 

 
 
The fully dynamic wave equations and diffusive wave and kinematic wave approximations were 
applied to this problem.  The simulation results were compared.  The computed water levels at Node 
28 (x = 20 m, y = 30 m, Zo = 0.152 m) were compared (Fig. 4.4.2-2).  This location is close to the 
downstream end. The maximum value of water level, found to be 0.173 m, 0.180 m and 0.181 m, 
was obtained with fully dynamic wave (MOC), diffusive wave (SL), and kinematic wave (SL) 
approaches. The difference between the dynamic wave and diffusive wave models is about 6%.  This 
may indicate the diffusive wave approximation is not accurate for this problem.  Similar conclusions 
can be made for the kinematic wave model.  Water levels at Node 88 (x = 20 m, y = 130 m and Zo = 
0.278 m), which represent the flow at upper part of the surface, were compared (Fig. 4.2.2-3).  The 
maximum water depth at this site is 0.01124 m, 0.0094 m and 0.00776 m for FDW (MOC), DIW 
(SL), and KIW (SL), respectively.  The differences between the fully dynamic wave and 
diffusive/kinematic wave models at the upstream nodes are smaller than those at the downstream 
nodes as expected. 
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Fig.  4.2.2-2.   Comparison of Simulated Water Levels at a Node Closed to Downstream 
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Fig.  4.2.2-3.   Comparison of Simulated Water Levels at a Node Closed to Upstream 

 
 
4.2.3 Circular Dam Break Problems. 
 
This is a typically idealized dam break problem designed to test the performance of the two-
dimensional method of characteristics (2-D MOC) in solving two-dimensional fully dynamic wave 
problems. This example has been extensively applied in the hydraulic literature to test performance 
of new numerical schemes for two-dimensional shallow water equations. 
 
 An idealized circular dam is located on a frictionless horizontal bottom (40 m x 40 m). A nominal 
circular thin wall is located at the circle from the center with a radius of 2.5 m.  At the beginning of 
the simulation, the circular wall has collapsed instantly.   At time t = 0, the water depth in the dam is 
2.5 m, and a water depth of 0.5 m is presented elsewhere (Fig. 4.2.3-1).  
 
This is a symmetrical wave propagation problem. The radial direction is the wave direction.  
Isotropic nature of the solution may be destroyed in some grid orientation dependent numerical 
schemes such as a finite volume method.   
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Fig.  4.2.3-1.   Three-Dimensional Plot of Initial Water Depth 

 
The most important and difficult aspect of the 2-D MOC method is the selection of the characteristic 
directions for the three characteristics. In this case, the wave directions are known a priori from the 
physical nature of the flow.  It was found that if the characteristic directions were chosen along the 
radial direction at each node, the computation was very stable.  When the selection of the 
characteristic directions is updated through the solution process, the convergence rate and the 
isotropic nature of the solution were very sensitive to time step and mesh size.  
 
The computational mesh comprises 2,854 linear triangular elements and 1,440 nodes. Starting from 
the center of the circular dam, nodes are located evenly on circles with increasing radius. This is 
designed to follow the physical nature by taking advantage of finite element method (Fig. 4.2.3-2).    
 
The time step size is 0.01 second and the total simulation time is 3.0 seconds.   The following plots 
of water surface elevations (Fig. 4.2.3-3, 4.2.3-4 and 4.2.3-5) demonstrate the development of water 
wave movement. It can be seen that water depth has dropped below the initial water depth of 0.5 m 
outside of the dam.   These numerical results are consistent with those presented in the hydraulic 
literatures.   
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Fig.  4.2.3-2.   Two-Dimensional Finite Element Mesh of Example 4.2.3 

 
 
 

 
Fig.  4.2.3-3.     Water Surface Elevation at Time = 0.7 s for Example 4.2.3 
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Fig.  4.2.3-4.   Water Surface Elevation at Time = 1.4 s for Example 4.2.3 

 
 

 
Fig.  4.2.3-5.   Bottom View of Water Surface Elevation at Time = 2.8 s for Example 4.2.3 

 
 
The symmetrical nature of the solution was preserved quite well.  This is demonstrated in the stage 
hydrograph at nodes at the center of the circular domain (Fig. 4.2.3-6). 
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Fig.  4.2.3-6.   Water Depth Hydrograph for a Location near the Center of the Circular Dam 

 
The depth hydrograph in Figure 4.2.3-6 confirms that there is a depression in water surface after the 
dam break. The water depth decreases from 2.5 m to below 0.5 m. 
 
An animation showing the circular dam break over the entire simulation period is attached in 
Appendix A (File Name: dambkcir(4-2-3).avi).   
 
 
4.2.4 Two-Dimensional Dam Break Problems. 
 
This a two-dimensional frictionless partial dam break problem that has been extensively used in 
hydraulic literature for testing numerical performance. The water depth behind the dam is assumed 
to 10 m.  The downstream water depth was set to 0.05 m, so it is a nearly dry-bed simulation.   This 
problem is very difficult to solve numerically with conventional finite difference or finite element 
methods. 
 
The rectangular channel is horizontal with a dimension of 200 x 200 m in length and width, 
respectively. The initial water depth is 10 m in the reservoir and 0.05 m in the downstream. The 
breach or opening of sluice gates is 75 m, between x = 95-170 m. The domain was divided into 40 x 
40 rectangular elements and the elements at the location of the dam are excluded (Fig. 4.2.4-1). 
 
The two-dimensional fully dynamic wave model was applied to this problem and solved with the 
Method of Characteristics (MOC). A time step of 0.15 second was used.  Figures 4.2.4-2 through 
4.2.4-4 depict the water stages at various time = 2.0 s, 5.0 s, 7.0 s, respectively.  This demonstrates 
that the 2-D MOC can solve this kind of sharp front problem without having to use higher order 
numerical schemes, all of which produce wiggles and peak clipping.  Diffusive or kinematic wave 
approaches cannot adequately simulate this type of problems. 
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Fig.  4.2.4-1.   Problem Description and Finite Element Discretization for Problem 4.2.4 

 
 

              
Fig.  4.2.4-2.  3-Dimensonal Perspective View of Water Surface at time = 2 s for Problem 4.2.4 
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Fig.  4.2.4-3.   3-Dimensonal Perspective View of Water Surface at time = 5 s for Problem 4.2.4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  4.2.4-4.   3-Dimensonal Perspective View of Water Surface at time = 7 s for Problem 4.2.4 

 
An animation showing the two-dimensional dam break over the entire simulation period is attached 
in Appendix A (File Name: dambk2d_dry(4-2-4).avi). 
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4.3 Preliminary Field Applications Using WASH123D 
 
WASH123D is developed to be a primary, first-principle, physics-based tool to simulate realistic, 
real-world, field problems.   In this section, six example problems are presented to illustrate the 
types of problems that WASH123D can be used for field applications.   No attempt is made to 
conduct thorough calibration and verification studies because this is not the purposes of this report.   
Preliminary calibrations have been made for some of the examples though.  The first example 
involves the modeling of aquifer storage recovers.  The second example is to design a spreader 
canal. The third example is the application of WASH123D to Biscayne Bay Coastal Wetland 
(BBCW) watershed to investigate the redistribution of overland flows and the overland fluxes to 
Biscayne Bay.  The fourth example involves the modeling of stormwater treatment area (STA).  The 
fifth example is the employment of WASH123D to model reservoirs and canal networks in Northern 
Beach County in Florida.  The sixth example is the employment of WASH123D to model 
interactions among canal networks, overland flow, and subsurface flow in Dade County in South 
Florida.    
 
 
4.3.1 Aquifer Storage Recover (ASR)  
 
Aquifer Storage and Recovery (ASR) is means to store fresh water deep underground in brackish 
water aquifers.  This stored water can be recovered at a later date during emergencies or times of 
water shortage.  ASR is expected to provide a cost-effective solution to many of the world’s water 
management needs.  However, the quality of the stored water may degrade over time due to mixing 
and buoyancy stratification.  Water quality may further be reduced during extraction due to 
upcoming of saline water underlying the ASR well.  This water quality degradation may reduce the 
volume of the available fresh water during recovery to the point that the ASR well is no longer cost 
effective. 
 
A simple case of a single ASR well is simulated.  Some data is referred to the 1989 ASR pilot 
project at Lake Okeechobee, Florida (CH2M Hill, 1989).  But overall it is for demonstration purpose 
only.  Three-dimensional density driven flow and transport is simulated.  The injected freshwater is 
stored and mixed with the brackish water in the aquifer.  The diameter of the ASR well is 24 inches. 
 The screened area is located at 1,300 ft to 1,600 ft below land surface.  So the storage zone is in the 
artesian aquifers with a confining layer of 400 ft overlying it.  The saturated hydraulic conductivity 
is 177.6 ft/day. The effective porosity is 0.25.   Only the storage zone will be simulated.  The 
thickness of the aquifer is 300 ft.  A rectangular area, with a scale of 1,600 x 1,600 ft is chosen for 
the modeling domain.  The boundary is set far away from the ASR well, so that injected water is 
stored within the domain. 
 
Specified head boundary conditions are assigned in the direction of natural groundwater flow to 
represent the background groundwater flow.  Variable boundary conditions are specified at the 
perimeter of the ASR well.  The boundary condition at the screen of the ASR well can be specified 
head or flux depending on the injection pumping pressure.  During the recover period, the head 
condition is specified on the boundary.  
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The three-dimensional finite element mesh contains three layers.  The total number of subsurface 
nodes is 3,280 and the total number of elements is 4,674.  The size of the elements is designed to be 
finest within the vicinity of the well (Fig. 4.3.1-1). 
 

 
Fig.  4.3.1-1.   Three-Dimensional Finite Element Mesh for ASR 

 
The injection/recovery processes were simulated for 720 hours.   The injection stopped at time = 360 
hours and then recovery started till the end of the simulation.   The total head distributions and saline 
concentrations at different times were plotted in Figures 4.3.1-2 to 4.3.1-5 and Figures 4.3.1-6 to 
4.3.1.9, respectively, in the following.  The spatial distributions of the total head and concentration 
presented these figures demonstrated the impact of the background flow and density effect.  
 
From the animations (Files totalhead_inject(4-3-1).avi and totalhead_recov(4-3-1).avi in Appendix 
A), it is seen that the steady-state simulations were achieved in one–time step.   This is so because 
the compressibility of the water and media were assumed zero which makes the aquifer specific 
storativity zero.   On the other hand, from the animation (File concentration(4-3-1).avi in Appendix 
A), one can see that the concentration distribution is highly transient.   This is so because the storage 
coefficient for salt transport is the porosity of the aquifer.   
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Fig.  4.3.1-2.   Total Head Distribution (Time = 0 hour) 

 
 

  
Fig.  4.3.1-3.   Total Head Distribution (Time = 359 hours) 
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Fig.  4.3.1-4.   Total Head Distribution (Time = 362 hours) 

 
 

  
Fig.  4.3.1-5.   Total Head Distribution (Time = 720 hours) 
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Fig.  4.3.1-6.    Saline Concentration at Time = 12 hours 

 
 

 
Fig.  4.3.1-7.    Saline Concentration at Time = 359 hours 
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Fig.  4.3.1-8.    Saline Concentration at Time = 520 hours 

 
 
 

 
Fig.  4.3.1-9.    Saline Concentration at Time = 720 hours 
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4.3.2 Design of a Spread Canal 
 
The Biscayne Bay Coastal Wetlands (BBCW) Project is one component of the more than 60 
restoration plans and has a goal to restore the coastal wetlands area in Central and South Biscayne 
Bay along its western shoreline.  In the existing condition, fresh water plumes emanating from the 
mouths of canals and well-defined ditches can create local freshening of Biscayne Bay that can be 
harmful to sea grasses and the ecology of Biscayne Bay.  Current restoration efforts in southern 
Florida are examining alternative water management plans that could change the quantity and the 
timing (Q & T) of freshwater delivery to the bay by restoring coastal wetlands along its western 
shoreline of the Biscayne Bay.  In contrast to these well-defined surface features, shallow water 
wetlands can diffuse the introduction of fresh water into Biscayne Bay.  Using wetlands to recharge 
fresh water into the groundwater system can be useful to minimize fresh water plumes extending 
into Biscayne Bay and to help minimize and/or impede saltwater intrusion.  One scenario to address 
this effort is to create a spreader canal system to redistribute available surface water entering the area 
from the regional canal system (Cheng, et al., 2004).  The spreader canal system would consist of a 
delivery canal and shallow swales (i.e., spreader canals) where water flows across the swale banks 
and becomes a more natural overland flow through existing coastal wetlands.  Studying such a 
scenario on a design level involves the modeling of a coupled flow system of 1D canal network, 2D 
overland, and 3D subsurface. 
 
The top of Figure 4.3.2-1 depicts a conceptual model of a spreader canal system.  As water is 
introduced from a delivery canal, the spreader canal is designed to distribute water to its downstream 
wetland area in order to reduce the impact to the ecological system of the bay that is further 
downstream.  The bottom of Figure 4.3.2-1 presents two scenarios that are associated with the 
spreader canal and need to be accounted for by the computational model: the left one shows a scene 
in which canal water is kept in canal, while the right one has canal water stage high enough to 
contribute to the downstream overland area.  In the left case, the canal collects water from its upland 
surface (overland and canal waters are separate here) but has no contribution to its downland surface 
area.  In the right case, the canal receives water from its upland surface on one hand and gives out 
water to its downland surface (canal and overland waters are connected here) on the other hand.  
When the subsurface is also taken into account, surface-subsurface interactions through infiltration 
and seepage (red arrows in Figure 4.3.2-1) may play crucial roles in determining subsurface water 
table, overland water depth, and canal water stage.  In WASH123D, flux continuity is ensured on the 
medium interfaces, while state variable continuity is imposed when waters between two media are 
connected. 
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Fig.  4.3.2-1.   A Conceptual Model (top) and Two Scenarios (bottom) of the Spreader Canal 
 
 
This hypothetical example demonstrates how WASH123D may help model and design a spreader 
canal system that includes one-dimensional canal, two-dimensional overland, and three-dimensional 
subsurface flow.  It used the topographic data in the BBCW project area (Fig. 4.3.2-2) to construct 
the discretized domain of interest.  The study area of this example is marked in Figure 4.3.2-2.  A 
spreader canal was placed in the domain to distribute water that came in from the west boundary 
(marked with a red A in Figure 4.3.2-3).  The two-dimensional overland domain, which covered an 
area of approximately 1.1 square miles, was discretized with 28,340 elements and 14,390 nodes, 
where the mesh size was about 50 ft.  The one-dimensional canal embraced 91 elements, 94 nodes, 
one upstream boundary node (A in Figure 4.4.2-3), two dead ends (DE1 and DE2 in Figure 4.3.2-3), 
and one junction (J in Figure 4.3.2-3) to connect the three canal reaches.  The underlying three-
dimensional domain contained 113,360 elements and 71,950 nodes.  The width of the assumed 
rectangular canal was set 90 ft for Reach 1, 20 ft for Reach 2, and 60 ft for Reach 3 (Figure 4.3.2-3). 
The cross-sectional area was proportional to the depth, where the depth of the spreader canal was 
computed by solving one-dimensional diffusive wave equations. 
 
The Manning’s roughness was set to 0.015 for two-dimensional overland flow and 0.008 for one-
dimensional canal flow.  The subsurface medium was sandy loam and was assumed homogeneous 
through the entire domain, where the saturated hydraulic conductivity was 1,000 ft/day.  The soil 
retention curves for the unsaturated zone were generated with the van Genuchten functions. 
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Fig.  4.3.2-2.   Location of the Simulated Area of the Demonstration Example 

 

 
Fig.  4.3.2-3.   1D canal and 2D Overland Boundary Conditions Used for the Demonstration 

Example 
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In computing one-dimensional canal flow, a time-dependent water depth was given in Table 4.3.2-1 
as the upstream boundary condition for the incoming water as indicated in Figure 4.3.2-3; a zero-
velocity condition was applied at the two downstream dead-end nodes; and the continuity of both 
flow rate and water stage was enforced at the canal junction.  In computing two-dimensional 
overland flow, its north, west, and south boundaries were imposed the zero-depth boundary 
condition throughout the simulation; a depth-dependent flux (i.e., rating curve) was given on the 
downstream depth-dependent (rating curve) boundary (Fig. 4.3.2-4); and a canal-overland 
interaction boundary condition was specified for the canal-related overland boundary sides, which 
includes (1) a depth-dependent flux when water flowed from overland to canal and overland water 
and canal water were separated and (2) a canal stage condition when flooding occurred (i.e., when 
overland water and canal water were connected).  In computing three-dimensional subsurface flow, 
an interface boundary condition that accounted for the interaction between surface and subsurface 
waters was applied to the top boundary face of the three-dimensional domain; three total head 
boundary conditions were employed for (1) the subsurface boundary nodes associated with the one-
dimensional canal upstream boundary node on the west vertical boundary face (time-dependent head 
that matches one-dimensional upstream boundary condition at the inlet (i.e., A in Fig. 4.3.2-3), (2) 
all the subsurface nodes, except those mentioned in (1), on the west boundary (a constant head of 
7.12 ft), and all the subsurface nodes on the east boundary face (a constant head of 4.95 ft) as shown 
in Figure 4.3.2-4; and an impermeable boundary condition for the rest of the vertical boundary face 
and the bottom boundary.  It is noted that for the vertical boundary face with total head specified, the 
Dirichlet boundary condition applied only to the boundary nodes below water table (i.e., in the 
saturated zone).  For the vertical boundary face that was above water table, an impermeable 
boundary condition was assumed. 
 

Table  4.3.2-1   Upstream Water Depth Boundary Condition used for the 1D Canal Flow 
 

Time (seconds) 0 600 3600 7200 
Depth (ft) 0.5 0.58 0.88 1.28 

 
 
The initial pressure head in the subsurface was computed by solving the steady-state version of 
Richards’ equation with a constant rainfall rate of 1.0x10-9 ft/s, while a constant water depth of 0.5 ft 
was enforced at the three-dimensional boundary nodes that were corresponding to one-dimensional 
spreader canal nodes and zero water depth was assumed at those corresponding to two-dimensional 
overland nodes.  For a demonstration purpose, such setup allowed us to expect water flow from the 
spreader canal to its neighboring overland regime within a short period of time after the transient 
simulation began.  As the transient simulation began, the rainfall rate of 1.0x10-9 ft/s was applied 
throughout the entire simulation period of 2 hours.  The time-step size was 60 seconds for computing 
three-dimensional subsurface flow, 2 seconds for computing two-dimensional overland flow, and 
0.01 second for computed one-dimensional canal flow.  The absolute error tolerance was 1.0x10-5 ft 
for determining nonlinear convergence in computing one-dimensional, two-dimensional, and three-
dimensional flow, respectively. 
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Fig.  4.3.2-4.   3D Subsurface Boundary Conditions used for the Demonstration Example 

 
 
Figure 4.3.2-5 shows the distribution of water depth on the 2D overland (left) and 3D subsurface 
pressure head on ground surface (right) at time = 2 hours.  On the right half of the figure, the portion 
shaded with blue color has groundwater below ground surface, while the portion without shade has 
water table reach ground surface.  It is seen that most water coming out from Reach 3 of the spreader 
canal to overland is due to natural terrain (the north ground was higher than the south ground).  And 
because the ground south to the second dead end (i.e., DE2) was so flat, water coming out of 
spreader canal near DE2 could flow westward and affect the southeast corner of Residential Area 2.  
Moreover, as water stage increased with time in Reach 1 (not shown), which was subject to the 
increasing upstream water depth over time (Table 1), seepage through levee was observed around 
the upstream section of Reach 1 even though there was no water flow over the bank of Reach 1 
throughout the simulation.  This, as a result, would cause problems for people living in the north part 
of Residential Area 2 based on the topography around this area (Fig. 4.3.2-6).   
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Fig.  4.3.2-5.   2D Overland (left) and 3D Subsurface (right) Flow results of Case 1 at Time = 2 hr 
 
 

 
Fig.  4.3.2-6.   Topo of Residential Area 2 and its Neighborhood Before  

an Extended Levee Was Applied 
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To protect Residential Area 2 from getting flooded, a waterproof liner was installed in Reach 1 and 
an additional levee from DE2 to the south overland boundary (Fig. 4.3.2-7) was considered in this 
study.  Table 4.3.2-2 lists the three cases included in this study: Case 1 serves as the base case where 
neither a liner nor an additional levee is adopted; Case 2 has the liner; and Case 3 has both.  Figure 
4.3.2-7 shows the topography around Residential Area 2 after an additional levee was applied.  
Figures 4.3.2-8 and 4.3.2-9 show the computational results of Cases 2 and 3, respectively, which are 
corresponding to Figure 4.3.5 for comparison.  It is obvious from Figure 4.3.2-8 that the waterproof 
liner has prevented seepage from occurring.  From Figure 4.3.2-9, the extended levee has 
successfully stopped overland water from entering Residential Area 2.  
 

Table  4.3.2-2   Three Cases in the Demonstration Example 
 

Case 1 (base case) Case 2 Case 3 
No liner in Reach 1 Liner in Reach 1 Liner in Reach 1 
No extended levee No extended levee Extended levee applied 

 
 

 
Fig.  4.3.2-7.    With an Extended Levee to Prevent Flooding in Residential Area 2 (left) and the 
Topography of Residential Area 2 and its Neighborhood after an Extended Levee Was Applied. 
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Fig.  4.3.2-8.   2D Overland (left) and 3D Subsurface (right) Flow Results of Case 2 at Time = 2 

hr 
 
 

   
Fig.  4.3.2-9.   2D Overland (left) and 3D Subsurface (right) Flow Results of Case 3 at Time = 2 

hr 
 
 
In studying a spreader canal system on the design level, such as the demonstration example above, a 
couple of important issues were revealed.  First, a high-resolution mesh is needed to achieve desired 
goals on the design level.  In the demonstration example, for instance, canal water was successfully 
directed to the downstream overland without impacting Residential Area 2 after a liner and an 
additional levee were installed.  However, canal water was not evenly distributed to overland (Fig. 
4.3.2-9) as desired.  To accurately determine what alternatives may help evenly distribute water, a 
high-resolution mesh that allows modelers to adequately catch most important physical processes 
and necessary details is a MUST.  
 
Animations showing the spatial-temporal distribution of water depths and groundwater tables for 
Cases 1 (DE_1_wd.avi and DE_1_wt.avi), Case 2 (DE_2_wd.avi and DE_2_wt.avi), and Case 3 
(DE_3_wd.avi and DE_3_wt.avi), respectively, are attached in Appendix A.   Readers can visualize 
these moves by clicking the file contained in the attached CD. 
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4.3.3 Biscayne Bay Coastal Wetland (BBCW) Watershed Modeling. 
 
The Biscayne Bay Coastal Wetland (BBCW) Project is one of more than 60 projects included in the 
federally approved Comprehensive Everglades Restoration Plan and has a ultimate goal to restore or 
enhance freshwater wetland, tidal wetland, and near shore bay habitat. The primary purpose of the 
BBCW project is to redistribute runoff form the watershed into the Biscayne Bay, away from the 
canal discharge that exists today and provide a more natural and historical overland flow through the 
existing and or improved coastal wetlands.  This example presents the modeling effort to restore the 
wetlands including modeling approaches, building hydro-geologic conceptual model, selecting 
model domain and boundaries and calibrating model parameters.  Discussions of calibration and 
preliminary results were given elsewhere (Lin et al., 2004).  
 
WASH123D (Yeh et al., 2003) was used to develop the BBCW flow model.  This flow model 
conceptualizes the BBCW watershed as a combination of 1D canal network, 2D overland flow 
regime, and 3D subsurface media.  The graphical user interface GMS5.1 was used to construct the 
hydro-geologic conceptual model for the BBCW project area.   Figure 4.3.3-1 shows the BBCW 
project area.  Figure 4.3.3-2 shows the solids model generated from borehole data.  Figure 4.3.3-3 
shows the computational mesh for the BBCW flow model. 
 

             
Fig.  4.3.3-1.   BBCW Project Area            Fig.  4.3.3-2.   Solid Model for the BBCW Project Area 
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Fig.  4.3.3-3.   Computational Mesh 

(2D Nodes = 8,339; 2D Elements = 16,388; 3D Nodes = 66,712; 3D Elements = 114,716) 
 
 
Figure 4.3.3-4 shows the 2D boundary conditions assigned to the model.  Flux boundary was 
specified at the east side of model boundary. Observed stages were prescribed at the internal canals.  
Time-dependent rainfall and evapotranspiration (ET) were obtained from field measurements.  
Figure 4.3.3-5 shows the locations of rain gages and Figure 4.3.3-6 depicts the locations of ET gates. 
   
 
Figure 4.3.3-7 shows the 3D boundary conditions assigned to the model.  Continuity of flux and/or 
heads were imposed on the surface-subsurface interface.  Observed heads and stages were specified 
on the 3D vertical side boundary.  Impermeable condition was assumed on the bottom boundary.  
Internal head boundary conditions were prescribed along the canals.  Time-dependent pumping rates 
and water levels in observation wells were obtained from field measurements. Figure 4.3.3-8 shows 
the locations of pumping wells and Figure 4.3.3-9 depicts the locations of observation wells.    
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Fig.  4.3.3-4.   2D Boundary Conditions    Fig.  4.3.3-5.  Locations of Rain Gages 

 

     
Fig.  4.3.3-6.   Locations of ET Gages         Fig.  4.3.3-7.   3D Boundary Conditions 

 

 4-68



 

   
     Fig.  4.3.3-8.   Locations of Pumping Wells      Fig.  4.3.3-9.   Locations of Observation Wells 

 
 
In model calibration with WASH123D, an approach of four steps is employed so that the more 
model runs can be performed and run time can be saved.  Step 1: Calibrating coupled 2D/3D flow 
model. Step 2: Calibrating the 1D flow model.  Step 3: Verifying the calibrated model obtained from 
Step 1 and Step 2.  Step 4: Validating the coupled 1D/2D/3D model.  This report presents primary 
results of Step 1.   The complete modeling activity of the BBCW project is still undergoing and 
should be referred elsewhere (Cheng et al., 2006). 
 
Table 4.3.3-1 lists the estimated range of hydraulic conductivities used in the beginning of the 
calibration processes. 
 
 

Table  4.3.3-1   Estimated Hydraulic Conductivity for Initial Guesses in Calibration 
 
Geologic Unit  Hydraulic Conductivity range (ft/day)  
Top surface soil layers  0.01 to 10  
Miami Oolite  10,000 to 40,000  
Ft Thompson Formation  1000 to 20,000  
 
The observed stages of overland flow and groundwater wells from May 1, 1999 through April 30, 
2000 are used for the model calibration.  Four samples of plotting the computed and the observed 
values at four represented locations are shown.  Figure 4.3.3-10 shows the plotting results in east 
coastal ridge area (S-182).  Figure 4.3.3-11 shows the plotting results in the water supply wells area 
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(G-551).  Figure 4.3.3-12 shows the plotting results in the east of Homestead airport (G-1363).  
Figure 4.3.3-13 shows the plotting results of Model Land area (G_3354) 
 

 
Fig.  4.3.3-10.   Results in the East Coastal Ridge Area (S-182) 

 
 

  
Fig.  4.3.3-11.   Results in the Water Supply Area (G-551) 
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Fig.  4.3.3-12.   Results in the East of Homestead Airport (G-1363) 

 
 

 
Fig.  4.3.3-13.  Results in the Model Land Area (G-3354) 

 
Figures 4.3.3-10 through 4.3.3-13 indicate that the model responds well to the observed stage 
fluctuations except for the case near the water supply wells and the computed stages are sensitive to 
the rainfall events as comparison to observed stages.  Further investigation is needed to find out the 
discrepancies between simulations and measurements near the supply wells.  

 4-71



 
4.3.4 Stormwater Treatment Area. 
 
Artificial treatment wetlands have been extensively used for wastewater treatment or stormwater 
nutrient removal in the United States of America. Typically, these surface water impoundments are 
built for flow-through treatment of stormwater by plant intakes of nutrients or pollutants.  
 
In south Florida, the Everglades restoration effort has led to the design and construction of a series 
of constructed wetlands called Stormwater Treatment Areas (STAs) to reduce phosphorus level from 
stormwater runoff before they can enter the Everglades protection areas (SFWMD, 2004a). These 
constructed wetlands were located on former natural wetlands or farmlands that have strong 
hydraulic connection with the underlying highly conductive surficial aquifers. 
  
Until recently, the hydraulic models applied for the design and management of these STAs are quite 
limited in scope and details.  Most built models are two-dimensional model for steady state flow (for 
example, Burns & Mcdonell, 2000, 2003 and SFWMD, 2001). They are good for design purpose or 
as a screening tool but lack some important details.  More detailed two-dimensional hydraulic 
models of existing STAs are being built for management and operation needs. They are calibrated 
and validated with historic time series data, considering only the two-dimensional surface flow 
(Sutron Corporation, 2004).  
 
RMA2 (Norton, et al., 1973) and FEMWMS-FLO2DH (Froehlich, 2002) are the two popular two-
dimensional surface water flow model codes for modeling wetland hydraulics. They were originally 
developed for coastal hydrodynamic modeling.  Some limitations need to be addressed before they 
can be applied for wetland simulations. The incorporation of hydraulic structures, explicit 
representation of rainfall and evaporation, and treatment of wetting and drying are some examples. 
Swain et al. (2004) has described their experience in adapting and modifying the USGS SWIFT2D 
(Leendertse, 1987) originally developed for coastal tidal flow, to simulate the southern Everglades 
wetland hydrology.  WASH123D does not have these limitations (Yeh et al., 2005). 
 
This WASH123D application is an example of coupled surface/subsurface water flows in a 
constructed wetland for stormwater treatment in south Florida.  Stormwater generated from 
farmlands is flown through the wetland for nutrient removal by wetland plants. The inflow and 
outflow rates are controlled by hydraulic structures.  A significant portion of the inflow volume can 
be infiltrated into the highly conductive surficial aquifer.  
 
Current two-dimensional hydraulic models cannot handle seepage losses properly. An integrated 
surface/groundwater model is needed to study the losses through bottom and perimeter levees due to 
dynamic interactions of surface flow within and groundwater flow underneath the treatment area. 
One-dimensional canal flow is also needed to simulate inflow/outflow and seepage collection. The 
impact of neglecting seepage loss is a likely distorted hydraulic model. 
 
The purpose of a hydraulic model of a constructed wetland is to evaluate the hydraulic performance 
under different flow conditions. The hydrodynamic component is also a pre-requisition of the 
reactive transport computation because the transport and fate of nutrients including phosphorus and 
nitrogen are described with biogeochemical reactive transport equations. All these modeling 
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objectives can be effectively acheved using WASH123D. 
 
The study area selected for this demonstrative modeling study is a typically constructed wetland in 
south Florida. The background information is excerpted from the STA-6 data (SFWMD, 2004b).  
The total area of the treatment cells is about 870 acres. There is a supply canal along the western 
boundary and a discharge canal located at the eastern boundary. Stormwater runoff is pumped into 
the north end of the supply canal and enters the marsh area through three inflow weirs. Eventually, 
treated stormwater is collected by outflow structures and flows into the discharge canal (Figure 
4.3.4-1).  In Figure 4.3.4-1, the supply canal is adjacent to and in parallel to L-3 borrow canal. The 
three inflow weirs are labeled as G-601, G-602 and G-603.  Stormwater runoff enters the supply 
canal via the G-600 pump station. The outflow structures are G-354A through G-354C and G-393A 
through G-393C. They connect the treatment cells 3 and 5 with the discharge canal.   
 

 
 

Fig.  4.3.4-1.   Schematic Map of STA-6 Layout (SFWMD, 2004b) 
 
 

 

 4-73



 
The conceptualization of the study area leads to a relatively closed flow system.  Stormwater runoff 
is pumped into the supply canal and flow into the treatment cells through control structures. The 
treated water is discharged at the downstream into the discharge canal and eventually enters the 
Everglades protection areas. 
  
The surface water flows can be simulated by two-dimensional surface flow only or by coupled one-
dimensional canal flow and two-dimensional flows. Vegetations were built into the treatment cells. 
They are categorized as emergent cattails and submerged aquatic vegetation (SAV). Previous studies 
have demonstrated that a water depth-dependent friction coefficient is appropriate for vegetation 
(Yen, 1992 and Wu et al., 1999). The base value of Manning’s n used ranges from 0.095 to 0.95 for 
the above mentioned vegetation types.  
 
For numerical simulations, the underlying surficial aquifer was vertically divided into several layers, 
the top two layers, extending from land surface to a few ft in thickness, are the poorly permeable 
peat and the lower layers are composed of sand or lime rock.  Figure 4.3.4-2 shows the three-
dimensional finite element mesh, which is made of 8,602 triangular elements with 5,302 nodes, for 
modeling subsurface flow.  For this preliminary simulation, the model domain was selected up to the 
location of the supply canal and discharge canal. These canals are hydraulic divides for subsurface 
flow. 
  

 
Fig.  4.3.4-2.   Three-Dimensional Subsurface Finite Element Mesh 
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The hydrogeology was obtained from some relevant reference sources (Fish, 1988 and Harvey et al., 
2002).   Detailed local hydro-geological data was not available and an average value of hydraulic 
conductivity was applied. The initial value of saturated hydraulic conductivity used in the model 
runs is listed in Table 4.3.4-1.  
 

Table  4.3.4-1   Value of Hydraulic Conductivity Used in the Simulation 
horizontal vertical horizontal Vertical 

Model Layer Ft/hr ft/hr ft/day ft/day 
Layer 1 35 0.35 840 8.4 

Layer 2-3 350 3.5 8400 84 
Other layers 3500 35 84000 840 

 
 
A 10-day simulation was carried out with historic flow and stage data. The total simulation time is 
240 hours (10 days). A time step of 15 minutes was applied for one-dimensional canal and two-
dimensional overland flows and a time step of 12.0 hours was used for three-dimensional subsurface 
flow. Three cases were simulated. 
 
Firstly, two-dimensional surface flow only was modeled with the diffusive wave approximation.  
This was compared with model results from solving for the full shallow water equations by other 
two-dimensional surface water flow codes. Since the diffusive wave approach is applied in 
simulating the coupled surface and groundwater flows, for consistent, the diffusive wave option 
rather than the fully dynamic wave option is used in simulating two-dimensional surface water flow 
only.  A by-product of this approximation is to assess the validity of the diffusive assumptions. 
 
A different two-dimensional mesh from that shown in Figure 4.3.4-2 was designed for this case, in 
which the canals were included as a part of the two-dimensional finite element mesh rather than as 
an one-dimensional mesh. Simulation results show that the diffusive wave approximation can be 
applied to such a two-dimensional sheet flow and with the same Manning’ n value; the diffusion 
wave model yields only a slightly higher water level than the full shallow water equations.  The 
water surface elevation at time = 84.0 hours was plotted in Figure 4.3.4-3. Specified stage boundary 
conditions were applied to the northern end of the supply canal (upper left corner) and the 
downstream end of the discharge canal (lower right corner), respectively.   An animation showing 
the spatial-temporal distribution of stages is attached in Appendix A (File Name: 2D_only(4-3-
4).avi).   Readers can visualize this move by clicking the file contained in the attached CD. 
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Fig.  4.3.4-3.   Simulated Water Surface Elevation at Time = 84.0 hours (ft NGVD) 

 
 
Secondly, two-dimensional surface flow was coupled with three-dimensional subsurface flow by 
using the finite element mesh in Figure 4.3.4-2.  For this case, the top surface, consisting of 862 
triangular elements with 482 nodes, is considered an internal boundary between the two-dimensional 
overland flow and three-dimensional subsurface flow on which the continuities of volumetric fluxes 
and pressure head/water depth are imposed.   For subsurface flow, a constant specified total head of 
10.5 ft NGVD was applied to the boundary nodes of the lower layers to represent the background 
groundwater flow in the region that is controlled by the maintained canal water level in the 
surrounding area.  Only the vertical seepage through the bottom of the wetland is considered and the 
detailed geometry of the perimeter levee is not included.  
 
The simulation results demonstrated the impact of seepage on water level in the marsh area (Fig. 
4.3.4-4).  The water depth at the interior marsh area (for example at node 103 in the overland 
regime) shows that the consideration of seepage losses has an obvious impact on water level. This 
indicates that without considering seepage losses, the calibration of two-dimensional hydraulic 
model may over-estimate model parameters (for example, Manning’ n value). The magnitude of this 
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difference also depends on the hydraulic conductivity value. 
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Fig.  4.3.4-4.   Water Depth at 2-D Overland Node 103 

 
 
Thirdly, the flow in supply canals was simulated as one-dimensional channel flow, not included as 
partial domains of two-dimensional overland flow.  It is coupled with overland flow and 
groundwater flow. The one-dimensional canal flow interacts with two-dimensional overland flow 
and three-dimensional subsurface flow through their corresponding boundary nodes.  In a test model 
run, the supply canal was simulated with 43 nodes and stormwater enters from the first node and the 
43rd node is a dead end. Water was transferred from the supply canal to the treatment cells by two 
simplistic side weirs.  However the discharge canal is considered as a part of the two-dimensional 
domain. Figure 4.3.4-5 is a contour plot of the vertical component of the subsurface Darcian velocity 
(ft/hr). It can be seen that the greater magnitude occurs at the vicinity of the supply canal and 
discharge canal.   
 
The seepage rate depends on the hydraulic gradient and the hydraulic conductivity of the underlying 
porous media (peat, sand, and limerock). The canals are acting as hydraulic divides for the 
subsurface flow. The supply canal is a losing stream while the discharge canal is a gaining stream.
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Fig.  4.3.4-5.   Contour Map of Vertical Component of Subsurface Darcian Velocity (ft/hr)  

(Time = 228.0 hours) 
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4.3.5 Reservoir and Canal Networks Modeling for Evaluations of Storage Values in 
Northern Beach County in Florida. 
 
The Reservoir Model and the River Model are two major components of WASH123D.  The 
reservoir module takes an approach of water and energy budget, in which evaporation and 
transpiration modeled, not inputted.  The Reservoir Model and the River Model were used for 
hydraulic modeling of surface water storage areas and canal networks in the study area of northern 
Palm Beach County (Fig. 4.3.5-1).  The canal system is composed of the L-8 Canal, the M-Canal, 
and the East and West Branches of C-18 Canal. The surface water storage areas include a number of 
reservoirs within the study area.  Details of this example can be found elsewhere (Wanielista et al., 
2004). 
 
 

 
Fig.  4.3.5-1.  Study Area Boundary and Local Roads and Landmarks in Northern Beach County 

 
 
Many internal and external boundary conditions and pumping operations are included as shown 
Tables 4.3.5-1 and 4.3.5-2.   In the River Model, the one-dimensional river channel is divided into 
reaches. A reach is a river channel segment bounded by hydraulic structures, river junctions, pump 
stations, or external boundaries of the modeling area. If the end node of a reach is an internal 
hydraulic structure or a river junction, the internal boundary conditions summarized in Table 4.3.5-1 
are imposed.  For internal hydraulic structures, the discharge is obtained from analytic formula or 
rating curve of the structure. Two types of river junctions are listed in Table 4.3.5-1. For a junction 
without storage capacity, the sum of discharge from all reaches connected at the junction should be 
zero. For a junction with storage capacity, such as a lake or a reservoir, the end node of the reach 
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will be treated as an external boundary node. 
 
 

Table  4.3.5-1  Internal Boundary Conditions  
Internal 

Boundary Description Boundary Conditions 

Discharge is determined 
by weir formula or 
rating curve of the weir. 

Represents one-dimensional flow 
transfer by weirs. Weir 

Discharge is determined 
by gate formula or 
rating curve of the gate. 

Represents one-dimensional flow 
transfer by gates Gate 

Discharge is determined 
by culvert formula or 
rating curve of the 
culvert. 

Represents one-dimensional flow 
transfer by culverts Culvert 

Sum of discharge from 
all reaches at the 
junction equals to zero. 

Non-Storage 
Junction  

Represents non-storage junctions of 
one-dimensional river branches. 

 
 
If the end node of a reach is an external boundary, an external boundary condition is applied. There 
are six types of external boundary conditions showing in Table 4.3.5-2. The Dirichlet boundary 
condition gives the water depth or stage as a function of time in the simulation.  The discharge at the 
external boundary can be given as a function of time or in the form of a general rating curve.  Two 
special external boundary conditions are designed to simulate the elevation controlled gate and the 
demand controlled gate, where the gate openings and the rate at which the gate opens and closes are 
determine by water elevation and demanding discharge, respectively.  On a river node where the 
river is connected directly to a reservoir or lake, the reservoir/lake boundary condition is imposed. 
Under this circumstance, the River Model is solved in coupling to the Reservoir Model. 
 
The water transferred between these modules is modeled by coupling of the 1-D model and the 0-D 
model. Two types of coupling between the River Model (1-D model) and the Reservoir Model (0-D 
model), the on-line coupling and the off-line coupling, are identified.   An on-line reservoir is 
defined as a reservoir that directly connects to river reaches as shown in Figure 4.3.5-2. In the River 
Model, the coupling is through the external boundary conditions for river nodes at the connection 
location, where water stage obtained from the Reservoir Model is imposed. In the Reservoir Model, 
the discharges obtained from the River Model at the connection location are used as inflow and 
outflow to update the water stage of reservoir. The coupling between the river and the on-line 
reservoir is modeled in the river-lake module. 
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Table  4.3.5-2  External Boundary Conditions 

Boundary Type Description Boundary Conditions 
Water depth or stage is given at all 
time. )(thh B=  Dirichlet 

The volumetric flow rate is given at 
all time. )(tQQ B=  Normal Flux 

The volumetric flow rate is given 
as a function of water depth or 
stage. 

General Rating 
Curve )(hQQ B=  

Rating Curve of 
Elevation 

Controlled Gate 

The volumetric flow rate is given 
as a function of water elevation and 
elevation controlled gate opening. 

))(,( hGohQQ B=  

The volumetric flow rate depends 
on water elevation and demand 
controlled gate opening. The gate 
opening is given as a function 
water demanding discharge through 
the gate. 

Rating Curve of 
Demand 

Controlled Gate 
))(,( DB QGohQQ =  

The river is connected to a 
lake/reservoir. It is used to couple 
the river flow with on-line 
reservoirs. 

RHH =  Reservoir/ Lake 

 
 
 
 
 
 
 
 
 
 
 
 

 

Reservoir/ 
Lake 

Stream 
inflow 

Stream 
outflow 

Fig.  4.3.5-2.  Schematic Diagram of an On-line Reservoir/Lake 
 
 
An off-line reservoir is defined as a reservoir that does not directly connect to rivers. A simple 
illustration of the off-line reservoir is shown in Figure 4.3.5-3. For an off-line reservoir, the water 
transfer between the reservoir and the river is accomplished through pump stations and/or hydraulic 
structures, which are implemented through two auxiliary modules: the pump module, and the 
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gravity-driven hydraulic structure module. A description of these modules can be found elsewhere 
(Wanielista, et al., 2004). 
 
 
 

Reservoir/ 
Lake 

Pump 

Structure 

 
 
 
 
 
 
 
 
 

Fig.  4.3.5-3.  Schematic Diagram of an Off-line Reservoir/Lake 
 
 
Figure 4.3.5-4 provides a schematic representation of the model’s layout. The primary canal network 
system consists of eight canals: the L-8 Canal, L-8 North Tieback Canal, L-8 South Tieback Canal, 
L-8 Outfall Canal, M-Canal, C-18 Canal West Branch, C-18 Canal East Branch, and SIRWCD C-14 
Canal. There are four water storage areas: Indian Trail Improvement District (ITID) impoundment 
area, Grassy Waters Preserve (GWP), Southern L-8 Reservoir (Rock Pits), and C-18 Reservoir.  
 
The L-8 Canal connects Lake Okeechobee to Water Conservation Area 1 (WCA 1). It starts at 
Culvert 10A at the north end. At the south end, the connection to WCA 1 is by way of S-5A 
structures.  
 
The L-8 North Tieback Canal drains a small portion of the L-8 basin. It connected with L-8 Canal 
just east of structure S-76.  
 
The L-8 Outfall Canal connects the ITID impoundment area and the L-8 Canal. On its east end, it 
makes connections with the impoundment through a culvert structure with riser. On its west end, the 
connection is also in the form of culvert with riser. 
 
The L-8 South Tieback Canal connects the L-8 Canal and the M-Canal. The northeast end of the 
canal is a pump station PS-1 (Control #2) owned and operated by the City of West Palm Beach.  
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Fig.  4.3.5-4.   Model layout of Northern Palm Beach County: Storage Values 

 
 
The M-Canal starts at PS-1 and extends eastward. In the scope of this model, the east boundary of 
the M-Canal is a weir structure W-2 located west of the Haverhill Road. 
 
The East Branch of C-18 Canal starts at GWP and extends northward. In the scope of current model, 
the C-18 Canal ends at structure S-46 which supplies water to the Southwest Fork of the 
Loxahatchee River. 
 
The West Branch of C-18 Canal begins at the northeast corner of section of Range 40E-Township 
42S. It extends eastward and confluences with the East Branch. 
 
The SIRWCD C-14 Canal originates at the G-92 Structure and ends at Lainhart dam – a small weir 
structure (with a small culvert) located upstream of the Northwest Fork of the Loxahatchee River. 
 
Fifteen canal reaches were created for modeling purpose as shown in Figure 4.3.5-5.  Each reach is 
delimited either by structure, junction, dead end, or external boundary.  The length and description 
of each reach are given elsewhere (Wanielista, et al., 2004). 
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Fig.  4.3.5-5.   Canal Reaches in the Model 

 
 
Water storage area and reservoirs are considered as key components in a regional water management 
strategy. There are three existing water storage areas (Fig. 4.3.5-5):  the Indian Trail Improvement 
District (ITID) impoundment area (Storage 1), the Grassy Waters Preserve (GWP) (Storage 2), and 
the Southern L-8 Reservoir (or Rock Pits) (Storage 3).  The two proposed surface water reservoirs 
include the C-18 Reservoir (Storage 4) and the L-8 Alternative Reservoirs (Storage 5). The reservoir 
operations were simulated using the reservoir module in WASH123D.  The connections between the 
reservoirs and canal reaches are by way of hydraulic structures and pump stations. 
 
The Indian Trail Improvement District (ITID) impoundment area located at a sub-basin of the L-8 
Basin (Fig. 4.3.5-1). The maximum storage of the area is around 3300 acre-feet at a water depth of 5 
feet. The connection between the impoundment area and the L-8 Outfall Canal is by way of a culvert 
structure with riser. The riser is in the impoundment area and the culverts open to the L-8 Outfall 
Canal. 
 
The Grassy Waters Preserve (GWP) formerly known as the City of West Palm Beach Water 
Catchment Area is an approximately 19 square mile impounded area that is predominantly wetland 
in nature. Currently, GWP is owned and maintained by the City of West Palm Beach and serves as a 
surface water storage reservoir for public water supply. Water from this wetland is discharged to the 
east through the M-Canal to Lake Mangonia and Clear Lake, and subsequently enters the City’s 
water treatment plant in West Palm Beach. 
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The Southern L-8 Reservoir is proposed to use the abandoned rock mining pits to provide a 
combined above-ground and in-ground storage capacity of approximately 48,000 acre-feet.  It is 
located immediately west of the L-8 Canal and near the junction of L-8 and C-51 Canals. An area of 
1,200 acres may be available and the operation depth is 35 feet (20 feet in ground and 15 feet above 
ground). The purpose of this reservoir is to increase water supply availability, and attenuate 
discharge to Lake Worth Lagoon and provide compatible drainage benefits for northern Palm Beach 
County area. It will also provide flows to enhance hydroperiods in the Loxahatchee Slough, increase 
base flows to the Northwest Fork of the Loxahatchee River, and reduce high discharges to the Lake 
Worth Lagoon (SFWMD, 2002). 
 
The C-18 Reservoir was modeled on a footprint of 1,000 acres or 2,000 acres with maximum depths 
ranging from 10 feet to 15 feet.  The total storage volume ranges from 10,000 acre-feet to 30,000 
acre-feet. The connection between the reservoir and C-18 Canal West Branch is by way of a pump 
station with a capacity of up to 100 cfs. This reservoir is designed for the purpose of catching and 
storing wet season water for use during the dry season to meet the minimum flow criteria to the 
Northwest Fork of the Loxahatchee River. 
 
The L-8 Alternative Reservoir was placed near the junction of the L-8 Canal and the South L-8 
Tieback Canal and west side of L-8 Canal. This reservoir was modeled with a foot print of 1,000 
acres or 2,000 acres. Maximum depths ranging from 10 feet to 15 feet were evaluated. The total 
storage volume ranges from 10,000 acre-feet to 30,000 acre-feet. A pump station with a capacity of 
100 cfs connected the reservoir to L-8 Canal. 
 
For the purpose of calibration, the flow data recorded at several sites as described in Table 4.3.5-3 
were downloaded from SFWMD’s online database. Under the existing condition, the conveyance 
between the Grassy Waters Preserve (GWP) and the East Branch of C-18 Canal is severely 
constrained (< 10 cfs), thus the L-8 Canal system and C-18 Canal system can be considered as 
decoupled. Within this project, since the daily rainfall and evaporation data for the entire area were 
not available, the rainfall and evaporation input to the model was on a monthly basis. Thus it would 
be very difficult to calibrate the model against the daily field data but using monthly data as input. 
Therefore, one-year accumulative discharges through the three structures listed in Table 6.11 were 
used to calibrate the model. 
 
Under the assumption that C-18 Canal system is isolated from the L-8 Canal system, the amount of 
water that enters the C-18 Canal system is thus divided among direct rainfall, surface runoff, and 
groundwater seepage. Water inflows to C-18 Canal system contributed by direct rainfall onto the 
canal and surface runoff from the thirty two sub-basins of the C-18 drainage area can be modeled or 
obtained from field data. The groundwater seepage is difficult to estimate without modeling. Though 
the three-dimensional groundwater module of WASH123D model is capable of precisely predicting 
the groundwater seepage to C-18 Canal, the time frame of the project would not allow us to do so 
(Wanielista, et al., 2004). Thus, the estimation of groundwater seepage became part of the 
calibration procedure. The outlet of the system consists of two structures: S-46 and G-92. The object 
of the calibration is to match the cumulative discharge and the base flow at structure G92. 
 

Table  4.3.5-3 Surface water data for model calibration 
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Station/ Interval Description Start Date End Date Site 
At southwest fork of 
Loxahatchee River S46_S Daily 11/8/1992 9/16/2002 

G92_C Daily 
G-92 culvert from C-18 to 

west branch of Loxahatchee 
River 

5/10/1988 1/26/2003 

Lainhart Dam on 
Loxahatchee River LNHRT Daily 4/25/1995 9/17/2002 

 
 
The year of 1995 was selected for calibration, since the rainfall and evaporation input was from 1965 
through 1995 and there were more field data available in 1995. Table 4.3.5-4 gives the cumulative 
discharge at the structures.  
 
 

Table  4.3.5-4  Measured cumulative flow in 1995 
Cumulated Discharge  Station/Site Start Date End Date (acre-feet ) 

S46_S 1/1/1995 12/31/1995 124230 

G92_C 1/1/1995 12/31/1995 59091 

LNHRT 4/25/1995 12/31/1995 59920 
 
 
Structure G-92 is a gated culvert; it diverts water from C-18 Canal to C-14 Canal. The structure is 
operated via remote telemetry from the SFWMD Operations Control Room under a joint agreement 
with the SIRWCD to permit conveyance of flows to the Northwest Fork of the Loxahatchee River 
through Lainhart Dam. In current simulation, since the operation rule of G-92 was not provided by 
SFWMD, the gate was set at fixed openings, as shown in Table 4.3.6-5, 12.5% for CASE A, and 
15% for CASE B. 
 

Table  4.3.5-5 Gate opening at Structure G-92 

CASE Gate Opening of G-92 

A 12.5% 

B 15% 
 
 
The simulation results are shown in Table 4.3.5-6. The results indicate that when the gate opening of 
structure G-92 was 15%, the cumulative flow through the structure is very close to the field data. 
Therefore, the gate opening of 15% was chosen for a series of simulations.  In 1995, the field data at 
Lainhart Dam starts on 4/25. The cumulative flows through the structures S-46, G-92 and Lainhart 
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Dam from 4/25/95 to 12/31/95 are displayed in Table 4.3.5-7. Though these numbers are not 
matched as well as for structure G-92, generally the model calibration is still acceptable. 
 
 

Table  4.3.5-6  Cumulative flow through different structures 
Cumulative Flow through the Following Structures (acre-feet) 

(1/1/95 -12/31/95)  
S-46 G-92 Lainhart Dam 

Field Data 124230 59091 N/A 

A 111795 52980 70507 

B 104770 60027 77555 
 
 

Table  4.3.5-7   Cumulative flow through Lainhart Dam compared with field data 
Cumulative Flow through the Lainhart Dam (acre-feet)  (4/25/95 -12/31/95) 

Field Data 59920 

A 57244 

B 63628 
 
 
The goal of the project is to study the capability of water storage reservoirs of providing supplement 
water to the Northwest Fork of the Loxahatchee River to meet the minimum flow request in the dry 
season. The minimum flow request was tested at Lainhard Dam for both CASE A and B. The target 
minimum flows were set at 35 cfs, 65cfs, and 100 cfs. The percent of time the target flow was met 
under existing conditions in the year of simulation is shown in Table 4.3.5-8. The results are the 
same for both gate openings at structure G-92. The percent of time that the minimum flow of 35 cfs, 
65cfs, and 100 cfs were met were 70%, 60%, and 54%, respectively. As indicated by the 
Loxahatchee River Minimum Flows and Levels, over the past decade, the 35 cfs and 65 cfs flow 
target for the Lainhart Dam, were met about 75% and 57% of the time. To compare with the field 
data, the percent of time was calculated again from 4/25/95 through 12/31/95. The results are 
displayed in Table 4.3.5-9. In simulation with both 12.5% and 15% gate openings, the simulated 
time percentage is higher than field data for 65 cfs and 100 cfs, but lower for 35 cfs. 
 

Table  4.3.5-8 Percent of time the target minimum flow is met at Lainhart Dam 
Percent of Time The Following Target Flow Is Met  

(1/1/95 -12/31/95) CASE 
≥ 35 (cfs) ≥ 65 (cfs) ≥ 100 (cfs) 

1-A 70% 60% 54% 
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1-B 70% 60% 54% 
 
 

Table  4.3.5-9 Percent of time the target minimum flow is met. 
A comparison with field data 

Percent of Time The Following Target Flow Is Met  
(4/25/95 -12/31/95) CASE 

≥ 35 (cfs) ≥ 65 (cfs) ≥ 100 (cfs) 

Field Data 79% 60% 52% 

1-A 72% 69% 67% 

1-B 72% 69% 67% 
 
 
Figure 4.3.5-6(a) shows the hydrograph at structure G-92 with a gate opening of 12.5% in 1995 
obtained from CASE A in comparison with field flow data. The hydrograph at structure G-92 
obtained from CASE B is displayed in Figure 4.3.5-6(b). In this case, the gate opening of G-92 was 
15%. The data in Table 6.14 and 6.15 indicates that the larger gate opening allowed the passing of 
more water through structure G-92. But the Figure 4.3.5-6 shows that his only happens during the 
wet seasons, in the dry season, both openings pass the same amount of water. The large deviations 
between the simulation results and the field data can be attributed to the following two factors: 1) 
The rainfall data used for the simulation was on a monthly basis; 2) The operation rule the gate at 
structure G-92 was not clear, so the gate opening was fixed in the simulation. However, in both 
cases, the yearly cumulative flows were quite close to the field data as shown previously in Table 
4.3.5-6. 
 
 
 
 

  
(a) CASE A (b) CASE B 
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Fig.  4.3.5-6. Hydrograph at structure G-92 from 1/1/95 through 12/1/95 
The Lainhart Dam is an uncontrolled weir. The simulated hydrographs are displayed in Figures 
4.3.5-7.  Obviously the simulation results are in much better agreement with the field data than that 
of G-92 even though the input data was on monthly basis. 
 

  
(a) CASE 1-A (b) CASE 1-B 

Fig.  4.3.5-7.   Hydrograph at Lainhart Dam from 1/1/95 through 12/1/95. 
 
After successfully calibrate the model, various combinations of proposed reservoirs were 
investigated. The modeling of WASH123D coupled with an economic evaluation resulting in the 
recommendation of $2,500 per acre-ft of storage, which was in contrast to earlier studies, which 
estimated a cost of $5,500 per acre-ft.  The study saved FDEP (Florida Department of 
Environmental Protection) of approximately $250 millions for the management. 
 
 
4.3.6 Dade County Watershed Modeling. 
 
This is a regional scale modeling effort for the South Florida wetlands. The Dade model domain 
extends from four miles west of the L-67 Extension dike to the western shore of Biscayne bay and 
from one mile north of the Tamiami canal south to Florida bay.  Vertically, it extends from the land 
surface to the bottom of the surficial aquifer. 
 
Some characteristics of this model are: (1) Strong interaction of overland flow/groundwater flow and 
canal flow in south Florida; (2) Complex hydraulic structure operations. 
 
The 3-D finite element mesh for subsurface media (as shown in Figure 4.3.6-1) is complex: there are 
37,760 global nodes, and 65,429 elements. There are 7 layers in vertical direction. And levees are 
incorporated as part of subsurface media.  
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Fig.  4.3.6-1.   3-D Subsurface Media Finite Element Mesh 

 
The boundary conditions for subsurface flow were determined from the SFWMM 2x2 model output 
for the northern boundary, and from structure operation records for the other sides   of boundaries. 
 
The 2-D overland flow domain consists of 4,720 nodes, and 9,347 triangular elements. Levees are 
included in the computation domain (Fig. 4.3.6-2). Boundary conditions were determined from 
structure operation records along the boundary. 
 

 
Fig.  4.3.6-2.   2-D Overland Regime Finite Element Mesh 

 
 

 4-90



The canal network as simplified in this simulation includes: Canal nodes:  560; Canal elements: 506; 
River reaches: 55; there are 20 canal junctions, and 11 interior Gates (Fig. 4.3.6-3). 
 

 
Fig.  4.3.6-3.   Canal Network 

 
 
The boundary conditions for subsurface flow were determined from the SFWMM 2x2 model output 
for the northern boundary, and from structure operation records for the other sides of boundaries. 
 
The 1-D/2-D/3-D coupled flow simulation was first begun with a steady state of subsurface flow and 
the total head distribution of the steady state flow is shown in Figure 4.3.6-4.  Then the steady state 
condition was used as the initial condition of the transient flow simulation. 
 

 
Fig.  4.3.6-4.   Total Head at Steady State Subsurface Flow (feet) 
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Figure 4.3.6-5 and 4.3.6-6 depict the simulations result of a model run.  Since the levee/dike are 
included as part of the subsurface media, it is demonstrated that the ground water flow from the 
northern boundary can bypass the less permeable levees via their underlying permeable media.  It is 
also obvious that the canals recharge the ground water.  
 
An animation showing the spatial-temporal distribution of water depth in surface runoff is attached 
in Appendix A (File Name: dade2ddepth.avi).   Readers can visualize this move by clicking the file 
contained in the attached CD. 
 

 
Fig.  4.3.6-5.   Total Head Distribution (feet) at time=13,680 minutes (9.5 days) 

 

 
Fig.  4.3.6-6.   Overland Water Depth (feet) at time = 7,000 minutes (4.86 days 
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5 WATER QUALITY TRANSPORT EXAMPLES 

  
In this chapter, we are to present a total of 15 water quality transport problems:  six examples for 
one-dimensional transport, four examples for two-dimensional transport, and five examples for 
three-dimensional transport. 
 

5.1 One-Dimensional Examples 
 
Six examples are used in this section.  Two examples are compared with analytical solutions to 
verify the model and to emphasize the need of implementing various numerical options and coupling 
strategies to deal with different types of problems for different application circumstances. A 
hypothetical example with complexation, sorption and dissolution reactions is employed to 
demonstrate the capability of the model to handle complex reaction network involving both kinetic 
and equilibrium reactions. Two more example problems are employed to demonstrate the design 
capability of the model, in simulating sediment and chemical transport, chemicals in both mobile 
water phase and immobile water phase, and both kinetic and equilibrium reactions. 
 
5.1.1 Comparison of Options to Solve Advective-dispersive Transport Equations 
 
This example involves the transient simulation of chemical transport in a horizontally 50 km-long 
river/stream containing a uniform width of 10 m.  The domain of interest is discretized into 1000 
equal size elements (50 m each).  We assume the water depth is 5 m and river/stream flow velocity is 
0.4 m/s throughout the river/stream.  There are two species, a dissolved chemical in the mobile water 
phase CMW and a dissolved chemical in the immobile water phase CIMW.  The phase densities 
associated with both species are assumed to be 1.0. CMW and CIMW are considered to undergo the 
following equilibrium reaction. 
 

eqCMW CIMW    K 0.8=  (5.1.1) 
 

Initially, no chemical exists in the domain of interest.  Variable boundary conditions are applied to 
both the upstream and downstream boundary nodes for mobile species CMW.  At the upstream 
boundary node, the incoming concentration of CMW is 1 g/m3.  The molecular diffusion coefficient 
is assumed to be zero. Three cases with different dispersivities of 3.125 m, 62.5 m, and 1000 m (grid 
Peclet number Pe = Δx/αL = 16, 0.8 and 0.05 for case 1, 2, and 3, respectively) were considered. 
Simulations were performed with fixed time step size of 36 s (grid Courant number Cr = VΔt/Δx = 
0.288) and total simulation time of 1800 s.  For case 2, two more simulations were performed with 
different time step size of 120 s and 180 s (Cr = 0.96 and 1.44) in case 4 and 5, respectively. 
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Using the same coupling strategy, the fully-implicit scheme, to deal with reactive chemistry, 
simulations were performed with the five numerical options to solve the advective-dispersive 
equation. In Figure 5.1-1, simulation results of CMW in cases 1 through 3 are compared with the 
analytical solutions given by Lindstrom and Freed, 1967.  R2 values based on simulations and 
analytical results are also calculated and listed in the figure.  In Figure 5.1-2, simulation results of 
CMW in cases 4 and 5 are plotted.  R2 and CPU time are also listed in the figure.  
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Fig.  5.1-1.  Concentration Profiles of CMW in Cases 1, 2, and 3 of Example 5.1 

 
 
It is seen that: (1) for advection dominant cases, Options 3 through 5 give more accurate simulation 
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than the other two; (2) for advection-dispersion equally-dominant cases, all five options yield almost 
same accurate results with Option 3 giving slightly better results than Option 2 and 5, and Option 2 
and 5 yielding slightly better results than Option 1 and 4; (3) for dispersion dominant cases, all five 
options give approximately the same accurate simulation but with Option 1 and 2 giving slightly 
better results than the other three. Therefore, for advection dominant problems for research 
applications when accuracy is the primary concern, Options 3 through 5 are preferred. However, for 
dispersion dominant problems for research applications, Options 1 and 2 may be preferred. For 
practical applications when the efficiency is the primary concern, Option 3 is preferred under all 
transport conditions because it gives the most efficient computation in term of CPU time. The 
efficiency results from the fact that one can use a much larger time step size without having to worry 
about the limitation of time-step sizes imposed by advective transport. As shown in Figure 5.1-2, 
when the Courant number increases from 0.96 to1.44, Option 1 and 2 were not able to yield 
convergent solutions.  Although, all of the other three options gave less accuracy results, only 
Option 3 yields accurate enough simulation.  Since the time step size is enlarged, the total number of 
simulation time steps decreased, resulting in less CPU time. 
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Fig.  5.1-2.  Concentration Profiles of CMW in Cases 4 and 5 of Example 5.1 

 
 
5.1.2 Comparison of Coupling Strategies to Deal with Reactive Chemistry 
 
In this example, a horizontally 4 km-long river/stream containing a uniform width of 10 m is 
considered.  The domain is discretized into 400 equal size elements (each 10 m).  We assume the 
water depth is 2 m and river/stream flow velocity is 1.0 m/s throughout the river/stream.  There are 
two species, a dissolved chemical in the mobile water phase CMW and a dissolved chemical in the 
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immobile water phase CIMW.  The phase densities associated with both species are assumed to be 
1.0.  CMW and CIMW are considered to undergo the following reaction. 
 

eqCase1: CMW CIMW    K 1.0=  (5.1.2) 
 

1 1
f bCase2 : CMW CIMW    K 3h , K 3h− −= =  (5.1.3) 

 
2 1 2 1

f bCase3 : CMW CIMW    K 1.0 10 h , K 1.0 10 h− − − −= × = ×  (5.1.4) 
 
 

Initially, no chemical exists in the domain of interest.  Dirichelet and Variable boundary conditions 
are applied to the upstream and downstream boundary nodes for mobile species CMW, respectively. 
 At the upstream boundary node, the concentration of CMW is 1 mg/kg.  Simulations were 
performed with fixed time step sizes of 360 s and total simulation time of 1800 s.  The molecular 
diffusion coefficient and longitudinal dispersivity are assumed to be zero.  Option 3 is used to solve 
the transport equations.  With the grid size, time-step size and model parameters given above, the 
mesh Courant numbers are Cr = VΔt/Δx = 36.  When the fully-implicit scheme with En

m written in 
terms of (En

m/En)•En is applied to Case 1, the mesh Courant number is Cr = V/(1+Keq)·(Δt/Δx) = 18. 
 With integral mesh Courant numbers, the numerical error is zero in solving the advective transport 
equation, thus numerical errors due to coupling strategies are isolated. 
 
Using the same numerical option, Option 3 – the Modified LE approach, to solve the advective-
dispersive equation, simulations were performed with three coupling strategies to deal with the 
reactive chemistry.  In Figure 5.1-3, simulation results of CMW in Case 1, 2, and 3 are compared 
with the analytical solutions (Quezada et al, 2004).  It is seen that the fully-implicit strategy gives 
accurate enough solution for all three cases although solution for Case 2 is less accurate than the 
other two. However, simulation accuracy using the mixed predictor-corrector/operator-splitting and 
operator-splitting strategies varies for the three cases.  For Case 1, in which an equilibrium reaction 
involves, calculation results of these two strategies are far from the analytical values.  For Case 2, in 
which a kinetic reaction with faster rate (compared to Case 3) involves, simulations of these two 
strategies are close to the exact solution although less accurate than the fully-implicit strategy.  For 
Case 3, in which a kinetic reaction with slower rate (compared to Case 2) involves, accurate 
simulations are obtained with these two strategies.  
 
For problems with reaction network involving only kinetic reactions with slower rates, all the three 
strategies can generate accurate solution.  Because the fully-implicit strategy takes more time to 
achieve convergent simulations due to iteration between the advective-dispersive transport step and 
the reactive chemistry step, the other two strategies are recommended under this situation.  However, 
for problems with reaction network involving equilibrium reactions, the fully-implicit strategy is 
recommended for both research and practical applications because the other two strategies simply 
cannot give enough accurate simulations.  For problems involving only kinetic reactions with faster 
rates, the fully-implicit strategy is recommended when accuracy is the primary concern; on the other 
hand, the mixed predictor-corrector/operator splitting strategy and the operator splitting strategy are 
recommended for practical applications when efficiency is the primary concern. 
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Fig.  5.1-3.   Concentration Profiles of CMW in Cases 1, 2, and 3 of Example 5.2 

 
 
5.1.3 Chemical Transport with Complexation, Sorption and Dissolution reactions 
 
Reactive chemical transport, incorporating hypothetical aqueous complexation, sorption, and 
precipitate dissolution reactions in a system of mixed equilibrium and kinetic reactions, is simulated 
in this example.  A horizontally 20 km-long river/stream containing a uniform width of 20 m is 
considered.  The domain is discretized into 100 equal size elements (200 m each).  To focus on 
transport, we assume water depth is 2 m and river/stream velocity is 1 m/s.  
 
Forty-one chemical species are taken account, including 29 dissolved species in the mobile water 
phase (C1~C27, C29, and C30), 1 bed precipitate (M), and 11 particulates sorbed onto bed sediment 
(S1~S8, site-C6, site-C29 and site-C30). As shown in Table 5.1-1, the complex reaction network 
involves 33 reactions: including 1 dissolution reaction R1; 1 sorbing site forming reaction R2; 22 
aqueous complexation reactions R3~R24; and 9 sorption reactions R25~R33.  
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Table  5.1-1   Reaction Network for Example 5.1-3 

Reaction Reaction parameters No. 
M ↔ C1 – 3C2 Rate= 5.787e-7M R1 
M ↔ S1 0.0047M=S1+S2+S3+S4+S5+S6+S7+S8 R2 
C3 ↔ C4 + C5 Log K3

e = -17.97 R3 
C6 + C5 ↔ C7 Log K4

e = 12.32 R4 
C2 + C5 + C6 ↔ C8 Log K5

e = 15.93 R5 
C6 ↔ C2 + C9 Log K6

e = -12.6 R6 
C1 + C5 ↔ C10 Log K7

e = 22.57 R7 
C1 + C2 + C5 ↔ C11 Log K8

e = 29.08 R8 
C1 + C5 ↔ C2 + C12 Log K9

e = 19.65 R9 
C1 + C5 ↔ 2 C2 + C13 Log K10

e = -36.3 R10 
C1 ↔ C2 + C14  Log K11

e = -2.19 R11 
C1 ↔ 2C2 + C15 Log K12

e = -5.67 R12 
C1 ↔ 3C2 + C16 Log K13

e = -13.6 R13 
C1 ↔ 4C2 + C17 Log K14

e = -21.6 R14 
2C1 ↔ 2C2 + C18 Log K15

e = -2.95 R15 
C2 + C4 + C5 ↔ C19 Log K16

e = 21.4 R16 
C4 ↔ C2 + C20 Log K17

e = -9.67 R17 
C4 ↔ 2C2 + C21 Log K18

e = -18.76 R18 
C4 ↔ 3C2 + C22 Log K19

e = -32.23 R19 
C2 + C5 ↔ C23 Log K20

e = 11.03 R20 
2C2 + C5 ↔ C24 Log K21

e = 17.78 R21 
3C2 + C5 ↔ C25 Log K22

e = 20.89 R22 
4C2 + C5 ↔ C26  Log K23

e = 23.1 R23 
↔ C2 + C27 Log K24

e = -14.0 R24 
S1 ↔ S2 + C2 Log K25

e = -11.6 R25 
S1 + C2 ↔ S3 Log K26

e = 5.6 R26 
S1 + 3C2 + C5 ↔ S4 Log K27

e = 30.48 R27 
S1 + C1 + C2 + C5 ↔ S5 Log K28

e = 37.63 R28 
S1 + C2 + C4 + C5 ↔ S6 Log K29

f = 25.0, Log K29
b = -3.49 R29 

S1 - C2 + C4 ↔ S7 Log K30
f = -5.99, Log K30

b = -3.30 R30 
S1 + C2 + C5 + C6 ↔ S8 Log K31

f = 20.0, Log K31
b = -3.81 R31 

C29 + 2Site-C30 ↔ Site-C29 + 
2C30 

Rate=10-5.75 C29·(a30Site-C30)2-10-5.5a29Site-C29· 
C30

2 

a29= Site-C29/( Site-C6+Site-C29+Site-C30) 
a30= Site-C30/( Site-C6+Site-C29+Site-C30) 

R32 

C6 + 2Site-C30 ↔ Site-C6 + 
2C30 

a6Site-C6· C30
2=100.6C6·(a30Site-C30)2 

a6= Site-C6/( Site-C6+Site-C29+Site-C30) 
a30= Site-C30/( Site-C6+Site-C29+Site-C30) 

R33 
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Totally, we have 41 species, 28 equilibrium reactions, and 5 kinetic reactions.  Thus, 13 kinetic-
variable transport equations (Table 5.1-2) and 28 equilibrium reaction algebraic equations (Table 
5.1-3) were set up through decomposition and solved for 41 species.  Among the 13 kinetic-
variables, the 6th, 7th, 9th, and 11th contain no mobile species and are thus not solved in the 
advective-dispersive transport step.  Therefore, instead of solving 29 advective-dispersive transport 
equations for 29 mobile species in a primitive approach, we only need to solve 9 advective-
dispersive transport equations for 9 kinetic-variables.  Since the fast reaction is decoupled and not 
included in the transport equations any more, robust numerical integration can be achieved. 
 
 

Table  5.1-2 Kinetic-variable Transport Equations for Example 5.1-3 
 

Equations No. 
( )m

1 1(AE ) t L(E ) A R31 R32∂ ∂ + = − +  where 
6 7 8 9 30

m
1 1 C 6 C 7 C 8 C 9 C 30E E ρ C ρ C ρ C ρ C 0.5ρ C= = + + + +  1 

( )m
2 2(AE ) t L(E ) A R29 R30∂ ∂ + = − −  where 

3 4 19 20 21 22

m
2 2 C 3 C 4 C 19 C 20 C 21 C 22E E ρ C ρ C ρ C ρ C ρ C ρ C= = + + + + +  2 

( )m
3 3(AE ) t L(E ) A 0.5R29 0.5R30 R31∂ ∂ + = + −  where 

1 2 4 5 7 8 9 11

12 13 14 16 17 18 19 20

21 23 25 26 27

3 C 1 C 2 C 4 C 5 C 7 C 8 C 9 C 11

C 12 C 13 C 14 C 16 C 17 C 18 C 19 C 20

C 21 C 23 C 25 C 26 C 27 M

E ρ C 0.5ρ C 1.5ρ C ρ C ρ C 0.5ρ C 0.5ρ C 0.5ρ C

0.5ρ C ρ C 0.5ρ C 0.5ρ C ρ C ρ C ρ C ρ C

0.5ρ C 0.5ρ C 0.5ρ C ρ C 0.5ρ C 0.5ρ M

= − − − + + + + −

+ + − + + − − −

− + − − + +
1 2S 1 S 20.5ρ S ρ S+ +

 and  

1 2 4 5 7 8 9

11 12 13 14 16 17 18

19 20 21 23 25 26 27

m
3 C 1 C 2 C 4 C 5 C 7 C 8 C 9

C 11 C 12 C 13 C 14 C 16 C 17 C 18

C 19 C 20 C 21 C 23 C 25 C 26 C 27

E ρ C 0.5ρ C 1.5ρ C ρ C ρ C 0.5ρ C 0.5ρ C

0.5ρ C 0.5ρ C ρ C 0.5ρ C 0.5ρ C ρ C ρ C

ρ C ρ C 0.5ρ C 0.5ρ C 0.5ρ C ρ C 0.5ρ C

= − − − + + + +

− + + − + + −

− − − + − − +

 

3 

( )m
4 4(AE ) t L(E ) A R1 0.5R29 1.5R30 R31∂ ∂ + = − − − +  where 

1 2 3 4 5 7 8 9

10 11 12 13 14 16 17 18

20 21 23 24 25 2

4 C 1 C 2 C 3 C 4 C 5 C 7 C 8 C 9

C 10 C 11 C 12 C 13 C 14 C 16 C 17 C 18

C 20 C 21 C 23 C 24 C 25 C

E ρ C 0.5ρ C 0.5ρ C 1.5ρ C 2ρ C 2ρ C 1.5ρ C 0.5ρ C

ρ C 0.5ρ C 1.5ρ C 2ρ C 0.5ρ C 0.5ρ C ρ C ρ C

ρ C 0.5ρ C 1.5ρ C ρ C 0.5ρ C 0.5ρ

= + − + − − − −

− − − − + − − +

+ + − − − −
7 1 327 M S 1 S 3C 0.5ρ M 0.5ρ S ρ S+ + +

 and  

1 2 3 4 5 7 8

9 10 11 12 13 14 16

17 18 20 21 23 24 25

m
4 C 1 C 2 C 3 C 4 C 5 C 7 C 8

C 9 C 10 C 11 C 12 C 13 C 14 C 16

C 17 C 18 C 20 C 21 C 23 C 24 C 25 C

E ρ C 0.5ρ C 0.5ρ C 1.5ρ C 2ρ C 2ρ C 1.5ρ C

0.5ρ C ρ C 0.5ρ C 1.5ρ C 2ρ C 0.5ρ C 0.5ρ C

ρ C ρ C ρ C 0.5ρ C 1.5ρ C ρ C 0.5ρ C 0.5ρ

= + − + − − −

− − − − − + −

− + + + − − − −
27 27C

 

4 

m
5 5(AE ) t L(E ) AR1∂ ∂ + =  where 

1 10 11 12 13 14 15 16 17 18 55 C 1 C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18 S 5E ρ C ρ C ρ C ρ C ρ C ρ C ρ C ρ C ρ C 2ρ C ρ S= + + + + + + + + + +   
and 

1 10 11 12 13 14 15 16 17 18

m
5 C 1 C 10 C 11 C 12 C 13 C 14 C 15 C 16 C 17 C 18E ρ C ρ C ρ C ρ C ρ C ρ C ρ C ρ C ρ C 2ρ C= + + + + + + + + +  

5 

m
6 6(AE ) t L(E ) AR29∂ ∂ + =  where 

66 S 6E ρ S=  and m
6E 0=  6 

m
7 7(AE ) t L(E ) AR30∂ ∂ + =  where 

77 S 7E ρ S=  and m
7E 0=  7 

( )m
8 8(AE ) t L(E ) A R1 R29 R31∂ ∂ + = − − −  where 

1 3 5 7 8 14 15 16

17 18 19 23 24 25 26 4

8 C 1 C 3 C 5 C 7 C 8 C 14 C 15 C 16

C 17 C 18 C 19 C 23 C 24 C 25 C 26 S 4

E ρ C ρ C ρ C ρ C ρ C ρ C ρ C ρ C

ρ C 2ρ C ρ C ρ C ρ C ρ C ρ C ρ S

= − + + + + − − −

− − + + + + + +
 and 

1 3 5 7 8 14 15 16

17 18 19 23 24 25 26

M
8 C 1 C 3 C 5 C 7 C 8 C 14 C 15 C 16

C 17 C 18 C 19 C 23 C 24 C 25 C 26

E ρ C ρ C ρ C ρ C ρ C ρ C ρ C ρ C

ρ C 2ρ C ρ C ρ C ρ C ρ C ρ C

= − + + + + − − −

− − + + + + +
 

8 

m
9 9(AE ) t L(E ) AR31∂ ∂ + =  where 

89 S 8E ρ S=  and m
9E 0=  9 

( )m
10 10(AE ) t L(E ) A R32∂ ∂ + = −  where

29

m
10 10 C 29E E ρ C= =  10 

m
11 11(AE ) t L(E ) AR32∂ ∂ + =  where 

2911 Site C 29E ρ Site C−= −  and m
11E 0=  11 

m
12 12(AE ) t L(E ) 0∂ ∂ + =  where 

30 3012 C 30 Site C 30E ρ C ρ Site C−= + −  and 
30

m
12 C 30E ρ C=  12 
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( )m
13 13(AE ) t L(E ) A R32∂ ∂ + = −  where 

30 613 C 30 Site C 6E 0.5ρ C ρ Site C−= − + −  and 
30

m
13 C 30E 0.5ρ C= −  13 

Note: ρi = ρw for C1~C27, C29, and C30; ρi = Phbρwbθb/A, for M; and ρi = PBS/A, for S1~S8, site-C6, site-
C29 and site-C30 (ρw = ρwb = 1.0 kg/L, hb = 0.2 m, θb = 0.6, and BS = 1 kg/m2). 

 
 

Table  5.1-3 Equilibrium Reaction Algebraic Equations for Example 5.1-3 
 

Equations No. 
1 2 3 4 5 6 7 80.0047M S S S S S S S S= + + + + + + +  1 

( )2 2 0.6 4
6 30 6 30 6 29 30Site-C · C =10 C ·Site-C Site-C +Site-C +Site-C  2 

( ) ( )1.5 1.5e e e 1.5 1.5
4 25 19 26 22 3 2C = K K K C S S⎡ ⎤ ⋅⎢ ⎥⎣ ⎦

 3 

( ) ( )2e e e 2
5 26 25 27 2 4 3C = K K K S S S⋅  4 

( ) ( )0.5 0.5e e 0.5 0.5
2 25 26 3 2C = K K S S⋅  5 

( ) ( )2e e e e 2
7 4 26 25 27 6 2 4 3C = K K K K C S S S⋅  6 

( ) ( )e e e e
1 25 27 26 28 3 5 2 4C = K K K K S S S S⋅  7 

( )0.5e e e 0.5 0.5
9 6 26 25 6 2 3C = K K K C S S⋅  8 

e e e
10 7 26 28 5 3C = K K K S S⋅  9 

( ) ( ) ( )0.5 0.5e e e e 0.5 0.5
11 8 25 26 28 5 2 3C = K K K K S S S⋅  10 

( ) ( )1.5 0.5e e e e 0.5 1.5
8 5 26 25 27 2 4 3C = K K K K S S S⎡ ⎤ ⋅⎢ ⎥⎣ ⎦

 11 

( ) ( )1.5 0.5e e e e 0.5 1.5
12 9 26 25 28 2 5 3C = K K K K S S S⎡ ⎤ ⋅⎢ ⎥⎣ ⎦

 12 

( ) ( ) ( )0.5 0.5e e e e e 0.5 0.5
14 11 25 27 26 28 3 5 2 4C = K K K K K S S S S⎡ ⎤ ⋅⎢ ⎥⎣ ⎦

 13 
e e e

15 12 27 28 5 4C = K K K S S⋅  14 
( ) ( ) ( )0.5 0.5e e e e e 0.5 0.5

16 13 26 27 25 28 2 5 3 4C = K K K K K S S S S⎡ ⎤ ⋅⎢ ⎥⎣ ⎦
 15 

( ) ( )e e e e e
17 14 26 27 25 28 2 5 3 4C = K K K K K S S S S⋅  16 

( ) ( )2e e e e 2
13 10 26 25 28 2 5 3C = K K K K S S S⋅  17 

( ) ( ) ( ) ( )0.5 0.5e e e e e 0.5 0.5
3 25 26 3 19 27 22 4 2 3C = K K K K K C S S S⋅  18 

( )e e e e
20 17 25 19 26 22 3 2C = K K K K C S S⋅  19 

( )e e e e
19 16 25 19 27 22 4 2C = K K K K C S S⋅  20 

( ) ( )0.5 0.5e e e e 0.5 0.5
21 18 25 19 26 22 3 2C = K K K K C S S⎡ ⎤ ⋅⎢ ⎥⎣ ⎦

 21 

( ) ( )1.5 0.5e e e e 0.5 1.5
23 20 26 25 27 2 4 3C = K K K K S S S⎡ ⎤ ⋅⎢ ⎥⎣ ⎦

 22 
e e e

24 21 26 27 4 3C = K K K S S⋅  23 
( ) ( ) ( )0.5 0.5e e e e 0.5 0.5

25 22 25 26 27 4 2 3C = K K K K S S S⋅  24 

( ) ( )0.5 0.50.5 0.5 e e
1 2 3 25 26S =S S K K⎡ ⎤

⎢ ⎥⎣ ⎦
 25 

( ) ( )0.5 0.5e e e 0.5 0.5
27 24 26 25 2 3C = K K K S S⋅  26 

e e e
4 23 25 27 4 2C = K K K S S⋅  27 

( ) ( ) ( )2 2e e e e e 2 2
5 15 25 27 26 28 3 5 2 4C = K K K K K S S S S⎡ ⎤ ⋅⎢ ⎥⎣ ⎦

 28 
 

 
As simulation starts, variable boundary conditions are applied to both the upstream and downstream 
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boundary nodes. Initial and coming-in concentrations are listed in Table 5.1-4. The longitudinal 
dispersivity is 80 m. A 90,000-second simulation is performed with a fixed time step size of 150-
second. 
 
The concentration distributions of M, C1, and S1 at different simulation time are plotted in Figure 
5.1-4.  Due to the dissolution reaction R1, the bed precipitate M gradually dissolutes into dissolved 
chemical C1 in the mobile water phase.  Therefore, we observe decreasing concentration of M with 
time and increasing concentration of C1 along the down stream direction.  Due to the sorbing site 
forming reaction R2, the concentration of S1 decreases with time as the surface area of M decreases 
along with dissolution.  Since S1 involves in seven sorption reactions R25~R31, its concentration 
distribution is also affected by these reactions and related species. 

 
 

Table  5.1-4 Initial and Boundary Concentrations for Example 5.1-3 
  

Species Initial Boundary  
C1 1.0e-7 mol/Kg 1.0e-7 mol/L 
C2 1.0e-5 mol/Kg 1.0e-5 mol/L 
C3 1.0e-7 mol/Kg 1.0e-4 mol/L 
C4 1.0e-5 mol/Kg 1.0e-5 mol/L 
C5 1.0e-5 mol/Kg 1.0e-5 mol/L 
C6 1.0e-5 mol/Kg 1.0e-4 mol/L 
C10 1.0e-5 mol/Kg 1.0e-5 mol/L 
C29 1.0e-5 mol/Kg 1.0e-5 mol/L 
C30 1.0e-5 mol/Kg 1.0e-4 mol/L 
M 2.0e-5 mol/Kg - 
Site-C6 1.4e-4 mol/g - 
Site-
C29 

7.0e-4 mol/g - 

Site-
C30 

1.5e-4 mol/g - 
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Fig.  5.1-4.  Concentration Profiles for Species M, C1, and S1 for Example 5.1-3
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5.1.4 River/Stream Transport with all Ten Types of Reactions 
 
This example is to demonstrate the capability of the model in simulating sediment and reactive 
chemical transport subjected to all ten types of reactions presented in Figure 2.5-2.  
 
A horizontally 20 km-long river/stream containing a uniform width of 20 m is considered.  The 
domain is discretized into 100 equal size elements (200 m each).  To focus on transport, we assume 
water depth is 2 m, and river/stream velocity is 1 m/s throughout the river/stream.  Only one size of 
cohesive sediment is taken into account with settling speed of 1.0x10-6 m/s, erodibility of 0.15 
g/m2/s, critical shear stresses for deposition of 2.85 g/m/s2, and critical shear stresses for erosion of 
2.48 g/m/s2.  Manning’s roughness is 0.02. 
 
Fourteen chemical species are taken account including three dissolved chemicals in the mobile water 
phase (CMW1, CMW2, and CMW3), three dissolved chemicals in the immobile water phase 
(CIMW1, CIMW2, and CIMW3), three particulate chemicals in the suspended sediment phase (CS1, 
CS2, and CS3), three particulate chemicals in the bed sediment phase (CB1, CB2, and CB3), one 
suspension precipitate (SP3) and one bed precipitate (BP3).  As shown in Table 5.1-5, these species 
are considered to undergo all ten types of reactions illustrated in Figure 2.5-2.  Totally, there are 
twenty reactions, among which, R1 is an equilibrium aqueous complexation reaction among three 
dissolved chemicals in the mobile water phase; R2 through R4 are kinetic adsorption reactions of 
three dissolved chemicals in the mobile water phase onto the suspended sediment; R5 through R7 
are kinetic adsorption reactions of three dissolved chemicals in the mobile water phase onto the bed 
sediment; R8 through R10 are kinetic sedimentation reactions of three particulates between 
suspended and bed sediment phases; R11 through R13 are kinetic diffusion of three dissolved 
chemicals between mobile and immobile water phases; R14 is a kinetic aqueous complexation 
reaction among three dissolved chemicals in the immobile water phase; R15 through R17 are kinetic 
adsorption reactions of three dissolved chemicals in the immobile water phase onto the bed 
sediment; R18 is a kinetic volatilization reaction of the second dissolved chemical in the mobile 
water phase; R19 is a kinetic precipitation/dissolution reaction between the third dissolved chemical 
in the mobile water phase and suspended precipitate; and R20 is a kinetic precipitation/dissolution 
reaction between the third dissolved chemical in the immobile water phase and bed precipitate;.  
 
Totally, we have 14 species, one equilibrium reaction, and 19 kinetic reactions.  Thus, 13 kinetic-
variable transport equations and one equilibrium-reaction mass action equation were set up through 
decomposition and solved for 14 species (Table 5.1-6).  Among the 13 kinetic-variables, the 6th 
through 11th and the 13th contain no mobile species and are thus not solved in the advective-
dispersive transport step.  Therefore, instead of solving seven advective-dispersive transport 
equations for mobile species in a primitive approach, we only need to solve six advective-dispersive 
transport equations for kinetic-variables.  Since the fast reaction is decoupled and not included in the 
transport equations any more, robust numerical integration is enabled. 
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Table  5.1-5 Chemical Reactions Considered in Example 5.1.4 

 
Reaction and rate parameter Type No. 
CMW1 + CMW2 ↔ CMW3 ( keq = 0.4 m3/g) 1 R1 

CMW1+ SS ↔ CS1 + SS 
CMW2+ SS ↔ CS2 + SS 
CMW3+ SS ↔ CS3 + SS 
( kf = 0.001 m3/gSS/s, kb = 0.0 s-1) 

2 R2 
R3 
R4 

CMW1+ BS ↔ CB1 + BS 
CMW2+ BS ↔ CB2 + BS 
CMW3+ BS ↔ CB3 + BS 
( kf = 0.00001 m2/gBS/s, kb = 0.0P/A m-1s-1) 

4 R5 
R6 
R7 

CS1 ↔ CB1 ( kf = Depo1P/A gSS/m3/s, kb = Eros1P/A gBS/m3/s) 
CS2 ↔ CB2 ( kf = Depo2P/A gSS/m3/s , kb = Eros2P/A gBS/m3/s) 
CS3 ↔ CB3 ( kf = Depo3P/A gSS/m3/s, kb = Eros3P/A gBS/m3/s) 

10 R8 
R9 
R10 

CMW1 ↔ CIMW1 
CMW2 ↔ CIMW2 
CMW3 ↔ CIMW3 
( kf = 0.0001 s-1, kb = 0.0Phbθb/A s-1) 

9 R11 
R12 
R13 

CIMW1+ CIMW2 ↔CIMW3 
( kf = 0.0002Phbθb/A m3/g/s , kb = 0.0005Phbθb/A s-1) 

5 R14 

CIMW1 + BS ↔ CB1 + BS 
CIMW2 + BS ↔ CB2 + BS 
CIMW3 + BS ↔ CB3 + BS 
( kf = 0.00001Phbθb/A m2/gBS/s, kb = 0.0P/A m-1s-1) 

6 R15 
R16 
R17 

CMW2 ↔ P ( kf = 0.0002 s-1, kb = 0.02 g/m3/ATM/s, 
P=0.0025ATM) 

8 R18 

CMW3 ↔ SP3 (kf = 0.001 s-1, kb = 0.000001 s-1) 3 R19 

CIMW3 ↔ BP3 (kf = 0.0001Phbθb/A s-1, kb = 0.0000001Phbθb/A s-1) 7 R20 

Note: the reaction types are defined in Figure 2.5-2. 
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Table  5.1-6 Equations Obtained through Decomposition in Example 5.1-4 

 

Equations Type 
( )m

1 1 2 4 5 7 11 13 19(AE ) t L(E ) A R R R R R R R∂ ∂ + = − − − − − − −  where 
m

1 1 CMW1 CMW1 CMW3 CMW3E E ρ C ρ C= = +  1 

( )m
2 2 3 4 6 7 12 13 18 19(AE ) t L(E ) A R R R R R R R R∂ ∂ + = − − − − − − − −  where 

m
2 2 CMW2 CMW2 CMW3 CMW3E E ρ C ρ C= = +  1 

( )m
3 3 2 8(AE ) t L(E ) A R R∂ ∂ + = −  where m

3 3 CS1 CS1E E ρ C= =  1 
( )m

4 4 3 9(AE ) t L(E ) A R R∂ ∂ + = −  where m
4 4 CS2 CS2E E ρ C= =  1 

( )m
5 5 4 10(AE ) t L(E ) A R R∂ ∂ + = −  where m

5 5 CS3 CS3E E ρ C= =  1 
( )m

6 6 5 8 15(AE ) t L(E ) A R R R∂ ∂ + = + +  where 
6 CB1 CB1E ρ C=  and m

6E 0=  1 
( )m

7 7 6 9 16(AE ) t L(E ) A R R R∂ ∂ + = + +  where 
7 CB2 CB2E ρ C=  and m

7E 0=  1 
( )m

8 8 7 10 17(AE ) t L(E ) A R R R∂ ∂ + = + +  where 
8 CB3 CB3E ρ C=  and m

8E 0=  1 
( )m

9 9 11 14 15(AE ) t L(E ) A R R R∂ ∂ + = − −  where 
9 CIMW1 CIMW1E ρ C=  and m

9E 0=  1 
( )m

10 10 12 14 16(AE ) t L(E ) A R R R∂ ∂ + = − −  where 
10 CIMW2 CIMW2E ρ C=  and m

10E 0=  1 
( )m

11 11 13 14 17 20(AE ) t L(E ) A R R R R∂ ∂ + = + − −  where 
11 CIMW3 CIMW3E ρ C=  and m

11E 0=  1 
m

12 12 19(AE ) t L(E ) AR∂ ∂ + =  where m
12 12 SP3 SP3E E ρ C= =  1 

m
13 13 20(AE ) t L(E ) AR∂ ∂ + =  where 

13 BP3 BP3E ρ C=  and m
13E 0=  1 

CMW3 CMW1 CMW2C 0.4C C=  2 
Note: the equation type 1 is kinetic-variable transport equation and type 2 is equilibrium reaction 
mass action equation. 
ρi = ρw for CMW1~CMW3, and SP3; ρi = SS for CS1~CS3; ρi = Phbρwbθb/A, for 
IMW1~CIMW3, and BP3; and ρi = PBS/A, for CB1~CB3 (ρw = ρwb = 1.0 kg/L, hb = 0.1 m, and 
θb = 0.5). 
 
Initially, only sediment exists in the domain of interest with suspended concentration SS of 1 g/m3 
and bed concentration BS of 50 g/m2.  As simulation starts, Dirichlet boundary conditions are 
applied to the upstream boundary node, where suspended sediment has a constant concentration of 1 
g/m3 and dissolved chemicals in mobile water phase have constant concentrations of 1 mg/kg and all 
the other mobile chemicals have zero concentration.  Out-flow variable boundary conditions are 
applied to the downstream boundary node.  The longitudinal dispersivity is 80 m.  A 90,000-second 
simulation is performed with a fixed time step size of 150-second.  Simulation results are shown in 
Figure 5.1-5. 
 
Figure 5.1-5 shows trend of increasing concentration of the suspended sediment along down stream 
direction, and depicts decrease of the bed sediment with increase of time.  It indicates that deposition 
is less than erosion under the condition set for this example.  
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Fig.  5.1-5.  Concentration Profiles of Various Species for Example 5.1-4 
 

 
Figure 5.1-5 shows the decreasing concentration of CMW1 along the downstream direction.  This is 
because we allow the adsorption to happen, but do not allow desorption from particulate chemicals 
to dissolved chemicals to occur.  In the zone near the Dirichlet boundary, the concentration 
distribution curve of CMW1 is not smooth.  Due to the fast reaction among the three dissolved 
chemicals in the mobile water phase, the concentration of CMW1 increases to its equilibrium value. 
 The only source of dissolved chemicals in the immobile water phase is the corresponding dissolved 
chemicals in the mobile water phase.  Therefore, concentration distribution of CIMW1 shows the 
similar pattern of CMW1.  
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Since the dissolved chemicals are little in the downstream region, the major source of chemicals is 
the particulate chemicals on suspended sediments that are transported from the upstream region 
along with water.  Because erosion is greater than deposition, we observe increase of CS1 with time 
and decrease of CB1 along the downstream direction.  Since the particulate chemicals on bed 
sediment result not only from dissolved chemicals in mobile water phase, but also from those in the 
immobile water phase, the decrease of CB1 along the downstream also reflects the similar pattern of 
CMW1 and CIMW1. 
 
Since the major source of suspension precipitate in the downstream region is transported from the 
upstream region along with water, we observe an increase of suspension precipitate concentration 
with time.  Since bed precipitate is involved in the precipitation reaction only, Figure 5.1-5 also 
shows decreasing bed precipitate concentration along the downstream direction reflecting the similar 
decrease of dissolved chemical concentration in the immobile phase. 
 
5.1.5 River/Stream Transport with Eutrophication 
 
This example is to demonstrate the capability of the model in simulating the chemical transport 
related to eutrophication reported in WASP5 (Ambrose et al., 1993).  
 
WASP5, the Water quality Analysis Simulation Program, is a three-dimensional conventional water 
quality analysis simulation program.  It is a group of mechanistic models capable of simulating 
water transport and fate and transport of water quality constituents and toxic organics for aquatic 
systems. Various components of WASP5 have been used to study a variety of river, lake, reservoir, 
and estuarine issues including ecological characterization, the effects of anthropogenic activities, 
and the impact of mitigation measures (Bierman and James, 1995; Lung and Larson, 1995; Tufford 
and McKellar, 1999; and Zheng et al., 2004). 
 
EUTRO5 is a general operational WASP5 model used to simulate nutrient enrichment, 
eutrophication, and dissolved oxygen in the aquatic environment.  It constitutes a complex of four 
interacting systems: dissolved oxygen, nitrogen cycle, phosphorus cycle, and phytoplankton 
dynamics. It can simulate up to eight eutrophication constituents in both water column and benthic 
layer, including: (1) Ammonia NH3 and NH3(b), (2) Nitrate NO3 and NO3(b), (3) Inorganic 
Phosphorus OPO4 and OPO4(b), (4) Phytoplankton PHYT and PHYT(b), (5) Carbonaceous CH2Ot and 
CH2Ot(b), (6) Oxygen O2 and O2(b), (7) Organic Nitrogen ONt and ONt(b), and (8) Organic 
Phosphorus OPt and OPt(b), where ‘t’ means total and ‘(b)’ means benthic.  
 
 
According to our definition of chemical phases and forms, the total concentration of a species is the 
sum of the dissolved chemical and the particulate sorbed onto sediments, such as CH2Ot = CH2O + 
CH2Op, CH2Ot(b) = CH2O(b) + CH2Op(b), ONt = ON + ONp, ONt(b) = ON(b) + ONp(b), OPt = OP + 
OPp, and OPt(b) = OP(b) + OPp(b) ), where ‘p’ means particulate.  Therefore, the 16 species 
simulated in EUTRO5 were transformed into 22 chemical species listed in Table 5.1-7 and simulated 
in our model.  The sixteen working equations of EUTRO5 were recast in terms of reaction network 
used in our eutrophication simulation.  The reaction network includes 32 kinetic reactions and 6 
equilibrium reactions (Zhang, 2005).  
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Table  5.1-7   Chemical Species in Example 5.1.5 

 
Notation Conc. Initial Conditions Boundary Conditions ρi 
NH3 C1 0.1 mg N/kg 1 mg N/kg ρw 
NH3(b) C2 0.1 mg N/kg - Phbρwbθb/A 
NO3 C3 0.1 mg N/kg 1 mg N/kg ρw 
NO3(b) C4 0.1 mg N/kg - Phbρwbθb/A 
OPO4 C5 0.01 mg P/kg 0.1 mg P/kg ρw 
OPO4(b) C6 0.01 mg P/kg - Phbρwbθb/A 
PHYT C7 0.2 mg C/kg 2 mg C/kg ρw 
PHYT(b) C8 0.2 mg C/kg - Phbρwbθb/A 
CH2O C9 1.0 mg O2/kg 10 mg O2/kg ρw 
CH2O(p) C10 1.0 mg O2/mg 10 mg O2/mg SS 
CH2O(b) C11 1.0 mg O2/kg - Phbρwbθb/A 
CH2O(bp) C12 0.01 mg O2/mg - PBS/A 
O2 C13 0.2 mg O2/kg 2 mg O2/kg ρw 
O2(b) C14 0.2 mg O2/kg - Phbρwbθb/A 
ON C15 0.2 mg N/kg 2 mg N/kg ρw 
ON(p) C16 0.0 mg N/mg 0 mg N/mg SS 
ON(b) C17 0.2 mg N/kg - Phbρwbθb/A 
ON(bp) C18 0.0 mg N/mg - PBS/A 
OP C19 0.035 mg P/kg 0.35 mg P/kg ρw 
OP(p) C20 0.015 mg P/mg 0.15 mg P/mg SS 
OP(b) C21 0.035 mg P/kg - Phbρwbθb/A 
OP(bp) C22 0.00015 mg P/mg - PBS/A 

Note: ρw = ρwb = 1 kg/L, hb = 0.12 m, and θb = 0.6 
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The canal considered is 4738 m-long with width of 4.6~12.2 m.  It is descretized with nine elements 
of size of 515~549 m.  The flow pattern was simulated using the flow module of WASH123D.  The 
calculated water depth is 2.17~2.81 m and river/stream velocity is 0.06~0.88 m/s.  To focus on 
reactive chemical transport, we assume that the temperature is 15˚C, suspended sediment 
concentration SS is 1g/m3, and bed sediment concentration BS is 15 g/m2 throughout the canal. 
Dirichlet boundary condition is applied to the upstream boundary node.  Flow-out variable boundary 
condition is applied to the downstream boundary node.  Initial concentrations of all species and 
Dirichlet boundary concentrations of mobile species are listed in Table 5.1-7. The longitudinal 
dispersivity is 90 m. A 12-day simulation is performed with a fixed time step size of 6 minutes. 
 
Figure 5.1-6 plots the concentration distribution of phytoplankton and dissolved oxygen.  The 
similar concentration pattern of PHYT and DO indicates that these mobile species concentration 
change is mainly controlled by the advective-dispersive transport rather than the biogeochemical 
reactions.  However, the concentration change of immobile benthic species PHYT(b) and DO(b) is 
mainly affected by the biogeochemical reactions.  
 
In the benthic immobile water phase, the concentration change of PHYT(b) is due to its 
decomposition and PHYT settling. Figure 5.1-6 shows increasing concentration of PHYT(b) with 
time, demonstrating that the settling rate of PHYT is greater than PHYT(b) decomposition rate. In 
the benthic immobile water phase, the concentration change of DO(b) is due to the consumption of 
oxidation and diffusion of DO.  Figure 5.1-6 shows decreasing concentration of DO(b) at upstream. 
This indicates that at the upstream the diffusion rate of DO is less than the consumption rate of 
oxidation. As the simulation time increases, there is more DO at downstream. Figure 5.1-6 shows 
increasing concentration of DO(b) at downstream, demonstrating that the increased diffusion rate of 
DO is greater than the consumption rate of oxidation.  
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Fig.  5.1-6.  Concentration Profiles of PHYT, PHYT(b), DO, and DO(b) for Example 5.1.5 

 
 
5.1.6 River/Stream Transport with Junction 
 
This example is to demonstrate the capability of the model in simulating sediment and chemical 
transport in river/stream network system with junction.  
 
The system is composed of three river/stream reaches that are connected through a junction (figure 
5.1-7).  Each reach is 100 m long and is discretized with 11 nodes and 10 elements: Nodes 1 through 
11 for Reach1, 12 through 22 for Reach 2, and 23 through 33 for Reach 3. Nodes 11, 12, and 23 
coincide with one another and are located at the junction.  The junction covers the area between 
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Node 11 and median of Nodes 10 and 11, Node 12 and median of Nodes 12 and 13, and Node 23 
and median of Nodes 23 and 24. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig.  5.1-7.  River/stream Network for Example 5.1.6 
 
Reach 1 has a uniform river/stream width of 2 m, while Reaches 2 and 3 contain a uniform 
river/stream width of 1 m.  Manning’s roughness is 0.028375 for all three reaches. To focus on 
transport, we assume water depth is 2 m and river/stream velocity is 1 m/s throughout the 
river/stream system under isotherm condition.  Two dissolved chemicals are considered to undergo 
the following reaction: 
 

   0.001,   0f bCMW CIMW k k= =  (5.1.5) 
 

where CMW and CIMW represent dissolved chemicals in mobile water phase and immobile water 
phase, respectively. 
 
Only one size of cohesive sediment is taken into account with settling speed of 1.2×10-6 m/s, critical 
shear stresses for deposition of 2.75 g/m/s2 and critical shear stresses for erosion of 2.68 g/m/s2.  The 
following sorption reactions are included: 
 

 1   2   3   4   5   6   7   8   9  10  11
 
                 Reach 1 

33    
32    
31    
30    
29   

28       Reach 
2 

27    
26   
25   
12    
13    
14    
15    
16   

17       Reach 
3 

18    
19   
20   

Junction



 5-20

   0.001,   0f bCMW SS CS SS k k+ + = =  (5.1.6) 
 

   0.0001,   0f bCMW BS CB BS k k+ + = =  (5.1.7) 
 

   0.0001,   0f bCIMW BS CB BS k k+ + = =  (5.1.8) 
 

where SS is suspended sediment, BS is bed sediment, CS is particulate chemical associated with 
CMW on SS, and CB is particulate chemical associated with CMW or CIMW on BS.  We have, 
therefore, 4 species and 4 kinetic reactions in total.  
 
Initially, only bed sediment exists in the domain of interest with initial concentration of 50 g/m2. 
Dirichlet boundary conditions are applied to the upstream boundary node, where dissolved chemical 
in mobile water phase has a constant concentration of 1 mg/kg, suspended sediment and particulate 
on suspended sediment have zero concentration at this boundary node.  The longitudinal dispersivity 
is 10 m.   A 1000 second simulation is performed with a fixed time step size of 2 seconds.  A relative 
error of 10-4 is used to determine the convergence for iterations involved in the computation. 
 
Figures 5.1-8 through 5.1.13 plot the numerical results at various time, for concentration 
distributions of (1) suspended sediment (Figure 5.1-8), (2) bed sediment  (Figure 5.1-9), (3) 
dissolved chemical in mobile water phase (Figure 5.1-10), (4) dissolved chemical in immobile water 
phase (Figure 5.1-11), (5) particulate chemical on suspended sediment (Figure 5.1-12), and (6) 
particulate chemical on bed sediment (Figure 5.1-13). Since Reaches 2 and 3 are symmetric in 
geometry, have identical river/stream width, velocity, and Manning’s roughness, and are given same 
initial and boundary conditions for both sediments and chemicals, they have identical sediment and 
chemical concentration distribution patterns.  Sediment and chemical concentration distribution 
patterns in Reaches 1 and 2/3 are provided through figures 5.1-8 and 5.1-13, where Reach 1 is the 
region with x-coordinate ranging from 0m to 100 m and Reach 2/3 is the region with x-coordinate 
ranging from 100 m to 200 m. 
 
Figure 5.1-8 shows the trend of increasing concentration of suspended sediment along the down 
stream direction in Reach 1, while Figure 5.1-9 depicts the concentration decrease of bed sediment 
in Reach 1 with the increase of time.  Figures 5.1-8 and 5.1-9 tell that the deposition is less than the 
erosion in Reach 1 under the condition set for this example.  Figure 5.1-8 shows no change of bed 
sediment concentration either with simulation time or along the river/stream in Reach 2.  This 
indicates that there are same amount of deposition and erosion in Reach 2.  Since all the suspended 
sediment in Reach 2 is transported from upstream, its concentration increases with the simulation 
time and is approaching a steady state shown in figure 5.1-8.  This steady state is maintained until 
the bed sediment upstream is depleted and no more suspended sediment is transported.  At the 
junction, Figure 5.1-8 and figure 5.1-9 show increasing and decreasing concentrations of suspended 
and bed sediment, respectively. This tells that erosion is greater than deposition at the junction. 
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Fig.  5.1-8.  Concentration of the Suspended Sediment for example 5.1.6 
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Fig.  5.1-9.  Concentration of the Bed Sediment for Example 5.1.6 

 
Figures 5.1-10 shows decreasing dissolved chemical concentration in mobile water phase along the 
downstream direction.  This is because we allow the forward changing of dissolved chemical from 
mobile water phase to immobile water phase but not backward changing to occur (see equation 
5.1.5), and the adsorption but not desorption from particulate chemicals to dissolved chemicals to 
happen (see equations 5.1.6 through 5.7.8).  Due to the transform of dissolved chemical from mobile 
water phase into immobile water phase, the concentration of chemical in immobile water phase 
increases with time and shows similar pattern along the river/stream in figure 5.1.11 as that of 
chemical in mobile water phase.  Since chemical in immobile water phase also involves in the 
reaction with bed sediment forming particulate on bed sediment, its concentration pattern in figure 
5.111 also reflects this reaction.  At the junction, figure 5.1-10 and figure 5.1-11 shows the decrease 
of chemical concentrations in both mobile and immobile water phase, due to the adsorption. 
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Fig.  5.1-10.  Concentration of Dissolved Chemical in Mobile Water for Example 5.1.6 
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Fig.  5.1-11. Concentration of Dissolved Chemical in Immobile Water for Example 5.1.6 

 
Particulate on suspended sediment results from adsorption/desorption, erosion/deposition, and 
transport.  In reach 1, because erosion is greater than deposition, along the downstream direction, we 
observe an increase of particulate chemical on suspended sediments (figure 5.1-12).  In Reach 2, 
erosion rate is the same as deposition rate and there is little dissolved chemical, so that most of the 
particulate on suspended sediment is transported from upstream and hardly transforms into 
particulate on bed sediment, and its concentration changes little along the reach (figure 5.1-12).  At 
the junction, the increasing concentration of particulate chemical on suspended sediment (figure 5.1-
12) is caused by not only adsorption but also erosion. 
 
Particulate on bed sediment results from adsorption/desorption and erosion/deposition.  In Reach 1, 
since deposition is less than erosion, the particulate on bed sediment is obtained from the adsorption 
of dissolved chemical in either mobile water phase or immobile water phase and reflects the same 
pattern in figure 5.1-13 as those of chemical in both mobile and immobile water phase (figure 5.1-10 
and 5.1-11, respectively).  In Reach 2, because erosion rate is the same as deposition rate, particulate 
on bed sediment is also formed through the adsorption and shows the same pattern in figure 5.1.13 
as those of chemical in both mobile and immobile water phase (figure 5.1-10 and 5.1-11, 
respectively).  
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At the junction, the increasing concentration of particulate chemical on bed sediment (figure 5.1-12) 
indicates that its concentration increase due to adsorption is greater than the decrease caused by 
erosion. 
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Fig.  5.1-12.  Concentration of Particulate on Suspended Sediment for example 5.1.6 
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Fig.  5.1-13.  Concentration of Particulate on Bed Sediment for example 5.1.6 
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5.2 Two-Dimensional Examples 
 
Four examples are employed to demonstrate the design capability of the model in this section.  The 
first example is used to demonstrate that the model can simulate all ten types of reactions described 
in Chapter 2.  The second, third, and fourth examples are used to illustrate that the model has the 
design capability of simulate different eutrophication models reported in QUAL2E, WASP5, and 
CE-QUAL-ICM, respectively.  Biogeochemical cycles, biota kinetics, and sediment-column water 
interactions in these eutrophication models have been successfully transformed into reaction 
networks.  Based on the application of these eutrophication examples, the deficiency of current 
practices in water quality modeling is discussed and potential improvements over current practices 
using the current model are addressed. 
 
 
5.2.1 Overland Transport with Ten Types of Reactions 
 
This example is to demonstrate the capability of the model in simulating sediment and reactive 
chemical transport subject to complex reaction network involving both kinetic and equilibrium 
reactions, under the effect of temperature. 
 
The domain of interest has covered a horizontal area of 5,000 m × 1,000 m and is discretized with 
125 square elements of size 200 m × 200 m.  To focus on transport, water depth is set to be 2.0 m, 
and flow velocity is 0.5 m/s in the x-direction and 0.0 m/s in the y-direction everywhere.  Manning’s 
roughness is 0.05.  Two cases are considered with different temperature distribution.  As shown in 
Figure 5.2-1, in case 1, temperature is set to be 15 °C throughout the region; and in case 2, 
temperature ranges from 15 °C to 25 °C at different locations. 
 
One size of cohesive sediment is taken into account with settling speed of 1.2×0-6 m/s, critical shear 
stress for deposition of 4.15 g/m/s2, critical shear stress for erosion of 4.08 g/m/s2, and erodibility of 
0.1 g/m2/s.  A reaction network of 20 reactions is considered for this example problem (Table 5.2-1). 
 From the reaction network, it is seen that there are 14 species, including 3 dissolved chemicals in 
mobile water phase (CMW1, CMW2, and CMW3); 3 dissolved chemicals in immobile water phase 
(CIMW1, CIMW2, and CIMW3); 3 particulate chemicals sorbed onto suspended sediment (CS1, 
CS2, and CS3); 3 particulate chemicals sorbed onto bed sediment (CB1, CB2, and CB3); 1 
suspension precipitate (SP3); and 1 bed precipitate (BP3).  
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Fig.  5.2-1.  Distribution of Temperature (ºC) for Example 5.2.1  

Upper: case 1; Lower: case 2 
 
As shown in Table 5.2-1, these species are considered to undergo all ten types of reaction illustrated 
in Figure 2.6-2, including aqueous complexation reactions, adsorption/desorption reactions, ion-
exchange reactions, precipitation/dissolution reactions, volatilization reactions, diffusion reactions, 
and sedimentation reactions taking place between different chemical phases.  Reaction rates of R11 
through R13 are closely related to temperature (Table 5.2-1).  Totally, we have 14 species, 1 
equilibrium reaction, and 19 kinetic reactions.  Thus, 13 kinetic-variable transport equations and 1 
equilibrium reaction mass action equation were set up through decomposition and solved for 14 
species, which are listed in Table 5.2-2.  Among the 13 kinetic-variables, the 6th through 11th and 
the 13th contain no mobile species and are thus not solved in the advective-dispersive transport step. 
Therefore, instead of solving 7 advective-dispersive transport equations for mobile species in a 
primitive approach, we only need to solve 6 advective-dispersive transport equations for kinetic-
variables.  Since the fast reaction is decoupled and not included in the transport equations any more, 
robust numerical integration can be performed. 
 
Initially, only bed sediments, BS, exist in the domain of interest.  The initial concentration is 50 g/m2 
for the bed sediment.  As the simulation starts, in-flow variable boundary conditions are applied to 
the upstream boundary sides, where all dissolved chemicals have a constant incoming concentration 
of 1 g/m3 and all other mobile species and suspended sediment, SS, have zero incoming 
concentration.  Out-flow variable boundary conditions are applied to the downstream boundary 
sides.  The longitudinal dispersivity is 10.0 m.  A 12,000-second simulation is performed with fixed 
time step size of 200 seconds.  A relative error of 10-4 is used to determine the convergence for 
iterations involved in the computation.  
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Table  5.2-1  Chemical Reactions Considered in Example 5.2.1 
 

Reaction type Reaction and rate parameter No.
Aqueous complexation reaction in 
mobile water phase 

CMW1 + CMW2 ↔ CMW3 
( keq = 0.4 m3/g) 

R1 

Adsorption/desorption or ion-
exchange reaction between mobile 
water and suspended sediment phases

CMW1+SS ↔ CS1 + SS 
CMW2+SS ↔ CS2 + SS 
CMW3+SS ↔ CS3 + SS 
( kf = 0.0001 m3/g SS /s, kb = 0.0 s-1) 

R2 
R3 
R4 

Adsorption/desorption or ion-
exchange reaction between mobile 
water and bed sediment phases 

CMW1+BS ↔ CB1 + BS 
CMW2+BS ↔ CB2+ BS 
CMW3+BS ↔ CB3 + BS 
( kf = 0.00001 m2/g BS /s, kb = 0.0/h m-1s-1) 

R5 
R6 
R7 

 

Sedimentation of particulate 
chemical between suspended and bed 
sediment phases 

CS1 ↔ CB1 ( kf = Depo/h g SS/m3/s ,  
                        kb = Eros/h g BS/m3/s ) 
CS2 ↔ CB2 ( kf = Depo/h g SS/m3/s ,  
                        kb = Eros/h g BS/m3/s ) 
CS3 ↔ CB3 ( kf = Depo/h g SS/m3/s ,  
                        kb = Eros/h g BS/m3/s ) 

R8 
R9 
R10 

Diffusion of dissolved chemical 
between mobile and immobile water 
phases 

CMW1 ↔ CIMW1 
CMW2 ↔ CIMW2 
CMW3 ↔ CIMW3 
( kf = 0.0001θT-15˚C s-1, kb = 0.0hbθb/hθT-15˚C s-1, θ = 1.2 
) 

R11 
R12 
R13 

 

Aqueous complexation reaction in 
immobile water phase 

CIMW1+ CIMW2 ↔ CIMW3 
( kf = 0.002hbθb/h m3/g /s, kb = 0.005hbθb/h s-1) 

R14 

Adsorption/desorption or ion-
exchange reaction between immobile 
water and bed sediment phases 

CIMW1+BS ↔ CB1 + BS 
CIMW2+BS ↔ CB2 + BS 
CIMW3+BS ↔ CB3 + BS 
 ( kf = 0.00001hbθb/h m2/g BS/s, kb = 0.0/h /m/s) 

R15 
R16 
R17 

Volatilization reaction of dissolved 
chemical from mobile water phase 

CMW2 ↔ P 
( kf = 0.00002 /s, kb = 0.02 g/m3/ATM/s) 
( P=0.0025ATM) 

R18 

Precipitation/dissolution reaction 
between mobile water and 
suspension precipitate phases 

CMW3 ↔ SP3 
(kf = 0.0001 /s, kb = 0.0000001 /s) 

R19 

Precipitation/dissolution reaction 
between immobile water and bed 
precipitate phases 

CIMW3 ↔ BP3 
(kf = 0.0001 hbθb/h s-1, kb = 0.0000001 hbθb/h s-1) 

R20 
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Table  5.2-2   Equations Obtained through Decomposition in Example 5.2.1 

 

Kinetic-Variable Transport Equations 

( )m1
1 2 4 5 7 11 13 19

(hE ) L(E ) h R R R R R R R
t

∂
+ = − − − − − − −

∂
 where m

1 1 CMW1 CMW1 CMW3 CMW3E E ρ C ρ C= = +

( )m2
2 3 4 6 7 12 13 18 19

(hE ) L(E ) h R R R R R R R R
t

∂
+ = − − − − − − − −

∂
 

 where m
2 2 CMW2 CMW2 CMW3 CMW3E E ρ C ρ C= = +  

( )m3
3 2 8

(hE ) L(E ) h R R
t

∂
+ = −

∂
 where m

3 3 CS1 CS1E E ρ C= =  

( )m4
4 3 9

(hE ) L(E ) h R R
t

∂
+ = −

∂
 where m

4 4 CS2 CS2E E ρ C= =  

( )m5
5 4 10

(hE ) L(E ) h R R
t

∂
+ = −

∂
 where m

5 5 CS3 CS3E E ρ C= =  

( )m6
6 5 8 15

(hE ) L(E ) h R R R
t

∂
+ = + +

∂
 where 

6 CB1 CB1E ρ C=  and m
6E 0=  

( )m7
7 6 9 16

(hE ) L(E ) h R R R
t

∂
+ = + +

∂
 where 

7 CB2 CB2E ρ C=  and m
7E 0=  

( )m8
8 7 10 17

(hE ) L(E ) h R R R
t

∂
+ = + +

∂
 where 

8 CB3 CB3E ρ C=  and m
8E 0=  

( )m9
9 11 14 15

(hE ) L(E ) h R R R
t

∂
+ = − −

∂
 where 

9 CIMW1 CIMW1E ρ C=  and m
9E 0=  

( )m10
10 12 14 16

(hE ) L(E ) h R R R
t

∂
+ = − −

∂
 where 

10 CIMW2 CIMW2E ρ C=  and m
10E 0=  

( )m11
11 13 14 17 20

(hE ) L(E ) h R R R R
t

∂
+ = + − −

∂
 where 

11 CIMW3 CIMW3E ρ C=  and m
11E 0=  

m12
12 19

(hE ) L(E ) hR
t

∂
+ =

∂
 where m

12 12 SP3 SP3E E ρ C= =  

m13
13 20

(hE ) L(E ) hR
t

∂
+ =

∂
 where 

13 BP3 BP3E ρ C=  and m
13E 0=  

Mass Action Equation 
CMW3 CMW1 CMW2C 0.4C C=  

Note: ρi = ρw for CMW1~CMW3, and SP3; ρi = SS for CS1~CS3; ρi = hbρwbθb/h, for 
CIMW1~CIMW3, and BP3; and ρi = BS/h, for CB1~CB3. (ρw = ρwb = 1 kg/L, hb = 0.2 m, and θb 
= 0.5) 
 
 
Figures 5.2-2 through 5.2-4 depict the concentration contour at the end of simulation of SS, CMW1, 
and CIMW1, respectively.  Figure 5.2.-2 shows trend of increasing concentration of the suspended 
sediment along down stream direction.  It indicates that deposition is less than erosion under the 
condition set for this example.  Because the reactive chemical transport was assumed having no 
effect on sediment transport, concentration distribution of SS in case 1 is the same as case 2.  Figure 
5.2-3 shows a decreasing concentration of CMW1 along the downstream direction.  This is because 
we allow the adsorption to happen, but do not allow desorption from particulate chemicals to 
dissolved chemicals to occur.  The only source of dissolved chemicals in the immobile water phase 
is the corresponding dissolved chemicals in the mobile phase.  Therefore, Figure 5.2-4 also shows 
decreasing concentration of CIMW1 along the downstream direction. 
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Due to the temperature factor θT-15˚C in Table 5.2-1, reaction rates of R11 through R13 increase 6.19 
times as temperature increases from 15˚C at the center of the domain to 25˚C at the top and bottom 
edges for case 2.  Increase of these reaction rates means more dissolved chemicals will diffuse from 
mobile water phase to immobile water phase, therefore, we observe greater CMW1 concentration at 
the center than at the edges in Figure 5.2-3 and less CIMW1 at the center than at the edges in Figure 
5.2-4. 
 
Animations showing the spatial-temporal distribution of suspended sediment SS (Figure 5.2-2_case 
1.avi and Figure 5.2-2_Case 2.avi), dissolved Chemical No. 1 in mobile water CMW1 (Figure 5.2-
3_Case 1.avi and Figure 5.2-3_Case 2.avi), and dissolved Chemical No. 1 in immobile water 
CIMW1 (Figure 5.2-4_Case 1.avi and Figure 5.2-4_Case 2.avi), respectively, are attached in 
Appendix A.   Readers can visualize these moves by clicking the file contained in the attached CD. 
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Fig.  5.2-2.   Concentration of SS (g/m3) for Example 5.2.1 Upper: case 1; Lower: case 2 
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Fig.  5.2-3.   Concentration of CMW1 (g/m3) for Example 5.2.1  

Upper: case 1; Lower: case 2 
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Fig.  5.2-4.   Concentration of CIMW1 (g/m3) for Example 5.2.1  

Upper: case 1; Lower: case 2 
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5.2.2 Overland Transport with Eutrophication in QUAL2E 
 
The Stream Water Quality Model QUAL2E (Brown and Barnwell, 1987) is a typical eutrophication 
model for stream systems.  It is the most recent version of the model QUAL-II (Roesner et al., 
1981), which was developed from the model QUAL-I in the 1960s. QUAL2E was first released in 
1985 (Brown and Barnell, 1985) and has been successfully applied in many water quality studies 
since then (Lung, 1986; Wagner et al., 1996; Yang et al., 2000; Ning et al., 2001; Park and Lee, 
2002; McAvoy et al., 2003; Ng and Perera, 2003; and Park et al., 2003).  In QUAL2E, nine working 
equations were used to solve for nine water qualities (state variables) that related to eutrophication 
kinetics (Table 5.2-3).   
 

Table  5.2-3   QUAL2E Original Working Equations 
No. Species Notation Working Equations  

1 Dissolved 
Oxygen O 

( ) ( )-20 * -20 -20 -20
2 3 4 1

0
-20 -20 -20

4 5 1 1 6 2 2

-

     

T T T T

T T T

dO ChlaK O O K L
dt

K d CORDO N CORDO N

θ α μθ α ρθ θ
α

θ α β θ α β θ

= − + −

− − −

 

2 Biochemical 
oxygen demand L -20 -20

1 3
T TdL K L K L

dt
θ θ= − −  

3 Chlorophyll a Chla -20 -20 -201T T TdChla Chla Chla Chla
dt d

σμθ ρθ θ= − −  

4 Organic 
nitrogen N4 

-20 -20 -204
1 3 4 4 4

0

T T TdN Chla N N
dt

α ρθ β θ σ θ
α

= − −  

5 Ammonia 
nitrogen N1 

-20 -20 -20 -201
3 4 1 1 3 1

0

T T T TdN ChlaN CORDO N d F
dt

β θ β θ σ θ α μθ
α

= − + −  

6 Nitrite nitrogen N2 -20 -202
1 1 2 2

T TdN CORDO N CORDO N
dt

β θ β θ= −  

7 Nitrate nitrogen N3 ( )-20 -203
2 2 1

0

1T TdN ChlaCORDO N F
dt

β θ α μθ
α

= − −  

8 Organic 
phosphorus P1 

-20 -20 -201
2 4 1 5 1

0

T T TdP Chla P P
dt

α ρθ β θ σ θ
α

= − −  

9 Dissolved 
phosphorous P2 

-20 -20 -202
4 1 2 2

0

T T TdP ChlaP d
dt

β θ σ θ α μθ
α

= + −  
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The eutrophication model of QUAL2E is recast in terms of a network of 16 reactions involving 19 
reaction constituents (O, L, Chla, N4, N1, N2, N3, P1, P2, O(b), L(b), Chla(b), N4(b), N(1b), P(1b), P(2b), 
CO2, H2O, and O2(g)) in this report (Table 5.2-4).  These 16 reactions (Table 5.2-4) address four 
interacting biogeochemical processes: algae growth kinetics (Reactions R1 through R4), nitrogen 
cycles (Reactions R5 through R9), phosphorus cycle (Reactions R10 through R12), and carbon 
cycles (Reactions R13 through R16). 
 

Table  5.2-4   QUAL2E Eutrophication Model Cast in Reaction Network 
 

No. Mechanism Reaction Rate 

1 Algae growth 
1 1 2 2 2 2(g)

0 3 4 3 (g)

α N α P +H O+CO

α Chla α O+(α α )O

+ →

+ −
 -20

0

TR Chlaμ θ
α

=  

2 
Diatom growth related nitrate 
reduction 
 

3 2 1 5 6 (g)N 1.5H O N +(α +α )O+ → ( ) -20
1

0

1 TR F Chlaμα θ
α

= −

3 Algae respiration 0 4

1 4 2 1 2 2(g)

α Chla α O
α N α P +H O+CO

+ →
+

 -20

0

TR Chlaρ θ
α

=  

4 Algae settling (b)Chla Chla→  -201 TR Chla
d
σ θ=  

5 Mineralization of organic nitrogen 4 1N N→  -20
3 4

TR Nβ θ=  
6 Organic nitrogen settling 4 4(b)N N→  -20

4 4
TR Nσ θ=  

7 Biological oxidation of ammonia 
nitrogen 1 5 2 2N α O N 1.5H O+ → +  -20

1 1
TR CORDO Nβ θ=  

8 Benthos source to ammonia 
nitrogen 1(b) 1N N→  -20

3
TR dσ θ=  

9 Oxidation of nitrate nitrogen 2 6 3N α O N+ →  -20
2 2

TR CORDO Nβ θ=  
10 Organic phosphorus decay 1 2P P→  -20

4 1
TR Pβ θ=  

11 Organic phosphorus settling 1 1(b)P P→  -20
5 1

TR Pσ θ=  

12 Benthos source to dissolved 
phosphorus 2(b) 2P P→  -20

2
TR dσ θ=  

13 Deoxygenating of BOD 2(g) 2O L CO H O+ → +  -20
1

TR K Lθ=  
14 BOD settling (b)L L→  -20

3
TR K Lθ=  

15 Re-aeration (g)O O→  ( )-20 *
2

TR K O Oθ= −  

16 Sediment oxygen demand (b)O O→  -20
4

TR K dθ=  
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The aforementioned 16 reactions are characterized by seven reaction stoichiometries (Table 5.2-5) 
and a total of 36 reaction parameters (Table 5.2-6). 
 

Table  5.2-5   QUAL2E Example Reaction Coefficients 
 

Variable Description Value Unit 
α0 Ratio of chlorophyll-a to algae biomass 55 μg-Chla / mg-A 
α1 Fraction of algae mass that is nitrogen 0.08 mg-N / mg-A 
α2 Fraction of algae mass that is phosphorus 0.015 mg-P / mg-A 
α3 O2 production per unit of algae growth 1.6 mg-O / mg-A 
α4 O2 uptake per unit of algae respired 1.95 mg-O / mg-A 
α5 O2 uptake per unit of NH3 oxidation 3.5 mg-O / mg-N 
α6 O2 uptake per unit of NO2 oxidation 1.0 mg-O / mg-N 

 
 

Table  5.2-6   QUAL2E Example Reaction Rate Parameters 
 

Variable Description Value Unit 
Μ Algae growth rate μmax(FL) (FN) (FP) day-1 

μmax Maximum algae growth rate 2.0 day-1 

FL Algae growth limitation factor for light min{(1/λd)ln[(KL+I)/ 
( KL+Ie- λd)],1} - 

λ Light extinction coefficient 2.0 ft-1 

d Depth of flow Variable ft 
KL Half saturation light intensity 5 Btu/ft2-hr 
I Surface light intensity 5 Btu/ft2-hr 
FN Algae growth limitation factor for N (N1+N3)/ (N1+N3+KN) - 
KN Half saturation constant for N 0.155 mg-N/L 
FP Algae growth limitation factor for P P2/(P2+KP) - 
KP Half saturation constant for P 0.0255 mg-P/L 
θμ Temperature correction for algae growth 1.047 - 
F Fraction of algae N taken from ammonia PNN1/[PNN1+ (1-PN)N3] - 
PN Preference factor for ammonia nitrogen 0.5 - 
ρ Algae respiration rate 0.275 day-1 

θρ 
Temperature correction for algae 
respiration 1.047 - 

σ1 Algae settling rate 3.25 ft/day 
θσ1 Temperature correction for algae settling 1.024 - 
β3 Rate constant for organic N decay 0.21 day-1 

θβ3 Temperature correction for organic N decay 1.047 - 
σ4 Organic N settling rate 0.0505 day-1 

θσ4 
Temperature correction for organic N 
settling 1.024 - 

β1 Rate constant for ammonia oxidation 0.55 day-1 

CORDO Nitrification rate correction factor 1-e-KNITRF*O - 
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θβ1 
Temperature correction for ammonia 
oxidation 1.083 - 

KNITRF First order nitrification inhibition 
coefficient 0.65 L/mg 

σ3 Benthic source rate for ammonia  0 mg-N/ft2/day 
θσ3 Temperature correction for ammonia source 1.074 - 
β2 Rate constant for nitrite oxidation 1.10 day-1 

θβ2 Temperature correction for nitrite oxidation 1.047 - 
β4 Rate constant for organic P decay 0.355 day-1 

θβ4 Temperature correction for organic P decay 1.047 - 
σ5 Organic P settling rate 0.0505 day-1 

θσ5 
Temperature correction for organic P 
settling 1.024 - 

σ2 Benthic source rate for dissolved P 0 mg-P/ft2/day 

θσ2 
Temperature correction for dissolved P 
source 1.074 - 

K1 BOD deoxygenating rate constant 1.71  day-1 

θK1 Temperature correction for BOD decay 1.047 - 
K3 BOD settling rate constant 0 day-1 
θK3 Temperature correction for BOD settling 1.024 - 
K2 Re-aeration rate constant Min(5.026u0.969d-1.6732.31,10) day-1 
U Flow velocity Variable ft/day 

O* Equilibrium oxygen concentration  
5 7 2

k k
10 3 11 4

k k

139.3441 1.575701 10 T 6.642308 10 T
1.2438 10 T 8.621949 10 Te
− + × − ×
+ × − ×  mg/l 

Tk Temperature T+273.15 °K=°C+273.15 
θK2 Temperature correction for re-aeration 1.024 - 
K4 Benthic oxygen uptake 0 mg-O/ft2/day 
θK4 Temperature correction for SOD uptake 1.060 - 

 
 
An incomplete decomposition of the QUAL2E reaction network would result a total of 19 reaction-
extent equations.   Because reaction rates of all 16 reactions are function of only the first nine 
constituents (O, L, Chla, N4, N1, N2, N3, P1, and P2), the governing equations for these nine 
constituents are decoupled from those for the other 10 constituents (O(b), L(b), Chla(b), N4(b), N(1b), 
P(1b), P(2b), CO2, H2O, and O2(g)).  These equations are listed in Table 5.2-7.  It is noted that because 
there is no fast reaction involved in the reaction network of QUAL2E, the incompletely decomposed 
equations of new paradigm are reduced to the generally used primitive reaction-based working 
equations.   
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Table  5.2-7   New Paradigm Working Equations for QUAL2E 

 
No. Species Notation Working Equations  
1 Dissolved Oxygen O [ ] 3 1 4 3 5 7 6 9 13 15 16d O dt α R α R α R α R R R R= − − − − + −  

2 Biochemical oxygen 
demand L [ ] 13 14d L dt R R= − −  

3 Chlorophyll a Chla [ ] o 1 o 3 4d Chla dt α R α R R= − −  

4 Organic nitrogen N4 [ ]4 1 3 5 6d N dt α R R R= − −  

5 Ammonia nitrogen N1 [ ]1 1 1 2 5 7 8d N dt α R R R R R= − + + − +  

6 Nitrite nitrogen N2 [ ]2 7 9d N dt R R= −  

7 Nitrate nitrogen N3 [ ]3 2 9d N dt R R= − +  

8 Organic phosphorus P1 [ ]1 2 3 10 11d P dt α R R R= − −  

9 Dissolved phosphorous P2 [ ]2 2 1 10 12d P dt α R R R= − + +  
 
 
As shown in Figure 5.2-5, the domain of interest is a shallow water body discretized with 462 
elements and 275 nodes.  Region A, B, and C are illustrated for simulation results discussion.  The 
flow is allowed to reverse direction every 12 hours (T = 12 hours).  The flow pattern was simulated 
with a flow-reversal boundary condition implemented on the open boundary side and with the rest of 
the boundary treated as closed.  It was also assumed subject to 10 point sources each with an 
injection rate of 1 m3/s.  As shown in Figure 5.2-6, water depth varies from 0.7 m to 10.3 m during 
one flow-reversal cycle.  The calculated flow velocity ranges from 0.02 m/s to 1.6 m/s at various 
times during one flow-reversal cycle (Fig. 5.2-7). 
 
To focus on transport, we assume that the temperature is 15 oC throughout the simulation region. 
Variable boundary conditions are applied to the open boundary sides.  Initial and variable boundary 
incoming concentrations of the 9 simulated constituents are listed in Table 5.2-8. The dispersion 
coefficient is 5.2 m2/s.  Each point source injected the biochemical oxygen demand L at a rate of 
20.0 g/m2/s.  A 30-day simulation is performed with a fixed time step size of 10 minutes.  
 
Figure 5.2-8 plots the concentration contours of L and Chla at different simulation time.  It is seen 
that at the point sources, the concentration of L increases due to injection, and at the open boundary, 
the concentration of L decreases due to the low incoming concentration.  According to the reaction 
network of QUAL2E, the source of Chla is algae growth, and the sink of Chla includes algae 
respiration and settling.  The Chla concentration decrease shown in Figure 5.2-8 indicates that the 
source is less than the sink.  Because the settling rate of algae increases when water depth decreases, 
settling rate in region A is greater than in region C and settling rate in region C is greater than in 
region B.  Therefore, we observe less Chla concentration in region A than in region C and less Chla 
concentration in region C than in region B.  As the simulation time increases, when only small 
amount of Chla is left, the concentration distribution is mainly affected by advective-dispersive 
transport rather than reactions. 
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Fig.  5.2-5.   Simulation Domain Descretization for Example 5.2.2 
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Fig.  5.2-6.   Water Depth (m) at Various Times for Example 5.2.2:  
0 T (upper left), 0.25T (upper right), 0.5T (lower left), and 1.0T (lower right) 
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Fig.  5.2-7.   Flow Velocity (m/s) at Various Times for Example 5.2.2:  
0 h (upper left), 3 h (upper right), 6 h (lower left), and 12 h (lower right) 

 
 

Table  5.2-8   Initial and Boundary Concentration in Example 5.2.2 
 

No. Species Notatio Initial Boundary ρi 
1 Dissolved oxygen O 5 mg-O2 /kg 0.5 mg-O2 /L ρw = 1 kg/L
2 Biochemical oxygen L 0.8 mg-O2 /kg 0.08 mg-O2 /L ρw = 1 kg/L
3 Algae as chlorophyll a Chla 20.0 μg- 2.0 μg-Chla/L ρw = 1 kg/L
4 Organic nitrogen as N N4 2.0 mg-N /kg 0.2 mg-N /L ρw = 1 kg/L
5 Ammonia as N N1 1.0 mg-N /kg 0.1 mg-N /L ρw = 1 kg/L
6 Nitrite as N N2 0.1 mg-N /kg 0.01 mg-N /L ρw = 1 kg/L
7 Nitrate as N N3 1.0 mg-N /kg 0.1 mg-N /L ρw = 1 kg/L
8 Organic phosphorus as P P1 0.5 mg-P /kg 0.05 mg-P /L ρw = 1 kg/L
9 Dissolved phosphorus as P P2 0.1 mg-P /kg 0.01 mg-P /L ρw = 1 kg/L
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Fig.  5.2-8.   Concentration Contours at 1hour (left) and 720 h (right) in Example 5.2.2:  
Upper: L (mg-O2/L); Lower: Chla (μg-Chla/L) 

 
 
Animations showing the spatial-temporal distribution of BOD (File Name: QUAL2E BOD.avi) and 
Chla (File Name: QUAL2E Algae.avi), respectively, are attached in Appendix A.   Readers can 
visualize these moves by clicking the file contained in the attached CD. 
 
 
5.2.3 Overland Transport with Eutrophication in WASP5 
 
WASP5, the Water quality Analysis Simulation Program (Ambrose et al., 1993), is a three-
dimensional conventional water quality analysis simulation program.  It is a group of mechanistic 
models capable of simulating water transport and fate and transport of water quality constituents and 
toxic organics for aquatic systems.  Various components of WASP5 have been used to study a 
variety of lake, reservoir, and estuarine issues including ecological characterization, the effects of 
anthropogenic activities, and the impact of mitigation measures (Bierman and James, 1995; Lung 
and Larson, 1995; Tufford and McKellar, 1999; Carroll et al., 2004; and Zheng et al., 2004).  
EUTRO5 is a general operational WASP5 model used to simulate nutrient enrichment, 
eutrophication, and dissolved oxygen in the aquatic environment.  Sixteen working equations were 
used in EUTRO5 to simulate 16 state variables (NH3, NH3(b), NO3, NO3(b), OPO4, OPO4(b), PHYT, 
PHYT(b), CH2Ot, CH2Ot(b), O2, O2(b), ONt, ONt(b), OPt, and OPt(b)) related to eutrophication kinetics 
(Zhang, 2005).  
 
The eutrophication model of WASH5 was recast in terms of a network of 38 reactions involving 27 
reaction constituents (NH3, NH3(b), NO3, NO3(b), OPO4, OPO4(b), PHYT, PHYT(b), CH2O, CH2Op, 
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CH2O(b), CH2Op(b), O2, O2(b), ON, ONp, ON(b), ONp(b), OP, OPp, OP(b), OPp(b), CO2, H2O, H+, N2, 
and O2(g)).  Details of these reactions can be found elsewhere (Zhang, 2005).  These 38 reactions 
address sediment-biogeochemical interactions and four interacting biogeochemical processes: 
phytoplankton growth kinetics, nitrogen cycles, phosphorus cycle, and carbon cycles (Zhang, 2005). 
  They are characterized by three reaction stoichiometries and a total of 66 reaction parameters 
(Zhang, 2005). 
 
The simulation domain, descretization, flow field and temperature distribution are same as example 
5.2.2.   Variable boundary conditions are applied to the open boundary sides.  Initial concentrations 
of the 22 simulated species and variable boundary incoming concentrations of mobile species are 
listed in Table 5.2-9.  It is noted that only 22 species out of 27 species are simulated because the 
governing equations for CO2, H2O, H+, N2, and O2(g) are decoupled from those for the other 22 
species.  The decoupling of two sets of state variable is due to the formulation of rate equations that 
depend on only 22 species.  
 

Table  5.2-9   Species Initial and Boundary Concentration in Example 5.2.3 
 

No. Species Notation Initial Boundary ρi 

1 NH3 C1 1 mg N/kg 0.1 mg N/L ρw 
2 NO3 C3 1 mg N/kg 0.1 mg N/L ρw 
3 OPO4 C5 0.1 mg P/kg 0.01 mg P/L ρw 
4 PHYT C7 2 mg C/kg 0.2 mg C/L ρw 
5 CH2O C9 10 mg O2/kg 1.0 mg O2/L ρw 
6 O2 C13 2 mg O2/kg 0.2 mg O2/L ρw 
7 ON C15 2 mg N/kg 0.2 mg N/L ρw 
8 OP C19 0.35 mg P/kg 0.035 mg P/L ρw 
9 CH2O(p) C10 0.2 mg O2/mg 1.0 mg O2/L SS 
10 ON(p) C16 0.0 mg N/mg 0 mg N/L SS 
11 OP(p) C20 0.003 mg P/mg 0.015 mg P/L SS 
12 NH3(b) C2 1 mg N/kg - hbρwbθb/
13 NO3(b) C4 1 mg N/kg - hbρwbθb/
14 OPO4(b) C6 0.1 mg P/kg - hbρwbθb/
15 PHYT(b) C8 2 mg C/kg - hbρwbθb/
16 CH2O(b) C11 10 mg O2/kg - hbρwbθb/
17 O2(b) C14 2 mg O2/kg - hbρwbθb/
18 ON(b) C17 2 mg N/kg - hbρwbθb/
19 OP(b) C21 0.35 mg P/kg - hbρwbθb/
20 CH2O(bp) C12 0.002 mg O2/mg - BS/h 
21 ON(bp) C18 0.0 mg N/mg - BS/h 
22 OP(bp) C22 0.00003 mg P/mg - BS/h 

 
 
The dispersion coefficient was 5.2 m2/s.  Each point source injected NO3 at a rate of 10.0 g/m2/s.  A 
30-day (60T) simulation is performed with a fixed time step size of 10 minutes.  A relative error of 
10-4 is used to determine the convergence for iterations involved in the computation. 
 
Figure 5.2-9 plots the concentration contours of NO3 and PHYT at different simulation time.  It is 
seen that at the point sources, the concentration of NO3 increases due to the injection, and at the 
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open boundary, the concentration of NO3 decreases due to the low incoming concentration.  
According to the reaction network of WASP5, PHYT growth consumes NO3.  Due to the light 
effect, the depth averaged growth rate of PHYT increases when water depth decreases.  Thus, NO3 
consumed in region A is greater than in region C and NO3 consumed in region C is greater than in 
region B. Therefore, we observe less NO3 concentration in region A than in region C and less NO3 
concentration in region C than in region B.  
 
According to the reaction network, the source of PHYT is its growth, and the sink of PHYT includes 
its death and settling.  The PHYT concentration decrease shown in Figure 5.2-8 indicates that the 
source is less than the sink.  Comparing the concentration distributions of PHYT (Figure 5.2-9) and 
Chla (Figure 5.2-8), we can see that relative decreasing rate of Chla (compared to the concentration) 
is greater than that of PHYT.  This indicates that the rate of (algae respiration + settling – growth) in 
the QUAL2E example is greater than the rate of (PHYT death + settling – growth) in this example. 
The rate difference is due to the different rate formulation and parameterization of the two models. 

 
NO3 : 3600.0

0.16

0.27

0.38

0.49

0.60

0.71

0.82

0.93

  

NO3 : 2592000.0

0.16

0.31

0.45

0.60

0.74

0.89

1.03

1.18

 
 

PHYT : 3600.0

0.34

0.48

0.62

0.76

0.90

1.04

1.18

1.32

1.46

1.60

  

PHYT : 2592000.0

0.16

0.25

0.35

0.45

0.55

0.64

0.74

0.84

0.94

1.03

 
Fig.  5.2-9.   Concentration Contours at 1hour (left) and 60T (right) in Example 5.2.3  

Upper: NO3 (mg-N/L); Lower: PHYT (mg-C/L) 
 
 
Animations showing the spatial-temporal distribution of nitrate (File Name: WASP5 Nitrogen.avi) 
and phytoplankton (File Name: WASP5 PHYT.avi), respectively, are attached in Appendix A.   
Readers can visualize these moves by clicking the file contained in the attached CD. 
 



 5-40

 
5.2.4 Overland Transport with Eutrophication in CE-QUAL-ICM 
 
The CE-QUAL-ICM (Cerco and Cole, 1995) water quality model was developed as one component 
of a model package employed to study eutrophication processes in Chesapeake Bay (Cerco and 
Cole, 1993; and Cerco and Cole, 2000).  Eutrophication processes modeled with the CE-QUAL-ICM 
were also used to study phosphorus dynamics for the St. Johns River (Cerco and Cole, 2004).   
Fourty one working equations were used in CE-QUAL-ICM to simulate 41 state variables (Bc, Bd, 
Bg, DOC, LPOC, RPOC, NH4, NO3, DON, LPON, RPON, PO4t, DOP, LPOP, RPOP, COD, DO, SU, 
SA, TAM, POC(1b), POC(2b), POC(3b), NH4(1b), NH4(2b), NO3(1b), NO3(2b), PON(1b), PON(2b), PON(3b), 
PO4(1b), PO4(2b), POP(1b), POP(2b), POP(3b), COD(1b), COD(2b), SU(1b), SU(2b), SA(1b), and SA(2b)) related 
to eutrophication kinetics (Zhang, 2005). 
 

The CE-QUAL-ICM eutrophication model was recast in terms of a network of 90 reactions 
involving 66 reaction constituents (Bc, Bd, Bg, DOC, LPOC, RPOC, NH4, NO3, DON, LPON, 
RPON, PO4d, PO4p, DOP, LPOP, RPOP, COD, DO, SU, SAd, SAp, TAMd, TAMp, POC(1b), 
POC(2b), POC(3b), NH4(1b), NH4(2b), NO3(1b), NO3(2b), PON(1b), PON(2b), PON(3b), PO4d(1b), PO4p(1b), 
PO4d(2b), PO4p(2b), POP(1b), POP(2b), POP(3b), COD(1b), COD(2b), SU(1b), SU(2b), SAd(1b), SAp(1b), 
SAd(2b), SAp(2b), CO2, H2O, N2, O2(g), Bc(b), Bd(b), Bg(b), TAMp(b), BPOC, BNH4, BNO3, BPON, 
BPO4, BPOP, BCOD, BSU, BSA, and BTAM).  Eighty seven of the 90 reactions were considered 
slow/kinetic reactions and the other seven were fast/equilibrium reactions.  Details of these reactions 
can be found elsewhere (Zhang, 2005).  These 90 reactions address sediment-biogeochemical 
interactions and 6 interacting biogeochemical processes: plant and bacterial growth kinetics, 
nitrogen cycles, phosphorus cycle, carbon cycles, silica cycles, and metal cycles (Zhang, 2005).   
They are characterized by 45 reaction stoichiometries and a total of 86 reaction parameters (Zhang, 
2005). 
 
The simulation domain, descretization, flow field and temperature distribution are same as example 
5.2.2.   Variable boundary conditions are applied to the open boundary sides.  Initial concentrations 
of the 48 simulated species and variable boundary incoming concentrations of mobile species are 
listed in Table 5.2-10.  It is noted that only 48 species out of 66 species are simulated because the 
governing equations for CO2, H2O, N2, O2(g), Bc(b), Bd(b), Bg(b), TAMp(b), BPOC, BNH4, BNO3, 
BPON, BPO4, BPOP, BCOD, BSU, BSA, and BTAM are decoupled from those for the other 48 
species.  The decoupling of two sets of state variable is due to the formulation of rate equations that 
depend on only 48 species.  
 
The dispersion coefficient was 5.2 m2/s.  Each point source injected PO4d with a rate of 5.0 g/m2/s.   
A 2.5-day (5T) simulation is performed with a fixed time step size of 10 minutes.  A relative error of 
10-4 is used to determine the convergence for iterations involved in the computation. 
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Table  5.2-10   Species Initial and Boundary Concentration in Example 5.2.4 

 

No. Species Notati Initial Boundary ρi
1 Cyan bacteria Bc 0.1 mg-C/kg 0.01 mg-C/m3 ρw
2 Diatoms Bd 1.0 mg-C/kg 0.1 mg-C/m3 ρw
3 Green algae Bg 2.0 mg-C/kg 0.2 mg-C/m3 ρw
4 Dissolved organic carbon DOC 5.0 mg-C/kg 0.5 mg-C/m3 ρw
5 Dissolved organic phosphorus DOP 0.5 mg-P/kg 0.05 mg-P/m3 ρw
6 Dissolved phosphate PO4d 0.05 mg-P/kg 0.005 mg- ρw
7 Dissolved organic nitrogen DON 2.0 mg-N/kg 0.2 mg-N/m3 ρw
8 Ammonium NH4 1.0 mg-N/kg 0.1 mg-N/m3 ρw
9 Nitrate NO3 1.0 mg-N/kg 0.1 mg-N/m3 ρw
10 Dissolved available silica SAd 1.0 mg-Si/kg 0.1 mg-Si/m3 ρw
11 Chemical oxygen demand COD 2.0 mg-O2/kg 0.2 mg-O2/m3 ρw
12 Dissolved oxygen DO 8.0 mg-O2/kg 0.8 mg-O2/m3 ρw
13 Dissolved active metal TAMd 0.000005 mol 0.0000005 SS
14 Labile particulate organic carbon LPOC 0.02 mg-C/mg 0.1 mg-C/m3 SS
15 Refractory particulate organic RPOC 0.02 mg-C/mg 0.1 mg-C/m3 SS
16 Labile particulate organic LPOP 0.004 mg-P/mg 0.02 mg-P/m3 SS
17 Refractory particulate organic RPOP 0.004 mg-P/mg 0.02 mg-P/m3 SS
18 Particulate phosphate PO4p 0.00006 mg- 0.0003 mg- SS
19 Labile particulate organic nitrogen LPON 0.0002 mg- 0.001 mg- SS
20 Refractory particulate organic RPON 0.0002 mg- 0.001 mg- SS
21 Particulate available silica SAp 0.0012 mg- 0.006 mg- SS
22 Particulate biogenic silica SU 0.0002 mg-Si/mg 0.01 mg-Si/m3 SS
23 Particulate active metal TAMp 0.0002 mol /mg 0.001 mol /m3 SS
24 Benthic dissolved phosphate PO4d(1 0.9 mg-P/kg - hbρwbθb/h
25 Benthic dissolved phosphate PO4d(2 1.8 mg-P/kg - hbρwbθb/h
26 Benthic ammonium layer 1 NH4(1b) 1.0 mg-N/kg - hbρwbθb/h
27 Benthic ammonium layer 2 NH4(2b) 2.0 mg-N/kg - hbρwbθb/h
28 Benthic nitrate layer 1 NO3(1b) 1.0 mg-N/kg - hbρwbθb/h
29 Benthic nitrate layer 2 NO3(2b) 2.0 mg-N/kg - hbρwbθb/h
30 Benthic dissolved available silica SAd(1b) 0.6 mg-Si/kg - hbρwbθb/h
31 Benthic dissolved available silica SAd(2b) 1.2 mg-Si/kg - hbρwbθb/h
32 Benthic chemical oxygen demand COD(1 2.0 mg-O2/kg - hbρwbθb/h
33 Benthic chemical oxygen demand COD(2 4.0 mg-O2/kg - hbρwbθb/h
34 Benthic particulate organic carbon POC(1b 0.0195 mg-C/mg - BS/h
35 Benthic particulate organic carbon POC(2b 0.0075 mg-C/mg - BS/h
36 Benthic particulate organic carbon POC(3b 0.003 mg-C/mg - BS/h
37 Benthic particulate organic POP(1b 0.0039 mg-P/mg - BS/h
38 Benthic particulate organic POP(2b 0.0015 mg-P/mg - BS/h
39 Benthic particulate organic POP(3b 0.0006 mg-P/mg - BS/h
40 Benthic particulate phosphate layer PO4p(1 0.0000099 mg- - BS/h
41 Benthic particulate phosphate layer PO4p(2 0.0000198 mg- - BS/h
42 Benthic particulate organic nitrogen PON(1b 0.000195 mg-N/mg - BS/h
43 Benthic particulate organic nitrogen PON(2b 0.000084 mg-N/mg - BS/h
44 Benthic particulate organic nitrogen PON(3b 0.000021 mg-N/mg - BS/h
45 Benthic particulate available silica SAp(1b) 0.0000066 mg- - BS/h
46 Benthic particulate available silica SAp(2b) 0.0000132 mg- - BS/h
47 Benthic particulate biogenic silica SU(1b) 0.003 mg-Si/mg - BS/h
48 Benthic particulate biogenic silica SU(2b) 0.006 mg-Si/mg - BS/h
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Figure 5.2-10 plots the concentration contours of PO4d at different simulation time.  It is seen that at 
the point sources, concentration of PO4d increases due to the injection, and at the open boundary, 
concentration of PO4d decreases due to the low incoming concentration.  
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Fig.  5.2-10.   Concentration of PO4d (mg-P/L) in Example 5.2.4  

Left: 20 minutes; Right: 5T 
 
 
Figure 5.2-11 plots the concentration contours of Bc, Bd, and Bg.  According to the reaction network 
of CE-QUAL-ICM, the source of Bc, Bd, and Bg is the growth, and the sink of Bc, Bd, and Bg 
includes basal metabolism, predating, and settling.  The concentration decrease of Bc, Bd, and Bg 
shown in the Figure 5.2-11 indicates that the source is less than the sink.  Among these three groups 
of algae, Bd has special need of silica to form cell walls. The similar concentration distribution of 
Bc, Bd, and Bg indicates that under the condition set for this example, there is enough silica, which 
does not limit the growth of Bd. 
 
Comparing the concentration distributions of Bc (bacteria), Bd (diatom), and Bg (green alage) 
(Figure 5.2-11), PHYT (Figure 5.2-9) and Chla (Figure 5.2-8), we can see that relative decreasing 
rate of Chla is greater than Bc, Bd, Bg, and PHYT.  This indicates that the rate of (algae respiration 
+ settling – growth) in the QUAL2E example is greater than the rate of (PHYT death + settling – 
growth) in the WASP5 example and the rate of (Bc, Bd, and Bg basal metabolism + predating + 
settling – growth) in this example.  The rate difference is due to the different rate formulation and 
parameterization of the models.  For example, in QUAL2E, there is only transfer of chemicals from 
water column to bed.  However, WASP5 and CE-QUAL-ICM include both column and benthic 
interactions.  Thus, the algae settling speed in QUAL2E example is greater than the PHYT settling 
speed in WASP5 example and the Bc, Bd, and Bg settling speeds in CE-QUAL-ICM example. 
 
Animations showing the spatial-temporal distribution of dissolved phosphorus (File Name: CE-
QUAL-ICM PO4d.avi), bacteria (File Name: CE-QUAL-ICM Bc Bacteria.avi), diatom (File Name: 
CE-QUAL-ICM Bd diatom.avi), and green alage (File Name: CE-QUAL-ICM Bg Green algae.avi), 
respectively, are attached in Appendix A.   Readers can visualize these moves by clicking the file 
contained in the attached CD. 
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Fig.  5.2-11.   Concentration of Algae (mg-C/L) at 1 hour (Left) and 5T (Right)  

in Example 5.2.4:  Upper: Bc; Middle: Bd; Lower: Bg 
 
 
5.2.5 Discussions on Diagonalization Approaches to Water Quality Modeling 
 
To demonstrate flexibility of the general paradigm to model water quality, the eutrophication 
kinetics in three widely used models, QUAL2E, WASP5, and CE-QUAL-ICM, were recast in the 
mode of reaction networks and employed as examples.  Table 5.2-11 lists the comparison of the 
three models via a reaction point of view.  
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Table  5.2-11   Comparison of QUAL2E, WASP5, and CE-QUAL-ICM 

Model QUAL2E WASP5 CE-QUAL-ICM  
Number and 
types of 
reactions 

16 kinetic reactions 
and 0 equilibrium 
reactions: 
Algal kinetics: 4  
Dissolved Oxygen 
Balance: 4  
Nitrogen Cycle: 5  
Phosphorus Cycle: 3 

32 kinetic reactions 
and 6 equilibrium 
reactions: 
Phytoplankton Kinetics: 
11 
Dissolved Oxygen 
Balance: 9 
Nitrogen Cycle: 11  
Phosphorus Cycle: 7 

83 kinetic reactions and 7 
equilibrium reactions: 
Plant and bacterial Kinetics: 14 
Dissolved Oxygen Balance: 16  
Nitrogen Cycle: 20 
Phosphorus Cycle: 21 
Silica Cycle: 16  
Metal Cycle: 3 

No. of 
reactive water 
quality related 
to 
eutrophicatio
n kinetics in 
the report  

9 
O, L, Chla, N4, N1, N2, 
N3, P1, and P2. 

16 
NH3, NH3(b), NO3, 
NO3(b), OPO4, OPO4(b), 
PHYT, PHYT(b), 
CH2Ot, CH2Ot(b), O2, 
O2(b), ONt, ONt(b), OPt, 
and OPt(b). 

41 
Bc, Bd, Bg, DOC, LPOC, RPOC, 
NH4, NO3, DON, LPON, RPON, 
PO4t, DOP, LPOP, RPOP, COD, 
DO, SU, SA, TAM, POC(1b), 
POC(2b), POC(3b), NH4(1b), NH4(2b), 
NO3(1b), NO3(2b), PON(1b), PON(2b), 
PON(3b), PO4(1b), PO4(2b), POP(1b), 
POP(2b), POP(3b), COD(1b), COD(2b). 
SU(1b), SU(2b), SA(1b), and SA(2b) 

No. of water 
quality from 
the reaction 
point of view 

19 (first 9 modeled) 
O, L, Chla, N4, N1, N2, 
N3, P1, P2, O(b), L(b), 
Chla(b), N4(b), N(1b), P(1b), 
P(2b), CO2, H2O, and 
O2(g) 

27 (first 22 modeled) 
NH3, NH3(b), NO3, 
NO3(b), OPO4, OPO4(b), 
PHYT, PHYT(b), CH2O, 
CH2Op, CH2O(b), 
CH2Op(b), O2, O2(b), ON, 
ONp, ON(b), ONp(b), 
OP, OPp, OP(b), OPp(b), 
CO2, H2O, H+, N2, and 
O2(g). 

66 (first 48 modeled) 
Bc, Bd, Bg, DOC, LPOC, RPOC, 
NH4, NO3, DON, LPON, RPON, 
PO4d, PO4p, DOP, LPOP, RPOP, 
COD, DO, SU, SAd, SAp, TAMd, 
TAMp, POC(1b), POC(2b), POC(3b), 
NH4(1b), NH4(2b), NO3(1b), NO3(2b), 
PON(1b), PON(2b), PON(3b), PO4d(1b), 
PO4p(1b), PO4d(2b), PO4p(2b), POP(1b), 
POP(2b), POP(3b), COD(1b), COD(2b), 
SU(1b), SU(2b), SAd(1b), SAp(1b), 
SAd(2b), SAp(2b), CO2, H2O, N2, 
O2(g), Bc(b), Bd(b), Bg(b), TAMp(b), 
BPOC, BNH4, BNO3, BPON, 
BPO4, BPOP, BCOD, BSU, BSA, 
and BTAM 

No. Reaction 
Parameters 

36 66 86 

 
 
In the context of reaction network, there are 16, 38, and 90 biogeochemical reactions included in 
QUAL2E, WASP5, and CE-QUAL-ICM, respectively. All three models include the major 
interactions of the nutrient cycles; algae kinetics modified by temperature, light, and nutrient 
limitation; and dissolved oxygen balance under the effect of benthic oxygen demand, carbonaceous 
oxygen uptake, and atmospheric aeration. Therefore, under the similar conditions set for three 
eutrophication examples, we obtained similar algae concentration distributions in Figures 5.2-8, 5.2-
9, and 5.2-11, for QUAL2E, WASP5, and CE-QUAL-ICM, respectively. 
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In QUAL2E, sediment-biogeochemical interactions are not considered.  However, WASP5 and CE-
QUAL-ICM include both column and benthic interactions.  In QUAL2E, there is transfer of 
chemicals from water column to bed, but no chemicals transferred from benthic bed to column.  In 
WASP5 and CE-QUAL-ICM, dissolved fractions are subject to diffusion, particulate fractions can 
settle and re-suspend, and inorganic nutrients can also enter into column water by benthic release. 
 
In QUAL2E and WASP5 model, nutrient cycles include nitrogen cycles and phosphorus cycles.  In 
addition to these two nutrient cycles, CE-QUAL-ICM also includes silica cycle and metal cycle. 
Consideration of silica cycle makes it possible to include kinetics of diatoms, which are 
distinguished by their requirement of silica as a nutrient.  In QUAL2E and WASP5, all algae or 
phytoplankton are simulated as one group.  However, in CE-QUAL-ICM, algae are grouped in to 
three classes: cyan bacteria, diatoms, and greens.  Therefore, concentration distributions of three 
algae groups rather than one are plotted in Figure 5.2-11 for CE-QUAL-ICM.      
 
In the original reports, there are 9, 16, and 41 water quality state-variables related to eutrophication 
kinetics simulated in QUAL2E, WASP5, and CE-QUAL-ICM, respectively.  In the context of 
reaction network, there are 19, 27, and 66 constituents involved in QUAL2E, WASP5, and CE-
QUAL-ICM, respectively.  In the case of QUAL2E, all 16 rate equations depend only on the first 
nine constituents; thus, the other 10 constituents can be decoupled from the first 9 in any simulation. 
 Had evidence indicated that the rate formulation of the 16 kinetic reactions also depended on the 
other 10 constituents in a system, all 19 constituents would have been modeled simultaneously.  
Therefore, when QUAL2E is applied to any system, the first order of business is to check if the rate 
formulation for the 16 kinetic reactions is valid.  If it is, then one can consider other issues involved 
in applying the model to the system.  If any of the 16 rate equations is invalid, then one should not 
apply the model to the system. 
 
In the case of WASP5, rates of the 32 kinetic reactions were assumed not affected by the last 5 
constituents.  Thus, these 5 constituents can be decoupled from the other 22.  Therefore, one only 
needs to simulate 22 constituents simultaneously from the reaction point of view.  The question is 
then why WASP5 only considered 16 water quality state-variables.  Examination of 6 fast 
equilibrium reactions would reveal that the adsorption reactions of aqueous CH2O, CH2O(b), ON, 
ON(b), OP, and OP(b) onto sediments were formulated with a simple partition.  Furthermore, rate 
equations are only functions of the aqueous fractions of CH2Ot (=CH2O + CH2Op), CH2Ot(b) 
(=CH2O(b) + CH2Op(b)), ONt (=ON + ONp), ONt(b)(= ON(b) + ONp(b)), OPt (=OP + OPp), and 
OPt(b(=OP(b) + OPp(b)); not functions of 12 individual species in the parentheses.  Thus, if we 
eliminate these 12 species using the 6 partition equations and 6 equations defining the total, the 
reaction-based approach would yield 16 identical equations as those in the WASP5 report.  In our 
reaction-based approach, we prefer to model all 22 species.  This allows us, if necessary, the 
flexibility of more mechanistically modeling the sorption reactions and formulating the rate 
equations as functions of all individual species.  Similarly, for CE-QUAL-ICM, we prefer to model 
48 species out of the total 66 species, rather than 41 constituents.  This reaction-based approach 
alleviates the need of modeling 7 sorption reactions with a simple partition.  In the decomposition of 
reaction-matrix, the elimination of 7 fast equilibrium reactions is performed automatically rather 
then manually.  Ideally, one should model all of the 66 species if any of the reaction rates is affected 
by the other 18 species.  
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No attempts were made to compare the simulation results with field measurements because this is 
not the main objective of this report.  It is almost certain that the simulations presented above will 
not match with field measurements using all reaction parameters reported in QUAL2E, WASP5, or 
CE-QUAL-ICM.  The important question then is what we should do to calibrate the model.  There 
may be three ways out.  Take QUAL2E as an example.  First we can abuse the model by optimizing 
all 36 rate parameters characterizing 16 reaction rate equations with the best optimization technique 
disregarding the physics involved in the system.  Second we can justify the model by fine-tuning 
some of the 36 rate parameters or better reformatting some of the rate equations based on our 
understanding of the system.  Third, we can wise the model by researching if there are new 
mechanisms that are operating in the system under investigation but not included in QUAL2E.  In 
order not to abuse the model, a general paradigm is developed that has the design capability to 
include any number of reactions involving any number of species and that provides a protocol for 
formulating the rates of reactions and discovering the assumptions and limitations of the model 
employed. 
 
The reaction network for QUAL2E system includes 16 kinetic reactions involving 19 species. 
Substitution of this reaction network into Equation (2.6.30) results in 19 ordinary differential 
equations for 19 species in a well-mixed system.  Because the rates of all 16 reactions depend on 
only the first 9 species, equations governing the last 10 species are decoupled from the equations 
governing the first 9 species. Thus, only the first 9 species were considered in QUAL2E. The 
exclusion of the last 10 species has an important implication when QUAL2E is applied to a new 
system other than the one QUAL2E was developed for.  
 
In a “true” reaction-based approach, governing equations for all species involved in the reaction 
network must be considered.  The diagonalization of the reaction matrix for all 19 species would 
result in a set of 15 kinetic-variable equations [Equations (1) through (9) and (14) through (19) in 
Table 5.2-12] and 4 component equations [Equations (10) through (13) in Table 5.2-12]. 
 
If we substitute Equations (14) through (19) into Equations (1) through (9) in Table 5.2-12, the 
resulting first 9 equations are then decoupled from the last 10 equations. Once the resulting 9 
equations are solved for C1 through C9, Equations (14) through (19) are used to calculated the 
dynamics of Chla(b), N4(b), P2(b), L(b), O2(g), and O(b), and Equations (10) through (13) can be used to 
calculate the amount of H2O, CO2, N1(b), and P1(b) that must be supplied to maintain the conservation 
principle for water, carbon dioxide, benthic organic nitrogen, and benthic organic phosphorus.  In a 
large water body, the amount of water needed to maintain its conservation due to biogeochemical 
processes can be met without much problem.  The nagging question is what would be the source of 
CO2, N1(b), and P1(b) to maintain their conservation with respective to reactions.  For any system, if 
this nagging question cannot be answered, then the partial pressure of CO2 and the concentrations of 
 N1(b) and P1(b) would probably be important factors in controlling reaction rates and inducing 
additional biogeochemical processes.  Under such circumstances, one probably has to revisit the rate 
equations and to conduct research to uncover additional reaction networks for the system under 
investigations. 
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Table  5.2-12  Governing Equations for the Reaction-based Diagonalization Approach 

Decomposition Equations No.
( )1 3 ( ) 9 2( ) 3 100.00027 0.015b bdE dt d C Chla C P dt R R⎡ ⎤= + + + = − +⎣ ⎦

 (1)

2 9 2( ) 1 100.015bdE dt d C P dt R R⎡ ⎤= + = − +⎣ ⎦  (2)
( ) ( ) ( )3 1 2 2( ) ( ) ( ) 3 ( ) 6 7 9 2( ) 2 100.21 0.0078 0.77 5.1 5.1g b b b bdE dt d C C O O L C Chla C C C P dt R R⎡ ⎤= − − + + − + + − − + + = +⎣ ⎦

 (3)
( ) ( ) ( )4 3 ( ) 4 4( ) 9 2( ) 5 100.00032 0.22 1.2 0.22 1.2b b bdE dt d C Chla C N C P dt R R⎡ ⎤= + + + + + = − +⎣ ⎦

 (4)
( ) ( ) ( )5 1 2 2( ) ( ) ( ) 3 ( ) 6 9 2( ) 7 100.22 0.0078 0.23 5.1 5.11g b b b bdE dt d C C O O L C Chla C C P dt R R⎡ ⎤= − − + + − + + + + + = +⎣ ⎦

 (5)
( ) ( ) ( )6 1 2 2( ) ( ) 3 ( ) 6 9 2( ) 9 100.0094 0.00033 0.033 0.22 0.043 0.22g b b bdE dt d C C O O C Chla C C P dt R R⎡ ⎤= − + + − + + − + = − −⎣ ⎦ (6)

( )7 3 ( ) 4 5 6 7 4( ) 80.0015 b bdE dt d C Chla C C C C N dt R⎡ ⎤= + + + + + + =⎣ ⎦
 (7)

( )8 3 ( ) 8 9 2( ) 110.00027 b bdE dt d C Chla C C P dt R⎡ ⎤= + + + + = −⎣ ⎦
 (8)

( )9 2 ( ) 13bdE dt d C L dt R= + = −  (9)
( )1 2 ( ) 2 0bdT dt d C L H O dt= + + =  (10)
( )2 2 ( ) 2 0bdT dt d C L CO dt= + + =  (11)

( )3 3 ( ) 4 5 6 7 1( ) 4( )0.0015 0b b bdT dt d C Chla C C C C N N dt⎡ ⎤= + + + + + + + =⎣ ⎦
 (12)

( )4 3 ( ) 8 9 1( ) 2( )0.00027 0b b bdT dt d C Chla C C P P dt⎡ ⎤= + + + + + =⎣ ⎦
 (13)

10 ( ) 4bdE dt dChla dt R= =  (14)
11 4( ) 6bdE dt dN dt R= =  (15)
12 2( ) 12bdE dt dP dt R= = −  (16)
13 ( ) 14bdE dt dL dt R= =  (17)
14 2( ) 15gdE dt dO dt R= = −  (18)
15 ( ) 16bdE dt dO dt R= =  (19)

C1 = O, C2 = L, C3 = Chla, C4 = N4, C5 = N1, C6 = N2, C7 = N3, C8 = P1, and C9 = P2 
 
The use of diagonalization approaches allows one to formulate some rate equations one by one.  For 
example, the reaction rate R8 can be calculated by plotting the concentration of E7 versus time in 
which E7 is the linear combination of C3, C4, C5, C6, C7, Chla(b) and P2(b) [see Equation (7) in Table 
5.2-12].  Similarly, reaction rates R11, R13, R4, R6, R12, R14, R15, and R16 can be calculated from the 
dynamics of E8 through E15, respectively [see Equations (8), (9) and (14) through (19) in Table 5.2-
12].  Because linearly dependent reactions are present in the system, one cannot formulate all rate 
equations independently.  To do so, one has to design an experimental system such that only linearly 
independent reactions are present to individually and mechanistically formulate rate equations. 
 

5.3 Three-Dimensional Examples 
 
Three examples are employed in this section.  The first two examples involving simulations of 
uranium transport in soil columns are presented to evaluate the ability of the model to simulate 
reactive transport with reaction networks involving both kinetically and equilibrium-controlled 
reactions. The third example is a hypothetical three-dimensional problem and is presented to 
demonstrate the model application to a field-scale problem involving reactive transport with a 
complex reaction network. 
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5.3.1 Packed Column Breakthrough Curve Simulation for Uranium (VI) Sorption 
 
A glass column of approximately one cm in diameter by 3 cm long was filled with 2.483 g crushed 
and sieved (< 2 mm) soil material with a porosity of 0.66.  The soil contained 1.9 percent Fe oxides 
on a mass basis.  A solution with 10 µM U(VI) and 50 mM NaNO3 was injected at a specific 
discharge of 1.235 cm/h until breakthrough was observed.  The inlet solution was switched to a 
U(VI) free solution after 614.7 PV (Pace et al., 2005). 
 
In the simulation, the column is discretized with 20 nodes and 4 equal size elements (0.886 cm × 
0.886 cm × 0.779 cm each) (Fig. 5.3-1).  Other parameters for the experiments are summarized in 
Figure 5.3-1.  The simulation was performed for a total duration of 2,500 hours with a constant time-
step size of 0.25 hour. 
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Packed Column Parameters

Total volume: 2.45 cm3

Cross section area: 0.785 cm2

Total length: 3.12 cm
Pore volume (PV): 1.62 cm3

Porosity: 0.66 cm3/cm3

Mass of solids: 2.48 g
Bulk Density: 1.02 g/cm3

Flow rate: 0.97 cm3/hour
Darcy velocity: 1.24 cm/hour
Pulse duration: 615 PV
Total duration: 1493 PV
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Fig.  5.3-1.   Simulation Domain and Descretization for Example 5.3.1  

Note: the column parameters are from Pace et al. (2005) 
 

 
The reaction network utilized in the model is described in Table 5.3-1 (Lindsay, 1979, Brooks, 2001, 
Waite et al., 1994, and Langmuir, 1997), which utilizes 46 species and 39 equilibrium reactions. 
Because the activity of H2O is assumed to be 1.0, it is decoupled from the system; hence only 45 
chemical species are considered.  The system involves 6 kinetic-variable transport equations (Table 
5.3-2) and 39 equilibrium reaction mass action equations or user specified nonlinear algebraic 
equations (Table 5.3-3) set up through decomposition for 45 species. 
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Among the kinetic-variables, the fifth involves no mobile species and is not solved in the advection-
dispersion transport step.  Therefore, instead of solving 27 advection-dispersion transport equations 
for mobile species in a primitive approach, we only solve 5 advection-dispersion transport equations 
for kinetic-variables.  Furthermore, one of the kinetic variables, E6, involves only mobile species, 
which makes its transport equation linear allowing its solution to be solved outside the nonlinear 
iteration loop between transport and reactions when the fully-implicit scheme is used to deal with 
reactive chemistry.  Since all reactions are equilibrium reactions, kinetic-variables are equivalent to 
components. 
 
The experimental data and simulation results are shown in Figure 5.3-1.  The simulation results 
closely follow the data, reflecting retardation due to reactions on both the leading and tailing 
portions of the breakthrough curve.  The results provide validation of the reaction network employed 
to simulate uranium (VI) transport and the numerical implementation. 
 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0 200 400 600 800 1000 1200 1400

Pore Volumn

C
/C

o

Data

Simulation

 
Fig.  5.3-2.   U(VI) Breakthrough Curve for the Packed Column  

Note: the experiment data are from Pace et al. (2005) 
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Table  5.3-1   Chemical Reactions Considered in Example 5.3.1 

Reactions and Parameters No. 
7.2logK    O3HFe3HFe(OH) 2

3
3 =+=+ ++ (1) 

-5.2logK    HOHUOOHUO 22
2

2 =+=+ +++ (2) 
-10.3logK    H2(OH)UOOH2UO 2(aq)22

2
2 =+=+ ++ (3) 

-19.2logK    H3(OH)UOOH3UO 322
2

2 =+=+ +−+ (4) 
-33.0logK    H4(OH)UOOH4UO 2

422
2

2 =+=+ +−+ (5) 
-2.7logK    HOH)UO(OH2UO 3

222
2

2 =+=+ +++ (6) 
-5.62logK   H2(OH))UO(OH22UO 2

2222
2

2 =+=+ +++ (7) 
-11.9logK   H4(OH))UO(OH43UO 2

4322
2

2 =+=+ +++ (8) 
-15.5logK    H5(OH))UO(OH53UO 5322

2
2 =+=+ +++ (9) 

-31.0logK    H7(OH))UO(OH73UO 7322
2

2 =+=+ +−+ (10) 
9.68logK    COUOCOUO 3(aq)2

2
3

2
2 ==+ −+ (11) 

16.94logK    )(COUO2COUO -2
232

2
3

2
2 ==+ −+ (12) 

21.6logK    )(COUO3COUO -4
332

2
3

2
2 ==+ −+ (13) 

54.0logK    )(CO)(UO6CO3UO -6
6332

2
3

2
2 ==+ −+ (14) 

-19.01logK    H5(OH)CO)UO(COOH42UO 33222(g)2
2

2 =+=++ +−+ (15) 
51.6logK   OHFeCO HOHFe 2ss ==>++> ++ (16) 

-9.13logK    COHOFeOHFe -
ss =++=>> + (17) 

-2.57logK   2H)UOOFe(UO(OH)Fe 22s
2

22s =+>=+> ++ (18) 
.286-logK   2H)UOOFe(UO(OH)Fe 22w

2
22w =+>=+> ++ (19) 

2.90logK    OHHCOFeCOHOHFe 23s32s =+=>+> (20) 
-5.09logK   COHOHCOFeCOHOHFe 2

-
3s32s =+++=>+> + (21) 

0.13logK   CO24HCO)UOOFe(COHUO(OH)Fe -2
322s32

2
22s −=++>=++> ++ (22) 

10.17logK   CO24HCO)UOOFe(COHUO(OH)Fe -2
322w32

2
22w −=++>=++> ++ (23) 

2.19logK    OHFeHFeOH 2
32 =+=+ +++ (24) 

67.5logK    OH2FeH2Fe(OH) 2
3

2 =+=+ +++ (25) 
56.12logK    OH3FeH3Fe(OH) 2

30
3 =+=+ ++ (26) 

6.21logK    OH4FeH4Fe(OH) 2
3

4 =+=+ ++− (27) 
-1.47logK    COHCOOH 0

322(g)2 ==+  (28) 
-6.35logK    HCOHCOH -

3
0

32 =+= +  (29) 
-10.33logK    COHHCO -2

3
-

3 =+= +  (30) 
51.6logK   OHFeCO HOHFe 2ww ==>++> ++ (31) 

-9.13logK    CO HOFeOHFe -
ww =++=>> + (32) 

2.90logK    OHHCOFeCOHOHFe 23w32w =+=>+> (33) 
-5.09logK   COHOHCOFeCOHOHFe 2

-
3w32w =+++=>+> + (34) 

- - 2-3 s s 3 s 2 2s 2 s s 3 s 2 2 3

- - 2-
3 s 2 s s 3 s 3 s 2 2 s 2 2 3

s Fe(OH) Fe OH Fe CO H ( Fe O )UOFe OH Fe O Fe CO ( Fe O )UO CO

0 Fe(OH) 0 [ Fe OH Fe O Fe CO H Fe CO ( Fe O )UO ( Fe O )UO CO ]
Fe OH, 0.0018C C C C C C 2(C C )+

+

> > >> > > >

⋅ = ⋅ > + > + > + > + > + > +

> = + + + + + +
 (35) 

- - 2-3 w w 3 w 2 2w 2 w w 3 w 2 2 3

- - 2-
3 w 2 w w 3 w 3 w 2 2 w 2 2 3

w Fe(OH) Fe OH Fe CO H ( Fe O )UOFe OH Fe O Fe CO ( Fe O )UO CO

0 Fe(OH) 0 [ Fe OH Fe O Fe CO H Fe CO ( Fe O )UO ( Fe O )UO CO ]
Fe OH, 0.8732C C C C C C 2(C C )+

+

> > >> > > >

⋅ = ⋅ > + > + > + > + > + > +
> = + + + + + + (36) 

2ss (OH)FeOHFe2ss 2CC   (OH)FeOHFe0 ==>>⋅ (37) 
2ww (OH)FeOHFe2ww 2CC  (OH)Fe OHFe0 =>=>⋅ (38) 

.3000-logK   NOUO NOUO 323
2

2 ==+ +−+ (39) 
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Table  5.3-2  Kinetic-variable Transport Equations Solved in Example 5.3.1 

Kinetic-Variable Transport Equations No.
m1

1
(θE ) L(E ) 0

t
∂

+ =
∂

    
2 2 3

3 3 2 2 2(aq) 2 3 2 4 2 2

2 2 2
1 w 2 2 2 2 3 4 2 3 5 2 3 7 2 3(aq)

2 3 6
2 3 2 2 3 3 2 3 3 6

H HCO 2CO UO OH 2UO (OH) 3UO (OH) 4UO (OH) (UO ) OH

E ρ 2(UO ) (OH) 4(UO ) (OH) 5(UO ) (OH) 7(UO ) (OH) 2UO CO FeOH

4UO (CO ) 6UO (CO ) 12(UO ) (CO ) 5(UO

+ − − + − − +

+ + + − +

− − −

− − − − − − −

= − − − − − −

− − − − 0
2 2 3 3 2 3

2
s 2 s s 2 2 w 2 2 s 2 2 3

w 3 S 2
w 2 2 3 s 3 4 w 2 w w 3

) CO (OH) 2Fe(OH) 3Fe(OH)

Fe OH Fe O 2( Fe O )UO 2( Fe O )UO 4( Fe O )UO CO
    3ρ Fe(OH) ρ

4( Fe O )UO CO Fe O 4Fe(OH) Fe OH Fe O Fe CO

− +

+ − −

− − − + − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦
⎡ ⎤> − > − > − > − >

− + ⎢ ⎥
− > − > − + > − > − >⎢ ⎥⎣ ⎦

  

2 2 3
3 3 2 2 2(aq) 2 3 2 4 2 2

m 2 2 2
1 w 2 2 2 2 3 4 2 3 5 2 3 7 2 3(aq)

2 3 6
2 3 2 2 3 3 2 3 3 6

H HCO 2CO UO OH 2UO (OH) 3UO (OH) 4UO (OH) (UO ) OH

E ρ 2(UO ) (OH) 4(UO ) (OH) 5(UO ) (OH) 7(UO ) (OH) 2UO CO FeOH

4UO (CO ) 6UO (CO ) 12(UO ) (CO ) 5(U

+ − − + − − +

+ + + − +

− − −

− − − − − − −

= − − − − − −

− − − − 0
2 2 3 3 2 3O ) CO (OH) 2Fe(OH) 3Fe(OH)− +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 

(1) 

m2
2

(θE ) L(E ) 0
t

∂
+ =

∂
    3 2 0

2 w 2 3 4 P 3E ρ Fe FeOH Fe(OH) Fe(OH) Fe(OH) ρ Fe(OH)+ + + −⎡ ⎤= + + + + +⎣ ⎦
m 3 2 0

2 w 2 3 4E ρ Fe FeOH Fe(OH) Fe(OH) Fe(OH)+ + + −⎡ ⎤= + + + +⎣ ⎦  
(2) 

m3
3

(θE ) L(E ) 0
t

∂
+ =

∂
    

2 2 3
2 2 2 2(aq) 2 3 2 4 2 2

2 2
3 w 2 2 2 2 3 4 2 3 5 2 3 7

2 3 6
2 3(aq) 2 3 2 2 3 3 2 3 3 6 2 2 3 3

UO UO OH UO (OH) UO (OH) UO (OH) 2(UO ) OH

E ρ 2(UO ) (OH) 3(UO ) (OH) 3(UO ) (OH) 3(UO ) (OH)

UO CO UO (CO ) UO (CO ) 3(UO ) (CO ) 2(UO ) CO (OH)

+ + − − +

+ + + −

− − − −

⎡ ⎤+ + + + +
⎢ ⎥

= + + + +⎢ ⎥
⎢ ⎥+ + + + +⎢⎣ ⎦

2 2
S s 2 2 w 2 2 s 2 2 3 w 2 2 3    ρ ( Fe O )UO ( Fe O )UO ( Fe O )UO CO ( Fe O )UO CO− −

⎥

⎡ ⎤+ > + > + > + >⎣ ⎦

    

2 2 3
2 2 2 2(aq) 2 3 2 4 2 2

m 2 2
3 w 2 2 2 2 3 4 2 3 5 2 3 7

2 3 6
2 3(aq) 2 3 2 2 3 3 2 3 3 6 2 2 3 3

UO UO OH UO (OH) UO (OH) UO (OH) 2(UO ) OH

E ρ 2(UO ) (OH) 3(UO ) (OH) 3(UO ) (OH) 3(UO ) (OH)

UO CO UO (CO ) UO (CO ) 3(UO ) (CO ) 2(UO ) CO (OH)

+ + − − +

+ + + −

− − − −

⎡ ⎤+ + + + +
⎢ ⎥

= + + + +⎢ ⎥
⎢+ + + + +⎢⎣ ⎦

⎥
⎥

 

(3) 

m4
4

(θE ) L(E ) 0
t

∂
+ =

∂
    

2 2
2(g) 2 3 3 3 2 3(aq) 2 3 2m

4 w 3 6
2 3 3 2 3 3 6 2 2 3 3

CO H CO HCO CO UO CO 2UO (CO )
E ρ

3UO (CO ) 6(UO ) (CO ) (UO ) CO (OH)

− − −

− − −

⎡ ⎤+ + + + +
= ⎢ ⎥

+ + +⎢ ⎥⎣ ⎦
2 2

2(g) 2 3 3 3 s 3 s 2 2 3

2 3 2
4 w 2 3(aq) 2 3 2 2 3 3 S w 2 2 3 s 3

6
w 3 w 32 3 3 6 2 2 3 3

CO H CO HCO CO Fe CO H ( Fe O )UO CO

E ρ UO CO 2UO (CO ) 3UO (CO ) ρ ( Fe O )UO CO Fe CO

Fe CO H Fe CO6(UO ) (CO ) (UO ) CO (OH)

− − −

− − − −

−− −

⎡ ⎤+ + + + ⎡ ⎤> + >
⎢ ⎥ ⎢ ⎥

= + + + + > + >⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ > + >+ +⎢ ⎥ ⎣ ⎦⎣ ⎦

 
(4) 

m5
5

(θE ) L(E ) 0
t

∂
+ =

∂
    

2
s 2 s s 2 2 3 s 3

5 S 2
w 2 2 3 w 2 w w 3

Fe OH Fe O 2( Fe O )UO CO Fe O CO
E ρ

2( Fe O )UO CO Fe OH Fe O Fe CO

+ − − −

− + − −

⎡ ⎤> − > − > − > +
= ⎢ ⎥

− > + > − > − >⎢ ⎥⎣ ⎦
    m

5E 0= (5) 

m6
6

(θE ) L(E ) 0
t

∂
+ =

∂
    m

6 6 w 3 2 3E E ρ (NO UO NO )− += = +  (6) 

Note: as defined in Eq. (2.5.7.4), ρs = ρbSA/θ. 
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Table  5.3-3   Equilibrium Reaction Algebraic Equations Solved in Example 5.3.1 

Equilibrium Reaction Algebraic Equations No. Equilibrium Reaction Algebraic Equations No. 
3 s s 2

- -s 3s s 3

2-s 2 2 s 2 2 3

Fe(OH) Fe OH Fe OH

Fe CO HFe O Fe CO

( Fe O )UO ( Fe O )UO CO

0.0018C C C

                      C C C

                      2C 2C

+> >

>> >

> >

= +

+ + +

+ +

 
(1) 

3 w w 2

- -w 3w w 3

2-w 2 2 w 2 2 3

Fe(OH) Fe OH Fe OH

Fe CO HFe O Fe CO

( Fe O )UO ( Fe O )UO CO

0.8732C C C

                      C C C

                      2C 2C

+> >

>> >

> >

= +

+ + +

+ +

 
(2) 

2s 2 2 32
2-

s 2 2 3

13.0
Fe (OH) H COUO

4 2( Fe O )UO CO
COH

10 C C C
C

C C
+

+

−
>

>
=  (3) 

2w 2 2 32
2-

w 2 2 3

17.10
Fe (OH) H COUO

4 2( Fe O )UO CO
COH

10 C C C
C

C C
+

+

−
>

>
=  (4) 

2 2
2 2 2 2

-5.62 2 2
(UO ) (OH) UO H

C 10 C C+ + +=  (5) 2 2
2 3 4 2

-11.9 3 4
(UO ) (OH) UO H

C 10 C C+ + +=  (6) 
2

2 3 5 2

-15.5 3 5
(UO ) (OH) UO H

C 10 C C+ + +=  (7) 2
2 3 7 2

-31.0 3 7
(UO ) (OH) UO H

C 10 C C− + +=  (8) 
22 3(aq) 2 32

-7
UO CO H COUO H

C 10 C C C+ +=  (9) 2- 2 2 32 3 2 2

-16.42 2 4
H COUO (CO ) UO H

C 10 C C C+ +=  (10)
4- 2 2 32 3 3 2

-28.44 3 6
H COUO (CO ) UO H

C 10 C C C+ +=  (11) - ss

-9.13
Fe OH COFe O H

C 10 C C C+>>
=  (12)

2
s 2 2 s 2 2

-2.57 2
( Fe O )UO Fe (OH) UO H

C 10 C C C+ +> >=  (13) 2
w 2 2 w 2 2

-6.28 2
( Fe O )UO Fe (OH) UO H

C 10 C C C+ +> >=  (14)
- s 2 3s 3

-5.09
Fe OH H CO COFe CO H

C 10 C C C C+>>
=  (15) 2 2 32 2 3 3 2

17.54 2 5
H CO(UO ) CO (OH) UO H

C 10 C C C− + +
−=  (16)

6- 2 2 32 3 3 6 2

-46.08 3 6 12
H CO(UO ) (CO ) UO H

C 10 C C C+ +=  (17) ( )- ww

9.13
Fe OH COFe O H

C 10 C C C+
−

>>
=  (18)

( )- w 2 3w 3

-5.09
Fe OH H CO COFe CO H

C 10 C C C C+>>
=  (19) s s 2Fe OH Fe (OH)C 2C=  (20)

33

2.7 3
Fe(OH) Fe H

C 10 C C+ +
−=  (21) w w 2Fe OH Fe (OH)C 2C=  (22)

2
2 2

-5.2
UO OH UO H

C 10 C C+ + +=  (23) 22 2(aq) 2

-10.3 2
UO (OH) UO H

C 10 C C+ +=  (24)
2

2 3 2

-19.2 3
UO (OH) UO H

C 10 C C− + +=  (25) 2 2
2 4 2

-33.0 4
UO (OH) UO H

C 10 C C− + +=  (26)
3 2

2 2 2

-2.7 2
(UO ) OH UO H

C 10 C C+ + +=  (27) 2- 2 33

-16.68 2
H COCO H

C 10 C C +=  (28)

ss 2

6.51
Fe OH COFe OH H

C 10 C C C+ +>>
=  (29) 02(g) 2 3

1.47
CO H CO

C 10 C=  (30)

s 3 s 2 3

2.90
Fe CO H Fe OH H COC 10 C C> >=  (31) 2 3

2.19
FeOH Fe H

C 10 C C+ + +
−=  (32)

3
2

5.67 2
Fe(OH) Fe H

C 10 C C+ + +
−=  (33) 0 3

3

12.56 3
Fe(OH) Fe H

C 10 C C+ +
−=  (34)

- 0
3 2 3

-6.35
HCO H CO H

C 10 C C +=  (35) 3
4

21.6 4
Fe(OH) Fe H

C 10 C C− + +
−=  (36)

ww 2

6.51
Fe OH COFe OH H

C 10 C C C+ +>>
=  (37) w 3 w 2 3

2.90
Fe CO H Fe OH H COC 10 C C> >=  (38)

2
3 2 3 2

0.3
NO UO NO UO

C 10 C C− + +=  (39)   
 
 
5.3.2 Undisturbed Column Breakthrough Curve Simulation for Uranium (VI) Sorption 
 
This problem involves similar geochemistry to that of the packed column, but involves an 
undisturbed soil core.  A miscible displacement experiment was conducted at pH 4 under 
atmospheric CO2(g). The core was 15.2 cm in length and 6.19 cm in diameter and was water-
saturated from the bottom at 0.1 ml/h to ensure the removal of trapped air.  A non-pulsing medical 
pump was used to deliver a flush solution to the bottom of the column.  Approximately 10 L of 50 
mM CaCl2 was used to flush the core.  Upon completion of the flush, the influent solution consisted 
of 50 mg/L U(VI) in 50 mM CaCl2 was pumped through the column at a flow rate of 7 ml/h.  The 
residence time of U(VI) in the column was 26.5 h.  The pH of the carrier solution was adjusted to 4 
with HCl.  Uranium (VI) analysis was conducted using an Inductively Coupled Plasma Mass 
Spectrometer (ICPMS) (Brooks et al, 2005). 
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The column was numerically discretized with a simulation grid of 20 nodes and 4 equal sized 
elements (5.49 cm × 5.49 cm × 3.8 cm each) (Fig. 5.3-3).  The experiment duration was 2,448 hours, 
which was simulated with a constant time-step size of 12 hours.  Simulations were initially 
performed assuming the same equilibrium reactions as in Example 5.3.1.  The equilibrium sorption 
simulation results (upper part of Figure 5.3-4) did not accurately predict U(VI) transport through the 
undisturbed column, indicating that some of the sorption sites may be kinetically hindered resulting 
in less sorption.  Reactions 18 and 19 (Table 5.3-1) are considered to be the most kinetically limiting 
reactions.  Therefore, a second simulation was performed with these two reactions as rate-limited. 
  

20

16

12

8

4

17

13

9

5

1

19

15

11

7

3

x
y

z

Undisturbed Column Parameters

Total volume: 458 cm3

Cross section area: 30.1 cm2

Total length: 15.2 cm
Pore volume (PV): 183 cm3

Porosity: 0.4 cm3/cm3

Mass of solids: 728 g
Bulk Density: 1.59 g/cm3

Flow rate: 7 cm3/hour
Darcy velocity: 0.232 cm/hour
Pulse duration: 46.8 PV
Total duration: 93.6 PV

5.49 cm
5.49 cm

3.
8 

cm
3.

8 
cm

15
.2

18

14

10

6

2

 
Fig.  5.3-3.   Simulation Domain and Descretization for Example 5.3.2 
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Fig.  5.3-4.  U(VI) Breakthrough Curve for the Undisturbed Column  

Note: the experiment data are from Brooks et al. (2005) 
 
For the kinetic simulation, we have 46 species, 37 equilibrium reactions and 2 kinetic reactions.  As 
in the previous example, H2O activity is assumed constant and hence eliminated from the simulation 
leaving 8 kinetic-variable transport equations (Table 5.3-4) and 37 equilibrium reaction nonlinear 
algebraic equations (Table 5.3-5) obtained through decomposition. 
 
Among the 8 kinetic-variables, the fifth and the last two involve only immobile species, so that no 
advection-dispersion equations are needed to solve for them.  Therefore, instead of solving 27 
mobile species advection-dispersion transport equations, we only need to solve 5 kinetic-variable 
advection-dispersion transport equations, and the reaction terms related to these kinetic-variables are 
all simplified.  Compared to the previous example, two additional kinetic-variables result from the 
two linearly independent kinetic reactions.  As with the previous example, E6 can be solved outside 
the nonlinear iteration loop between hydrologic transport and reactive chemistry when the fully-
implicit scheme is used. 
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Table  5.3-4   Kinetic-variable Transport Equations Solved in Example 5.3.2 

Kinetic-Variable Transport Equations No.
m1

1
(θE ) L(E ) 0

t
∂

+ =
∂

    

2 2 3
3 3 2 2 2(aq) 2 3 2 4 2 2

2 2 2
1 w 2 2 2 2 3 4 2 3 5 2 3 7 2 3(aq)

2 3 6
2 3 2 2 3 3 2 3 3 6

H HCO 2CO UO OH 2UO (OH) 3UO (OH) 4UO (OH) (UO ) OH

E ρ 2(UO ) (OH) 4(UO ) (OH) 5(UO ) (OH) 7(UO ) (OH) 2UO CO FeOH

4UO (CO ) 6UO (CO ) 12(UO ) (CO ) 5(UO

+ − − + − − +

+ + + − +

− − −

− − − − − − −

= − − − − − −

− − − − 0
2 2 3 3 2 3

2
s 2 s s 2 2 w 2 2 s 2 2 3

w 3 S 2
w 2 2 3 s 3 4 w 2 w w 3

) CO (OH) 2Fe(OH) 3Fe(OH)

Fe OH Fe O 2( Fe O )UO 2( Fe O )UO 4( Fe O )UO CO
    3ρ Fe(OH) ρ

4( Fe O )UO CO Fe O 4Fe(OH) Fe OH Fe O Fe CO

− +

+ − −

− − − + − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦
⎡ ⎤> − > − > − > − >

− + ⎢ ⎥
− > − > − + > − > − >⎢ ⎥⎣ ⎦

   

2 2 3
3 3 2 2 2(aq) 2 3 2 4 2 2

m 2 2 2
1 w 2 2 2 2 3 4 2 3 5 2 3 7 2 3(aq)

2 3 6
2 3 2 2 3 3 2 3 3 6

H HCO 2CO UO OH 2UO (OH) 3UO (OH) 4UO (OH) (UO ) OH

E ρ 2(UO ) (OH) 4(UO ) (OH) 5(UO ) (OH) 7(UO ) (OH) 2UO CO FeOH

4UO (CO ) 6UO (CO ) 12(UO ) (CO ) 5(U

+ − − + − − +

+ + + − +

− − −

− − − − − − −

= − − − − − −

− − − − 0
2 2 3 3 2 3O ) CO (OH) 2Fe(OH) 3Fe(OH)− +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 

(1) 

m2
2

(θE ) L(E ) 0
t

∂
+ =

∂
    3 2 0

2 w 2 3 4 P 3E ρ Fe FeOH Fe(OH) Fe(OH) Fe(OH) ρ Fe(OH)+ + + −⎡ ⎤= + + + + +⎣ ⎦
m 3 2 0

2 w 2 3 4E ρ Fe FeOH Fe(OH) Fe(OH) Fe(OH)+ + + −⎡ ⎤= + + + +⎣ ⎦  
(2) 

m3
3

(θE ) L(E ) 0
t

∂
+ =

∂
    

2 2 3
2 2 2 2(aq) 2 3 2 4 2 2

2 2
3 w 2 2 2 2 3 4 2 3 5 2 3 7

2 3 6
2 3(aq) 2 3 2 2 3 3 2 3 3 6 2 2 3 3

UO UO OH UO (OH) UO (OH) UO (OH) 2(UO ) OH

E ρ 2(UO ) (OH) 3(UO ) (OH) 3(UO ) (OH) 3(UO ) (OH)

UO CO UO (CO ) UO (CO ) 3(UO ) (CO ) 2(UO ) CO (OH)

+ + − − +

+ + + −

− − − −

⎡ ⎤+ + + + +
⎢ ⎥

= + + + +⎢ ⎥
⎢ ⎥+ + + + +⎢⎣ ⎦

2 2
S s 2 2 w 2 2 s 2 2 3 w 2 2 3    ρ ( Fe O )UO ( Fe O )UO ( Fe O )UO CO ( Fe O )UO CO− −

⎥

⎡ ⎤+ > + > + > + >⎣ ⎦

    

2 2 3
2 2 2 2(aq) 2 3 2 4 2 2

m 2 2
3 w 2 2 2 2 3 4 2 3 5 2 3 7

2 3 6
2 3(aq) 2 3 2 2 3 3 2 3 3 6 2 2 3 3

UO UO OH UO (OH) UO (OH) UO (OH) 2(UO ) OH

E ρ 2(UO ) (OH) 3(UO ) (OH) 3(UO ) (OH) 3(UO ) (OH)

UO CO UO (CO ) UO (CO ) 3(UO ) (CO ) 2(UO ) CO (OH)

+ + − − +

+ + + −

− − − −

⎡ ⎤+ + + + +
⎢ ⎥

= + + + +⎢ ⎥
⎢+ + + + +⎢⎣ ⎦

⎥
⎥

 

(3) 

m4
4

(θE ) L(E ) 0
t

∂
+ =

∂
    

2 2
2(g) 2 3 3 3 2 3(aq) 2 3 2m

4 w 3 6
2 3 3 2 3 3 6 2 2 3 3

CO H CO HCO CO UO CO 2UO (CO )
E ρ

3UO (CO ) 6(UO ) (CO ) (UO ) CO (OH)

− − −

− − −

⎡ ⎤+ + + + +
= ⎢ ⎥

+ + +⎢ ⎥⎣ ⎦
2 2

2(g) 2 3 3 3 s 3 s 2 2 3

2 3 2
4 w 2 3(aq) 2 3 2 2 3 3 S w 2 2 3 s 3

6
w 3 w 32 3 3 6 2 2 3 3

CO H CO HCO CO Fe CO H ( Fe O )UO CO

E ρ UO CO 2UO (CO ) 3UO (CO ) ρ ( Fe O )UO CO Fe CO

Fe CO H Fe CO6(UO ) (CO ) (UO ) CO (OH)

− − −

− − − −

−− −

⎡ ⎤+ + + + ⎡ ⎤> + >
⎢ ⎥ ⎢ ⎥

= + + + + > + >⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ > + >+ +⎢ ⎥ ⎣ ⎦⎣ ⎦

 
(4) 

m5
5

(θE ) L(E ) 0
t

∂
+ =

∂
    

2
s 2 s s 2 2 3 s 3

5 S 2
w 2 2 3 w 2 w w 3

Fe OH Fe O 2( Fe O )UO CO Fe O CO
E ρ

2( Fe O )UO CO Fe OH Fe O Fe CO

+ − − −

− + − −

⎡ ⎤> − > − > − > +
= ⎢ ⎥

− > + > − > − >⎢ ⎥⎣ ⎦
    m

5E 0= (5) 

m6
6

(θE ) L(E ) 0
t

∂
+ =

∂
    m

6 6 w 3 2 3E E ρ (NO UO NO )− += = +  (6) 

m7
7 18

(θE ) L(E ) R
t

∂
+ =

∂
    

7 S S 2 2E ρ ( Fe O )UO= >     m
7E 0=  (7) 

m8
8 19

(θE ) L(E ) R
t

∂
+ =

∂
    

8 S w 2 2E ρ ( Fe O )UO= >     m
8E 0=  (8) 

Note: as defined in equation (5.4), ρs = ρbSA/θ. 
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Table  5.3-5  Equilibrium Reaction Algebraic Equations Solved in Example 5.3.2 

Equilibrium Reaction Algebraic Equations No. Equilibrium Reaction Algebraic Equations No. 
3 s s 2

- -s 3s s 3

2-s 2 2 s 2 2 3

Fe(OH) Fe OH Fe OH

Fe CO HFe O Fe CO

( Fe O )UO ( Fe O )UO CO

0.0018C C C

                      C C C

                      2C 2C

+> >

>> >

> >

= +

+ + +

+ +

 
(1) 

3 w w 2

- -w 3w w 3

2-w 2 2 w 2 2 3

Fe(OH) Fe OH Fe OH

Fe CO HFe O Fe CO

( Fe O )UO ( Fe O )UO CO

0.8732C C C

                      C C C

                      2C 2C

+> >

>> >

> >

= +

+ + +

+ +

 
(2) 

2s 2 2 32
2-

s 2 2 3

13.0
Fe (OH) H COUO

4 2( Fe O )UO CO
COH

10 C C C
C

C C
+

+

−
>

>
=  (3) 

2w 2 2 32
2-

w 2 2 3

17.10
Fe (OH) H COUO

4 2( Fe O )UO CO
COH

10 C C C
C

C C
+

+

−
>

>
=  (4) 

2 2
2 2 2 2

-5.62 2 2
(UO ) (OH) UO H

C 10 C C+ + +=  (5) 2 2
2 3 4 2

-11.9 3 4
(UO ) (OH) UO H

C 10 C C+ + +=  (6) 
2

2 3 5 2

-15.5 3 5
(UO ) (OH) UO H

C 10 C C+ + +=  (7) 2
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Forward and backward kinetic rate coefficients for U(VI) sorption reactions 18 and 19 of the 
reaction network (Table 5.1) were fitted to the U(VI) breakthrough curve data using a nonlinear 
parameter estimation procedure yielding  
 

2
s 2 2 s 2 2 f bFe (OH) UO ( Fe O )UO 2H     logK 3.04,  logK 10.1+ +> + = > + = = −  (5.1.9) 

 
2

w 2 2 w 2 2 f bFe (OH) UO ( Fe O )UO 2H     logK 0.494,  logK 4.5+ +> + = > + = − =  (5.1.10)
 
Simulations of U(VI) transport using kinetic parameters (lower part of Figure 5.3-4) yielded good 
agreement with the measured results indicating that U(VI) transport may be kinetically controlled in 
naturally heterogeneous media. 
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5.3.3 Three-dimensional Reactive Uranium Transport Simulation 
 
This example was undertaken to assess the model capability to handle complex geochemistry within 
a three-dimensional subsurface domain. A 600 m long, 400 m wide, and 200 m deep region is 
considered (Figure 5.3-5) and discretized with uniform hexahedral elements with size of 60 m × 50 
m × 40 m.  A steady state flow field was simulated with the subsurface flow module. 
 

X
Y

Z

600m

400m

200m

50m
60m

40m

Downstream

Upstream

 
Fig.  5.3-5.   Simulation Domain and Descretization for Example 5.3.3 

 
For flow simulations, Dirichlet boundary conditions were applied to the upstream boundary (x = 0 
m) with total head of 190 m and to the downstream boundary (x = 600 m) with total head of 180 m. 
Variable boundary conditions were applied to the top boundary (z = 200 m) with flux of 0.0015 m/d. 
We assumed a constant effective porosity of 0.3 and saturated hydraulic conductivity of Kxx = Kyy = 
1.0 and Kzz = 0.1 m/d.  The following two equations were employed to describe the unsaturated 
hydraulic properties. 
 

( ) ( )2θ 0.1 0.3 0.1 1 4h= + − +  (5.1.11)
 

( ) ( )2Kr 0.1 0.3 0.1 1 4h 0.3⎡ ⎤= + − +⎣ ⎦  (5.1.12)
 

where θ is the moisture content and Kr is the relative conductivity.  The calculated moisture content 
is between 0.1 and 0.3 and Darcy velocity is between 0.0014 and 0.021 m/day. 
 
In addition to the chemical species and reactions considered in Example 5.3.2, one more dissolved 
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species A is assumed to undergo a hypothetic kinetic reduction/oxidation reaction 
 

2
2 f bUO A    logK 10.0,  logK 5.0+ = = − = −  (5.1.13)

 
 

Initial aqueous and adsorbed concentrations are assumed to be zero.  The initial concentration of 
Fe(OH)3 is assumed to be 0.0523 mol/L and the pH is 4.6 throughout the region.  The boundary 
conditions for the transient simulation are: no flux at the bottom (z = 0 m), the front (y = 0 m) and 
the back (y = 400 m) boundaries; flow-out variable boundary condition for the downstream 
boundary (x = 600 m); flow-in variable boundary condition for the top (z = 200 m) and the upstream 
boundary (x = 0 m) with zero concentration for each mobile species except at the two shaded 
boundary faces shown in Figure 5.3-5, where the inflow contains UO2

2+ of 1.15×10-5 mol/L, NO3
- of 

0.05 mol/L, and a nonreactive tracer of 1.15×10-5 mol/L.  The longitudinal dispersivity is 60 m, the 
transverse dispersivity is 6 m, and the molecular diffusion coefficient is assumed to be zero.  A 100 
years simulation is performed with a fixed time-step size of 1 year.  
 
Simulation results within the bisected simulation domain are illustrated in Figure 5.3-6 for 
nonreactive tracer, aqueous uranium, and sorbed uranium.  The two variable boundary faces on the 
upstream boundary (Shaded in Figure 5.3-5) represent the source of tracer and aqueous uranium.  
The nonreactive tracer is transported into the domain along with subsurface flow.  However, due to 
the sorption reactions, most of the mobile aqueous uranium is transformed into immobile sorbed 
uranium in the region close to the two boundary faces.  Therefore, uranium plume migration is much 
slower than that of the nonreactive tracer.  The calculated percentage of sorbed uranium ranges from 
56% to 96%, which illustrates that a single value of the distribution coefficient is not able to 
simulate the spatially variable retardation under the condition set for this example. 
 
Using the fully-implicit scheme to deal with reactive chemistry, it took Option 1 (the FEM applied to 
the conservative form of the transport equations) 611 seconds to perform the simulation with a fixed 
time-step size of 1 year (maximum Courant number of 0.6).  The same accurate simulation could be 
obtained through Option 3 (the modified LE approach) with a much larger time-step size of 5 years 
taking CPU time of 156 seconds.  Comparison of CPU time verified the efficiency of Option 3. 
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Fig.  5.3-6.   Simulated Concentration Fringes   

at Time = 100 years for Example 5.3.3 
[Upper Left: nonreactive tracer; 

 Upper Right Middle: aqueous U(VI);  
Lower-Let: sorbed U(VI)] 

 
 
 
 
 

 
 
Animations showing the spatial-temporal distribution of tracer (File Name: Figure 5.3-6 Tracer.avi), 
sorbed uranium (File Name: Figure 5.3-6 Uranium sorbed.avi), and aqueous uranium (File Name: 
Figure 5.3-6 Uranium Aqueous.avi), respectively, are attached in Appendix A.   Readers can 
visualize these moves by clicking the file contained in the attached CD. 
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6 SUMMARY AND DISCUSSION 

 
6.1 Summary 

 
WASH123D has taken a step beyond previous models.  It was developed to cover dentric 
river/stream/canal networks and overland regime (land surface) and subsurface media including 
vadose and saturated (groundwater) zones.  It incorporates natural junctions and control structures 
such as weirs, gates, culverts, levees, and pumps in river/stream/canal networks.  It also includes 
management structures such as storage ponds, pumping stations, culverts, and levees in the overland 
regime.   In the subsurface media, management devices such as pumping/injecting wells, drainage 
pipes, and drainage channels are also included.  Numerous management rules of these control 
structures and pumping operations have been implemented. 
 
WASH123D is designed to deal with physics-based multi-processes occurring in watersheds.  These 
include density dependent flow and thermal and salinity transport over the entire hydrologic cycle. 
The processes include (1) evaporation from surface waters (rivers, lakes, reservoirs, ponds, etc) in 
the terrestrial environment; (2) evportransipiration from plants, grass, and forest from the land 
surface; (3) infiltration to vadose zone through land surface and recharges (percolations) to 
groundwater through water tables; (4) overland flow and thermal and salinity transport in surface 
runoff; (5) hydraulics and hydrodynamics and thermal and salinity transport in densdric river 
networks; and (6) subsurface flow and thermal and salinity transport in both vadose and saturated 
zones. 
 
Physics-based fluid flows in stream/river network, overland regime, and subsurface media are 
considered.  Kinematic, diffusive, and fully dynamic wave approaches are all included for 
applications to dentric rivers and overland regime.  Richards’ quation is employed for subsurface 
flow.  Junctions and control structures including weirs, gates, culverts, levees, pumping, and storage 
ponds are included to facilitate management.  Boundary conditions for junctions and internal 
structures are implemented to explicitly enforce mass balance.  Interface boundary conditions are 
rigorously dealt with by imposing the continuity of fluxes and the continuity of state variables or the 
formulation of fluxes when the state variables are discontinuous.  Many optional numerical methods 
were employed for robust and efficient simulations and for application-dependent simulations. 
 
New paradigms of diagonalizing reaction-based transport equations were employed to simulate 
water quality transport equations governed by advection-dispersion-reaction transport equations.  As 
a result of these generic approaches, WASH123D can easily be employed to model bigogeochemical 
cycles (including nitrogen, oxygen, phosphorous, and carbon cycles and biota kinetics (including 
Algae, Phyotoplankton, Zooplakton, Caliform, Bacteria, Plants, etc.).   In fact, once one’s ability to 
transform biogeochemical processes into reaction networks and come up with rate equations for 
every reaction is achieved,  one can employ WASH123D to model his/her system of reactive 
transport in surface runoff, surface water, and  subsurface flows on watershed scales. 
 
WASH123D can be applied to (1) one-dimensional river/stream network only, (2) two-dimensional 
overland regime only,  (3) three-dimensional subsurface media only, (4) coupled one-dimenional 
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river networks and two-dimensional overland regime, (5) coupled two-dimensional overland regime 
and three-dimensional subsurface media, (6) coupled three-dimensional subsurface meida and one-
dimensional river networks, and (7) coupled one-dimensional river networks, two-dimensional 
overland regime, and three-dimensional subsurface media.  For each application one can simulate 
flows alone, sediment transport alone, water quality transport alone, or flow and sediment and water 
quality transport simultaneously.  When both flow and transport are simulated, the flow fields are 
computed first.  Then the transport is calculated using the computed flow fields at respective times.  
Temperature- and salinity-dependent flow is considered.  
 
A total of 17 flow examples were given, which could serve as templates for users in applying 
WASH123D to either research problems or real-world field applications. These examples are 
presented to demonstrate the design capability of WASH123D, to show the needs of various 
approaches to simulate flow in river networks and overland flow problems, and to illustrate some 
realistic problems using WASH123D.  
 
A total of 13 water quality transport problems were given:  six examples for one-dimensional 
problems, four examples for two-dimensional problems, and three examples for three-dimensional 
problems.   These examples are used to (1) verify the correctness of computer implementation, (2) 
demonstrate the need of various numerical options and coupling between transport and 
biogeochemical processes depending on application circumstances, (3) show the generality of the 
water quality modeling paradigm that embodies the widely used water quality models as specific 
examples, (4) validate the capability of the models to simulate laboratory experiments, and indicate 
its potential applications to field problems. 
 
WASH123D could also be applied to (1) Design of flood protection works, (2) Design of wetlands 
and water conservation areas, (3) Assessment of impacts of tropical storms on flooding, (4) 
Investigationn of deep injection of fresh water for future use, (5) Dredge material disposal facility 
design, (6) Study of hazardous and toxic waste remediation, (7) Wellhead protection area definition, 
(8) Environmental restoration plans, and etc. 
 
WASH123D has been coupled with a bay/estuary model and is ready for coupling with atmospheric 
models. 
 
 
 
6.2 Discussion 

 
Further refinements and enhancements can be made of WASH123D in several areas.  First the 
governing equations for surface water flows and scalar transport should be cast in curvilinear 
coordinates along river directions for one-dimensional river networks (straightforward) and land 
surface fitted curvilinear coordinate (not so straightforward) for two-dimesnional overland regime.  
These modifications will make the model applicable to landscapes of steep slopes.  Second high 
performance parallel computing (partially done by US Army Corps) should be implemented to make 
the application of the model to large scale problems computationally more tractable.  Third, robust 
and user’s friendly graphical interface pre- and post-processors (almost done by US Army Corps) 
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should be developed to make the learning curves of the model much shorter.   Fourth, adaptive local 
grid refinement algorithms such as LEZOOMPC (Yeh 1990; Yeh, et al., 1992; Yeh, et al., 1995; 
Cheng, et al., 1996a, 1996b; Cheng et al, 1998a) should be incorporated in the discretization of sharp 
moving front problems to greatly speed up the computations.  Fifth, optimal matrix solvers with 
computational efforts proportional to N (where N is the number of unknowns) such as algebraic-
based multigrid method (Ruge and Stuben, 1985, 1987; Stuben and Trottenberg, 1982; Stuben, 
1999a, 1999b) or geometric-based multigrid methods (Brandt, 1984; Bramble, et al., 1988; Xu and 
Zikatanov, 2000; Cheng, et al., 1998b; Li, et al., 2000, 2005) should be provided to greatly increase 
the computational speed.  The algebraic-based multigrid methods will demand excessive CPU 
storages and are in general very difficult to achieve optimal performances for matrix equations 
resulting from generic nonlinear problems.  On the other hand, geometric-based multigrid methods 
require extensive problem specific developments. 
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