
 3-1

3 NUMERICAL APPROACHES

In this chapter, we are to present the numerical approaches employed to solve the governing
equations of flow and transport given in the previous section. In our model, transport is assumed not
to influence flow. Three time scales are considered in the model. They are (1) for three-dimensional
subsurface flow, (2) for three-dimensional subsurface transport and two-dimensional overland
flow/transport, and (3) for one-dimensional river/stream/canal flow/transport. In general, a three-
dimensional flow time step may include several two-dimensional flow time steps and a two-
dimensional flow time step can cover many one-dimensional flow time steps. The time scale for
three-dimensional subsurface transport is set to be the same as that for two-dimensional overland
flow/transport because kinetic chemical reactions are taken into account. During each three-
dimensional flow time step, we solve three-dimensional subsurface flow by employing the updated
two-dimensional flow conditions to achieve the surface/subsurface interface boundary conditions
and determine the infiltration/seepage for two-dimensional flow computation included in this three-
dimensional flow time step. During each two-dimensional flow time step, we first solve three-
dimensional reactive chemical transport with the updated two-dimensional transport result (i.e., at
the previous time) used for implementing variable boundary conditions on the interface boundary
and determine the dissolve chemical flux through the surface/subsurface interface. This flux is
actually the source/sink to two-dimensional dissolve chemical transport through infiltration/seepage.
 Then we solve two-dimensional flow equations to determine the water stage/depth and velocity of
overland flow. Finally, we solve two-dimensional reactive chemical transport equations for the
distribution of dissolved chemicals, sediments, and particulate chemicals. Within a one-dimensional
flow time step, the river/stream flow equations are solved first and the one-dimensional transport
equations are solved by using the newly-computed flow results. The interaction between one-
dimensional river/stream and two-dimenional overland flow/transport is taken into account by using
the updated computational results. Depth or stage difference-dependent fluxes are employed to
determine the flow through this one-dimensional/two-dimensional interface.

3.1 Solving One-Dimensional River/Stream/Canal Network Flow Equations

As mentioned earlier in this report, we desire to implement a hybrid model to accurately simulate
surface water flow under a wide range of physical conditions though it is still under investigation
and further study is required. In our investigation to date, we would apply the hybrid Lagrangian-
Eulerian finite element method to solve dynamical wave models, the hybrid Lagrangian-Eulerian or
conventional finite element method to solve diffusion wave models, and the semi-Lagrangian
method for kinematic wave models. In this and the next subsections, we will present the numerical
approaches used in the method of characteristics and the Lagrangian approach for solving the one-
dimensional river/stream/canal flow and two-dimensional overland flow equations, respectively. In
either approach, the Picard method is employed to deal with the nonlinearity.

3.1.1 The Lagrangian-Eulerian Finite Element Method for Dynamic Wave

Substituting Equations (2.1.10) through (2.1.12) into Equations (2.1.19) and (2.1.20) and rearranging

 3-2

the resulting equations, we obtain

()
++

+ +−=
+ SVKD

D
VD cV

τ
ω (3.1.1)

()
−−

− +−=
− SVKD

D
VD cV

τ
ω (3.1.2)

in which
()#

1 21 ; S R E IS S S S S SV g A PVD A K
A x x Bc x A A

κε +

+ − + + +∂ ∂ ∂⎛ ⎞= = + +⎜ ⎟∂ ∂ ∂⎝ ⎠
 (3.1.3)

()

()

1 2

1 2

o
S R E I

s
S R E I

Zg ghS S S S S S S g
Bc x c x

M M M M M M B
A A

ρ
ρ

τ
ρ

+

∂ ∂Δ
= + − + + + − −

∂ ∂

+ − + + +
+ +

 (3.1.4)

()#
1 2S R E IS S S S S Sg A PVK

Bc x A A
κ

−

+ − + + +∂
= + +

∂
 (3.1.5)

()1 2

1 2

o
S R E I

s
S R E I

Zg ghS S S S S S S g
Bc x c x

M M M M M M B
A A

ρ
ρ
τ

ρ

−

∂ ∂Δ
= − + − + + + − −

∂ ∂

+ − + + +
+ +

 (3.1.6)

where D is the diffusive transport of waves, K+ is the decay coefficient of the positive gravity wave,
S+ is the source/sink of the positive wave, K- is the decay coefficient of the negative gravity wave,
and S- is the source/sink of the negative wave.

Integrating Equations (3.1.1) and (3.1.2) along their respective characteristic lines from xi at new
time-level to xi1

* and xi2
* (Fig. 3.1-1), we obtain

() () () () ()()

() ()() NISS

VKVKDD
VV

ili

ililiiili
l

ililii

∈++

+−+=
Δ

+−+

++

++

,
2
1

2
1

2
1

*

**

τ
ωω

 (3.1.7)

() () () () ()()
() ()()

* *
*2 2 * *

2 22

*

2

1 1
2 2

1 ,
2

i i i i
i i i ii i

l

i i

V V
D D K V K V

S S I N

ω ω
τ − −

− −

− − −
= + − +

Δ

+ + ∈

 (3.1.8)

where (referring to Figure 3.1-1) Vi, ωi are the values of V and ω at xi (xi = coordinate of node i) at
new time level; Vi1

* and ωi1
* are the values of V and ω point xi1

* (where xi1
* is the location of a

fictitious particle backward tracked from xi along the first characteristics); Δτ1 is the time determined
by backward tracking along the first characteristic; Di is the value of D at node i at new time level;
Di1

* is the value of D at point xi1
*; (K+)i and (S+)i are the values of K+ and S+, respectively at node i

 3-3

at new time level; (K+)i1
* and (S+)i1

* are the values of K+ and S+, respectively at node xi1
* ; N is the

number of nodes; Vi2
* and ωi2

* are the values of V and ω point xi2
* (where xi2

* is the location of a
fictitious particle backward tracked from xi along the second characteristics); Δτ2 is the time
determined by backward tracking along the second characteristic; Di2

* is the value of D at point xi2
*;

(K-)i and (S-)i are the values of K- and S-, respectively at node i at new time level; and (K)i2
* and (S-)i2

*
are the values of K- and S-, respectively at node xi2

*.

V + c
V - c

t = n

t = n + 1

Δτ1

Δτ2
Δt

i

x

x

xi2
*

xi1
*

i

xi
k1

(i) k2
(i)

k1
(i) k2

(i)

j1
(i)

j1
(i)

j2
(i)

j2
(i)

Fig. 3.1-1. Backward Tracking along Characteristics in One Dimension.

In Equations (3.1.7) and (3.1.8), the primitive variables at the backward tracked location are
interpolated with those at the global nodes at both new time and old time as

)(
2

)()(
2

)()(4)(3
)(

)(2
)(

)(
*

ii
l

ii
l kiki

n
ki

n
kilil VaVaVaVaV +++= (3.1.9)

)(
2

)()(
2

)()(4)(3
)(

)(2
)(

)(
*

ii
l

ii
l kiki

n
ki

n
kilil aaaa ωωωωω +++= (3.1.10)

)(
2

)()(
2

)()(4)(3
)(

)(2
)(

)(
*

i2 ii
l

ii
l jiji

n
ji

n
jil VbVbVbVbV +++= (3.1.11)

)(
2

)()(
2

)(43
)(

2
)(*

i2 ii
l

ii
l jj

n
j

n
jl bbbb ωωωωω +++= (3.1.12)

in which the superscript (n) denotes time level (n); k1
(i) and k2

(i) are the two nodes of the element in
which the backward tracking from node i, along the first characteristic, stops; j1

(i) and j2
(i) are the

two nodes of the element in which the backward tracking from node i, along the second
characteristic, stops; a1(i), a2(i), a3(i), a4(i), b1(i), b2(i), b3(i), and b4(i) are the interpolation parameters
associated with the backtracking of the i-th node, all in the range of [0,1]. It should be noted that we
may use two given parameters to determine where to stop in the backward tracking: one is for
controlling tracking time and the other one is for controlling tracking distance. After the primitive
variables at the backward tracked points are interpolated, all other parameters (such as the decay
coefficients and source/sink terms) are functions of these variables and can be calculated.

 3-4

To compute the eddy diffusion terms Di, we rewrite the first equation in Equation (3.1.3) as

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
x
VA

x
AD ε (3.1.13)

in which the momentum flux due to turbulence is modeled with the eddy diffusion hypothesis.
Applying the Galerkin finite element method to Equation (3.1.13), we obtain the following matrix
equation for D as

[]{ } []{ } { }FVbDa =+ (3.1.14)
in which

{ } { }T
Ni DDDDDD321= (3.1.15)

{ } { }T
Ni VVVVVV321= (3.1.16)

{ } { }T
Ni FFFFFF321= (3.1.17)

x
VAnFdx

dx
dN

A
dx

dNbdxANNa
N

l

N

l

X

x
i

ji
X

x
ijjiij ∂

∂
=== ∫∫ εε iN,, (3.1.18)

where Ni and Nj, functions of x, are the base functions of nodes at xi and xj, respectively.

Lumping the matrix [a], we can solve Eq. (3.1.14) for Di as follows

∑−=
j

jij
ii

i
ii

i Vb
a

F
a

D 11 (3.1.19)

Following the identical procedure that leads Eq. (3.1.13) to Eq. (3.1.19), we have

∑−=
j

n
j

n
ijn

ii

n
in

ii

n
i Vb

a
F

a
D)()(

)(
)(

)(
)(11 (3.1.20)

where {F(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {F}, {a} and {b}, respectively.
Similar to Eqs. (3.1.9) and (3.1.10), Di1

* and Di2
* at the backward tracked location are interpolated

with {D} and {D(n)} as

)(
2

)(
(

)(
2

)()(4)(3
)(

)(
)(

)(
*

ii
l

ii
l kiki

n
ki

n
kilil DaDaDaDaD +++= (3.1.21)

and
)(

2
)()(

2
)()(4)(3

)(
)(

)(
)(

*
2 ii

l
ii

l kiki
n

ki
n

kili DbDbDbDbD +++= (3.1.22)

Substituting Equations (3.1.9) through (3.1.12) and Equations (3.1.19) through (3.1.22) into
Equations (3.1.7) and (3.1.8) and implementing boundary conditions given Section 2.1.1, we obtain
a system of 2N simultaneous algebraic equations for the 2N unknowns (Vi for i = 1, 2, .., N and ωi for

 3-5

i = 1, 2, .., N). If the eddy diffusion terms are not included and the backward tracking is performed
to reach the time level n (Fig. 3.1-2), then Eqs. (3.1.7) and (3.1.8) are reduced to a set of N
decoupled pairs of equations as

12 1 21 22 2a , ll i i i ia V a b and V a b i Nω ω+ = − = ∈ (3.1.23)

() () () ()()
() () () ()()

* ** *1 1 1
11 12 1

* ** *2 2
21 22 2 2 22 2

1 , 1 , 1 ,
2 2 2

21 , 1 , 1 ,
2 2 2

il ili il i il

i ii i i i

a K a b K V S S

a K a b K V S S

τ τ τω

τ τ τω

+ + + +

− − − −

Δ Δ Δ⎛ ⎞= + = = − + + +⎜ ⎟
⎝ ⎠

Δ Δ Δ⎛ ⎞= + = = − + + +⎜ ⎟
⎝ ⎠

 (3.1.24)

Equation (3.1.23)) is applied to all interior nodes without having to make any modification. On a
boundary point, there are several possibilities: (1) both equations in Eq. (3.1.23) are replaced with
two boundary equations, (2) one of the two equations is replaced with a boundary condition equation
while the other remains unchanged, and (3) both equations stay valid. These conditions are
addressed below.

V + c V - c

t = n

t = n + 1

Δt

i

x

x

xi2
*xi1

*

xi

i

k1
(i)

k1
(i)

k2
(i)

k2
(i)

j1
(i)

j1
(i)

j2
(i)

j2
(i)

Fig. 3.1-2. Backward Tracking along Characteristics to the Toot in One Dimension.

Open upstream boundary condition:

If the flow is supercritical, Eq. (3.1.23) is replaced with

() upiiciiupii MAhgAVandQAV =+= 2 (3.1.25)

where Vi the cross-sectionally averaged velocity at node i, Ai is the cross-sectional area at node i, Qup
is the flow rate of the incoming fluid from the upstream, (hc)i is the water depth to the centroid of the
cross-sectional area at node i, and Mup is the momentum-impulse of the incoming fluid from the
upstream. It should be noted that both the water depth and velocity in the upstream must be
measured to provide values of Qup and Mup. Equation (3.1.25) provides two equations for the
solution of Vi and hi. If the flow is critical, Eq. (3.1.23) for the boundary point i is replaced with

13

2

==
i

ii
upii gA

QBandQAV (3.1.26)

where Bi is the top width of the cross-section at node i. Equation (3.1.26) provides two equations to

 3-6

solve for Vi and hi. If the flow is subcritical, Eq. (3.1.23) is replaced with

upiilii QAVandbaVa ==+ ω1211 (3.1.27)

which is solved for Vi and hi.

Open downstream boundary condition:

If the flow is supercritical, Eq. (3.1.23) is used to solve for Vi and hi on node i. If the flow is critical,
the following equation

13

2

11211 ==+
i

ii
ii gA

QBandbaVa ω (3.1.28)

is used to solve for Vi and hi. If the flow is subcritical, the following equation is used to solve for Vi
and hi

() ()thhorhQAVandbaVa dnidniiii ===+ 11211 ω (3.1.29)

where Qdn(h), a function of h, is the rating curve function for the downstream boundary and hdn(t), a
function of t, is the water depth at the downstream boundary. The adaption of Eq. (3.1.29) depends
on the physical configuration at the boundary.

Closed upstream boundary condition:

If the flow is supercritical or critical, Eq. (3.1.23) is replaced with Vi = 0 and hi = 0. If the flow is
subcritical, Vi = 0 and the second equation in Eq. (3.1.23) is used to calculate hi.

Closed downstream boundary conditions:

At the closed downstream boundary, physical condition dictates that the velocity at the boundary is
zero. Therefore, supercritical flow cannot occur because c is greater or equal to zero. For critical
flow, Vi = 0 and hi = 0 at the closed boundary point xi. For the subcritical flow, Vi = 0 and the first
equation in Eq. (3.1.23) is used to calculate hi.

Natural internal boundary condition at junctions:

For example, consider the junction node J joined by three reaches (Fig. 3.1-3), we have one
unknown: the water surface elevation or the stage, HJ. The governing equation for this junction is

3 3

1 1

I I
J J

IJ IJ IJ
I IJ

dV dh Q V A
dh dt

= =

= =

= =∑ ∑ (3.1.30)

for the case when the storage effect of the junction is accounted for, or

∑∑
=

=

=

=

==
3

1

3

1
0

I

I
IJIJ

I

I
IJ AVQ (3.1.31)

 3-7

for the case when the storage effect of the junction is small.

For the node IJ, we need to set up two equations for VIJ and hIJ. Let us say that node IJ is a
downstream point if the flow is from the node IJ toward the junction J. On the other hand, we say
that the node IJ is an upstream point if the flow is from the junction J toward the node IJ. Now we
can set up two equations for each node IJ. This is demonstrated as follows.

J

1J 2J

3J

1 2

3

Fig. 3.1-3. A Three-Reach Junction

If IJ is a downstream point, we have three cases to consider:

(1). Subcritical flow –

JoIJIJ
IJ

IJIJ HZh
g

VandbaVa =++=+
2

2

11211 ω (3.1.32)

(2). Supercritical flow –

2222111211 baVaandbaVa IJIJIJIJ =−=+ ωω (3.1.33)

(3). Critical flow –

13

2

11211 ==+
IJ

IJIJ
IJIJ gA

BQandbaVa ω (3.1.34)

If IJ is an upstream point, we have three cases to consider:

(1) Subcritical flow -

22221

2

2
baVaandHZh

g
V

IJIJJoIJIJ
IJ =−=++ ω (3.1.35)

(2). Supercritical flow –

 3-8

1
2 3

22

==++
IJ

IJIJ
JoIJIJ

IJ

gA
BQandHZh

g
V (3.1.36)

(3). Critical flow –

1
2 3

22

==++
IJ

IJIJ
JoIJIJ

IJ

gA
BQandHZh

g
V (3.1.37)

Equation (3.1.30) or (3.1.31) and for I =1, 2, and 3, one of Eqs. (3.1.32) through (3.1.37) form 7
equations that can be solved for 7 unknowns V1J, h1J, V2J, h2J, V3J, h3J, and HJ. In theory, a
substitution of the governing equations for the internal junction nodes into Eq. (3.1.30) or (3.1.31)
eliminates all VIJ and hIJ, and the reduced Eq. (3.1.30) or (3.1.31) relates HJ to all unknowns at nodes
other than that at node IJ. However, in practice, the 7 junction equations are solved simultaneously
with all other discretized algebraic equations.

Controlled internal boundary condition at weirs:

For any weir (W), there are two river/stream/canal reaches connecting to it. The node 1W located at
the boundary between the 1th reach and the Wth weir is termed the controlled internal boundary of the
first reach while the node 2W is called the controlled internal boundary of the second reach (Fig. 3.1-
4). The specification of boundary conditions for the internal boundaries separated by a weir requires
elaboration.

W

1W 2W
Reach 1 Reach 2

Fig. 3.1-4. A Flow-Control Weir

The flow configuration around the weir and its surrounding reaches may be very dynamic under
transient flows. Both of the water stages at nodes 1W and 2W (H1W and H2W) may be below the weir,
both may be above the weir, or one below the weir while the other is above the weir (Fig. 3.1-5).
Governing equations of flow at internal boundary nodes 1W and 2W depend on the changing
dynamics of water stages around the weir. When both stages H1W and H2W are below the height of
the weir, the two reaches connecting the weir are decoupled. When at least one of the stages is
above the weir, two reaches are either sequentially coupled or fully coupled via the weir. Here for
sake of simplicity of discussions, we assume that the flow direction is from Reach 1 to Reach 2. In
other words, Reach 1 is an upstream reach and Reach 2 is a downstream reach. If the flow direction
is reversed, we can have the boundary condition similarly prescribed.

 3-9

Flow Separating Weir

h1W h2W

h1W h2W

Sumerged Weir

hW h2W
h1W

Free Fall Weir

hW

Fig. 3.1-5. Flow Configurations around a Weir.

There five unknowns, V1W (velocity of the upstream reach node 1W), h1W (the water depth of the
upstream node 1W), QW (flow rate over the weir), V2W (the velocity of the downstream reach node
2W), and h2W (the water depth of the downstream node 2W); five equations must be set up for this
weir complex consisting of a upstream reach node, a weir, and a downstream node. The governing
equations for these five unknowns can be obtained depending on the flow conditions at the upstream
and downstream reaches separated by a weir. The flow condition can be supercritical, critical, or
subcritical at node 1W and node 2W. There are nine combinations. Five governing equations for
each combination are given below.

Case 1: Supercritical flow at node 1W and supercritical flow at 2W (slowly varying flow)

21221211112111 baVaandbaVa WWWW =−=+ ωω (3.1.38)

()

2
1

1 1 1 1 1

1 1 1 1 1 1

; ;
2

W
W W W W W o W

W W W W Wc W

VQ V A H h Z
g

M V A V gh Aρ

= = + +

= +
 (3.1.39)

()

2
2

2 2 2 2 1

2W 2 2 2 2 2 2 1

2
W

W W W W o W LW W

W W W W W Wc W W W

Vu A Q and h Z h H or
g

u A Q and V A V gh A F Mρ

= + + + =

= + + =
 (3.1.40)

where hLW is the head loss between nodes 1W and 2W and FW is the force exerted by the weir
between nodes 1W and 2W. For this case, the computation is straightforward. First Eq. (3.1.38),
which constitutes two equations for two unknowns V1W and h1W, is used to solve for these two
unknowns. Then the flow rate through the weir, QW, and the momentum-impulse and energy line at
point 1W, M1W and H1W, are simply calculated with Eq. (3.1.39). Finally, either the first two
equations or the last two equations in Eq. (3.1.40) constitute two equations for two unknowns V2W
and h2W. These two unknowns are obtained by solving either first two equations or the last two
equations in Eq. (3.1.40).

Case 2: Supercritical flow at node 1W and critical flow at 2W

 3-10

21221211112111 baVaandbaVa WWWW =−=+ ωω (3.1.41)

WWW AVQ 11= (3.1.42)

13
2

2
2

22 ==
W

WW
WWW gA

BQandQAV (3.1.43)

For this case, the computation is straightforward. First Eq. (3.1.41), which constitutes two equations
for two unknowns V1W and h1W, is used to solve for these two unknowns. Then the flow rate through
the weir QW is simply calculated with Eq. (3.1.42). Finally, Equation (3.1.43) constitutes two
equations for two unknowns V2W and h2W. These two unknowns are obtained by solving the two
equations in Eq. (3.1.43).

Case 3: Supercritical flow at node 1W and subcritical flow at 2W (Hydraulic Jump)

11 1 12 1 1 21 1 22 1 2W W W Wa V a b and a V a bω ω+ = − = (3.1.44)

WWW AVQ 11= (3.1.45)

WWWWW QAuandbaVa ==− 222222221 ω (3.1.46)

For this case, the computation is straightforward. First Eq. (3.1.44), which constitutes two equations
for two unknowns V1W and h1W, is used to solve for these two unknowns. Then the flow rate through
the weir QW is simply calculated with Eq. (3.1.45). Finally, Equation (3.1.46) constitutes two
equations for two unknowns V2W and h2W. These two unknowns are obtained by solving the two
equations in Eq. (3.1.46).

Case 4: Critical flow at node 1W and supercritical flow at 2W

,13
1

1
2

1
1112111 ==+

W

WW
WW gA

BQandbaVa ω (3.1.47)

()
2

1
1 1 1 1 1 1 1 1 1 1 1; ;

2
W

W W W W W o W W W W W Wc W
VQ V A H h Z M V A V gh A

g
ρ= = + + = + (3.1.48)

()

2
2

2 2 2 2 1

2 2 2 2 2 2 2 1

2
W

W W W W o W LW W

W W W W W W Wc W w W

Vu A Q and h Z h H or
g

u A Q and V A V gh A F Mρ

= + + + =

= + + =
 (3.1.49)

For this case, the computation is straightforward. First Eq. (3.1.47), which constitutes two equations
for two unknowns V1W and h1W, is used to solve for these two unknowns. Then the flow rate through
the weir QW and the momentum-impulse and energy line at point 1W, M1W and H1W, are simply
calculated with Eq. (3.1.48). Finally, either the first two equations or the last two equations in Eq.
(3.1.49) constitute two equations for two unknowns V2W and h2W. These two unknowns are obtained

 3-11

by solving either two equations or the last two equations in Eq. (3.1.49).

Case 5: Critical flow at node 1W and critical flow at 2W

,13
1

1
2

1
1112111 ==+

W

WW
WW gA

BQandbaVa ω (3.1.50)

WWW AVQ 11= (3.1.51)

13
2

2
2

2
22 ==

W

WW
WWW gA

BQandQAV (3.1.52)

For this case, the computation is straightforward. First Eq. (3.1.50), which constitutes two equations
for two unknowns V1W and h1W, is used to solve for these two unknowns. Then the flow rate through
the weir QW is simply calculated with Eq. (3.1.51). Finally, Equation (3.1.52) constitutes two
equations for two unknowns V2W and h2W. These two unknowns are obtained by solving the two
equations in Eq. (3.1.52).

Case 6: Critical flow at node 1W and subcritical flow at 2W (Hydraulic Jump)

,13
1

1
2

1
1112111 ==+

W

WW
WW gA

BQandbaVa ω (3.1.53)

WWW AVQ 11= (3.1.54)

WWWWW QAVandbaVa ==− 222222221 ω (3.1.55)

For this case, the computation is straightforward. First Eq. (3.1.53), which constitutes two equations
for two unknowns V1W and h1W, is used to solve for these two unknowns. Then the flow rate through
the weir QW is simply calculated with Eq. (3.1.54). Finally, Equation (3.1.46) constitutes two
equations for two unknowns V2W and h2W. These two unknowns are obtained by solving the two
equations in Eq. (3.1.55).

Case 7: Subcritical flow at node 1W and Supercritical flow at 2W (Critical must occur at the

weir)

0QAV,baVa WW1W11W112W111 =−=ω+ (3.1.56)

() ()

2 2
1

1 1 1
2

3

1 1 1 1 1 1

2 2
1, ,

W W
W oW L W W o W

W W
W W W

W
W W W Wc W W W W W Wc W

V Vh Z h h Z
g g

Q B V A Q and or
gA

V A V gh A F V A V gh Aρ ρ

+ + + = + +

= =
+ + = +

(3.1.57)

 3-12

() ()

2
2

2 2 2

2 2

2 2 2 2 2 2

2 2
0

pWW
W o W L W W oW

W W w

W W W Wc W W W W W Wc W

VVh Z h h Z
g g

u A Q and or
V A V gh A F V A V gh Aρ ρ

+ + + = + +

− =
+ + = +

 (3.1.58)

where hL1W is the head loss between the weir and node 1W, F1W is the force exerted by the weir
between the weir and node 1W, hL2W is the head loss between the weir and node 2W, and F2W is the
force exerted by the weir between the weir and node 2W. For this case, in addition to the five
unknowns, V1W, h1W, QW, V2W, and h2W, two more unknowns, hW and VW, appear in Eqs. (3.1.56)
through (3.1.58). These seven unknowns are obtained by solving seven simultaneous equations
contained in Eqs. (3.1.56) through (3.1.58).

Case 8: Subcritical flow at node 1W and critical flow at 2W

0QAV,baVa WW1W11W112W111 =−=ω+ (3.1.59)

() ()

2 2
2 1

2 2 1 1
2

2
2 2 3

2
2 2 2 2 2 1 1 1 1 1

2 2
0, 1,

W W
W o W LW W o W

W W
W W W

W
W W W Wc W W W W W Wc W

V Vh Z h h Z
g g

Q BV A Q and or
gA

V A V gh A F V A V gh Aρ ρ

+ + + = + +

− = =
+ + = +

(3.1.60

For this case, five equations in Eqs. (3.1.59) and (3.1.60) are solved for the five unknowns, V1W, h1W,
QW, V2W, and h2W.

Case 9: Subcritical flow at node 1W and Subcritical flow at 2W (slowly varying flow)

0QAV,baVa WW1W11W112W111 =−=ω+ (3.1.61)

() ()

21 2 22 2 2 2 2

2 2
2 1

2 2 1 1

2 2 2 2 2 1 1 1 1 1

, 0

2 2

W W W W W

W W
W o W LW W o W

W W W Wc W W W W W Wc W

a V a b V A Q
and

V Vh Z h h Z
g g

or
V A V gh A F V A V gh A

ω

ρ ρ

− = − =

+ + + = + +

+ + = +

 (3.1.62)

For this case, five equations in Eqs. (3.1.59) and (3.1.60) are solved for the five unknowns, V1W, h1W,
QW, V2W, and h2W

Controlled internal boundary condition at Gates:

For any gate (G), there are two river/stream/canal reaches connecting to it. The node 1G located at
the boundary between the 1th reach and the Gth gate is termed the controlled internal boundary of the
first reach while the node 2G is called the controlled internal boundary of the second reach (Fig. 3.1-
6). The specification of boundary conditions for the internal boundaries separated by a gate can be

 3-13

made similar to that of a weir.

G

1G 2G

Reach 1 Reach 2

Gate

Fig. 3.1-6. A Flow-Control Gate.

The flow configuration around the gate and its surrounding reaches may be very dynamic under
transient flows. Depending on the water stages at nodes 1G and 2G (H1G and H2G), we have several
configurations (Fig. 3.1-7). Governing equations for flow at nodes 1G and 2G and through the gate
depend on the changing dynamics of water stages around the gate. These equations can be obtained
identical to those for a weir by changing the letter from W to G. Similar approaches can be used for
culverts change the letter from W to C (for culverts). The only differences among various types of
structures are the formulation of energy losses over the structures and/or the formulation of forces
exerting on the fluids by the structures.

h1G

Free flow, not influenced by gate opening

hG

h2G
hGh1G h2G

hG
h1G h2G

hG
h1G h2G hG

h1G h2G

Submerged flow, not influenced by gate opening

Free flow, but influenced by gate opening
Submerged flow, influenced by gate opening Decoupled flow

Fig. 3.1-7. Flow Configurations around a Gate.

3.1.2 Numerical Approximations of Diffusive Wave Approaches.

Two options are provided in this report to solve the diffusive wave flow equations. One is the finite
element method and the other is the particle tracking method.

3.1.2.1 Galerkin Finite Element Method. Recall the diffusive wave is governed by Eq. (2.1.47)
which is repeated here as

 3-14

1 2

s

S R E I
H H h BB K S S S S S S
t x x c x Ag

ρ τ
ρ ρ

⎛ ⎞⎡ ⎤∂ ∂ ∂ ∂Δ
− + − = + − + + +⎜ ⎟⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠

 (3.1.63)

Applying the Galerkin finite element method to Eq. (3.1.63), we obtain the following matrix
equation.

[] { } []{ } { } { } { } { } { } { } { } { }1 2w B S R E I

d H
M S H Q Q Q Q Q Q Q Q

dt ρ+ = + + + − + + + (3.1.64)

in which

⎥
⎦

⎤
⎢
⎣

⎡
−

∂
Δ∂

+
∂
∂

=

⎥
⎦

⎤
⎢
⎣

⎡
−

∂
Δ∂

=== ∫∫∫

ρ
τρ

ρ

ρ
τρ

ρρ

Ag
B

xc
h

x
HKnNQ

Ag
B

xc
hK

dx
dNQdx

dx
dN

K
dx

dNSdxBNNM

s

ii

X

X

s
i

X

X
wi

ji
X

X
ijjiij

NNN

111

,,
 (3.1.65)

∫ ∫∫

∫ ∫ ∫

===

===

N NN

N N N

X

X

X

X
iiii

X

X
IiIi

X

X

X

X

X

X
EiEiRiRiSiSi

dxSNQdxSNQdxSNQ

dxSNQdxSNQdxSNQ

1 11

1 1 1

,,,

,,,

2211

 (3.1.66)

where Ni and Nj are the base functions of nodes at xi and xj, respectively; n is the unit outward
direction, n = 1 at a downstream point and n = -1 at an upstream point; [M] is the mass matrix, [S] is
the stiff matrix, {H} is the solution vector of H, {Qρw} is the load vector due to density and wind
stress effects, {QB} is the flow rate through the boundary nodes of a river/stream/canal reach, {QS}
is the flow rate from artificial source/sink, {QR} is the flow rate from rainfall, {QE} is the flow rate
due evapotranspiration, {QI} is the flow rate to infiltration, {Q1} is the flow rate from overland flow
via river bank 1, and {Q2} is the flow rate from overland flow via river bank 2. It should be noted
that {QI} is the interaction between the river/stream/canal reach and subsurface flows and {Q1} and
{Q2} between the river/stream/canal (via bank 1 and bank 2) and overland flows.

Approximating the time derivative term in Eq. (3.1.64) with a time-weighted finite difference, we
reduce the diffusive equation and its boundary conditions to the following matrix equation

[]{ } { } { } { } { } { }1 2B IC H L Q Q Q Q= + + + + (3.1.67)
in which

[] [] [] { } [] []() (){ } { } { } { } { }, 1 n
w S R E

M M
C S L S H Q Q Q Q

t t ρθ θ
⎛ ⎞

= + = − − + + + −⎜ ⎟Δ Δ⎝ ⎠
 (3.1.68)

where [C] is the coefficient matrix, {L} is the load vector from initial condition, density and wind
effects, artificial sink/sources, rainfall, and evapotranspiration; Δt is the time step size; θ is the time
weighting factor; and {H(n)} is the value of {H} at old time level n. The global and internal
boundary (junctions, weirs, and gates) conditions must be used to provide {QB} in Eq. (3.1.67). The
interaction between the overland and river/stream/canal flows must be implemented to evaluate {Q1}
and {Q2}; and the interaction between the subsurface and river/stream/canal flows must be

 3-15

implemented to calculate {QI}. The interactions will be addressed in Section 3.4.

For a global boundary node I, the corresponding algebraic equation from Eq. (3.1.67) is

, 1 1 , 1 1 2I I I I I I BI II I IC H C H L Q Q Q Q− − + = + + + + (3.1.69)

where (I-1) is the corresponding interior node of the node I. In the above equation there are two
unknowns HI and QBI; either HI or QBI, or the relationship between HI and QBI must be specified.
The numerical implementation of these boundary conditions are described as follows.

Dirichlet-boundary condition: prescribed water depth or state

If HI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,I-1, CI,I,
CI,I+1) and right-hand side (LI, QII, Q1I, Q2I) obtained before the implementation of boundary
conditions for this equation are stored in a temporary array, then an identity equation is created as

DIdI NIHH ∈= , (3.1.70)

where HId is the prescribed total head on the Dirichlet node I and ND is the number of Dirichlet
boundary nodes. This process is repeated for every Dirichlet nodes. Note it is unnecessary to
modify other equations that involving these unknowns, which was done in the previous version. By
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the
iterative solvers more robust. The final set of equations will consist of ND identity equations and (N
- ND) finite element equations for N unknowns Hi’s. After Hi’s are obtained, Eq. (3.1.69) is then
used to back calculate ND QBI’s.

If a direct solver is used to solve the matrix equation, the above procedure will solve N Hi’s
accurately except for roundoff errors. However, if an iterative solver is used, a stopping criteria
must be strict enough so that the converged solution of N Hi’s are accurate enough to the exact
solution. With such accurate Hi’s, then one can be sure that the back-calculated ND QBI’s are
accurate.

Flux boundary condition: prescribed flow rate

If QBI is given (flux boundary condition), all coefficients (CI,I-1, CI,I, CI,I+1) and right-hand side (LI,
QII, Q1I, Q2I) obtained before the implementation of boundary conditions for this equation are stored
in a temporary array, then Eq. (3.1.69) is modified to incorporate the boundary conditions and used
to solve for HI. The modification of Eq. (3.1.69) is straightforward. Because QBI is a known
quantity, it contributes to the load on the right hand side. This type of boundary conditions is very
easy to implement. After Hi’s are obtained, the original Eq. (3.1.69), which is stored in a temporary
array, is used to back calculate NC QBI’s on flux boundaries (where NC is the number of flux
boundary nodes). These back-calculated QBI’s should be theoretically identical to the input QBI’s.
However, because of round-off errors (in the case of direct solvers) or because of stopping criteria
(in the case of iterative solvers), the back-calculated QBI’s will be slightly different from the input
QBI’s. If the differences between the two are significant, it is an indication that the solvers have not
yielded accurate solutions.

 3-16

Water depth-dependent boundary condition: prescribed rating curve

If the relationship is given between QBI and HI (rating curve boundary condition), all coefficients
(CI,I-1, CI,I, CI,I+1) and right-hand side (LI, QII, Q1I, Q2I) obtained before the implementation of
boundary conditions for this equation are stored in a temporary array, then Eq. (3.1.69) is modified
to incorporate the boundary conditions and used to solve for HI. The rating-relationship is used to
eliminate one of the unknowns, say QBI, and the modified Eq. (3.1.69) is used to solve for, say HI.
After HI is solved, the original Eq. (3.1.69) (recall the original Eq. (3.1.69) must be and has been
stored in a temporary array) is used to back-calculate QBI.

Junction boundary condition:

If the node IJ is an internal node that connects a junction J, then node IJ is treated as an internal
boundary node. For example, consider three reaches with three internal nodes connecting to the
junction J (Fig. 3.1-8). After applying the finite element method to Eq. (3.1.63), we have a total of
(1J + 2J + 3J) algebraic equations. The algebraic equations for Nodes 1J, 2J, and 3J can be written
based on Eq. (3.1.69)

J

1J 2J

3J

1J-1 2J-1

3J-1

Fig. 3.1-8. A Three-Reach Junction

1 1 1 1 1 1 1 1 1
1 ,1 1 1 1 1 ,1 1 1 1 1 11 21J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + + (3.1.71)

2 2 2 2 2 2 2 2 2

2 ,2 1 2 1 2 ,2 2 2 2 2 12 22J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + + (3.1.72)

3 3 3 3 3 3 3 3 3
3 ,3 1 3 1 3 ,3 3 3 3 3 13 23J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + + (3.1.73)

where the superscript denotes the reach number and subscript denotes local node number in a reach,
for example, H1J

1 denotes the total head at the 1J-th node in Reach 1. For a convenient discussion,
let us associate each of the unknowns, H1

1, …, H1J-1
1 to each of the 1J-1 finite element equations in

Reach 1. Similarly, we associate each of the unknowns, H1
2, .., H2J-2

2 to each of the 2J-1 finite
element equations in Reach 2 and each of the unknowns and H1

3, .., H3J-1
3 to each of the 3J-1 finite

element equations in Reach 3. The unknown, Q1J
1, Q2J

2, and Q3J
3, are absent from these (1J-1 + 2J-

1 + 3J-1) equations. In other words, we can say each equation governs one unknown. However,
two unknowns, H1J

1 and Q1J
1, appear in Eq. (3.1.71). Similarly, Equation (3.1.72) has two

unknowns, H2J
2 and Q2J

2, and Equation (3.1.73) has two unknowns, H3J
3 and Q3J

3. The number of
unknowns, (1J + 2J + 3J) total heads and Q1J

1, Q2J
2, and Q3J

3, is more than the number of equations,
(1J + 2J + 3J) finite element equations. Three more governing equations must be set up, which can

 3-17

be obtained based on the continuity of energy lines. This is described as follows.

Assume the entrance loss to the junction and exit loss from the junction are negligible, we have the
following three equations

oJJ
J

J
j Zh

A
Q

g
H +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

2

1
1

1
11

1 2
1 (3.1.74)

oJJ
J

J
j Zh

A
Q

g
H +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

2

2
2

2
22

2 2
1 (3.1.75)

oJJ
J

J
j Zh

A
Q

g
H +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

2

3
3

3
33

3 2
1 (3.1.76)

where A1J
1, A2J

2, and A3J
3 are the cross-sectional area at Nodes 1J of Reach 1, Node 2J of Reach 2,

and Node 3J of Reach 3, respectively; hJ is the water depth at the Junction J; and ZoJ is the bottom
elevation at the Junction J. It is noted that the second terms on the left hand side of Eqs. (3.1.74)
through (3.1.76) are generally ignored in computation implementation to give more robust solutions.

The water depth at Junction J is not decoupled from river/stream/canal reaches. The water budget
equation for the Junction J is

3

1

i
iJ J

iJ
iJ

dV dh Q
dh dt

=

=

= ∑ (3.1.77)

When J

J

dV
dh

is small, the water budget Eq. (3.1.77) is not employed. Instead, the following equation,

resulting from the requirement that the summation of flow rates is equal to zero, is used

3

1

0
i

i
iJ

i

Q
=

=

=∑ (3.1.78)

Equations (3.1.71) through (3.1.76) and Eq. (3.1.77) or Eq. (3.1.78) constitute 7 equations for seven
unknowns, A1J

1, A2J
2, A3J

3, Q1J
1, Q2J

2, Q3J
3, and hJ. If there are NJ junctions, there will be NJ blocks

of seven equations. These NJ blocks of equations should be solved iteratively along with NR block of
finite element equations where NR is the number of reaches. In other words, the whole system of
algebraic equations can be solved with block iterations. Each block of equations can be solved
directly. For example, each of NR block of finite element equations can be solved with an efficient
tri-diagonal matrix solver such as the Thomas algorithm. Each of the NJ block of seven equations
can be solved with the Gaussian direct elimination with full pivoting.

Control Structure Boundary Condition:

 3-18

The control structures may include weirs, gates, culverts, etc. For the two internal boundary nodes
separated by a weir (Fig. 3.1-9), Q1W = Q2W = QW, where QW is given by

)(
3
2

121212 WeirSubmergedhhhifhhhBCQ WWWWWWWWW >>−= (3.1.79)

)(
3
2

33
2

1211 WeirFallFreehhifhhBCQ WWWWWWW <= (3.1.80)

where CW is the weir coefficient, BW is the weir width [L]. The flow rate QW is equal to zero when
both the upstream and downstream stages are below the weir elevation.

h1W h2W

Sumerged Weir

hW h2W
h1W

Free Fall Weir

hW

Fig. 3.1-9. Submerged versus Free Fall Weir.

Similarly, for two internal boundary nodes separated by a gate, Q1G = Q2G = QG. When the flow
is not influenced by the gate opening (Fig. 3.1-10), the flow rate is given by

h1G

Free flow, not influenced by gate opening

hG

h2G
hGh1G h2G

Submerged flow, not influenced by gate opening
Fig. 3.1-10. Gate Opening Does Not Affect Flow.

GGGGGGGGG hhandhhifhBhCQ 11211 3
2

3
2

33
2

><= (3.1.81)

GGGGGGGGGGG hhandhhhifhhhBCQ 1121212 3
2

3
2

>>>−= (3.1.82)

where CG is the gate coefficient and BG is the gate width [L]. When the gate opening affects the
flow (Fig. 3.1-11), the flow rate is given by

GGGGGGGGG hhandhhifhBhCQ 1121 3
2

3
2

33
2

<<= (3.1.83)

 3-19

GGGGGGGGGGG hhandhhhifhhhBCQ 112121 3
2

3
2

<>>−= (3.1.84)

hG
h1G h2G

hG
h1G h2G

Free flow, but influenced by gate opening
Submerged flow, influenced by gate opening

Fig. 3.1-11. Gate Opening Affects Flow.

For two internal boundary nodes separated by a culvert, Q1C = Q2C = QC. Various formulae for QC
can be found in the literature.

3.1.2.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the diffusive wave equation, instead of Eq. (3.1.63),
using the definition of Q = VA, we expand Eq. (2.1.1) to yield following diffusive wave equation in
the Lagrangian form

1 2
V

S R E I
D A VKA S S S S S S where K
D xτ

∂
+ = + − + + + =

∂
 (3.1.85)

To use the semi-Lagrangian method to solve the diffusive wave equation, we integrate Eq. (3.1.85)
along its characteristic line from xi at new time level to xi

* at old time level or on the boundary (Fig.
3.1-12), we obtain

V

t = n

t = n + 1

Δt

i

x

x

xi
* i

xi

1

Δτ V

xi

xi
*

1

k1 k2
Fig. 3.1-12. Backward Particle Tracking in One Dimension.

 3-20

()() ()

() () ()() ()

()

1(1) (1) * * * (1) *

1(1) * (1) * * (1) *
1 1 2 2

(1) * (1)

1 1
2 2 2 2

2 2 2 2
 ,

1

nn n n
i i i i Si Si Ri Ri

nn n n
Ei Ei Ii Ii i i i i

n K K n
i i i i

K A K A S S S S

S S S S S S S S

or analytically

SS SSA A e e or A A
K K

τ τ

τ τ τ τ

τ τ τ τ

++ + +

++ + +

+ − Δ − Δ +

Δ Δ Δ Δ⎛ ⎞ ⎛ ⎞+ = − + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Δ Δ Δ Δ
− + + + + + + +

= + − = +

()

() ()()

*

(1) (1 (1) *

(1) (1) (1) (1) (1) (1) * * * * * *
1 2 1 2

10 0, where
2

1
2

K

n n n
i i i i

n n n n n n
Si Ri Ei Ii i i Si Ri Ei Ii i i

SS e
K

If A set A K K K and

SS S S S S S S S S S S S S

τ− Δ

+ + +

+ + + + + +

⎛ ⎞
−⎜ ⎟

⎝ ⎠

< = = +

= + − + + + + + − + + +

(3.1.86)

where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary
before Δt is consumed (Fig. 3.1-12); Ki

(n+1), Ai
(n+1), SSi

(n+1), SRi
(n+1), SEi

(n+1), SIi
(n+1), S1i

(n+1), and S2i
(n+1)

respectively, are the values of K, A, SS, SR, SE, SI, S1, and S2, respectively, at xi at new time level t =
(n+1)Δt; and Ki

*, Ai
*, SSi

*, SRi
*, SEi

*, SIi
*, S1i

*, and S2i
*, respectively, are the values of K, A, SS, SR, SE,

SI, S1, and S2, respectively, at the location xi
*. Since the velocity V and the decay coefficient K are

functions of A, this is a nonlinear hyperbolic problem. Equation (3.1.86) is solved iteratively to
yield the cross-sectional area A, and hence the water depth h. The iteration procedure is outlined as
follows:

(i) Given the value of A(k) at the k-th iteration, compute h and H.
(ii) Apply finite element method to the following equation to obtain V

2 /3

2
0

1

1

S

S

a R H h BV
n x c x AgZ H h B

x x c x Ag

ρ τ
ρ ρρ τ

ρ ρ

⎡ ⎤
⎢ ⎥ ⎛ ⎞− ∂ ∂Δ⎢ ⎥= + −⎜ ⎟⎢ ⎥ ∂ ∂∂⎛ ⎞ ⎝ ⎠∂ ∂Δ+⎢ ⎥ − − +⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

 (3.1.87)

(iii) Perform particle tracking to locate x* and obtain all the *-superscripted quantities.
(iv) Apply the finite element method to the following equation to obtain K

x
VK

∂
∂

= (3.1.88)

(v) Solve Eq. (3.1.86) along with the boundary condition to obtain new A(k+1)
(vi) Check if A(k+1) converges, if yes go to the next time step.
(vii) If A(k+1) does not converge, update A with A(k) ← ωA(k+1) + (1-ω)A(k) and repeat

Steps (i) through (vi).

When the wave is transported out of the region at a boundary node (i.e., when N•V ≥ 0), a boundary
condition is not needed. When the wave is transported into the region at a node (i.e., when N•V <
0), a boundary condition must be specified. As in the Galerkin finite element method, three types of

 3-21

boundary conditions may be encountered.

Dirichlet boundary condition:

For the Dirichlet boundary, the water depth is prescribed, thus the cross sectional area, A, is
computed from the relationship between the cross section area versus depth curve as

DIdIDIdI NIAANIHH ∈=⇒∈= ,, (3.1.89)

Flux boundary condition:

For the flux boundary, the flow rate is prescribed as function of time at the boundary node, from
which the boundary value is computed as

),1(
)1()(

kn
upn

V
tQ

A +
+ = (3.1.90)

where Qup(t), a function of time t, is the prescribed flow rate [L3/t] and V(n+1,k) is the value of V at
new time and previous iteration.

Water depth-dependent boundary condition: prescribed rating curve

For the boundary where a rating curve is used to describe the relationship between water depth, h,
and the discharge, Q, the cross sectional area, A, on the boundary is computed with

)()1(),1(hfAV nkn =++ (3.1.91)

where f(h) is the rating curve which is a function of h. Equation (3.1.91) is solved iteratively to yield
A(n+1).

Junction Boundary Condition:

If the node IJ is an internal boundary node that connects a junction J, then HIJ is a function of water
depth, hIJ-1, of its immediately internal node and of water surface at the junction J, HJ. This
functional relationship is obtained by applying the finite element method to Eq. (3.1.63) to yield the
governing equation for Node IJ similar to Eqs. (3.1.71) through (3.73)

1 1 1 1 1 1 1 1 1
1 ,1 1 1 1 1 ,1 1 1 1 1 11 21J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + + (3.1.92)

2 2 2 2 2 2 2 2 2

2 ,2 1 2 1 2 ,2 2 2 2 2 12 22J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + + (3.1.93)

3 3 3 3 3 3 3 3 3
3 ,3 1 3 1 3 ,3 3 3 3 3 13 23J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + + (3.1.94)

where the superscript denotes the reach number and subscript denotes node number in a reach, for
example, H1J

1 denotes the total head at the 1J-th node in Reach 1. Equation (3.1.92) has two
unknowns, H1J

1 and Q1J
1, the unknown H1J-1

1 is obtained by inverting A1J-1
1, which is obtained from

 3-22

particle tracking in Reach 1. Similarly, Equation (3.1.93) has two unknowns, H2J
2 and Q2J

2, and
Equation (3.1.94) has two unknowns, H3J

3 and Q3J
3. The number of unknowns (6) is more than the

number of equations (3). Three more governing equations must be set up, which can be obtained
based on the continuity of energy lines. This is described as follows.

Assume the entrance loss to the junction and exit loss from the junction are negligible, we have the
following three equations

oJJ
J

J
j Zh

A
Q

g
H +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

2

1
1

1
11

1 2
1 (3.1.95)

oJJ
J

J
j Zh

A
Q

g
H +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

2

2
2

2
22

2 2
1 (3.1.96)

oJJ
J

J
j Zh

A
Q

g
H +=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

2

3
3

3
33

3 2
1 (3.1.97)

where A1J
1, A2J

2, and A3J
3 are the cross-sectional area at Nodes 1J of Reach 1, Node 2J of Reach 2,

and Node 3J of Reach 3, respectively; hJ is the water depth at the Junction J; and ZoJ is the bottom
elevation at the Junction J. It is noted that the second terms on the left hand side of Eqs. (3.1.95)
through (3.1.97) are generally ignored in computation implementation to give more robust solutions.

The water depth at Junction J is not decoupled from river/stream/canal reaches. The water budget
equation for the Junction J is

3

1

i
iJ J

iJ
iJ

dV dh Q
dh dt

=

=

= ∑ (3.1.98)

When J

J

dV
dh

 is small, the water budget Eq. (3.1.98) is not employed. Instead, the following equation,

resulting from the requirement that the summation of flow rates is equal to zero, is used

∑
=

=

=
3

3
0

i

i

i
iJQ (3.1.99)

Equations (3.1.92) through (3.1.97) and Eq. (3.1.98) or Eq. (3.1.99) constitute 7 equations for seven
unknowns, A1J

1, A2J
2, A3J

3, Q1J
1, Q2J

2, Q3J
3, and hJ. These equations should be solved iteratively

along with particle tracking for all internal nodes of the three reaches connecting the junction node J.
 The seven linearized equations can be solved with the Gaussian direct elimination with full
pivoting.

Control structure boundary condition:

To facilitate the implementation of internal boundary conditions of control structures, we discretize

 3-23

the two internal boundary nodes of every structure with the finite element method. Then we can
implement the boundary conditions similar to that in finite element modeling of diffusive wave
approaches.

3.1.3 The Semi-Lagrangian Method for Kinematic Wave

To use the Lagrangian method to solve the kinematic wave equation, Eq. (2.1.65) is rewritten in the
Lagrangian form as follows

1 2
V

S R E I
D A VKA S S S S S S where K
D xτ

∂
+ = + − + + + =

∂
 (3.1.100)

in which K is the decay coefficient of the wave and S is the source/sink of the wave. Integrating Eq.
(3.1.100) along its characteristic line from xi at new time level to xi

* (Fig. 3.1-12), we obtain

() ()

() () () ()

()

(1) * * (1) * (1) *

(1) * (1) * (1) * (1) *
2 2

(1) * (1) *

1 1
2 2 2 2

2 2 2 2
 ,

1

n n n
i i i i Si Si Ri Ri

n n n n
Ei Ei li li li li i i

n K K n
i i i i

K A K A S S S S

S S S S S S S S

or analytically

SS SSA A e e or A A
K K

τ τ

τ τ τ τ

τ τ τ τ

+ + +

+ + + +

+ − Δ − Δ +

Δ Δ Δ Δ⎛ ⎞ ⎛ ⎞+ = − + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Δ Δ Δ Δ
− + + + + + + +

= + − = +

()

() ()()

(1) (1 (1) *

(1) (1) (1) (1) (1) (1) * * * * * *
1 2 1 2

10 0, where
2

1
2

K

n n n
i i i i

n n n n n n
Si Ri Ei Ii i i Si Ri Ei Ii i i

SS e
K

If A set A K K K and

SS S S S S S S S S S S S S

τ− Δ

+ + +

+ + + + + +

⎛ ⎞
−⎜ ⎟

⎝ ⎠

< = = +

= + − + + + + + − + + +

(3.1.101)

where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary
before Δt is consumed (Fig. 3.1-12); Ki

(n+1), Ai
(n+1), SSi

(n+1), SRi
(n+1), SEi

(n+1), SIi
(n+1), S1i

(n+1), and S2i
(n+1)

respectively, are the values of K, A, SS, SR, SE, SI, S1, and S2, respectively, at xi at new time level t =
(n+1)Δt; and Ki

*, Ai
*, SSi

*, SRi
*, SEi

*, SIi
*, S1i

*, and S2i
*, respectively, are the values of K, A, SS, SR, SE,

SI, S1, and S2, respectively, at the location xi
*. Because of density and wind effects, the velocity V

and the decay coefficient K are functions of A, this is nonlinear problem. However, because the
nonlinearity due to density and wind effects are normally very weak, Equation (3.1.101) is
considered a linear hyperbolic problem with the nonlinear effects evaluated using the values of A at
previous time. This equation is used to compute the cross-sectional area A, and hence the water
depth h, at all nodes except for the upstream boundary node.

Because the wave is transported into the region at an upstream node, a boundary condition must be
specified. The flow rate is normally given as a function of time at an upstream node, from which the
boundary value is computed as

 3-24

(1)
(1)

()upn
i n

i

Q t
A

V
+

+= (3.1.102)

where Qup(t), a function of time t, is the prescribed flow rate [L3/t].

3.1.4 Numerical Approximations of Thermal Transport

Two options are provided in this report to solve the thermal transport equation. One is the finite
element method and the other is the particle tracking method.

3.1.4.1 Finite Element Method. Recall the thermal transport equation is governed by Eq. (2.1.67)
which is rewritten in a slightly different form as

() ()

c
h

o
h

o
h

i
h

s
h

e
h

b
h

n
h

r
h

a
h

HWWWW
WW

SSSSSSSSSS
x
TAD

xx
QTCT

t
AC

t
TAC

++++−−−++=

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

−
∂

∂
+

∂
∂

+
∂
∂

21

ρρρ
 (3.1.103)

Applying the finite element method to Eq. (3.1.103), we obtain the following matrix equation

[] { } []{ } []{ } []{ } { } { }
{ } { } { } { } { } { } { } { } { }cooisebnr

a
BTKTDTV

dt
TdM

Φ+Φ+Φ+Φ+Φ−Φ−Φ−Φ+Φ+

Φ+Φ−=+++

21

 (3.1.104)

in which

∫

∫∫∫

=
+⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−=Φ
∂

∂
=

===

N

N

NNN

X

X

Xx
Xx

H
iWWiBij

WW
iij

X

X

jHi
X

X
ijjWW

i
X

X
ijjWWiij

x
TADNQTCWdxN

t
AC

NK

dx
dx

dN
AD

dx
dN

DdxQNC
dx

dW
VdxANCNM

1

1

111

,

,,,

ρ
ρ

ρρ

 (3.1.105)

∫∫∫ =Φ=Φ=Φ
N

1

N

1

N

1

X

X

n
hi

X

X

n
i

r
hi

X

X

r
i

a
hi

a
i dxSN,dxSN,dxSN (3.1.106)

∫ ∫∫∫ =Φ=Φ=Φ=Φ
N

1

N

1

N

1

N

1

X

X

X

X

c
hi

c
i

s
hi

X

X

s
i

e
hi

X

X

e
i

b
hi

b
i ,dxSN,dxSN,dxSN,dxSN (3.1.107)

∫∫∫ =Φ=Φ=Φ
N

1

N

1

N

1

X

X

2o
hi

X

X

2o
i

1o
hi

X

X

1o
i

i
hi

i
i dxSN,dxSN,dxSN (3.1.108)

where Wi(x) is the weighting function of node at xi; Ni(x) and Nj(x), functions of x, are the base
functions of nodes at xi and xj, respectively; [M] is the mass matrix, [V] is the stiff matrix due to
advective transport; [D] is the stiff matrix due to dispersion/diffusion/conduction; {T} is the solution
vector of temperature; {ΦB} is the vector due to boundary conditions, which can contribute to load

 3-25

vector and/or coefficient matrix; {Φa} is the load vector due to artificial energy source; {Φr} is the
load vector due to energy in rainfall; {Φn} is the load vector due to net radiation; {Φb} is the vector
due to backward radiation, which is a nonlinear function of temperature and contributes to both the
load vector and coefficient matrix; {Φe} is the vector due to energy consumed for evaporation,
which is a nonlinear function of temperature and contributes to both the load vector and coefficient
matrix; {Φs} is the vector due to sensible heat, which is a linear function of temperature and
contributes to both the load vector and coefficient matrix; {Φc} is the vector due to chemical
reaction, which is not considered in this version, but can be added easily; {Φi} is the vector due to
interaction with subsurface exfiltraing water; {Φo1} is the vector due to interaction with overland
water via river bank 1; and {Φo2} is the vector due to interaction with overland water via river bank
2.

Approximating the time derivative term in Eq. (3.1.104) with a time-weighted finite difference, we
reduce the advective-diffusive equation and its boundary conditions to the following matrix equation

[]{ } { } { } { } { } { } { } { } { }21 ooiseb
BLTC Φ+Φ+Φ+Φ−Φ−Φ−Φ−= (3.1.109)

in which

[] [] [] []() []

{ } [] () [] []() ()[] { } { } { } { }nran
V

V

TVKDS
t

ML

VKD
t

MC

Φ+Φ+Φ+⎟
⎠
⎞

⎜
⎝
⎛ −−+−−

Δ
=

+++
Δ

=

)(11

,

θθ

θθ
 (3.1.110)

where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial
sink/sources, rainfall, and net radiation; Δt is the time step size; θ is the time weighting factor for the
dispersion and linear terms; θv is the time weighting factor for the velocity term; and {T(n)} is the
value of {T} at old time level n. The global and internal boundary (junctions, weirs, and gates)
conditions must be used to provide {ΦB} in Eq. (3.1.109). The interaction between the overland and
river/stream/canal flows must be implemented to evaluate {Φo1} and {Φo2}; and the interaction
between the subsurface and river/stream/canal flows must be implemented to calculate {Φi}. The
interactions will be addressed in Section 3.4.

For a global boundary node I, the corresponding algebraic equation from Eq. (3.1.109) is

() () BI
o
I

o
I

i
I

s
I

e
I

b
IIIIIIIIIII LTCTCTC Φ−Φ+Φ+Φ+Φ+Φ+Φ−=++ ++−−

21
11,,11, (3.1.111)

In the above equations there are two unknowns TI and ΦBI; either TI or ΦBI, or the relationship
between TI and ΦBI must be specified. The numerical implementation of these boundary conditions
is described as follows.

Direchlet boundary condition: prescribed temperature

If TI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,I-1, CI,I,
CI,I+1) and right-hand side (LI, ΦI

b, ΦI
e, ΦI

s, ΦI
i, ΦI

o1, ΦI
o2) obtained before the implementation of

boundary conditions for this equation are stored in a temporary array, then an identity equation is
created as

 3-26

DId NITT ∈= ,1 (3.1.112)

where TId is the prescribed temperature on the Dirichlet node I and ND is the number of Dirichlet
boundary nodes. This process is repeated for every Dirichlet nodes. Note it is unnecessary to
modify other equations that involving these unknowns, which was done in the previous version. By
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the
iterative solvers more robust. The final set of equations will consist of ND identity equations and (N
- ND) finite element equations for N unknowns Ti’s. After Ti’s for all nodes are solved from the
matrix equation, Eq. (3.1.111) is then used to back calculate ND ΦBI’s.

If a direct solver is used to solve the matrix equation, the above procedure will solve N Ti’s
accurately except for roundoff errors. However, if an iterative solver is used, stopping criteria must
be strict enough so that the converged solutions of N Ti’s are accurate enough to the exact solution.
With such accurate Ti’s, then can be sure that the back-calculated ND ΦBI’s are accurate.

Cauchy boundary condition: prescribed heat flux

If ΦBI is given (Cauchy flux boundary condition), all coefficients (CI,I-1, CI,I, CI,I+1) and right-hand
side (LI, ΦI

a, ΦI
r, ΦI

n, ΦI
i, ΦI

o1, ΦI
o2) obtained before the implementation of boundary conditions for

this equation are stored in a temporary array, then Eq. (3.1.111) is modified to incorporate the
boundary conditions and used to solve for TI. The modification of Eq. (3.1.111) is straightforward.
Because ΦBI is a known quantity, it contributes to the load on the right hand side. This type of
boundary conditions is very easy to implement. After Ti’s are obtained, the original Eq. (3.1.111),
which is stored in a temporary array, is used to back calculate NC ΦBI’s on flux boundaries (where
NC is the number of flux boundary nodes). These back-calculated ΦBI’s should be theoretically
identical to the input ΦBI’s. However, because of round-off errors (in the case of direct solvers) or
because of stopping criteria (in the case of iterative solvers), the back-calculated ΦBI’s will be
slightly different from the input ΦBI’s. If the differences between the two are significant, it is an
indication that the solvers have not yielded accurate solutions.

Neumann boundary condition: prescribed gradient of temperature

At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature
gradient is given. For this case, all coefficients (CI,I-1, CI,I, CI,I+1) and right-hand side (LI, ΦI

a, ΦI
r,

ΦI
n, ΦI

i, ΦI
o1, ΦI

o2) obtained before the implementation of boundary conditions for this equation are
stored in a temporary array, then Eq. (3.1.111) is modified to incorporate the boundary conditions
and used to solve for TI. For the Neumann boundary condition, ΦBI contributes to both the matrix
coefficient and load vector, thus both the coefficient matrix [C] and the load vector {L} must be
modified. Recall

NXx
Xx

H
iWWiBi x

TADNQTCW =
=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−=Φ
1

ρ (3.1.113)

Apply this equation to Node I, we have

 3-27

nbIIWWIXx
H

IIWWIBI QTCn
x
TADnQTCn

I
Φ−=

∂
∂

−≡Φ = ρρ (3.1.114)

where nI is the unit outward normal vector at the boundary node I, ΦnbI is the Neumann boundary
flux at node I. Substitution of Eq. (3.1.114) into Eq. (3.1.111), we have the modified coefficient
matrix and load vector; thus the modified Eq. (3.1.111). This modified equation is used to solve TI.
After TI is solved, the original Eq. (3.1.111) (recall the original Eq. (3.1.111) must be and has been
stored in a temporary array) is used to back-calculate ΦBI.

Variable Boundary Condition:

At the variable boundary condition Node I, the implementation of boundary conditions can be made
identical to that for a Cauchy boundary condition node if the flow is directed into the
river/stream/canal reach. If the flow is going out of the reach, the boundary condition is
implemented similar to the implementation of Neuman boundary condition with ΦnbI = 0. The
assumption of zero Neumann flux implies that a Neuman node must be far away from the
source/sink.

Junction boundary condition:

If the node IJ is an internal node that connects a junction J, then node IJ is treated as an internal
boundary node. For example, consider three reaches with three internal nodes connecting to the
junction J (Fig. 3.1-8). After applying the finite element method to Eq. (3.1.103), we have a total of
(1J + 2J + 3J) algebraic equations. The algebraic equations for Nodes 1J, 2J, and 3J can be written
based on Eq. (3.1.111)

() () 1
1

21
1

11
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1,1

1
11

1
11,1 J

o
J

o
J

i
J

s
J

e
J

b
JJJJJJJJ LTCTC Φ−Φ+Φ+Φ+Φ+Φ+Φ−=+−− (3.1.115

 () () 2
2

22
2

12
2

2
2

2
2

2
2

2
2

2
2

2
2

2
2,2

2
12

2
12,2 J

o
J

o
J

i
J

s
J

e
J

b
JJJJJJJJ LTCTC Φ−Φ+Φ+Φ+Φ+Φ+Φ−=+−− (3.1.116

() () 3
3

23
3

13
3

3
3

3
3

3
3

3
3

3
3

3
3

3
3,3

3
13

3
13,3 J

o
J

o
J

i
J

n
J

r
J

a
JJJJJJJJ LTCTC Φ−Φ+Φ+Φ+Φ+Φ+Φ−=+−− (3.1.117

where the superscript denotes the reach number and subscript denotes local node number in a reach,
for example, T1J

1 denotes the temperature at the 1J-th node in Reach 1. For a convenient discussion,
let us associate each of the unknowns, T1

1, - - T1J-1
1 to each of the 1J-1 finite element equations in

Reach 1. Similarly, we associate each of the unknowns, T1
2, - - T2J-2

2 to each of the 2J-1 finite
element equations in Reach 2 and each of the unknowns and T1

3, - - T3J-1
3 to each of the 3J-1 finite

element equations in Reach 3. The unknown, Φ1J
1, Φ2J

2, and Φ3J
3, are absent from these (1J-1 + 2J-1

+ 3J-1) equations. In other words, we can say each equation governs one unknown. However, two
unknowns, T1J

1 and Φ1J
1, appear in Eq. (3.1.115). Similarly, Equation (3.1.116) has two unknowns,

T2J
2 and Φ2J

2, and Equation (3.1.117) has two unknowns, T3J
3 and Φ3J

3. The number of unknowns,
(1J + 2J + 3J) temperatures and Φ1J

1, Φ2J
2, and Φ3J

3, is more than the number of equations, (1J + 2J +
3J) finite element equations. Three more governing equations must be set up, which can be obtained
with the assumption that the energy flux is due mainly to advection as

 3-28

()() ()()[]JJJJJWW

IJ
H

WWJ

TQsignTQsignQC

x
TADQTC

1
1

1
1

1
1

1
1

1
1

11
2
1

−++=

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−≡Φ

ρ

ρ
 (3.1.118)

()() ()()[]JJJJJWW

J
H

WWJ

TQsignTQsignQC

x
TADQTC

2
2

2
2

2
2

2
2

2
2
2

11
2
1

−++=

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−≡Φ

ρ

ρ
 (3.1.119)

()() ()()[]JJJJJWW

J
H

WWJ

TQsignTQsignQC

x
TADQTC

3
3

3
3

3
3

3
3

3
3
3

11
2
1

−++=

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−≡Φ

ρ

ρ
 (3.1.120

where Q1J
1, Q2J

2, and Q3J
3, respectively, are the volumetric flow rates from/to Nodes 1J, 2J, and 3J,

respectively, to/from the junction J [cf. Eqs. (3.1.71), (3.1.72), and (3.1.73), respectively].

Equations (3.1.118) through (3.1.120) introduce one additional unknown, TJ. One additional
equation must be set up which can be done based on the energy budget at the junction J. The rate of
change of energy at the junction J must be equal to the net energy rate from all reaches that join at J.
 This energy budget can be written as

() ∑Φ=
ρ

i

i
iJ

JJWW

dt
TVCd

 (3.1.121)

When the storage effect of the junction is small, the energy budget Eq. (3.1.121) is not employed.
Instead, the following equation, resulting from the requirement that the summation of heat flux is
equal to zero, is used

0
3i

1i

i
iJ =Φ∑

=

=

 (3.1.122)

Equations (3.1.115) through (3.1.120) and Eq. (3.1.121) or Eq. (3.1.122) constitute 7 equations for
seven unknowns, T1J

1, T2J
2, T3J

3, Φ1J
1, Φ2J

2, Φ3J
3, and TJ. If there are NJ junctions, there will be NJ

blocks of seven equations. These NJ blocks of equations should be solved iteratively along with NR
block of finite element equations where NR is the number of reaches. In other words, the whole
system of algebraic equations can be solved with block iterations. Each block of equations can be
solved directly. For example, each of NR blocks of finite element equations can be solved with an
efficient tri-diagonal matrix solver such as the Thomas algorithm. Each of the NJ blocks of seven
equations can be solved with the Gaussian direct elimination with full pivoting.

Control structure boundary condition:

 3-29

The control structures may include weirs, gates, culverts, etc. For the two internal boundary nodes
1S and 2S separated by a structure, the boundary conditions at these two nodes are given by

()() ()()[]SSWWS
H

WWS TQsignTQsignQC
x
TADQTC 2111 11

2
1

−++=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−≡Φ ρρ (3.1.123)

 ()() ()()[]SSWWS
H

WWS TQsignTQsignQC
x
TADQTC 2122 11

2
1

−++=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−≡Φ ρρ (3.1.124)

where Φ1S is the energy flux through node 1S; Φ2s is the energy flux through node 2S; and Q is the
flow rate through the structure S; sign(Q) is equal 1.0 if the flow is from node 1S to node 2S, -1.0 if
flow is from node 2S to node 1S; T1S is the temperature at node 1S; and T2S is the temperature at
node 2S.

3.1.4.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the thermal transport equation, we expand Eq.
(3.1.103) to yield following advection-dispersion equation in the Lagrangian form

A
QVwhereDKT

Dt
TD OOISV =Φ+Φ+Φ+Φ+=+ 21 (3.1.125)

in which

AC
S

AC
S

AC
Sand

AC
SSSSSS

x
TAD

xAC
D

x
QC

ACt
AC

AC
K

WW

o
hO

WW

o
hO

WW

i
hI

WW

s
h

e
h

b
h

n
h

r
h

a
hS

H

WW

WW

WW

WW

WW

ρρρ

ρ

ρ
ρ

ρ
ρ

ρ

2
2

1
1 ,,

,

1,11

=Φ=Φ=Φ

−−−++
=Φ

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂

∂
+

∂
∂

=

 (3.1.126)

To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq.
(3.1.125) along its characteristic line from xi at new time level to xi

* (Fig. 3.1-12), we obtain

() ()
() () () Ni

DDTKTK

O
i

O
i

O
i

O
i

I
i

I
i

S
i

S
ii

n
iii

n
i

n
i

nnn

n

∈Φ+Φ
Δ

+Φ+Φ
Δ

+Φ+Φ
Δ

+

Φ+Φ
Δ

++
Δ

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=⎟
⎠
⎞

⎜
⎝
⎛ Δ

+

+++

++++

,
222

222
1

2
1

*22*11*

)1()1()1(

)1()1()1(

)1(

τττ

ττττ

 (3.1.127)

where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), Φi
S(n+1), Φi

I(n+1), Φi
O1(n+1), and Φi

O2(n+1) respectively, are
the values of K, T, D, ΦS, ΦI, ΦO1, and ΦO2, respectively, at xi at new time level t = (n+1)Δt; and Ki

*,
Ti

*, Di
*, Φi

S*, Φi
I*, Φi

O1*, and Φi
O2*, respectively, are the values of K, T, D, ΦS, ΦI, ΦO1, and ΦO2,

respectively, at the location xi
*.

To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq.

 3-30

(3.1.126) as

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=ρ
x
TAD

x
ADC H

WW (3.1.128)

Applying the Galerkin finite element method to Eq. (3.1.128) at new time level (n+1), we obtain the
following matrix equation for {D(n+1)} as

[]{ } []{ } { })1()1()1()1()1(+++++ =+ nnnnn BTbDa (3.1.129)
in which

{ } { }Transposen
N

n
i

nnn DDDDD)1()1()1(
2

)1(
1

)1(.... +++++ = (3.1.130)

{ } { }Transposen
N

n
i

nnn TTTTT)1()1()1(
2

)1(
1

)1(.... +++++ = (3.1.131)

{ } { }Transposen
N

n
i

nnn BBBBB)1()1()1(
2

)1(
1

)1(.... +++++ = (3.1.132)

() ()

() N

NN

XX
XX

n

n
H

i
n

i

X

X

j
n

Hi
X

X

n
ijjnWWi

n
ij

x
TADNB

dx
dx

dN
AD

dx
dNbdxNACNa

=
=

+

+
+

+
+

+
+

∂
∂

=

== ∫∫

1

11

)1(

)1(
)1(

)1(
)1(

)1(
)1(,,ρ

 (3.1.133)

where the superscript (n+1) denotes the time level; Ni and Nj are the base functions of nodes at xi
and xj, respectively.

Lumping the matrix [a(n+1)], we can solve Eq. (3.1.129) for DI

(n+1) as follows

{ }

{ }∑

∑

∈−=

−∈−=

++
+

+
+

+

++
+

+

j

n
j

n
Ijn

II

n
n

II

n
I

j

n
j

n
Ijn

II

n
I

NIifTb
a

B
a

D

NIifTb
a

D

,111

1,..,3,21

)1()1(
)1(

)1(
1)1(

)1(

)1()1(
)1(

)1(

 (3.1.134)

where aII
(n+1) is the lumped aii

(n+1). Following the identical procedure that leads Eq. (3.1.128) to Eq.
(3.1.134), we have

{ }

{ }∑

∑

∈−=

−∈−=

j

n
j

n
Ijn

II

n
n

II

n
I

j

n
j

n
Ijn

II

n
I

NIifTb
a

B
a

D

NIifTb
a

D

,111

1,..,3,21

)()(
)(

)(
1)(

)(

)()(
)(

)(

 (3.1.135)

where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)},
respectively.

With {D(n)} calculated with Eq. (3.1.135), {D*} can be interpolated. Substituting Eq. (3.1.134) into

 3-31

Eq. (3.1.127) and implementing boundary conditions given in Section 2.1.4, we obtain a system of N
simultaneous algebraic equations N unknowns (Ti

(n+1) for i = 1, 2, .., N.) If the dispersion/diffusion
term is not included, then Eq. (3.1.127) is reduced to a set of N decoupled equations as

NibTa i
n

iii ∈=+ ,)1((3.1.136)
where

⎟
⎠
⎞

⎜
⎝
⎛ Δ

+= +)1(

2
1 n

iii Ka τ (3.1.137)

()

() () () Ni

TKb

O
i

O
i

O
i

O
i

I
i

I
i

S
i

S
iiii

nnn

n

∈Φ+Φ
Δ

+Φ+Φ
Δ

+Φ+Φ
Δ

+

Φ+Φ
Δ

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=

+++

+

,
222

22
1

*22*11*

)1()1()1(

)1(

τττ

ττ

 (3.1.138)

Equations (3.1.136) is applied to all interior nodes without having to make any modification. On a
boundary point, there two possibilities: Eq. (3.1.136) is replaced with a boundary equations when the
flow is directed into the reach or Eq. (3.1.136) is still valid when the flow is direct out of the reach.
In other words, when the thermal energy is transported out of the region at a boundary node (i.e.,
when n•V ≥ 0), a boundary condition is not needed and Equation (3.1.136) is used to compute the
Ti

(n+1). When the thermal energy is transported into the region at a node (i.e., when n•V < 0), a
boundary condition must be specified.

Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the
algebraic equation for the boundary node is obtained by applying the finite element method to the
boundary node. For this alternative approach, the implementation of boundary conditions at global
boundary nodes, internal junction nodes, and internal nodes connecting to control structures is
identical to that in the finite element approximation of solving the thermal transport equation.

3.1.5 Numerical Approximations of Salinity Transport

Two options are provided in this report to solve the salinity transport equation. One is the finite
element method and the other is the particle tracking method.

3.1.5.1 Finite Element Method. Recall the salinity transport equation is governed by Eq. (2.1.86)
which is rewritten in a slightly different form as

() 21 o
S

o
S

i
S

r
S

a
S

S MMMMM
x
SAD

xx
QSS

t
A

t
SA ++++=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

−
∂

∂
+

∂
∂

+
∂
∂ (3.1.139)

Applying the finite element method to Eq. (3.1.139), we obtain the following matrix equation

[] { } []{ } []{ } []{ }

{ } { } { } { } { } { }21 ooiTaB

SKSDSV
dt
SdM

Ψ+Ψ+Ψ+Ψ+Ψ+Ψ−=

+++
 (3.1.140)

 3-32

in which

N

N

N N N

Xx
Xx

X

X

S
ii

B
ijiij

X

X

X

X

X

X

jSi
ijj

i
ijjiij

x
TADNQSWdxN

t
ANK

dx
dx

dN
AD

dx
dNDdxQN

dx
dWVdxANNM

=
=∫

∫ ∫ ∫

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=Ψ
∂
∂

=

===

1

1

1 1 1

,

,,,

 (3.1.141)

∫∫ =Ψ=Ψ
NN X

X

r
si

X

X

r
i

a
si

a
i dxMNdxMN

11

, (3.1.142)

∫ ∫ ∫=Ψ=Ψ=Ψ
N N NX

X

X

X

X

X

o
si

o
i

o
si

o
i

i
si

i
i dxMNdxMNdxMN

1 1 1

2211 ,, (3.1.143)

where Wi is the weighting function of node at xi; Ni and Nj are the base functions of nodes at xi and
xj, respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the
stiff matrix due to dispersion/diffusion/conduction; [K] is the stiff matrix due to the linear term; {S}
is the solution vector of salinity; {ΨB} is the vector due to boundary conditions, which can
contribute to load vector and/or coefficient matrix; {Ψa} is the load vector due to artificial salt
source; {Ψr} is the load vector due to salt in rainfall; {Ψi} is the vector due to interaction with
subsurface exfiltraing water; {Ψo1} is the vector due to interaction with overland water via river
bank 1; and {Ψo2} is the vector due to interaction with overland water via river bank 2.

Approximating the time derivative term in Eq. (3.1.140) with a time-weighted finite difference, we
reduce the advective-diffusive equation and its boundary conditions to the following matrix
equation.

[]{ } { } { } { } { } { }21 ooiBLSC Ψ+Ψ+Ψ−Ψ−= (3.1.144)
in which

[] [] [] []() []

{ } [] () [] []() ()[] { } { } { }ran
V

V

SVKD
t

ML

VKD
t

MC

Ψ+Ψ+⎟
⎠
⎞

⎜
⎝
⎛ −−+−−

Δ
=

+++
Δ

=

)(11

,

θθ

θθ
 (3.1.145)

where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial
sink/sources and rainfall; Δt is the time step size; θ is the time weighting factor for the dispersion
and linear terms; θv is the time weighting factor for the velocity term; and {S(n)} is the value of {S}
at old time level n. The global and internal boundary (junctions, weirs, and gates) conditions must
be used to provide {ΦB} in Eq. (3.1.144). The interaction between the overland and
river/stream/canal flows must be implemented to evaluate {Ψo1} and {Ψo2}; and the interaction
between the subsurface and river/stream/canal flows must be implemented to calculate {Ψi}. The
interactions will be addressed in Section 3.4.

For a global boundary node I, the corresponding algebraic equation from Eq. (3.1.144) is

 3-33

() B
I

o
I

o
I

i
IIIIIIIIIII LSCSCSC Ψ−Ψ+Ψ+Ψ+=++ ++−−

21
11,,11, (3.1.146)

In the above equations there are two unknowns TI and ΦBI; either TI or ΦBI, or the relationship
between TI and B

IΨ must be specified. The numerical implementation of these boundary conditions
is described as follows.

Direchlet boundary condition: prescribed salinity

If SI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,I-1, CI,I,
CI,I+1) and right-hand side (LI, ΨI

i, ΨI
o1, ΨI

o2) obtained before the implementation of boundary
conditions for this equation are stored in a temporary array, then an identity equation is created as

DIdI NISS ∈= , (3.1.147)

where SId is the prescribed salinity on the Dirichlet node I and ND is the number of Dirichlet
boundary nodes. This process is repeated for every Dirichlet nodes. Note it is unnecessary to
modify other equations that involving these unknowns, which was done in the previous version. By
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the
iterative solvers more robust. The final set of equations will consist of ND identity equations and (N
- ND) finite element equations for N unknowns Si’s. After Si’s for all nodes are solved from the
matrix equation, Eq. (3.1.146) is then used to back calculate ND ΨI

B’s.

If a direct solver is used to solve the matrix equation, the above procedure will solve N Si’s
accurately except for roundoff errors. However, if an iterative solver is used, stopping criteria must
be strict enough so that the converged solution of N Si’s are accurate enough to the exact solution.
With such accurate Si�s, then can be sure that the back-calculated ND ΨI

B ‘s are accurate.

Cauchy boundary condition: prescribed salt flux

If ΨI

B is given (Cauchy flux boundary condition), all coefficients (CI,I-1, CI,I, CI,I+1) and right-hand
side (LI, ΨI

i, ΨI
o1, ΨI

o2) obtained before the implementation of boundary conditions for this equation
are stored in a temporary array, then Eq. (3.1.146) is modified to incorporate the boundary
conditions and used to solve for SI. The modification of Eq. (3.1.146) is straightforward. Because

B
IΨ is a known quantity, it contributes to the load on the right hand side. This type of boundary

conditions is very easy to implement. After Si�s are obtained, the original Eq. (3.1.146), which is
stored in a temporary array, isused to back calculate NC B

IΨ ’s on flux boundaries (where NC is the
number of flux boundary nodes). These back-calculated B

IΨ ’s should be theoretically identical to
the input B

IΨ ’s. However, because of round-off errors (in the case of direct solvers) or because of
stopping criteria (in the case of iterative solvers), the back-calculated will be slightly different from
the input B

IΨ ’s. If the differences between the two are significant, it is an indication that the solvers
have not yielded accurate solutions.

Neumann boundary condition: prescribed gradient of salinity

 3-34

At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature
gradient is given. For this case, all coefficients (CI,I-1, CI,I, CI,I+1) and right-hand side (LI, ΨI

i, ΨI
o1,

ΨI
o2) obtained before the implementation of boundary conditions for this equation are stored in a

temporary array, then Eq. (3.1.146) is modified to incorporate the boundary conditions and used to
solve for SI. For the Neumann boundary condition, B

IΨ contributes to both the matrix coefficient
and load vector, thus both the coefficient matrix [C] and the load vector {L} must be modified.
Recall

NXx
Xx

S
ii

B
i x

SADNQSW =
=⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

−=Ψ
1

 (3.1.148)

Apply this equation to Node I, we have

nb
IIIXx

S
III

B
I QSn

x
SADnQSn

I
Ψ−=

∂
∂

−≡Ψ = (3.1.149)

where nI is the unit outward normal vector at the boundary node I, nb
IΨ is the Neumann boundary

flux at node I. Substitution of Eq. (3.1.149) into Eq. (3.1.146), we have the modified coefficient
matrix and load vector; thus the modified Eq. (3.1.146). This modified equation is used to solve SI.
After SI is solved, the original Eq. (3.1.146) (recall the original Eq. (3.1.146) must be and has been
stored in a temporary array) is used to back-calculate ΨI

B.

Variable boundary condition:

At the variable boundary condition Node I, the implementation of boundary conditions can be made
identical to that for a Cauchy boundary condition node if the flow is directed into the
river/stream/canal reach. If the flow is going out of the reach, the boundary condition is
implemented similar to the implementation of Neuman boundary condition with nb

IΨ = 0. The
assumption of zero Neumann flux implies that a Neuman node must be far away from the
source/sink.

Junction boundary condition:

If the node IJ is an internal node that connects a junction J, then node IJ is treated as an internal
boundary node. For example, consider three reaches with three internal nodes connecting to the
junction J (Fig. 3.1-8). After applying the finite element method to Eq. (3.1.139), we have a total of
(1J + 2J + 3J) algebraic equations. The algebraic equations for Nodes 1J, 2J, and 3J can be written
based on Eq. (3.1.146)

() 1
1

21
1

11
1

1
1

1
1

1
1

1
1,1

1
11

1
11,1 J

o
J

o
J

i
JJJJJJJJ LSCSC Ψ−Ψ+Ψ+Ψ+=+−− (3.1.150)

() 2
2

22
2

12
2

2
2

2
2

2
2

2
2,2

2
12

2
12,2 J

o
J

o
J

i
JJJJJJJJ LSCSC Ψ−Ψ+Ψ+Ψ+=+−− (3.1.151)

() 3
1

23
3

13
3

3
3

3
3

3
3

3
3,3

3
13

3
13,3 J

o
J

o
J

i
JJJJJJJJ LSCSC Ψ−Ψ+Ψ+Ψ+=+−− (3.1.152)

 3-35

where the superscript denotes the reach number and subscript denotes local node number in a reach,
for example, S1J

1 denotes the salinity at the 1J-th node in Reach 1. For a convenient discussion, let
us associate each of the unknowns, S1

1, …, S1J-1
1 to each of the 1J-1 finite element equations in

Reach 1. Similarly, we associate each of the unknowns, S1
2, …, S2J-2

2 to each of the 2J-1 finite
element equations in Reach 2 and each of the unknowns and S1

3, …, S3J-1
3 to each of the 3J-1 finite

element equations in Reach 3. The unknowns, Ψ1J
1, Ψ2J

2, and Ψ3J
3, are absent from these (1J-1 + 2J-

1 + 3J-1) equations. In other words, we can say each equation governs one unknown. However, two
unknowns, S1J

1 and Ψ1J
1, appear in Equation (3.1.150). Similarly, Equation (3.1.151) has two

unknowns, S2J
2 and Ψ2J

2, and Equation (3.1.152) has two unknowns, S3J
3 and Ψ3J

3. The number of
unknowns, (1J + 2J + 3J) salinities and Ψ1J

1, Ψ2J
2, and Ψ3J

3, is more than the number of equations,
(1J + 2J + 3J) finite element equations. Three more governing equations must be set up, which can
be obtained with the assumption that the salt flux is due mainly to advection as

()() ()()[]JJJJJJ
S

J SQsignSQsignQ
x
SADQS 1

1
1

1
1

1
1

11
1
1 11

2
1

−++=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−≡Ψ (3.1.153)

()() ()()[]JJJJJJ
S

J SQsignSQsignQ
x
SADQS 2

2
2

2
2

2
2

22
2
2 11

2
1

−++=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−≡Ψ (3.1.154)

()() ()()[]JJJJJJ
S

J SQsignSQsignQ
x
SADQS 3

3
3

3
3

3
3

33
3
3 11

2
1

−++=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−≡Ψ (3.1.155)

where Q1J
1, Q2J

2, and Q3J
3, respectively, are the volumetric flow rates from/to Nodes 1J, 2J, and 3J,

respectively, to/from the junction J [cf. Eqs. (3.1.71), (3.1.72), and (3.1.73), respectively].

Equations (3.1.153) through (3.1.155) introduce one additional unknown, SJ. One additional
equation must be set up which can be done based on the energy budget at the junction J. The rate of
change of energy at the junction J must be equal to the net energy rate from all reaches that join at J.
 This energy budget can be written as

() ∑Ψ=
i

i
iJ

JJ

dt
SVd

 (3.1.156)

When the storage effect of the junction is small, the salt budget Eq. (3.1.156) is not employed.
Instead, the following equation, resulting from the requirement that the summation of salt flux is
equal to zero, is used

0
3i

1i

i
iJ =Ψ∑

=

=

 (3.1.157)

Equations (3.1.150) through (3.1.155) and Eq. (3.1.156) or Eq. (3.1.157) constitute 7 equations for
seven unknowns, S1J

1, S2J
2, S3J

3, Ψ1J
1, Ψ2J

2, Ψ3J
3, and SJ. If there are NJ junctions, there will be NJ

blocks of seven equations. These NJ blocks of equations should be solved iteratively along with NR
block of finite element equations where NR is the number of reaches. In other words, the whole
system of algebraic equations can be solved with block iterations. Each block of equations can be
solved directly. For example, each of NR blocks of finite element equations can be solved with an

 3-36

efficient tri-diagonal matrix solver such as the Thomas algorithm. Each of the NJ blocks of seven
equations can be solved with the Gaussian direct elimination with full pivoting.

Control structure boundary condition:

The control structures may include weirs, gates, culverts, etc. For the two internal boundary nodes
1S and 2S separated by a structure, the boundary conditions at these two nodes are given by

()() ()()[]SSS
S

S SQsignSQsignQ
x
SADQS 2111 11

2
1

−++=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=Ψ (3.1.158)

()() ()()[]SSS
S

S SQsignSQsignQ
x
SADQS 2222 11

2
1

−++=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=Ψ (3.1.159)

where Ψ1S is the salt flux through node 1S; Φ2s is the salt flux through node 2S; and Q is the flow
rate through the structure S; sign(Q) is equal 1.0 if the flow is from node 1S to node 2S, -1.0 if flow
is from node 2S to node 1S; S1S is the temperature at node 1S; and S2S is the temperature at node 2S.

3.1.5.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the salt transport equation, we expand Eq. (3.1.139)
to yield following advection-dispersion equation in the Lagrangian form

A
QVwhereDKS

Dt
SD OOISV =Ψ+Ψ+Ψ+Ψ+=+ 21 (3.1.160)

in which

A
M

A
M

A
Mand

A
MM

x
SAD

xA
D

x
Q

At
A

A
K

O
sO

o
sO

i
sI

r
s

a
sS

S

2
2

1
1 ,,,

1,11

=Ψ=Ψ=Ψ
+

=Ψ

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂
∂

+
∂
∂

=
 (3.1.161)

To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq.
(3.1.160) along its characteristic line from xi at new time level to xi

* (Fig. 3.1-12), we obtain

() ()
() () () Ni

DDSKSK

O
i

O
i

O
i

O
i

I
i

I
i

S
i

S
ii

n
iii

n
i

n
i

nnn

n

∈Ψ+Ψ
Δ

+Ψ+Ψ
Δ

+Ψ+Ψ
Δ

+

Ψ+Ψ
Δ

++
Δ

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=⎟
⎠
⎞

⎜
⎝
⎛ Δ

+

+++

++++

,
222

222
1

2
1

*22*11*

)1()1()1(

)1()1()1(

)1(

τττ

ττττ

 (3.1.162)

where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary
before Δt is consumed; Ki

(n+1), Si
(n+1), Di

(n+1), Ψi
S(n+1), Ψi

I(n+1), Ψi
O1(n+1), and Ψi

O2(n+1) respectively, are
the values of K, S, D, ΨS, ΨI, ΨO1, and ΨO2, respectively, at xi at new time level t = (n+1)Δt; and Ki

*,
Si

*, Di
*, Ψi

S*, Ψi
I*, Ψi

O1*, and Ψi
O2*, respectively, are the values of K, S, D, ΨS, ΨI, ΨO1, and ΨO2,

respectively, at the location xi
*.

 3-37

To compute the dispersion/diffusion terms Di
(n+1) and Di

*, we rewrite the second equation in Eq.
(3.1.161) as

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
x
SAD

x
AD S (3.1.163)

Applying the finite element method to Eq. (3.1.163) at new time level (n+1), we obtain the following
matrix equation for {D(n+1)} as

[]{ } []{ } { })1()1()1()1()1(+++++ =+ nnnnn BSbDa (3.1.164)
in which

{ } { }Transposen
N

n
i

nnn DDDDD)1()1()1(
2

)1(
1

)1(.... +++++ = (3.1.165)

{ } { }Transposen
N

n
i

nnn SSSSS)1()1()1(
2

)1(
1

)1(.... +++++ = (3.1.166)

{ } { }Transposen
N

n
i

nnn BBBBB)1()1()1(
2

)1(
1

)1(.... +++++ = (3.1.167)

()

() N

NN

xx
xx

n

n
S

i
n

i

X

X

j
n

Sin
ijj

X

X
ni

n
ij

x
SADnNB

dx
dx

dN
AD

dx
dNbdxNANa

=
=

+

+
+

+
+

+
+

∂
∂

=

== ∫∫

1

11

)1(

)1(
)1(

)1(
)1(

)1(
)1(,,

 (3.1.168)

where the superscript (n+1) denotes the time level; Ni and Nj are the base functions of nodes at xi
and xj, respectively.

Lumping the matrix [a(n+1)], we can solve Eq. (3.1.164) for DI

(n+1) as follows

{ }

{ }∑

∑

∈−=

−∈−=

++
+

+
+

+

++
+

+

j

)1n(
j

)1n(
Ij)1n(

II

)1n(
I)1n(

II

)1n(
I

j

)1n(
j

)1n(
Ij)1n(

II

)1n(
I

N,1IifSb
a

1B
a

1D

1N,..,3,2IifSb
a

1D
 (3.1.169)

where aII
(n+1) is the lumped aii

(n+1). Following the identical procedure that leads Eq. (3.1.163) to Eq.
(3.1.169), we have

{ }

{ }∑

∑

∈−=

−∈−=

j

)n(
j

)n(
Ij)n(

II

)n(
I)n(

II

)n(
I

j

)n(
j

)n(
Ij)n(

II

)n(
I

N,1IifSb
a
1B

a
1D

1N,..,3,2IifSb
a
1D

 (3.1.170)

where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)},
respectively.

 3-38

With {D(n)} calculated with Eq. (3.1.170), {D*} can be interpolated. Substituting Eq. (3.1.169) into
Eq. (3.1.162) and implementing boundary conditions given in Section 2.1.4, we obtain a system of N
simultaneous algebraic equations N unknowns (Si

(n+1) for i = 1, 2, .., N.) If the dispersion/diffusion
term is not included, then Eq. (3.1.162) is reduced to a set of N decoupled equations as

Ni,bSa i
)1n(

iii ∈=+ (3.1.171)
where

⎟
⎠
⎞

⎜
⎝
⎛ τΔ

+= +)1n(
iii K

2
1a (3.1.172)

() ()
() () Ni

SKb

O
i

O
i

O
i

O
i

i
I

i
S

i
S

iiii

nn

nn

∈Ψ+Ψ
Δ

+Ψ+Ψ
Δ

+

Ψ+Ψ
Δ

+Ψ+Ψ
Δ

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=

++

++

,
22

222
1

*22*11

*1***

)1()1(

)1()1(

ττ

τττ

 (3.1.173)

Equation (3.1.171) is applied to all interior nodes without having to make any modification. On a
boundary point, there are two possibilities: Eq. (3.1.171) is replaced with a boundary equation when
the flow is directed into the reach or Eq. (3.1.171) is still valid when the flow is direct out of the
reach. In other words, when the salt is transported out of the region at a boundary node (i.e., when
N•V ≥ 0), a boundary condition is not needed and Equation (3.1.171) is used to compute the Si

(n+1).
When the salt is transported into the region at a node (i.e., when N•V < 0), a boundary condition
must be specified.

Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the
algebraic equation for the boundary node is obtained by applying the finite element method to the
boundary node rather than the use of particle tracking. For this alternative approach, the
implementation of boundary conditions at global boundary nodes, internal junction nodes, and
internal nodes connecting to control structures is identical to that in the finite element approximation
of solving the salt transport equation.

3.2 Solving the Two-Dimensional Overland Flow Equations

As in solving the one-dimensional flow equations for river/stream/canal networks, we employ a
variety of numerical approaches to solve two-dimensional overland flow equations. For fully
dynamic wave models, we cast the governing equations in characteristic forms and solve the
governing equations with the hybrid Lagrangian-Eulerian finite element method. For diffusive wave
models, we use either the conventional finite element methods or hybrid Lagrangian-Eulerian finite
element methods. For kinematic wave models, we use semi-Lagrangian methods.

3.2.1 The Lagrangian-Eulerian Finite Element Method for Dynamic Waves

To facilitate the application of hybrid Lagrangian-Eulerian finite element method to fully dynamic
wave models, substituting A1, A2, A3, B1, B2, and B3 in Eq. (2.2.27); R1, R2, and R3 in Eq. (2.2.9); and

 3-39

Dx and Dy in (2.2.10) into Eqs. (2.2.28) through and (2.2.30), and rearranging the resulting equations,
we obtain

⊗⊗ ++−=+− SKvkKukDS
D

vDk
D

uDk xy
V

x
V

y
)1()1(

1
)1()1(

ττ
 (3.2.1)

+±
+++ +−−=+++ SKvkKukDS
D

vD
k

D
uD

k
D

cD
yx

ckV
y

ckV
x

ckV)2()2(
2

)2()2()2()2()2(2
τττ

 (3.2.2)

−±
−−− +−−=+++− SKvkKukDS
D

vD
k

D
uD

k
D

cD
yX

ckV
y

ckv
x

ckV)2()2(
3

)2()2()2()2()2(2
τττ

 (3.2.3)

in which
(1) (1) (2) (2), , S R E I
y x x y x x y y

VS S S SD k D k D D k D k D and K
h h

κ
⊗ ±

+ − +
= − = + = + (3.2.4)

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
x
vh

y
uh

yx
uh

xh
D yxxyxxx εεε1 (3.2.5)

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

=
y
vh

yx
vh

y
uh

xh
D yyyxxyy εεε1 (3.2.6)

()

()

(1)

(1)

S R E I s
x x x xo x

y

S R E I s
y y y y yo

x

M M M MZS k g
x h h

M M M MZk g
y h h

τ
ρ

τ
ρ

⊗

⎛ ⎞+ − +∂⎜ ⎟= − + +
⎜ ⎟∂⎝ ⎠

⎛ ⎞+ − +∂⎜ ⎟− − + +
⎜ ⎟∂⎝ ⎠

 (3.2.7)

() ()

()

(2)

(2)

S R E I S
x x x xo

S R E I x

S R E I s
y y y y yo

y

M M M MZgS S S S S k g
c x h h

M M M MZk g
y h h

τ
ρ

τ
ρ

+

⎛ ⎞+ − +∂⎜ ⎟= + − + + − + +
⎜ ⎟∂⎝ ⎠

⎛ ⎞+ − +∂⎜ ⎟+ − + +
⎜ ⎟∂⎝ ⎠

 (3.2.8)

()

()

(2)

(2)

S R E I s
o x x x x X

S R E I x

S R E I s
y y y y yo

y

Z M M M MgS S S S S k g
c x h h

M M M MZk g
y h h

τ
ρ

τ
ρ

−

⎛ ⎞∂ + − +
= − + − + + − + +⎜ ⎟∂⎝ ⎠

⎛ ⎞+ − +∂⎜ ⎟+ − + +
⎜ ⎟∂⎝ ⎠

 (3.2.9)

where D⊗ is the diffusive transport of the vorticity wave; ±D is the diffusive transport of the
positive and negative gravity waves; K is the decay coefficient for all three waves; and ⊗S , S+, and
S- are the sources/sinks of the vorticity, positive, and negative waves, respectively.

Integrating Eqs. (3.2.1) through (3.2.3) along their respective characteristic lines from x to x1*, x2*,

 3-40

and x3* (Fig. 3.2-1), we obtain

Fig. 3.2-1. Backward Particle Tracking along Characteristic Lines in Two Dimensions.

()()

()() () ()() ()()*
1

*
1

)1(*

1
)1()1()1(*

1

*
111

1

*
1)1(

1

*
1)1(

2
1

2
1

2
1

2
1

⊗⊗⊗⊗ ++−+−−+=

++
Δ
−

−
Δ
−

SSKvkKukKvkKukDD

SSvvkuuk

xyxy

xy ττ (3.2.10)

()()

()() () ()() ()()*
2

*

2
)2(*

2
)2()2()2(*

2

*
222

2

*
2)2(

2

*
2)2(

2

*
2

2
1

2
1

2
1

2
122

++±± +++++−+=

++
Δ
−

+
Δ
−

+
Δ
−

SSKvkKukKvkKukDD

SSvvkuukcc

yxyx

yx τττ (3.2.11)

()()

()() () ()() ()()*
3

*

3
)2(*

3
)2()2()2(*

3

*
333

3

*
3)2(

3

*
3)2(

3

*
3

2
1

2
1

2
1

2
122

−−±± +++++−+=

++
Δ
−

+
Δ
−

+
Δ
−

−

SSKvkKukKvkKukDD

SSvvkuukcc

yxyx

yx τττ (3.2.12)

where u1
*, v1

*, and Δτ1 are determined by backward tracking along the first characteristic; c2
*, u2

*,
v2

*, and Δτ2 are determined by backward tracking along the second characteristic; c3
*, u3

*, v3
*, and

Δτ3 are determined by backward tracking along the third characteristic; and all other variables with a
superscript * are determined similarly at the roots of particle tracking.

 3-41

In Eqs. (3.2.11) through (3.2.13), the primitive variables at the backward tracked locations are
interpolated with those at the global nodes and at both new and old time levels as

4837261544332211
*

1 kkkk
n

k
n

k
n

k
n

k cacacacacacacacac +++++++= (3.2.13)

4837261544332211
*

1 kkkk
n

k
n

k
n

k
n

k uauauauauauauauau +++++++= (3.2.14)

4837261544332211
*

1 kkkk
n

k
n

k
n

k
n

k vavavavavavauavav +++++++= (3.2.15)

483761544332211
*

2 jjj
n
j

n
j

n
j

n
j cbcbcjbcbcbcbcbcbc +++++++= (3.2.16)

4837261544332211
*

2 jjjj
n
j

n
j

n
j

n
j ubububcbububububu +++++++= (3.2.17)

4837261544332211
*

2 jjjj
n
j

n
j

n
j

n
j vbvbvbvbvbvbvbvbv +++++++= (3.2.18)

4837261544332211
*

3 mmmm
n

m
n

m
n

m
n

m cdcdcdcdcdcdcdcdc +++++++= (3.2.19)

4837261544332211
*

3 mmmm
n
m

n
m

n
m

n
m ududduddudududu +++++++= (3.2.20)

4837261544332211
*

3 mmmmk
n

m
n

m
n

m
n

m vdvdvdvdvdvdvdvdv +++++++= (3.2.21)

where a1 through a8, b1 through b8, and d1 through d8 are interpolation parameters, all in the ranges
of [0,1]; k1, k2, k3, and k4 are nodes of the element that the backward tracking, along the first
characteristic, stops at; j1, j2, j3, and j4 are nodes of the element that the backward tracking, along
the second characteristic, stops at; m1, m2, m3, and m4 are nodes of the element that the backward
tracking, along the third characteristic, stops at (Fig. 3.2-1). It should be noted that we may use two
given parameters to determine where to stop in the backward tracking: one is for controlling tracking
time and the other one is for controlling tracking distance. After the primitive variables at the
backward tracked points are interpolated, all other parameters (such as the decay coefficients and
source/sink terms) are functions of these variables and can be calculated.

To calculate Dx and Dy, we multiple Eqs. (3.2.5) and (3.2.6) by h to yield

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
x
vh

y
uh

yx
uh

x
hD yxxyxxx εεε (3.2.22)

y xy yx yy
u v vhD h h h

x y x y y
ε ε ε⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.2.23)

Applying the Galerkin finite element method to Eqs. (3.2.22) and (3.2.23), we obtain the following
matrix equations for Dx and Dy

[]{ } []{ } []{ } { }xx FvQCuQBDQA =++ (3.2.24)

 3-42

[]{ } []{ } []{ } { }yy FvQEuQDDQA =++ (3.2.25)
where

ij i j
R

QA N hN dR= ∫ (3.2.26)

* *0 0 0
;

00
xx

ij i j ij i j
xyxyR R

h
QB N N dR QC N N dR

hh
ε

εε
⎡ ⎤ ⎡ ⎤

= ∇ ⋅∇ = ∇ ⋅∇⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦

∫ ∫ (3.2.27)

* *
00

;
00 0

xyxy
ij i j ij i j

yyR R

hh
QD N N dR QE N N dR

h

εε
ε

⎡ ⎤⎡ ⎤
= ∇ ⋅∇ = ∇ ⋅∇⎢ ⎥⎢ ⎥

⎢ ⎥⎣ ⎦ ⎣ ⎦
∫ ∫ (3.2.28)

dBv
h

Nu
h

h
NF

ee B xy

e
a

xy

xxe
a

Me
xi ∫∑

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇⋅⎥
⎦

⎤
⎢
⎣

⎡
⋅+∇⋅⎥

⎦

⎤
⎢
⎣

⎡
⋅=

∈ 0
00

0
0

εε
ε

nn (3.2.29)

dBv
h

h
Nu

h
NF

ee B yy

xye
a

xye
a

Me
yi ∫∑

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

∇⋅
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⋅+∇⋅⎥

⎦

⎤
⎢
⎣

⎡
⋅=

∈ ε

εε
0

0

00
0

nn (3.2.30)

Lumping the matrix [QA], we can explicitly compute {Dx} and {Dy} in terms of {u} and {v}.

∑ ∑−−=
j j

jij
ii

jij
ii

xi
ii

xi vQC
QA

uQB
QA

F
QA

D 111 (3.2.31)

and

∑ ∑−−=
j j

jij
ii

jij
ii

yi
ii

yi vQE
QA

uQD
QA

F
QA

D 111 (3.2.32)

Following the identical procedure that leads Eqs. (3.2.22) and (3.2.23) to Eqs. (3.2.31) and (2.3.32),
we have

∑ ∑−−=
j j

n
j

n
ijn

ii

n
j

n
ijn

ii

n
xin

ii

n
xi vQC

QA
uQB

QA
F

QA
D)()(

)(
)()(

)(
)(

)(
)(111 (3.2.33)

and

∑ ∑−−=
j j

n
j

n
ijn

ii

n
j

n
ijn

ii

n
yin

ii

n
yi vQE

QA
uQD

QA
F

QA
D)()(

)(
)()(

)(
)(

)(
)(111 (3.2.34)

where the superscript (n) denotes that the variables are to be evaluated at the old time level n.

Similar to Eqs. (3.2.13) through (3.2.21), (Dxi

*)1, (Dxi
*)2, and (Dxi

*)3 and (Dyi
*)1, (Dyi

*)2, and (Dyi
*)3 at

the backward tracked location are interpolated with {D} and {D(n)} as

() 48372615443322111
*

xkxkxkxk
n

xk
n

xk
n

xk
n

xkxi DaDaDaDaDaDaDaDaD +++++++= (3.2.35)

 3-43

() 48372615443322112
*

xjxjxjxj
n

xj
n

xj
n

xj
n

xjxi DbDbDbDbDbDbDbDbD +++++++= (3.2.36)

() 48372615443322113
*

xmxmxmxm
n

xm
n

xm
n

xm
n

xmxi DdDdDdDdDdDdDdDdD +++++++= (3.2.37)

() 48372615443322111
*

ykykykyk
n

yk
n

yk
n

yk
n

ykyi DaDaDaDaDaDaDaDaD +++++++= (3.2.38)

() 48372615443322112
*

yjyjyjyj
n

yj
n

yj
n

yj
n

yjyi DbDbDbDbDbDbDbDbD +++++++= (3.2.39)

() 48372615443322113
*

ymymymym
n

ym
n

ym
n

ym
n

ymyi DdDdDdDdDdDdDdDdD +++++++= (3.2.40)

V + ck(2)
V

V - ck(2)

t n + 1

x2*

t n
m1 m2

m3
m4

j1 j2

j3j4 k1 k2

k3k4

Δt

x3*x1*

x

Fig. 3.2-2. Backward Tracking Along Characteristic Line to the Root in Two Dimensions

Substituting Eqs. (3.2.13) through (3.2.21) and Eqs. (3.2.35) through (3.2.40) into Eqs. (3.2.10)
through (3.2.12) and implementing boundary conditions given Section 2.2.1, we obtain a system of
3N simultaneous algebraic equations for the 3N unknowns (ui for i = 1, 2, .., N, vi for i = 1, 2, .., N,
and and ci for i = 1,2, .., N). If the eddy diffusion terms are not included and the backward tracking
is performed to reach the time level n (Fig. 3.2-2), then Eqs. (3.2.8) through (3.2.10) are reduced to a
set of N decoupled triplets of equations as

11 12 13 1

21 22 23 2

31 32 33 3

,
,

, for all interior nodes

a u a v a c B
a u a v a c B

a u a v a c B

+ + =
+ + =

+ + =
 (3.2.41)

where

 3-44

() ()

()() ()()*
1

1*
111

1

*
1

*
1

)1(1)1(**

1
)1(1)1(

1

13
)1(1)1(

12
)1(1)1(

11

22

22

,0),(
2

),(
2

⊕⊕

++

+++−

⎟
⎠
⎞

⎜
⎝
⎛ Δ

−−⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=

=
Δ

−−=
Δ

+=

SSSS

vKkkuKkkB

aKkkaKkka

xxiyy

xxyy

ττ

ττ

ττ

 (3.2.42)

() ()

() ()

()() ()()*
2

2*
222

2

*
2

*
2

*

2
)2(2)2(*

2
*
2

)2(2)2(
2

23
)2(2)2(

22
)2(2)2(

21

22

2
22

,2,
2

,
2

++ +++−

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=

=
Δ

+=
Δ

+=

SSSS

cvKkkuKkkB

aKkkaKkka

yyxx

xyxx

ττ

ττ

ττ

 (3.2.43)

() ()

() ()

()() ()()*
3

3*
333

3

*
3

*
3

*

3
)2(3)2(*

3
*
3

)2(3)2(
3

33
)2(2)2(

32
)2(2)2(

31

22

2
22

,2,
2

,
2

++ +++−

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=

−=
Δ

+=
Δ

+=

SSSS

cvKkkuKkkB

aKkkaKkka

yyxx

xyxx

ττ

ττ

ττ

 (3.2.44)

Equations (3.2.41) is applied to all interior nodes without having to make any modification. On a
boundary point, any one of the three equations in Eq. (3.2.41) must be replaced by a boundary
condition equation if its corresponding wave is directed into the region from the outside world. On
the other hand, if the corresponding wave is going out of the region, then the equation is valid.
These conditions are addressed below for four types of physical boundaries: open upstream, open
downstream, closed upstream, and closed downstream boundary nodes.

Open upstream boundary condition:

If the flow is supercritical, all three waves are directed into the region from the outside world, thus
Eq. (3.2.41) is replaced with

() up
yy

up
xx

up
n MghnvhMghnuhtqh =+⋅=+⋅=⋅

2
;

2
;

22
)(VnVnVn (3.2.45)

where V = (u, v) is the vertically averaged velocity with u as the x-component and v the y-
component; n is the outward unit vector normal to the boundary; qn

up(t) is the flow rate of the
incoming fluid from the upstream; and Mx

up and My
up, respectively, are the x- and y-components,

respectively, of the momentum-impulse from the upstream.

If the flow is subcritical, one of the gravitational wave is going out of the region, thus Eq. (3.2.41)
for the boundary point i is replaced with

 3-45

() ()

() ()

() ()
21 22 23 2

() ()
31 32 33 3

; ;

; ;

up up
n

up up
n

h q t h q t a u a v a c B
or

h q t h q t a u a v a c B

⋅ = ⋅ = + + =

⋅ = ⋅ = + + =

n V l V

n V l V

A

A

 (3.2.46)

where l is the unit vector parallel to the boundary segment and)(upqA , a function of time t, is the
flow rate parallel to the boundary.

Open downstream boundary condition:

If the flow is supercritical, all three waves are transported out of the region and Eq. (3.2.41)
remains valid for the boundary point; thus

11 12 13 1

21 22 23 2

31 32 33 3

,
,
, int

a u a v a c B
a u a v a c B
a u a v a c B for all erior nodes

+ + =
+ + =
+ + =

 (3.2.47)

If the flow is subcritical, the vorticity wave and one the gravity waves are transported out of the
region while the other gravity wave is transported into the region. Under such circumstance,
Equation (3.2.41) may be replaced with

() ()

() ()

11 12 13 1 21 22 23 3 2

11 12 13 1 31 32 33 3

; ;

; ;

dn dn
n

dn dn
n

a u a v a c B a u a v a c B h h t or h q h
or
a u a v a c B a u a v a c B h h t or h q h

+ + = + + = = ⋅ =

+ + = + + = = ⋅ =

n V

n V
 (3.2.48)

where ()hq dn
n , a function of h, is the rating curve function for the downstream boundary and hdn(t), a

function of t, is the water depth at the downstream boundary. As to which three equations in of Eq.
(3.2.48) must be used depends on the physical configuration at the boundary.

Closed upstream boundary condition:

If the flow is supercritical, all three waves are transported from the boundary into the region of
interest. Since neither flow nor momentum-impulse is transported from the outside world onto the
boundary, the following boundary condition can be used

0
2

;0
2

;0
22

=+⋅=+⋅=⋅
ghnvhghnuhh yx VnVnVn (3.2.49)

The solution of Eq. (3.2.49) is not unique. One of the possible solution is h = 0, u = 0, and v = 0. If
the flow is subcritical, one of the two gravity waves is transported out of the region, thus Equation
(3.2.41) can be replaced with

 3-46

21 22 23 3 2

31 32 33 3

0; 0;

0; 0;

h h a u a v a c B
or

h h a u a v a c B

⋅ = ⋅ = = + =

⋅ = ⋅ = = + =

n V l V

n V l V
 (3.2.50)

Closed downstream boundary condition:

At the closed downstream boundary, physical condition dictates that the normal flux should be zero.
 In the meantime, one of the gravity wave is transported out of the region. Thus, the water depth and
velocity on the boundary are determined by the internal flow dynamics and the condition of zero
normal flux. The boundary condition can be stated as

0;;

0;;

33332311131211

232322211131211

=⋅=++=++

=⋅=++=++

hBcavauaBcavaua
or

hBcavauaBcavaua

Vn

Vn
 (3.2.51)

3.2.2 Numerical Approximation of Diffusive Wave Equations

Two options are provided in this report to solve the diffusive wave flow equations. One is the finite
element method and the other is the particle tracking method.

3.2.2.1 Galerkin Finite Element Method. Recall the diffusive wave is governed by Eq. (2.2.44)
which is repeated here as

()
2

s

S R E I
H hK H S S S S
t gh

τρ
ρ ρ

⎡ ⎤⎛ ⎞∂
− ∇⋅ ∇ + ∇ Δ − = + − +⎢ ⎥⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎣ ⎦

 (3.2.52)

Applying the Galerkin finite element method to Eq. (3.2.52), we obtain the following matrix
equation

[] { } []{ } { } { } { } { } { } { }w B S R E I

d H
M S H Q Q Q Q Q Q

dt ρ+ = + + + − + (3.2.53)

in which

() ()

, ,

,
2 2

ij i j ij i j

wi i Bi i
B

M N N d S N N d

h hQ N d Q N H dB
hg hgρ ρ ρ

ρ ρ ρ ρ

ℜ ℜ

ℜ

= ℜ = ∇ ⋅ ⋅∇ ℜ

⎡ ⎤ ⎡ ⎤
= ∇ ⋅ ⋅ ∇ Δ − ℜ = ⋅ ⋅ ∇ + ∇ Δ −⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

∫ ∫

∫ ∫
s s

K

τ τK n K
 (3.2.54)

, , , Si i S Ri i R Ei i E Ii i IQ N S d Q N S d Q N S d Q N S d
ℜ ℜ ℜ ℜ

= ℜ = ℜ = ℜ = ℜ∫ ∫ ∫ ∫ (3.2.55)

where Ni and Nj are the base functions of nodes at xi and xj, respectively; n is the outward-normal
unit vector; [M] is the mass matrix, [S] is the stiff matrix, {H} is the solution vector of H, {Qρw} is
the load vector due to density and wind stress effects, {QB} is the flow rate through the boundary
nodes, {QS} is the flow rate from artificial source/sink, {QR} is the flow rate from rainfall, {QE} is
the flow rate due to evapotranspiration, and {QI} is the flow rate to infiltration. It should be noted

 3-47

that {QI} is the interaction between the overland and subsurface flows.

Approximating the time derivative term in Eq. (3.2.53) with a time-weighted finite difference, we
reduce the diffusive equation and its boundary conditions to the following matrix equation

[]{ } { } { } { }B IC H L Q Q= + + (3.2.56)
in which

[] [] [] { } [] ()[] { } { } { } { } { }(), 1 n
w S R E

M M
C S L S H Q Q Q Q

t t ρθ θ
⎛ ⎞

= + = − − + + + −⎜ ⎟
Δ Δ⎝ ⎠

 (3.2.57)

where [C] is the coefficient matrix, {L} is the load vector from initial condition, density and wind
effects, artificial sink/sources, rainfall, and evapotranspiration; Δt is the time step size; θ is the time
weighting factor; and {H(n)} is the value of {H} at old time level n. The global boundary conditions
must be used to provide {QB} in Eq. (3.2.56). The interaction between the overland and subsurface
flows must be implemented to calculate {QI}. The interactions will be addressed in Section 3.4.

For a global boundary node I, the corresponding algebraic equation from Eq. (3.2.56) is

,1 1 ,1 ,I I I I N N I II BIC H C H C H L Q Q+ + + + = + +… … (3.2.58)

In the above equation there are two unknowns HI and QBI; either HI or QBI, or the relationship
between HI and QBI must be specified. The numerical implementation of these boundary conditions
is described as follows.

Dirichlet boundary condition: prescribed water depth or stage

If HI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1, ..., CI,I, ...,
CI,N) and right-hand side (LI and QII) obtained before the implementation of boundary conditions for
this equation are stored in a temporary array, then an identity equation is created as

DIdI NIHH ∈= , (3.2.59)

where HId is the prescribed total head on the Dirichlet node I and ND is the number of Dirichlet
boundary nodes. This process is repeated for every Dirichlet nodes. Note it is unnecessary to
modify other equations that involving this unknown, which was done in the previous version. By
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the
iterative solvers more robust. The final set of equations will consist of ND identity equations and (N
- ND) finite element equations for N unknowns Hi’s. After Hi’s are obtained, Eq. (3.2.58) is then
used to back calculate ND QBI’s.

If a direct solver is used to solve the matrix equation, the above procedure will solve N Hi�s
accurately except for roundoff errors. However, if an iterative solver is used, a stopping criterion
must be strict enough so that the converged solution of N Hi’s is accurate enough to the exact
solution. With such accurate Hi’s, then one can be sure that the back-calculated ND QBI’s are
accurate.

 3-48

Flux boundary condition: prescribed flow rate

If QBI is given (flux boundary condition), all coefficients (CI,1, ..., CI,I, ..., CI,N) and the right-hand
side (LI and QII) obtained before the implementation of boundary conditions for this equation are
stored in a temporary array, then Eq. (3.2.58) is modified to incorporate the boundary conditions and
used to solve for HI. The modification of Eq. (3.2.58) is straightforward. Because QBI is a known
quantity, it contributes to the load on the right hand side. This type of boundary conditions is easy to
implement. After Hi�s are obtained, the original Eq. (3.2.58), which is stored in a temporary array,
is used to back calculate NC QBI’s on flux boundaries (where NC is the number of flux boundary
nodes). These back-calculated QBI’s should be theoretically identical to the input QBI’s. However,
because of round-off errors (in the case of direct solvers) or because of stopping criteria (in the case
of iterative solvers), the back-calculated QBI’s will be slightly different from the input QBI’s. If the
differences between the two are significant, it is an indication that the solvers have not yielded
accurate solutions.

Water depth-dependent boundary condition: prescribed rating curve

If the relationship is given between QBI and HI (rating curve boundary condition), all coefficients
(CI,1, ..., CI,I, ..., CI,N) and the right-hand side (LI and QII) obtained before the implementation of
boundary conditions for this equation are stored in a temporary array, then Eq. (3.2.58) is modified
to incorporate the boundary conditions and used to solve for HI. The rating-relationship is used to
eliminate one of the unknowns, say QBI, and the modified Eq. (3.2.58) is used to solve for, say HI.
After HI is solved, the original Eq. (3.2.58) (recall the original Eq. (3.2.58) must be and has been
stored in a temporary array) is used to back-calculate QBI.

3.2.2.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the diffusive wave equation, instead of Eq. (3.2.52),
we expand Eq. (2.2.1) to yield following diffusive wave equation in the Lagrangian form

V
S R E I

D h Kh S S S S where K
Dτ

+ = + − + = ∇⋅ V (3.2.60)

To use the semi-Lagrangian method to solve the diffusive wave equation, we integrate Eq. (3.2.60)
along its characteristic line from xi at new time level to xi

* at old time level or on the boundary (Fig.
3.2-3), we obtain

 3-49

V

V

t n + 1

t n

k1 k2

k3

k4

Δt

xi*

Δτ2

xi

xi*

Fig. 3.2-3. Backward Particle Tracking in Two Dimension.

() ()

() ()

(1) (1) * * (1) * (1) *

(1) * (1) *

1 1
2 2 2 2

2 2

n n n n
i i i i Si Si Ri Ri

n n
Ei Ei Ii Ii

K h K h S S S S

S S S S

τ τ τ τ

τ τ

+ + + +

+ +

Δ Δ Δ Δ⎛ ⎞ ⎛ ⎞+ = − + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Δ Δ
− + + +

 (3.2.61)

where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary
before Δt is consumed (Fig. 3.2-3); (1)n

iK +), (1)n
ih + , (1)n

SiS + , (1)n
RiS + , (1)n

EiS + , and (1)n
IiS + , respectively, are the

values of K, h, SS, SR, SE, and SI, respectively, at xi at new time level t = (n+1)Δt; and *
iK , *

ih , *
SiS ,

*
RiS , *

EiS , and *
IiS , respectively, are the values of K, h, SS, SR, SE, and SI, respectively, at the location

xi
*. Since the velocity V and the decay coefficient K are functions of h, this is a nonlinear hyperbolic

problem.

Equation (3.2.61) is solved iteratively to yield the water depth h, and hence the water stage H. The
iteration procedure is outlined as follows:

(i) Guess the value of h(k) at the k-th iteration, compute H.
(ii) Apply finite element method to the following equation to obtain V

()
()

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−Δ∇+∇

+Δ∇−∇−
⎥
⎦

⎤
⎢
⎣

⎡

∇+
−

=
gh

hH

gh
hH

Z
h

n
aV

s

s
O ρ

τρ
ρ

ρ
τρ

ρ

2

2

1
1

3/2

2
(3.2.62)

 (iii) Perform particle tracking to locate x* and obtain all the *-superscripted quantities.
(iv) Apply the finite element method to the following equation to obtain K

V⋅∇=K (3.2.63)

 3-50

 (v) Solve Eq. (3.2.61) along with the boundary condition to obtain new h(k+1)
(vi) Check if h(k+1) converges, if yes go to the next time step.
(vii) If h(k+1) does not converge, update h with h(k) ← ωh(k+1) + (1-ω)h(k) and repeat Steps

(i) through (vi).

When the wave is transported out of the region at a boundary node (i.e., when N•V ≥ 0), a boundary
condition is not needed. When the wave is transported into the region at a node (i.e., when N•V <
0), a boundary condition must be specified. As in the finite element method, three types of boundary
conditions may be encountered.

Dirichlet boundary condition:

For the Dirichlet boundary, the water depth is prescribed as

DId NIhh ∈= ,1 (3.2.64)

Flux boundary condition:

For the flux boundary, the flow rate is prescribed as function of time at the boundary node, from
which the boundary value is computed as

()
),1(

)1(
kn

upn

V
tq

h +
+ = (3.2.65)

where qup(t), a function of time t, is the prescribed flow rate [L3/t/L] and V(n+1,k) is the value of V at
new time and previous iteration.

Water depth-dependent boundary condition: prescribed rating curve

For the boundary where a rating curve is used to describe the relationship between water depth, h,
and volumetric flow rate, q; thus, the water depth, h, on the boundary is computed with

()hfhV nkn =++)1(),1((3.2.66)

where f(h) is the rating curve which is a function of h. Equation (3.1.91) is solved iteratively to
yield h(n+1).

3.2.3 The Semi-Lagrangian Method for Kinematic Wave

To use the semi-Lagrangian method to solve the kinematic wave equation, Eq. (2.2.50) is rewritten
in the Lagrangian form as follows

V
S R E I

D h Kh S S S S where K
Dτ

+ = + − + = ∇⋅ V (3.2.67)

in which K is the decay coefficient of the wave. Integrating Eq. (3.1.100) along its characteristic
line from xi at new time level to xi

* at old time level or on the boundary (Fig. 3.2-3), we obtain

 3-51

() ()

() ()

(1) * * (1) * (1) *

(1) * (1) *

1 1
2 2 2 2

2 2

n n n
i i i i Si Si Ri Ri

n n
Ei Ei Ii Ii

K h K h S S S S

S S S S

τ τ τ τ

τ τ

+ + +

+ +

Δ Δ Δ Δ⎛ ⎞ ⎛ ⎞+ = − + + + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Δ Δ
− + + +

 (3.2.68)

where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary
before Δt is consumed; (1)n

iK +), (1)n
ih + , (1)n

SiS + , (1)n
RiS + , (1)n

EiS + , and (1)n
IiS + , respectively, are the values of K,

h, SS, SR, SE, and SI, respectively, at xi at new time level t = (n+1)Δt; and *
iK , *

ih , *
SiS , *

RiS , *
EiS , and

*
IiS , respectively, are the values of K, h, SS, SR, SE, and SI, respectively, at the location xi

*. Because of
density and wind effects, the velocity V and the decay coefficient K are functions of h, this is a
nonlinear problem. However, because the nonlinearity due to density and wind effects are normally
very weak, Equation (3.2.68) is considered a linear hyperbolic problem with the nonlinear effects
evaluated using the values of h at previous time. This equation is used to compute the water depth,
h, at all nodes except for the upstream boundary node.

Because the wave is transported into the region at an upstream node, a boundary condition must be
specified. The flow rate is normally given as a function of time at an upstream node, from which the
boundary value is computed as

()
)1(

)1(
1 +

+ = n
i

upn

V
tq

h (3.2.69)

where qup(t), a function of time t, is the prescribed flow rate [L3/t/L].

3.2.2 Numerical Approximations of Thermal Transport

Two options are provided in this report to solve the thermal transport equation. One is the finite
element method and the other is the particle tracking method.

3.2.4.1 Finite Element Method. Recall the thermal transport equation is governed by Eq. (2.2.52)
which is rewritten in a slightly different form as

() () ()
cisebnra

H
WW

WW
WW

HHHHHHHH

ThTCT
t

hC
t
ThC

++−−−++=

∇⋅⋅∇−⋅∇+
∂

∂
+

∂
∂ Dqρρρ

 (3.2.70)

Applying the finite element method to Eq. (3.2.70), we obtain the following matrix equation

[] { } []{ } []{ } []{ }

{ } { } { } { } { } { } { } { } { }cisebnraB

TKTDTV
dt
TdM

Φ+Φ+Φ−Φ−Φ−Φ+Φ+Φ+Φ−=

+++
 (3.2.71)

in which

 3-52

()∫ ∫

∫ ∫ ∫

∇−⋅=Φ
∂

∂
=

∇∇=∇==

R B
iWWi

B
ij

WW
iij

R R R
jiijjWWiijjWWiij

dBThNTCWdRN
t

hCNK

dRNhNDdRNCWVdRhNCNM

H

H

Dqn

Dq

ρρ

ρρ

,

,,,

 (3.2.72)

∫ ∫ ∫=Φ=Φ=Φ
R R R

ni
n
iri

r
iai

a
i dRHNdRHNRHN ,, (3.2.73)

∫ ∫ ∫∫ =Φ=Φ=Φ=Φ
R R R

ci
c
i

R
si

s
iei

e
ibi

b
i dRHNdRHNdRHNdRHN ,,,, (3.2.74)

∫=Φ
R

ii
i
i dxHN (3.2.75)

where Wi is the weighting function of node at xi; Ni and Nj are the base functions of nodes at xi and
xj, respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the
stiff matrix due to dispersion/diffusion/conduction; {T} is the solution vector of temperature; {ΦB}
is the vector due to boundary conditions, which can contribute to load vector and/or coefficient
matrix; {Φa} is the load vector due to artificial energy source; {Φr} is the load vector due to energy
contained in rainfall; {Φn} is the load vector due to net radiation; {Φb} is the vector due to
backward radiation, which is a nonlinear function of temperature and contributes to both the load
vector and coefficient matrix; {Φe} is the vector due to energy consumed for evaporation, which is a
nonlinear function of temperature and contributes to both the load vector and coefficient matrix;
{Φs} is the vector due to sensible heat, which is a linear function of temperature and contributes to
both the load vector and coefficient matrix; {Φc} is the vector due to chemical reaction, which is not
considered in this version, but can be added easily; and {Φi} is the vector due to interaction with
subsurface exfiltraing water.

Approximating the time derivative term in Eq. (3.2.71) with a time-weighted finite difference, we
reduce the advective-diffusive equation and its boundary conditions to the following matrix equation

[]{ } { } { } { } { } { } { }isebBLTC Φ+Φ−Φ−Φ−Φ−= (3.2.76)
in which

[] [] [] []() []

{ } [] () [] []() ()[] { } { } { } { }nran
V

V

TVKDS
t

ML

VKD
t

MC

Φ+Φ+Φ+⎟
⎠
⎞

⎜
⎝
⎛ −−+−−

Δ
=

+++
Δ

=

)(11

,

θθ

θθ
 (3.2.77)

where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial
sink/sources, rainfall, and net radiation; Δt is the time step size; θ is the time weighting factor for the
dispersion and linear terms; θv is the time weighting factor for the velocity term; and {T(n)} is the
value of {T} at old time level n. The global boundary conditions must be used to provide {ΦB} in
Eq. (3.2.76). The interaction between the overland and subsurface flows must be implemented to
calculate {Φi}. The interactions will be addressed in Section 3.4.

For a global boundary node I, the corresponding algebraic equation from Eq. (3.2.76) is

 3-53

() B
I

i
I

S
I

e
i

b
IINNIII LTCTICTC Φ−Φ+Φ+Φ+Φ−=++++ ,1,11 (3.2.78)

In the above equations there are two unknowns TI and ΦI

B; either TI or ΦI
B, or the relationship

between TI and B
IΦ must be specified. The numerical implementation of these boundary conditions

is described as follows.

Direchlet boundary condition: prescribed temperature

If TI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1, .., CI,I, ..,
CI,N) and the right-hand side terms (LI, ΦI

b, ΦI
e, ΦI

s, ΦI
i) obtained before the implementation of

boundary conditions for this equation are stored in a temporary array, then an identity equation is
created as

DIdI NITT ∈= , (3.2.79)

where TId is the prescribed temperature on the Dirichlet node I and ND is the number of Dirichlet
boundary nodes. This process is repeated for every Dirichlet nodes. Note it is unnecessary to
modify other equations that involving this unknown, which was done in the previous version. By
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the
iterative solvers more robust. The final set of equations will consist of ND identity equations and (N
- ND) finite element equations for N unknowns Ti’s. After Ti’s for all nodes are solved from the
matrix equation, Eq. (3.2.78) is then used to back calculate ND ΦI

B’s.

If a direct solver is used to solve the matrix equation, the above procedure will solve N Ti’s
accurately except for roundoff errors. However, if an iterative solver is used, a stopping criterion
must be strict enough so that the converged solution of N Ti’s are accurate enough to the exact
solution. With such accurate Ti’s, then can be sure that the back-calculated ND ΦI

B’s are accurate.

Cauchy boundary condition: prescribed heat flux

If ΦBI is given (Cauchy flux boundary condition), all coefficients (CI,1, .., CI,I, .., CI,N) and right-hand
side terms (LI, ΦI

a, ΦI
r, ΦI

n, ΦI
i) obtained before the implementation of boundary conditions for this

equation are stored in a temporary array, then Eq. (3.2.78) is modified to incorporate the boundary
conditions and used to solve for TI. The modification of Eq. (3.2.78) is straightforward. Because ΦI

B
is a known quantity, it contributes to the load on the right hand side. This type of boundary
conditions is very easy to implement. After Ti’s are obtained, the original Eq. (3.2.78), which is
stored in a temporary array, is used to back calculate NC ΦI

B’s on flux boundaries (where NC is the
number of flux boundary nodes). These back-calculated ΦI

B’s should be theoretically identical to
the input ΦI

B’s. However, because of round-off errors (in the case of direct solvers) or because of
stopping criteria (in the case of iterative solvers), the back-calculated ΦI

B’s will be slightly different
from the input ΦI

B’s. If the differences between the two are significant, it is an indication that the
solvers have not yielded accurate solutions.

Neumann boundary condition: prescribed gradient of temperature

 3-54

At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature
gradient is given. For this case, all coefficients (CI,1, .., CI,I, .., CI,N) and right-hand side terms (LI,
ΦI

a, ΦI
r, ΦI

n, ΦI
i) obtained before the implementation of boundary conditions for this equation are

stored in a temporary array, then Eq. (3.2.78) is modified to incorporate the boundary conditions and
used to solve for TI. For the Neumann boundary condition, ΦI

B contributes to both the matrix
coefficient and load vector, thus both the coefficient matrix [C] and the load vector {L} must be
modified. Recall

()dBThNTCW
B

iWWi
B
i ∫ ∇−⋅=Φ HDqn ρ (3.2.80)

Substituting Eq. (2.2.58) into Eq. (3.2.80), we have

{ } []{ } { }
()∫ ∫=⋅=

+≡Φ

B B
nbiijWWiji

B

dBtNLBanddBqNCWnCBwhichin

LBTCB

ϕρ,
 (3.2.81)

where [CB] and {LB} are the coefficient matrix and load vector due to Neumann boundary. Adding
the I-th equation in Eq. (3.2.81) to Eq. (3.2.78), we obtained a modified equation, which can be
solved for solve TI. After TI is solved, the original Eq. (3.2.78) (recall the original Eq. (3.2.78) must
be and has been stored in a temporary array) is used to back-calculate ΦI

B.

Variable boundary condition:

At the variable boundary condition Node I, the implementation of boundary conditions can be made
identical to that for a Cauchy boundary condition node if the flow is directed into the region. If the
flow is going out of the region, the boundary condition is implemented similar to the implementation
of Neuman boundary condition with LBI = 0. The assumption of zero Neumann flux implies that a
Neuman node must be far away from the source/sink.

3.2.4.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the thermal transport equation, we expand Eq.
(3.2.70) to yield following advection-dispersion equation in the Lagrangian form

h
whereDKT

Dt
TD ISV qV =Φ+Φ+=+ (3.2.82)

in which

() ()

hC
H

hC
HHHHHH

Th
hC

DC
hCt

hC
hC

K

WW

iI

WW

scbnraS

H

WW
WW

WW

WW

WW

ρρ

ρ
ρ

ρ
ρ

ρ

=Φ
−−−++

=Φ

∇⋅⋅∇=⋅∇+
∂

∂
=

,

1,11 Dq
 (3.2.83)

To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq.
(3.2.82) along its characteristic line from xi at new time level to xi

* at old time level or on the

 3-55

boundary (Fig. 3.2-3), we obtain

() () () NiDD

TKTK

I
i

I
i

S
i

S
ii

n
i

ii
nn

i

nn

∈Φ+Φ
Δ

+Φ+Φ
Δ

++
Δ

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=⎟
⎠
⎞

⎜
⎝
⎛ Δ

+

+++

++

,
222

2
1

2
1

*)1()1(**)1(

**)1(
1

)1(

τττ

ττ

 (3.2.84)

where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), Φi
S(n+1), and Φi

I(n+1) respectively, are the values of K, T,
D, ΦS, and ΦI, respectively, at xi at new time level t = (n+1)Δt; and Ki

*, Ti
*, Di

*, Φi
S*, and Φi

I*,
respectively, are the values of K, T, D, ΦS, and ΦI, respectively, at the location xi

*.

To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq.

(3.2.83) as

()ThhDCWW ∇⋅⋅∇= HDρ (3.2.85)

Applying the Galerkin finite element method to Eq. (3.2.85) at new time level (n+1), we obtain the
following matrix equation for {D(n+1)} as

[]{ } []{ } { })1()1()1()1()1(+++++ =+ Nnnnn BTbDa (3.2.86)
in which

{ } { }Transposen
N

n
i

nnn DDDDD)1()1()1(
2

)1(
1

)1(.... +++++ = (3.2.87)

{ } { }Transpose)1n(
N

)1n(
i

)1n(
2

)1n(
1

)1n(T..T..TTT +++++ = (3.2.88)

{ } { }Transposen
N

n
i

nnn BBBB)1()1()1(
2

)1(
1

)1(.... +++++ =B (3.2.89)

() ()

()∫

∫∫
+

+
+

+
+

+
+

⋅∇⋅=

⋅∇⋅∇==

B

n
ni

n
i

R
jni

n
ijjnWW

R
i

n
ij

dBThNB

dRNhNbdRNhCNa

)1(
)1(

)1(

)1(
)1(

)1(
)1(,,

H

H

Dn

Dρ
 (3.2.90)

where the superscript (n+1) denotes the time level; N and N are the base functions of nodes at xi and
xj, respectively.

Lumping the matrix [a(n+1)], we can solve Eq. (3.2.86) for DI

(n+1) as follows

int11

intint1

)1()1(
)1(

)1(
)1(

)1(

)1()1(
)1(

)1(

poboundaryaisIifTb
a

B
a

D

poerioranisIifTb
a

D

j

n
j

n
Ijn

II

n
In

II

n
I

j

n
j

n
Ijn

II

n
I

∑

∑
++

+
+

+
+

++
+

+

−=

−=

 (3.2.91)

 3-56

where aII
(n+1) is the lumped aii

(n+1). Following the identical procedure that leads Eq. (3.2.85) to Eq.
(3.2.91), we have

int11

intint1

)()(
)(

)(
)(

)(

)()(
)(

)(

poboundaryaisIifTb
a

B
a

D

poerioranisIifTb
a

D

j

n
j

n
Ijn

II

n
In

II

n
I

j

n
j

n
Ijn

II

n
I

∑

∑

−=

−=

 (3.2.92)

where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)},
respectively.

With {D(n)} calculated with Eq. (3.2.92), {D*} can be interpolated. Substituting Eq. (3.2.91) into Eq.
(3.2.84) and implementing boundary conditions given in Section 2.2.4, we obtain a system of N
simultaneous algebraic equations N unknowns (Ti

(n+1) for i = 1, 2, .., N.) If the dispersion/diffusion
term is not included, then Eq. (3.2.84) is reduced to a set of N decoupled equations as

NibTa i
n

iii ∈=+ ,)1((3.2.93)
where

⎟
⎠
⎞

⎜
⎝
⎛ Δ

+= +)1(

2
1 n

iii Ka τ (3.2.94)

() () NiiTKb I
i

I
i

S
i

S
iiii

nn

∈Φ+Φ
Δ

+Φ+Φ
Δ

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=
++

,
222

1 ****)1()1(τττ (3.2.95)

Equation (3.2.93) is applied to all interior nodes without having to make any modification. On a
boundary point, there two possibilities: Eq. (3.2.93) is replaced with a boundary equation when the
flow is directed into the region or Eq. (3.2.93) is still valid when the flow is direct out of the region.
In other words, when the thermal energy is transported out of the region at a boundary node (i.e.,
when N•V ≥ 0), a boundary condition is not needed and Equation (3.2.93) is used to compute the
Ti

(n+1). When the thermal energy is transported into the region at a node (i.e., when N•V < 0), a
boundary condition must be specified.

Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the
algebraic equation for the boundary node is obtained by applying the finite element method to the
boundary node. For this alternative approach, the implementation of boundary conditions at global
boundary nodes is identical to that in the finite element approximation of solving the thermal
transport equation.

3.2.4 Numerical Approximations of Salinity Transport

Two options are provided in this report to solve the salinity transport equation. One is the finite
element method and the other is the particle tracking method.

3.2.5.1 Finite Element Method. Recall the salinity transport equation is governed by Eq. (2.2.60)
which is rewritten in a slightly different form as

 3-57

() () is
s

es
s

rs
x

as
s MMMMhhSS

t
h

t
Sh +−+=∇⋅⋅∇−⋅∇+

∂
∂

+
∂
∂ SDq (3.2.96)

Applying the finite element method to Eq. (3.2.96), we obtain the following matrix equation

[] { } []{ } []{ } []{ } { } { } { } { } { }ieraBSKSDSV
dt
SdM Ψ+Ψ−Ψ+Ψ+Ψ−=+++ (3.2.97)

in which

()∫ ∫

∫ ∫ ∫

∇⋅−⋅=Ψ
∂
∂

=

∇⋅⋅∇=⋅∇==

r B
ii

B
ijiij

R R R
jiijjiijjiij

dBShNSWdRN
t
hNK

dRNhNDdRNWVdxhNNM

S

S

Dqn

Dq

,

,,,

 (3.2.98)

, , , a as r rs e es i is
i i S i i s i i s i i s

R R R R

N M dR N M dR N M dR N M dRΨ = Ψ = Ψ = Ψ =∫ ∫ ∫ ∫ (3.2.99)

where Wi is the weighting function of node at xi; Ni and Nj are the base functions of nodes at xi and
xj, respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the
stiff matrix due to dispersion/diffusion/conduction; [K] is the stiff matrix due to the linear term; {S}
is the solution vector of salinity; {ΨB} is the vector due to boundary conditions, which can
contribute to load vector and/or coefficient matrix; {Ψa} is the load vector due to artificial salt
source; {Ψr} is the load vector due to salt in rainfall; {Ψe} is the vector due to evapotranspiration,
which is most likely to be zero; and {Ψi} is the vector due to interaction with subsurface exfiltraing
water.

Approximating the time derivative term in Eq. (3.2.97) with a time-weighted finite difference, we
reduce the advective-diffusive equation and its boundary conditions to the following matrix
equation.

[]{ } { } { } { }iBLSC Ψ+Ψ−= (3.2.100)
in which

[] [] [] []() []

{ } [] () [] []() ()[] { } { } { }ran
V

V

SVKD
t

ML

VKD
t

MC

Ψ+Ψ+⎟
⎠
⎞

⎜
⎝
⎛ −−+−−

Δ
=

+++
Δ

=

)(11

,

θθ

θθ
 (3.2.101)

where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial
sink/sources and rainfall; Δt is the time step size; θ is the time weighting factor for the dispersion
and linear terms; θv is the time weighting factor for the velocity term; and {S(n)} is the value of {S}
at old time level n. The global boundary conditions must be used to provide {ΨB} in Eq. (3.2.100).
The interaction between the overland and subsurface flows must be implemented to calculate {Ψi}.
The interactions will be addressed in Section 3.4.

For a global boundary node I, the corresponding algebraic equation from Eq. (3.2.100) is

 3-58

B
I

i
IINNIIIII LSCSCSC Ψ−Ψ+=++++ ,,11, (3.2.102)

In the above equations there are two unknowns TI and ΨI

B; either TI or ΨI
B, or the relationship

between TI and ΨI
B must be specified. The numerical implementations of these boundary conditions

are described as follows.

Dirichlet boundary condition: prescribed salinity

If SI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1, .., CI,I, ..,
CI,N) and the right-hand side terms (LI and ΨI

i) obtained before the implementation of boundary
conditions for this equation are stored in a temporary array, then an identity equation is created as

DIdI NISS ∈= , (3.2.103)

where SId is the prescribed salinity on the Dirichlet node I and ND is the number of Dirichlet
boundary nodes. This process is repeated for every Dirichlet nodes. Note it is unnecessary to
modify other equations that involving this unknown, which was done in the previous version. By
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the
iterative solvers more robust. The final set of equations will consist of ND identity equations and (N
- ND) finite element equations for N unknowns Si’s. After Si’s for all nodes are solved from the
matrix equation, Eq. (3.2.100) is then used to back calculate ND ΨI

B’s.

If a direct solver is used to solve the matrix equation, the above procedure will solve N Si’s
accurately except for roundoff errors. However, if an iterative solver is used, a stopping criterion
must be strict enough so that the converged solution of N Si’s are accurate enough to the exact
solution. With such accurate Si’s, then can be sure that the back-calculated ND ΨBI’s are accurate.

Cauchy boundary condition: prescribed salt flux

If ΨI

B is given (Cauchy flux boundary condition), all coefficients (CI,1, .., CI,I, .., CI,N) and the right-
hand side terms (LI and ΨI

i) obtained before the implementation of boundary conditions for this
equation are stored in a temporary array, then Eq. (3.2.102) is modified to incorporate the boundary
conditions and used to solve for SI. The modification of Eq. (3.2.102) is straightforward. Because
ΨI

B is a known quantity, it contributes to the load on the right hand side. This type of boundary
conditions is very easy to implement. After Si’s are obtained, the original Eq. (3.2.102), which is
stored in a temporary array, is used to back calculate NC ΨI

B’s on flux boundaries (where NC is the
number of flux boundary nodes). These back-calculated ΨI

B’s should be theoretically identical to
the input ΨI

B’s. However, because of round-off errors (in the case of direct solvers) or because of
stopping criteria (in the case of iterative solvers), the back-calculated ΨI

B’s will be slightly different
from the input ΨI

B’s. If the differences between the two are significant, it is an indication that the
solvers have not yielded accurate solutions.

Neumann boundary condition: prescribed gradient of salinity

At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature

 3-59

gradient is given. For this case, all coefficients (CI,, .., CI,I, .., CI,N) and the right-hand side terms (LI
and ΨI

i) obtained before the implementation of boundary conditions for this equation are stored in a
temporary array, then Eq. (3.2.102) is modified to incorporate the boundary conditions and used to
solve for SI. For the Neumann boundary condition, ΨI

B contributes to both the matrix coefficient
and load vector, thus both the coefficient matrix [C] and the load vector {L} must be modified.
Recall

()∫ ∇−⋅=Ψ
B

S
ii

B
i dBShDNSW qn (3.2.104)

Substituting Eq. (2.2.66) into Eq. (3.2.104), we have

{ } []{ } { }
()∫ ∫ Ψ=⋅=

+≡Ψ

B B
nbiijiji

B

dBtNLBanddBNWCBwhichin

LBSCB

qn,
 (3.2.105)

where [CB] and {LB} are the coefficient matrix and load vector due to Neumann boundary. Adding
the I-th equation in Eq. (3.2.105) to Eq. (3.2.102), we obtained a modified equation, which can be
solved for solve SI. After SI is solved, the original Eq. (3.2.102) (recall the original Eq. (3.2.102)
must be and has been stored in a temporary array) is used to back-calculate ΨI

B.

Variable boundary condition:

At the variable boundary condition Node I, the implementation of boundary conditions can be made
identical to that for a Cauchy boundary condition node if the flow is directed into the
river/stream/canal reach. If the flow is going out of the reach, the boundary condition is
implemented similar to the implementation of Neuman boundary condition with ΨI

nb = 0. The
assumption of zero Neumann flux implies that a Neuman node must be far away from the
source/sink.

3.2.5.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the salt transport equation, we expand Eq. (3.2.96) to
yield following advection-dispersion equation in the Lagrangian form

h
whereDKS

Dt
SD ISV qV =Ψ+Ψ+=+ (3.2.106)

in which

() ()1 1 1, , ,
as rs es is

S S Is s s sM M M MhK D h S
h t h h h h

+ −∂
= + ∇⋅ = ∇⋅ ⋅∇ Ψ = Ψ =

∂
q D (3.2.107)

To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq.
(3.2.106) along its characteristic line from xi at new time level to xi

* at old time level or on the
boundary (Fig. 3.2-3), we obtain

 3-60

()

() () Ni

DDSKSK

I
i

I
i

S
i

S
i

i
n

iii
n

i
n

i

nn

∈Ψ+Ψ
Δ

+Ψ+Ψ
Δ

+

+
Δ

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=⎟
⎠
⎞

⎜
⎝
⎛ Δ

+

++

+++

,
22

22
1

2
1

**

*)1(**)1()1(

)1()1(ττ

τττ

 (3.2.108)

where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), Ψi
S(n+1), and Ψi

I(n+1) respectively, are the values of K, T,
D, ΨS, and ΨI, respectively, at xi at new time level t = (n+1)Δt; and Ki

*, Ti
*, Di

*, Ψi
S*, and Ψi

I*,
respectively, are the values of K, T, D, ΨS, and ΨI, respectively, at the location xi

*.

To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq.

(3.2.107) as

()ShhD S ∇⋅⋅∇= D (3.2.109)

Applying the Galerkin finite element method to Eq. (3.2.109) at new time level (n+1), we obtain the
following matrix equation for {D(n+1)} as

[]{ } []{ } { })1()1()1()1()1(+++++ =+ nnnnn BSbDa (3.2.110)
in which

{ } { }Transposen
N

n
i

nnn DDDDD)1()1()1(
2

)1(
1

)1(.... +++++ = (3.2.111)

{ } { }Transposen
N

n
i

nnn SSSSS)1()1()1(
2

)1(
1

)1(.... +++++ = (3.2.112)

{ } { }Transposen
N

n
i

nnn BBBBB)1()1()1(
2

)1(
1

)1(.... +++++ = (3.2.113)

() ()

()∫

∫ ∫
+

+
+

+
+

+
+

⋅∇⋅=

⋅∇⋅∇==

B

n
n

S
i

n
i

R R
jn

S
i

n
ijjni

n
ij

dBShNB

dRNhNbdRNhNa

)1(
)1(

)1(

)1(
)1(

)1(
)1(,,

Dn

D
 (3.2.114)

where the superscript (n+1) denotes the time level; N and N are the base functions of nodes at xi and
xj, respectively.

Lumping the matrix [a(n+1)], we can solve Eq. (3.2.110) for DI

(n+1) as follows

∑

∑
++

+
+

+
+

++
+

+

−=

−=

j

n
j

n
Ijn

II

n
In

II

n
I

j

n
j

n
Ijn

II

n
I

poboundaryaisIifSb
a

B
a

D

poerioranisIifSb
a

D

int11

intint1

)1()1(
)1(

)1(
)1(

)1(

)1()1(
)1(

)1(

 (3.2.115

where aII
(n+1) is the lumped aii

(n+1). Following the identical procedure that leads Eq. (3.2.109) to Eq.

 3-61

(3.2.115), we have

∑

∑

−=

−=

j

n
j

n
Ijn

II

n
In

II

n
I

j

n
j

n
Ijn

II

n
I

poboundaryaisIifSb
a

B
a

D

poerioranisIifSb
a

D

int11

intint1

)()(
)(

)(
)(

)(

)()(
)(

)(

 (3.2.116)

where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)},
respectively.

With {D(n)} calculated with Eq. (3.2.116), {D*} can be interpolated. Substituting Eq. (3.2.115) into
Eq. (3.2.108) and implementing boundary conditions given in Section 2.2.5, we obtain a system of N
simultaneous algebraic equations N unknowns (Si

(n+1) for i = 1, 2, .., N.) If the dispersion/diffusion
term is not included, then Eq. (3.2.108) is reduced to a set of N decoupled equations as

NibSa i
n

iii ∈=+ ,)1((3.2.117)
where

⎟
⎠
⎞

⎜
⎝
⎛ Δ

+= +)1(

2
1 n

iii Ka τ (3.2.118)

() () NiSKb I
i

I
i

S
i

S
iiii

nn

∈Ψ+Ψ
Δ

+Ψ+Ψ
Δ

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=
++

,
222

1 ****)1()1(τττ (3.2.119)

Equation (3.2.117) is applied to all interior nodes without having to make any modification. On a
boundary point, there two possibilities: Eq. (3.2.117) is replaced with a boundary equation when the
flow is directed into the region or Eq. (3.2.117) is still valid when the flow is direct out of the region.
 In other words, when the salt is transported out of the region at a boundary node (i.e., when N•V ≥
0), a boundary condition is not needed and Equation (3.2.117) is used to compute the Si

(n+1). When
the salt is transported into the region at a node (i.e., when N•V < 0), a boundary condition must be
specified.

Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the
algebraic equation for the boundary node is obtained by applying the finite element method to the
boundary node. For this alternative approach, the implementation of boundary conditions at global
boundary nodes is identical to that in the finite element approximation of solving the salt transport
equation.

3.3 Solving the Three-Dimensional Subsurface Flow Equations

The Richards equation is discretized with the Galerkin finite element method in space and with the
finite difference method in time. In our model, the steady-state version of subsurface flow equations
can be solved for determining the initial subsurface flow condition when boundary conditions are
complicated and/or unsaturated zones are taken into account. The details of solving the Richards

 3-62

equation and the salt transport has been described in detail elsewhere (Yeh et al, 1994; Lin et al.,
1997). The numerical solution of thermal transport equations follows similar to that for two-
dimensional thermal equation in overland flow. These numerical solutions are summarized below
for the completeness of this report.

3.3.1 Finite Element Approximations of the Flow Equations

Finite element disretization in space. When using the finite element method, the referenced
pressure head in Eq. (2.3.1) is approximated by:

() ()∑
=

=≈
N

j
jj zyxNthhh

1
,,ˆ (3.3.1)

where hj and Nj are the amplitude of h and the base function, respectively, at nodal point j and N is
the total number of nodes. After defining a residual and forcing the weighted residual to zero, the
flow equation, Eq.(2.3.1), is approximated as:

() ()

() dBNzhzdRNdRqN

hdRNN
dt

dh
dRFNN

i
B ooR

i
R o

i

j
R

ji
j

j
R o

i

∫∫∫

∫∫

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇+∇⋅⋅+∇⋅⋅∇−=

⎥
⎦

⎤
⎢
⎣

⎡
∇⋅⋅∇+⎥

⎦

⎤
⎢
⎣

⎡

ρ
ρ

ρ
ρ

ρ
ρ

ρ
ρ

KnK

K

*
 (3.3.2)

In matrix form, Eq.(3.3.2) is written as:

[] []{ } { } { } { }BGQhS
dt
dhM ++=+

⎭
⎬
⎫

⎩
⎨
⎧ (3.3.3)

where {dh/dt} and {h} are the column vectors containing the values of dh/dt and h, respectively, at
all nodes; [M] is the mass matrix resulting from the storage term; [S] is the stiff matrix resulting
from the action of conductivity; {Q}, {G}, and {B} are the load vectors from the internal
source/sink, gravity force, and boundary conditions, respectively. The mass matrix, [M], and stiff
matrix, [S], are defined as:

() ()∑ ∫ ∑ ∫
∈ ∈

∇⋅⋅∇==
e e e e

Me R Me R

ee
ij

e

o

e
ij dRNNSanddRFNNM βαβα ρ

ρ K (3.3.4)

where Re is the region of element e, Me is the set of elements that have a local side α-β coinciding
with the global side i-j, and Nα

e is the α-th local base function of element e. The three load vectors,
{Q}, {G}, and {B}, are defined as:

()∑ ∫ ∑ ∫
∈ ∈

∇⋅⋅∇−==
e e e e

Me R Me R o

e
i

o

e
i dRzNGqdRNQ

ρ
ρ

ρ
ρ

αα K, (3.3.5)

 3-63

dBzhKnNB
se e

Ne B o

e
i ∑ ∫

∈
⎥
⎦

⎤
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

∇+∇⋅−⋅−=
ρ
ρ

α (3.3.6)

where Nse is the set of boundary segments that have a local node α coinciding with the global node i,
and Be is the length of boundary segment e.

Finite element evaluation of Darcy velocity. In most numerical models, Darcy velocity components
are calculated numerically by taking the derivatives of the simulated h as

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇+∇⋅−= zhN jj

oρ
ρKV (3.3.7)

The above formulation results in velocity field which is not continuous at element boundaries and
nodal points if the variation of h is other than linear or constants. The alternative approach would be
to apply the Galerkin finite element method to Eq. (2.3.3), thus one obtains

[]{ } { } []{ } { } []{ } { }zzyyxx DVUDVUDVU === ;; (3.3.8)

where the matrix [U] and the load vectors {Dx}, {Dy}, and {Dz} are given by

∑ ∫ ∑ ∫
∈ ∈ ⎭

⎬
⎫

⎩
⎨
⎧

∇+∇⋅⋅==
e e e e

Me R Me R

oe
xi

ee
ij dRzhNDdRNNU ,,

ρ
ρ

αβα Ki (3.3.9)

∑ ∫ ∑ ∫
∈ ∈ ⎭

⎬
⎫

⎩
⎨
⎧

∇+∇⋅⋅=
⎭
⎬
⎫

⎩
⎨
⎧

∇+∇⋅⋅−=
e e e e

Me R Me R

oe
zi

oe
yi dRzhNDdRzhND

ρ
ρ

ρ
ρ

αα KkKj , (3.3.10)

where Vx, Vy, and Vz are the Darcy velocity components along the x-, y-, and z-directions,
respectively and i, j, and k are the unit vector along the x-, y-, and z-coordinates, respectively.

Finite difference discretization in time. We derive a matrix equation by integrating Eq. (3.3.3). An
important advantage in finite element approximation over the finite difference approximation is the
inherent ability to handle complex boundaries and obtain the normal derivatives therein. In the time
dimension, such advantages are not evident. Thus, finite difference methods are typically used in
the approximation of the time derivative. Two time-marching methods are adopted in the present
model.

The first one is the time weighted method written as:

[] { } { }() []{ } ()[]{ } { } { } { }BGQhShShh
t

M
tttttt ++=−++−

Δ Δ+Δ+ ωω 1 (3.3.11)

where [M], [S], {Q}, {G}, and {B} are evaluated at (t + ωΔt). In the Crank-Nicolson centered-in-
time approach ω = 0.5, in the backward-difference (implicit difference) ω = 1.0, and in the forward-
difference (explicit scheme) ω = 0.0. The central-Nicolson algorithm has a truncation error of
O(Δt2), but its propagation-of-error characteristics frequently lead to oscillatory nonlinear instability.

 3-64

 Both the backward-difference and forward-difference have a truncation error of O(Δt). The
backward-difference is quite resistant to oscillatory nonlinear instability. On the other hand, the
forward difference is only conditionally stable even for linear problems, not to mention nonlinear
problems.

In the second method, the values of unknown variables are assumed to vary linearly with time during
the time interval, Δt. In this mid-difference method, the recurrence formula is written as:

[] [] { } []{ } { } { } { }BGQhM
t

hSM
t ttt ++=

Δ
−⎟

⎠
⎞

⎜
⎝
⎛ +

Δ Δ+
22

2/ (3.3.12)

and
{ } { } { } ,2 2/ ttttt hhh −= Δ+Δ+ (3.3.13)

where [M], [S], {Q}, and {B} are evaluated at (t+Δt/2).

Equations (3.3.11) and (3.3.12) can be written as a matrix equation

[]{ } { } { },BLhA += (3.3.14)

where [A] is the assembled coefficient matrix, {h} is the unknown vector to be found and represents
the values of discretized pressure field at new time, {L} is the load vector due to initial conditions
and all types of sources/sinks, and {B} is the load vector due to boundary conditions including the
global boundary and media-interface boundaries. Take for example, Eq. (3.3.11) with ω = 1.0, [C]
and {L} represent the following:

[] [] [] { } []{ } { } { }GQh
t

MLandS
t

MA t ++
Δ

=+
Δ

= (3.3.15)

where {h}t is the vector of the discretized pressure field at previous time.

Mass lumping. Referring to the mass matrix, [M], one may recall that this is a unit matrix if the
finite difference formulation is used in spatial discretization. Hence, by proper scaling, the mass
matrix can be reduced to the finite-difference equivalent by lumping (Clough 1971). In many cases,
the lumped mass matrix would result in better solution, in particular, if it is used in conjunction with
the central or backward-difference time marching (Yeh and Ward 1980). Under such circumstances,
it is preferred to the consistent mass matrix (mass matrix without lumping). Therefore, options are
provided for the lumping of the matrix [M]. More explicitly, [M] will be lumped according to:

ijifMandijifdRFNNM ij
Mee

N

R

e

o

e
ij

e

e

≠==⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∑ ∑ ∫

=

0
1ε β

βα ρ
ρ (3.3.16)

Implementation of global Boundary Conditions. For any interior node I, its algebraic equation is
obtained by the I-th row of Eq. (3.3.14) as

INNIIIII LhAhAhA =++++ ,,11, …… (3.3.17)

 3-65

Note that BI is absent from Eq. (3.3.17) for all interior nodes. For the purpose of discussion, one
may consider Eq. (3.3.17) to correspond the unknown hI (one equation, one unknown). For any
boundary node I, the corresponding algebraic equation from Eq. (3.3.14) is

IINNIIIII BLhAhAhA +=++++ ,,11, …… (3.3.18)

In the above equation there are two unknowns hI and BI; either hI or BI, or the relationship between
hI and BI must be specified. Before the implementation of global boundary and media-interface
boundary conditions, the coefficient matrix (AI,1, .., AI,I, .., AI,N) and the right hand load term (LI)
must be stored in a temporary array. Then Eq. (3.3.18) is modified with the implementation of
boundary conditions. After the implementation, the modified equations are solved for the primary
unknown hI’s. The final step is to back calculate BI’s using unmodified Eq. (3.3.18).

The global and interface (river-subsurface media interface or overland-subsurface media interface)
conditions must be used to provide {B} for all boundary nodes in Eq. (3.3.18). The interface
boundary condition will be addressed in Sub-sections 3.4.2 through 3.4.4. The global boundary
conditions are addressed below.

Dirichlet boundary condition: prescribed pressure head

For a Dirichlet node I, we simply rewrite Eq. (3.3.18) as

dI hh = (3.3.19)

which is obtained by modifying both the corresponding coefficient matrix and load vector as

dIINIIIIIIII hBLandAAAAA =+===== ++− 0..,,0,1,0..,,0 ,1,1,1,1, (3.3.20)

Thus, it is seen that for a Dirichlet node, both the matrix coefficient and the load vector are modified.

Cauchy boundary condition: prescribed total flux

For the Cauchy boundary condition given by Eq.(2.3.7), we simply substitute Eq.(2.3.7) into
Eq.(3.3.6) to yield the value of BI for the Cauchy node I:

∫−=
cB

c
o

II dBqNB ,
ρ
ρ (3.3.21)

Thus, the modification of Eq. (3.3.18) is to simply add BI to LI.

Neumann boundary condition: prescribed gradient flux

For the Neumann boundary condition given by Eq.(2.3.6), we substitute Eq.(2.3.6) into Eq.(3.3.6) to
yield the value of BI for the Neumann node I:

 3-66

dBqzNB n
o

II ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∇⋅⋅= ∫ ρ

ρKn (3.3.22)

If the hydraulic conductivity is evaluated using the value of pressure head from previous iteration,
then this boundary condition only contribute to the modification of the load vector in Eq. (3.3.18).
Therefore, the modification of Eq. (3.3.18) is to simply add BI to LI.

Variable boundary condition: Dirichlet or Cauchy boundary condition

The implementation of variable-type boundary condition is more involved. During the iteration of
boundary conditions on the variable boundary, one of Eqs.(2.3.9) through (2.3.12) is used at a node.
 If either Eq.(2.3.10) or (2.3.13) is used, we substitute it into Eq.(3.3.6) to yield the value of BI for
the variable node I:

∫∫ −=−=
VV B

e
o

I
B

Ip
o

II dBqNBordBqNB
ρ
ρ

ρ
ρ , (3.3.23)

which is independent of the pressure head h. Thus, if Eq. (2.3.10) or (2.3.13) is chosen during the
iterative process, the implementation of the boundary condition is to simply add BI to LI in Eq.
(3.3.8) which is the corresponding algebraic equation for boundary node I. On the other hand, if Eq.
(2.3.9), (2.3.11), or (2.3.12) is chosen, we override Eq. (3.3.8) with an identity equation as in the
implementation of Dirichlet boundary conditions:

,1 , 1 , , 1 ,0, .., 0, 1, 0, .., 0
. (2.3.9)

. (2.3.11)

. (2.3.12)

I I I I I I I I N

I I p

I I p

I I m

A A A A A and
L B h if Eq is used or

L B h if Eq is used or

L B h if Eq is used

− += = = = =

+ =

+ =

+ =

 (3.3.24)

River boundary condition:

For the the river boundary condition given by Eq.(2.3.8), we simply substitute Eq.(2.3.8) into
Eq.(3.3.6) to yield the following integrals:

∫∫ ==
rr B

J
R

R

o
I

B
JIR

R

R

o
II dBJ

b
KNBanddBh

b
KNB

ρ
ρ

ρ
ρ

, (3.3.25)

The integrals BI and BI,J , respectively, are added to LI and subtracted from AI,J, respectively, in Eq.
(3.3.18) to complete the modification of this algebraic equation for the node I.

After the incorporation of boundary conditions, we obtain the following matrix equation

[]{ } { } [] [] [] { } { } { }[]BLRandBACwhereRhC +=+== (3.3.26)

where [C] is the final coefficient matrix; {R} is the final right-hand side vector; and [B] and {B} the

 3-67

coefficient matrix and load vector contributed from boundary conditions. For saturated-unsaturated
flow simulations, [C] and {R} are highly nonlinear functions of the pressure head {h}.

Solution of the matrix equation. Equation (3.3.26) is in general a banded sparse matrix equation. It
may be solved numerically by either direct method or iteration methods. In direct methods, a
sequence of operation is performed only once. This would result in an exact solution except for
round-off error. In this method, one is concerned with the efficiency and magnitude of round-off
error associated with the sequence of operations. On the other hand, in an iterative method, one
attempts to the solution by a process of successive approximations. This involves in making an
initial guess, then improving the guess by some iterative process until an error criterion is obtained.
Therefore, in this technique, one must be concerned with convergence, and the rate of convergence.
The round-off errors tend to be self-corrected.

For practical purposes, the most advantages of direct method are: (1) the efficient computation when
the bandwidth of the matrix [C] is small, and (2) the fact that no problem of convergency is
encountered when the matrix equation is linear or less severity in convergence than iterative
methods even when the matrix equation is nonlinear. The most disadvantages of direct methods are
the excessive requirements on CPU storage and CPU time when a large number of nodes is needed
for discretization. On the other hand, the most advantages of iterative methods are the efficiencies in
terms of CPU storage and CPU time when large problems are encountered. Their most
disadvantages are the requirements that the matrix [C] must be well conditioned to guarantee a
convergent solution. For three dimensional problems, the bandwidth of the matrix is usually large,
thus the direction solution method is not practical. Only the iterative methods are implemented in
the three-dimensional flow module of WASH123D. Four iteration methods are used in solving the
linearized matrix equation: (1) block iteration, (2) successive point iteration, (3) incomplete
Cholesky preconditioned conjugate gradient method, and (4) algebraic multigrid method.

The matrix equation, Eq. (3.326), is nonlinear because both the hydraulic conductivity and the water
capacity are functions of the pressure head h. To solve the nonlinear matrix equation, two
approaches can be taken: (1) the Picard method and (2) the Newton-Ralphson method. The Newton-
Ralphson method has a second order of convergent rate and is very robust. However, the Newton-
Ralphson method would destroy the symmetrical property of the coefficient matrix resulting from
the finite element approximation. As a result the solution of the linearized matrix equation requires
extra care. Many of the iterative methods will not warrant a convergent solution for the non-
symmetric linearized matrix equation. Thus, the Picard method is used in this report to solve the
nonlinear problems.

In the Picard method, an initial estimate is made of the unknown {h}. Using this estimate, we then
compute the coefficient matrix [C] and solve the linearized matrix equation by the method of linear
algebra. The new estimate is now obtained by the weighted average of the new solution and the
previous estimate:

{ } { } (){ }kk hhh ωω −+=+ 11((3.3.27)

where {h(k+1)} is the new estimate, {hk} is the previous estimate, {h} is the new solution, and ω is the
iteration parameter. The procedure is repeated until the new solution {h} is within a tolerance error.

 3-68

 If ω is greater than or equal to 0 but is less than 1, the iteration is under-relaxation. If ω = 1, the
method is the exact relaxation. If ω is greater than 1 but less than or equal to 2, the iteration is
termed over-relaxation. The under-relaxation should be used to overcome cases when
nonconvergency or the slow convergent rate is due to fluctuation rather than due to "blowup"
computations. Over-relaxation should be used to speed up convergent rate when it decreases
monotonically.

In summary, there are 16 optional numerical schemes here to deal with as wide a range of problems
as possible. These are the combinations of: (1) two ways of treating the mass matrix (lumping and
no-lumping); (2) two ways of approximating the time derivatives (time-weighting and mid-
difference), and (3) four ways of solving the linearized matrix equation.

3.3.2 Numerical Approximations of Thermal Transport Equations

Two options are provided in this report to solve the thermal transport equation. One is the finite
element method and the other is the particle tracking method.

3.3.2.1 Finite Element Method. Recall the thermal transport equation is governed by Eq. (2.3.14)
that is rewritten in a slightly different form as

() ()

() () Ca
WW

mbWW
mbWW

HHThTC

T
t

CC
t
TCC

+=∇⋅⋅∇−⋅∇+
∂

+∂
+

∂
∂

+

HDVρ

ρθρρθρ
 (3.3.28)

Applying the finite element method to Eq. (3.3.28), we obtain the following matrix equation

[] { } []{ } []{ } []{ } { } { } { }CaBTKTDTV
dt
TdM Φ+Φ+Φ−=+++ (3.3.29)

in which
()

()

()dBTNTCW

dRN
t

CCNKdRNND

dRNCWVdRNCCNM

B
iWWi

B
i

R
j

mbWW
iij

R
jiij

R R
jWWiijjmbWWiij

∫

∫∫

∫ ∫

∇−⋅=Φ

∂
+∂

=∇⋅∇=

∇=+=

H

H

DVn

D

V

ρ

ρθρ

ρρθρ

,,

,,

 (3.3.30)

∫ ∫ ∫=Φ=Φ=Φ
R R R

Ci
C
iri

r
iai

a
i dRHNdRHNRHN ,, (3.3.31)

where Wi is the weighting function of node xi; Ni and Nj are the base functions of nodes xi and xj,
respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the stiff
matrix due to dispersion/diffusion/conduction; {T} is the solution vector of temperature; {ΦB} is the
vector due to boundary conditions, which can contribute to load vector and/or coefficient matrix;
{Φa} is the load vector due to artificial energy source; {Φr} is the load vector due to energy
contained in rainfall; and {Φc} is the vector due to chemical reaction, which is not considered in this

 3-69

version, but can be added easily.

Approximating the time derivative term in Eq. (3.3.29) with a time-weighted finite difference, we
reduce the advective-diffusive equation and its boundary conditions to the following matrix equation

[]{ } { } { }BLTC Φ−= (3.3.32)
in which

[] [] [] []() []

{ } [] () [] []() ()[] { } { } { }ran
V

V

TVKDS
t

ML

VKD
t

MC

Φ+Φ+⎟
⎠
⎞

⎜
⎝
⎛ −−+−−

Δ
=

+++
Δ

=

)(11

,

θθ

θθ
 (3.3.33)

where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial
sink/sources, rainfall, and net radiation; Δt is the time step size; θ is the time weighting factor for the
dispersion and linear terms; θv is the time weighting factor for the velocity term; and {T(n)} is the
value of {T} at old time level n. The global boundary conditions must be used to provide {ΦB} in
Eq. (3.3.32).

For a global boundary node I, the corresponding algebraic equation from Eq. (3.3.32) is

B
IINNIIIII LTCTCTC Φ−=++++ ,,11 (3.3.34)

In the above equations there are two unknowns TI and ΦI

B; either TI or ΦI
B, or the relationship

between TI and ΦI
B must be specified. The numerical implementation of these boundary

conditions is described as follows.

Direchlet boundary condition: prescribed temperature

If TI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1, .., CI,I, ..,
CI,N) and the right-hand side term (LI) obtained before the implementation of boundary conditions
for this equation are stored in a temporary array, then an identity equation is created as

DIdbI NITT ∈= , (3.3.35)

where TIdb is the prescribed temperature on the Dirichlet node I and ND is the number of Dirichlet
boundary nodes. This process is repeated for every Dirichlet nodes. Note it is unnecessary to
modify other equations that involving these unknowns, which was done in the previous version. By
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the
iterative solvers more robust. The final set of equations will consist of ND identity equations and (N
- ND) finite element equations for N unknowns Ti’s. After Ti’s for all nodes are solved from the
matrix equation, Eq. (3.3.34) is then used to back calculate ND ΦI

B’s.

If a direct solver is used to solve the matrix equation, the above procedure will solve N Ti’s
accurately except for roundoff errors. However, if an iterative solver is used, a stopping criterion
must be strict enough so that the converged solution of N Ti’s are accurate enough to the exact
solution. With such accurate Ti’s, then can be sure that the back-calculated ND ΦI

B’s are accurate.

 3-70

Cauchy boundary condition: prescribed heat flux

If ΦBI is given (Cauchy flux boundary condition), all coefficients (CI,1, .., CI,I, .., CI,N) and right-hand
side term (LI) obtained before the implementation of boundary conditions for this equation are stored
in a temporary array, then Eq. (3.3.34) is modified to incorporate the boundary conditions and used
to solve for TI. The modification of Eq. (3.3.34) is straightforward. Because ΦI

B is a known
quantity, it contributes to the load on the right hand side. This type of boundary conditions is very
easy to implement. After Ti�s are obtained, the original Eq. (3.3.34), which is stored in a temporary
array, is used to back calculate NC ΦI

B’s on flux boundaries (where NC is the number of flux
boundary nodes). These back-calculated ΦI

B’s should be theoretically identical to the input ΦI
B’s.

However, because of round-off errors (in the case of direct solvers) or because of stopping criteria
(in the case of iterative solvers), the back-calculated ΦI

B’s will be slightly different from the input
ΦI

B’s. If the differences between the two are significant, it is an indication that the solvers have not
yielded accurate solutions.

Neumann boundary condition: prescribed gradient of temperature

At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature
gradient is given. For this case, all coefficients (CI,1, .., CI,I, .., CI,N) and right-hand side term
(LI) obtained before the implementation of boundary conditions for this equation are stored in a
temporary array, then Eq. (3.3.34) is modified to incorporate the boundary conditions and used
to solve for TI. For the Neumann boundary condition, ΦI

B contributes to both the matrix
coefficient and load vector, thus both the coefficient matrix [C] and the load vector {L} must be
modified. Recall

()∫ ∇−⋅=Φ
B

WWi
B
i dBTNTCW HDVn ρ (3.3.36)

Substituting Eq. (2.3.19) into Eq. (3.3.36), we have

{ } []{ } { }
()∫ ∫−=⋅−=

+≡Φ

B B
nbiijWWiij

B

dBtNLBanddBNCWCBwhichin

LBTCB

ϕρ Vn (3.3.37)

where [CB] and {LB} are the coefficient matrix and load vector due to Neumann boundary. Adding
the I-th equation in Eq. (3.3.37) to Eq. (3.3.34), we obtained a modified equation, which can be
solved for solve TI. After TI is solved, the original Eq. (3.3.34) (recall the original Eq. (3.3.34) must
be and has been stored in a temporary array) is used to back-calculate ΦI

B.

Variable boundary condition:

At the variable boundary condition Node I, the implementation of boundary conditions can be made
identical to that for a Cauchy boundary condition node if the flow is directed into the region. If the
flow is going out of the region, the boundary condition is implemented similar to the implementation
of Neuman boundary condition with LBI = 0. The assumption of zero Neumann flux implies that a

 3-71

Neuman node must be far away from the source/sink.

Atmosphere-subsurface media interface boundary condition:

At the atmosphere-media interface, the heat flux is a nonlinear function of the temperature since the
back radiation and the heat flux due to evaporation and sensible heat are both function of
temperature. To implement this boundary condition, we first expand Eq. (2.3.20) in Taylor series as
follows:

() () ()
sebn

k
TT

k
WW

HHHHFwhere

TT
dT
dFTFTTC k

−−−=

−+=∇⋅−⋅−
=

)()(
)(

HDVn ρ
 (3.3.38)

where T(k) is the value of T at previous iteration. Substituting Eq. (3.3.38) into Eq. (3.3.36), we
have

{ } []{ } { }

()() ()
() ()

k k

B

k k
ij i j i iT T T T

B B

CB T LB in which

dF dFCB N N dB and LB N F T T dB
dT dT= =

Φ ≡ +

⎛ ⎞= = −⎜ ⎟
⎝ ⎠∫ ∫

 (3.3.39)

where [CB] and {LB} are the coefficient matrix and load vector due to the atmosphere-media
boundary condition. Adding the I-th equation in Eq. (3.3.39) to Eq. (3.3.34), we obtained a modified
equation, which can be solved for solve TI. After TI is solved, the original Eq. (3.3.34) is used to
back-calculate ΦI

B.

Subsurface-river interface boundary condition:

This type of boundary condition will be addressed in Sub-Sections 3.4.3 and 3.4.4.

Subsurface-overland interface boundary condition:

This type of boundary condition will be addressed in Sub-Section 3.4.2.

3.3.2.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the thermal transport equation, we expand Eq.
(3.2.70) to yield following advection-dispersion equation in the Lagrangian form

()mbWW

rWS

CC
CwhereDKT

Dt
TD

ρθρ
ρ

+
=Φ+=+

VUU (3.3.40)

in which

()
()

() ()

() () ()mbWW

ra
S

mbWW

WW
mbWW

mbWW

mbWW

CC
HHandT

CC
D

C
CCt

CC
CC

K

ρθρρθρ

ρ
ρθρ

ρθρ
ρθρ

+
+

=Φ∇⋅⋅∇
+

=

⋅∇
+

+
∂

+∂
+

=

HD

V

1

,11

 (3.3.41)

 3-72

To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq.
(3.3.40) along its characteristic line from xi at new time level to xi

* at old time level or on the
boundary, we obtain

() () NiDDTK

TK

S
i

S
ii

n
iii

n
i

n
i

n

∈Φ+Φ
Δ

++
Δ

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=

⎟
⎠
⎞

⎜
⎝
⎛ Δ

+

++

++

,
222

1

2
1

)1()1(**

)1()1(

τττ

τ

 (3.3.42)

where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), and Φi
S(n+1), respectively, are the values of K, T, D, and

ΦS, respectively, at xi at new time level t = (n+1)Δt; and Ki
*, Ti

*, Di
*, and Φi

S*, respectively, are the
values of K, T, D, and ΦS, respectively, at the location xi

*.

To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq.

(3.3.41) as

() ()TDCC mbWW ∇⋅⋅∇=+ HDρθρ (3.3.43)

Applying the Galerkin finite element method to Eq. (3.3.43) at new time level (n+1), we obtain the
following matrix equation for {D(n+1)} as

[]{ } []{ } { })1()1()1()1()1(+++++ =+ nnnnn BTbDa (3.3.44)
in which

{ } { }Transposen
N

n
i

nnn DDDDD)1()1()1(
2

)1(
1

)1(.... +++++ = (3.3.45)

{ } { }Transposen
N

n
i

nnn TTTTT)1()1()1(
2

)1(
1

)1(.... +++++ = (3.3.46)

{ } { }Transposen
N

n
i

nnn BBBBB)1()1()1(
2

)1(
1

)1(.... +++++ = (3.3.47)

() ()

()

(1) (1)
(1) (1)

(1) (1)
(1)

, ,n n
ij i W W b m n j ij i n j

R R

n H n
i i n

B

a N C C N dR b N N dR

B n N D T dB

ρ θ ρ+ +
+ +

+ +
+

= + = ∇ ⋅ ⋅∇

= ⋅ ⋅∇

∫ ∫

∫

HD
 (3.3.48)

where the superscript (n+1) denotes the time level; N and N are the base functions of nodes at xi and
xj, respectively.

Lumping the matrix [a(n+1)], we can solve Eq. (3.3.44) for DI

(n+1) as follows

 3-73

int11

intint1

)1()1(
)1(

)1(
)1(

)1(

)1()1(
)1(

)1(

poboundaryaisIifTb
a

B
a

D

poerioranisIifTb
a

D

n
j

j

n
Ijn

II

n
In

II

n
I

n
j

j

n
Ijn

II

n
I

++
+

+
+

+

++
+

+

∑

∑

−=

−=

 (3.3.49)

where aII
(n+1) is the lumped aii

(n+1). Following the identical procedure that leads Eq. (3.3.43) to Eq.
(3.3.49), we have

∑

∑

−=

−=

j

n
j

n
Ijn

II

n
In

II

n
I

j

n
j

n
Ijn

II

n
I

poboundaryaisIifTb
a

B
a

D

poerioranisIifTb
a

D

int11

intint1

)()(
)(

)(
)(

)(

)()(
)(

)(

 (3.3.50)

where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)},
respectively.

With {D(n)} calculated with Eq. (3.3.50), {D*} can be interpolated. Substituting Eq. (3.3.49) into Eq.
(3.3.42) and implementing boundary conditions given in Section 2.3.2, we obtain a system of N
simultaneous algebraic equations N unknowns (Ti

(n+1) for i = 1, 2, .., N.) If the dispersion/diffusion
term is not included, then Eq. (3.3.42) is reduced to a set of N decoupled equations as

NibTa i
n

iii ∈=+ ,)1((3.3.51)
where

() NiTKb

Ka

S
i

S
iiii

n
iii

n

∈Φ+Φ
Δ

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=

⎟
⎠
⎞

⎜
⎝
⎛ Δ

+=

+

+

,
22

1

2
1

)1(

)1(ττ

τ

 (3.3.52)

Equations (3.3.51) is applied to all interior nodes without having to make any modification. On a
boundary point, there are two possibilities: Eq. (3.3.51) is replaced with a boundary equation when
the flow is directed into the region or Eq. (3.3.51) is still valid when the flow is direct out of the
region. In other words, when the thermal energy is transported out of the region at a boundary node
(i.e., when N•V ≥ 0), a boundary condition is not needed and Equation (3.3.51) is used to compute
the Ti

(n+1). When the thermal energy is transported into the region at a node (i.e., when N•V < 0), a
boundary condition must be specified.

Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the
algebraic equation for the boundary node is obtained by applying the finite element method to the
boundary node. For this alternative approach, the implementation of boundary conditions at global
boundary nodes is identical to that in the finite element approximation of solving the thermal
transport equation.

3.3.3 Numerical Approximations of Salinity Transport

 3-74

Two options are provided in this report to solve the salinity transport equation. One is the finite
element method and the other is the particle tracking method.

3.3.3.1 Finite Element Method. Recall the salinity transport equation is governed by Eq. (2.3.23)
which is rewritten in a slightly different form as

() () asShSS
tt

S
=∇⋅⋅∇−⋅∇+

∂
∂

+
∂
∂ DV θθθ (3.3.53)

Applying the finite element method to Eq. (3.3.53), we obtain the following matrix equation

[] { } []{ } []{ } []{ } { } { }aBSKSDSV
dt
SdM Ψ+Ψ−=+++ (3.3.54)

in which

()∫ ∫∫

∫ ∫∫

=Ψ∇⋅−⋅=Ψ
∂
∂

=

∇⋅⋅∇=⋅==

R R

as
i

a
i

B
ii

B
ijiij

R R
jiij

R
jiijjiij

dRSNdBSNSWdRN
t

NK

dRNNDdRNWVdxNNM

,,

,,,

DVn

DV

θθ

θθ

 (3.3.55)

∫ ∫∫ ∫ =Ψ=Ψ=Ψ=Ψ
R R

is
si

i
i

es
si

e
i

R R

rs
si

r
i

as
si

a
i dRMNdRMNdRMNdRMN ,,, (3.3.56)

where Wi is the weighting function of node xi; Ni and Nj are the base functions of nodes xi and xj,
respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the stiff
matrix due to dispersion/diffusion/conduction; [K] is the stiff matrix due to the linear term; {S} is
the solution vector of salinity; {ΨB} is the vector due to boundary conditions, which can contribute
to load vector and/or coefficient matrix; and {Ψa} is the load vector due to artificial salt source.

Approximating the time derivative term in Eq. (3.3.54) with a time-weighted finite difference, we
reduce the advective-diffusive equation and its boundary conditions to the following matrix
equation.

[]{ } { } { }BLSC Ψ−= (3.3.57)
in which

[] [] [] []() []

{ } [] () [] []() ()[] { } { }an
V

V

SVKD
t

ML

VKD
t

MC

Ψ+⎟
⎠
⎞

⎜
⎝
⎛ −−+−−

Δ
=

+++
Δ

=

)(11

,

θθ

θθ
 (3.3.58)

where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial
sink/sources and rainfall; Δt is the time step size; θ is the time weighting factor for the dispersion
and linear terms; θv is the time weighting factor for the velocity term; and {S(n)} is the value of {S}
at old time level n. The global boundary conditions must be used to provide {ΨB} in Eq. (3.3.57).

For a global boundary node I, the corresponding algebraic equation from Eq. (3.3.57) is

 3-75

B
IINNIIIII LSCSCSC Ψ−=++++ ,,11, (3.3.59)

In the above equations there are two unknowns TI and ΨI

B; either TI or ΨI
B, or the relationship

between TI and ΨI
B must be specified. The numerical implementation of these boundary conditions

are described as follows.

Dirichlet boundary condition: prescribed salinity

If SI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1, .., CI,I, ..,
CI,N) and the right-hand side term (LI) obtained before the implementation of boundary conditions
for this equation are stored in a temporary array, then an identity equation is created as

DIdI NI,SS ∈= (3.3.60)

where SId is the prescribed salinity on the Dirichlet node I and ND is the number of Dirichlet
boundary nodes. This process is repeated for every Dirichlet nodes. Note it is unnecessary to
modify other equations that involving this unknowns, which was done in the previous version. By
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the
iterative solvers more robust. The final set of equations will consist of ND identity equations and (N
- ND) finite element equations for N unknowns Si’s. After Si’s for all nodes are solved from the
matrix equation, Eq. (3.3.59) is then used to back calculate ND ΨI

B’s.

If a direct solver is used to solve the matrix equation, the above procedure will solve N Si’s
accurately except for roundoff errors. However, if an iterative solver is used, a stopping criterion
must be strict enough so that the converged solution of N Si’s are accurate enough to the exact
solution. With such accurate Si’s, then can we be sure that the back-calculated ND ΨBI’s are
accurate.

Cauchy boundary condition: prescribed salt flux

If ΨI

B is given (Cauchy flux boundary condition), all coefficients (CI,1, .., CI,I, .., CI,N) and the right-
hand side term (LI) obtained before the implementation of boundary conditions for this equation are
stored in a temporary array, then Eq. (3.3.59) is modified to incorporate the boundary conditions and
used to solve for SI. The modification of Eq. (3.3.59) is straightforward. Because ΨI

B is a known
quantity, it contributes to the load on the right hand side. This type of boundary conditions is very
easy to implement. After Si’s are obtained, the original Eq. (3.3.59), which is stored in a temporary
array, is used to back calculate NC ΨI

B’s on flux boundaries (where NC is the number of flux
boundary nodes). These back-calculated ΨI

B’s should be theoretically identical to the input ΨI
B’s.

However, because of round-off errors (in the case of direct solvers) or because of stopping criteria
(in the case of iterative solvers), the back-calculated ΨI

B’s will be slightly different from the input
ΨI

B’s. If the differences between the two are significant, it is an indication that the solvers have not
yielded accurate solutions.

Neumann boundary condition: prescribed gradient of salinity

At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature

 3-76

gradient is given. For this case, all coefficients (CI,, .., CI,I, .., CI,N) and the right-hand side term
(LI) obtained before the implementation of boundary conditions for this equation are stored in a
temporary array, then Eq. (3.3.59) is modified to incorporate the boundary conditions and used
to solve for SI. For the Neumann boundary condition, ΨI

B contributes to both the matrix
coefficient and load vector, thus both the coefficient matrix [C] and the load vector {L} must be
modified. Recall

()∫ ∇−⋅=Ψ
B

ii
B

i dBSNSW DVn θ (3.3.61)

Substituting Eq. (2.3.28) into Eq. (3.3.61), we have

{ } []{ } { }
()∫∫ =⋅=

+≡Ψ

B
Snbii

B
jiji

B

dBtQNLBanddBNWCBwhichin

LBSCB

Vn,
 (3.3.62)

where [CB] and {LB} are the coefficient matrix and load vector due to Neumann boundary. Adding
the I-th equation in Eq. (3.3.62) to Eq. (3.3.59), we obtained a modified equation, which can be
solved for solve SI. After SI is solved, the original Eq. (3.3.59) is used to back-calculate ΨI

B.

Variable boundary condition:

At the variable boundary condition Node I, the implementation of boundary conditions can be made
identical to that for a Cauchy boundary condition node if the flow is directed into the
river/stream/canal reach. If the flow is going out of the reach, the boundary condition is
implemented similar to the implementation of Neuman boundary condition with ΨI

nb = 0. The
assumption of zero Neumann flux implies that a Neuman node must be far away from the
source/sink.

Subsurface-river interface boundary condition:

This type of boundary condition will be addressed in Sub-Sections 3.4.3 and 3.4.4.

Subsurface-overland interface boundary condition:

This type of boundary condition will be addressed in Sub-Section 3.4.2.

3.3.3.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the salt transport equation, we expand Eq. (3.3.53) to
yield following advection-dispersion equation in the Lagrangian form

θ
VU =Ψ+=+ whereDKS

Dt
SD SU (3.3.63)

in which

() ()
θ

θ
θθ

θ
θ

as
S SandSD

t
K =Ψ∇⋅⋅∇=⋅∇+

∂
∂

= DV 1,11 (3.3.64)

 3-77

To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq.
(3.3.63) along its characteristic line from xi at new time level to xi

* at old time level or on the
boundary, we obtain

() () NiDDSK

SK

S
i

S
ii

n
iii

n
i

n
i

n

∈Ψ+Ψ
Δ

++
Δ

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=

⎟
⎠
⎞

⎜
⎝
⎛ Δ

+

++

++

,
222

1

2
1

)1(

)1()1(

)1(τττ

τ

 (3.3.65)

where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), and Ψi
S(n+1), respectively, are the values of K, T, D, and

ΨS, respectively, at xi at new time level t = (n+1)Δt; and Ki
*, Ti

*, Di
*, and Ψi

S*, respectively, are the
values of K, T, D, and ΨS, respectively, at the location xi

*.

To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq.

(3.3.64) as

()SD ∇⋅⋅∇= Dθθ (3.3.66)

Applying the Galerkin finite element method to Eq. (3.3.66) at new time level (n+1), we obtain the
following matrix equation for {D(n+1)} as

[]{ } []{ } { })1()1()1()1()1(+++++ =+ nnnnn BSbDa (3.3.67)
in which

{ } { }Transposen
N

n
i

nnn DDDDD)1()1()1(
2

)1(
1

)1(.... +++++ = (3.3.68)

{ } { }Transposen
N

n
i

nnn SSSSS)1()1()1(
2

)1(
1

)1(.... +++++ = (3.3.69)

{ } { }Transposen
N

n
i

nnn BBBBB)1()1()1(
2

)1(
1

)1(.... +++++ = (3.3.70)

() ()

()∫

∫ ∫
+

+
+

+
+

+
+

⋅∇⋅=

⋅∇⋅∇==

B

n
ni

n
i

R R
jni

n
ijjni

n
ij

dBSNnB

dRNNbdRNNa

)1(
)1(

)1(

)1(
)1(

)1(
)1(,,

D

D

θ

θθ
 (3.3.71)

where the superscript (n+1) denotes the time level; N and N are the base functions of nodes at xi and
xj, respectively.

Lumping the matrix [a(n+1)], we can solve Eq. (3.2.110) for DI

(n+1) as follows

 3-78

int11

intint1

)1()1(
)1(

)1(
)1(

)1(

)1()1(
)1(

)1(

poboundaryaisIifSb
a

B
a

D

poerioranisIifSb
a

D

n
j

j

n
Ijn

II

n
In

II

n
I

j

n
j

n
Ijn

II

n
I

++
+

+
+

+

++
+

+

∑

∑

−=

−=

 (3.3.72)

where aII
(n+1) is the lumped aii

(n+1). Following the identical procedure that leads Eq. (3.3.66) to Eq.
(3.3.72), we have

int11

intint1

)()(
)(

)(
)(

)(

)()(
)(

)(

poboundaryaisIifSb
a

B
a

D

poerioranisIifSb
a

D

n
j

j

n
Ijn

II

n
In

II

n
I

j

n
j

n
Ijn

II

n
I

∑

∑

−=

−=

 (3.3.73)

where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)},
respectively.

With {D(n)} calculated with Eq. (3.3.73), {D*} can be interpolated. Substituting Eq. (3.3.72) into Eq.
(3.3.65) and implementing boundary conditions given in Section 2.3.3, we obtain a system of N
simultaneous algebraic equations N unknowns (Si

(n+1) for i = 1, 2, .., N.) If the dispersion/diffusion
term is not included, then Eq. (3.3.65) is reduced to a set of N decoupled equations as

NibSa i
n

iii ∈=+ ,)1((3.3.74)
where

()(1)(1) * * *, 1 ,
2 2 2

nn S S
ii i i i i i ia a K b K S i Nτ τ τ ++Δ Δ Δ⎛ ⎞ ⎛ ⎞= + = − + Ψ + Ψ ∈⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (3.3.75)

Equations (3.3.75) is applied to all interior nodes without having to make any modification. On a
boundary point, there two possibilities: Eq. (3.3.75) is replaced with a boundary equation when the
flow is directed into the region or Eq. (3.3.75) is still valid when the flow is direct out of the region.
In other words, when the salt is transported out of the region at a boundary node (i.e., when N•V ≥
0), a boundary condition is not needed and Equation (3.3.75) is used to compute the Si

(n+1). When
the salt is transported into the region at a node (i.e., when N•V < 0), a boundary condition must be
specified.

Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the
algebraic equation for the boundary node is obtained by applying the finite element method to the
boundary node. For this alternative approach, the implementation of boundary conditions at global
boundary nodes is identical to that in the finite element approximation of solving the salt transport
equation.

3.4 Numerical Implementation of Flow Coupling among Various Media

 3-79

This section addresses numerical implement of coupling flow simulations among various media
including (1) between 1D river and 2D overland flows, (2) between 2D overland and 3D subsurface
flows, (3) between 3D subsurface and 1D overland flows, and (4) among 1D river, 2D overland, and
3D subsurface flows. Without loss of generality, numerical implementations of coupling for water
flow equations are heuristically given for finite element approximations of diffusive wave models.
For Largrangian-Eulerian approximations of diffusive wave models, semi-Largrangian
approximations of kinematic wave models, or particle tracking approximations of fully dynamic
wave models in surface waters, the implementations of numerical coupling among various media
remain valid.

3.4.1 Coupling between 1-D River Networks and 2-D Overland Flows

The interaction between one-dimensional river and two-dimensional overland flows involves two
cases: one is between overland and river nodes (left frame in Fig. 3.4-1) and the other is between
overland and junction nodes (right frame in Fig. 3.4-1). For every river node (Node I in the left
frame of Fig. 3.4-1), there will be associated with two overland nodes (Nodes J and K in the left
frame of Fig. 3.4-1). For every junction node (Node L in the right frame of Fig. 3.4-1), there will be
associated with a number of overland nodes such as Nodes J, K, O, etc (right frame of Fig. 3.4-1). It
should be noted that nodes, such as Nodes J and K in the right frame of Figure 3.4-1, contribute flow
to both the river as source/sink of Node I and the Junction as source/sink of Node L.

IJ K

J
I

K

L

O

Fig. 3.4-1. Depiction of Interacting River Nodes and Overland Nodes (left) and Junction

Nodes and Overland Nodes (Right)

3.4.1.1 Couple Flow Rates between the River Network and the Overland Regime.

Numerical approximations of the diffusive water flow equation for one-dimensional river with finite
element methods yield the following matrix

 3-80

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

+

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

+

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

2

2

2
2

2
1

1

1

1
2

1
1

2

1

2

1

121

o
N

o
I

o

o

o
N

o
I

o

o

c
N

c
I

c

c

c
N

c
I

c

c

c
IN

c
I

c
I

c
I

Q

Q

Q

Q

Q

Q

Q

Q

R

R

R

R

H

H

H

H

AAAA (3.4.1)

where the superscript c denotes the canal (channel, river, or stream); AIJ is the I-th row, J-th column
of the coefficient matrix [A]; HI denotes the water surface at Node I; RI is I-th entry of the load
vector {R}; N is the number of nodes in the canal; QI is the rates of water source/sink from/to the
overland flow to/from canal node I; and the superscripts, o1 and o2, respectively, denote canal bank
1 and 2, respectively. Every canal node I involves 3 unknowns, HI

c, QI
o1, and QI

o2. However, Eq.
(3.4.1) gives just one algebraic equation for every canal node I. Clearly, two additional algebraic
equations are need for every canal node I.

Applications of finite element methods to two-dimensional diffusive wave flow equations yield the
following matrix

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

−−
−−
−−

−

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−

−−

−−

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−

−−

−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−

−−−−−−−−−−−−−−
−−−−−−

−−−−−−−−−−−−−−
−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−

−−−−−−−−

o
K

o
J

o
M

o
K

o
J

o

o

o
M

o
K

o
J

o

o

o
MM

o
M

o
M

o
KM

o
KK

o
K

o
K

o
M

o
JJ

o
J

o
J

o
M

o

o
M

oo

Q

Q

R

R

R

R

R

H

H

H

H

H

AAA

AAAA

AAAA

AA

AAA

2

1

2

1

21

21

121

221

11211

 (3.4.2)

where the superscript o denotes the overland; AIJ is the I-th row, J-th column of the coefficient
matrix [A]; HI denotes the water surface at Node I; RI is I-th entry of the load vector {R}; M is the
number of nodes in the overland ; and QJ and QK are the rates of water sink/source from/to the
overland to/from the canal via nodes J and K, respectively. Equation (3.4.2) indicates that there is
one unknown corresponding to one algebraic equation for every interior node. However, for every
algebraic equation corresponding an overland-canal interface node, there are two unknowns, the
water surface and the flow rate. Therefore, for every overland-river interface node, one additional
equation is needed. Since for every canal node, there are associated two overland-interface nodes,
four additional equations are needed for every canal node I for the four additional unknowns QI

o,
QK

o, QI
o1, and QI

o2.

The additional equations are obtained by two interface boundary conditions. The first one is the
continuity of flux. The second one is the imposition of continuity of water surfaces between canal

 3-81

and overland nodes or the formulation of flow rates. Two of the additional equations are obtained
from the interface condition between the canal node I and the overland node J as

()1 1
1; ,o o o c o o c

J I J I I J IQ Q H H or Q f h h= = = (3.4.3)

where f1 is a prescribed function of water depths hJ
o and hI

c at the overland node J and the canal node
I. The other two additional equations are obtained from the interface condition between the canal
node I and the overland node K

()2 2
2; ,o o o c o o c

K I K I I K IQ Q H H or Q f h h= = = (3.4.4)

where f2 is a prescribed function of water depths hK
o and hI

c at the overland node K and the canal
node I.

When the direct contribution of flow from the overland regime to a junction node L (Fig. 3.4-1) is
significant, Equations (3.1.77) or (3.1.78) must be modified

d V 3

1 O

i
L i oL

iL O
i O NL

dh Q Q
dh dt

=

= ∈

= +∑ ∑ (3.4.5)

or
3 3

1 1

0
O O

i i
i o i i o
iL O iL iL O

i O N i O N

Q Q V A Q
= =

= ∈ = ∈

+ = + =∑ ∑ ∑ ∑ (3.4.6)

where Lh and V L are the water depth and volume at the junction node L, i
iLQ is the flux contributed

from the node iL of the reach i, o
OQ is the flux contributed from the overland node O to the junction

and NO is the number of overland nodes interfacing with the junction L. Additional NO unknowns
have been introduced in Equation (3.4.5) or (3.4.6). For each overland-junction interface node, say
O (the right frame in Fig. 3.4-1), the finite element equation written out of Eq. (3.4.2) is

1 1 2 2o o o o o o o o o o
O O OO O OM M O OA H A H A H A H R Q+ + + + + = − (3.4.7)

It is seen that Equation (3.4.7) involves two unknowns, o

OH and o
OQ . One equation must be

supplemented to the finite element equation to close the system. This equation is obtained by either
imposing the continuity of water surfaces between nodes O and L or formulating flux as

()L
o

Oo
o

OL
o

O hhfQorHH ,== (3.4.8)

where fo is a prescribed function of water depths at nodes O and L.

Finally, for each reach-junction interface node, say node I (the right frame in Fig. 3.4-1) which we
shall say Node 1L of the first reach connecting to Junction L, the formulation of 1

1LQ (or 1
IQ) is

similar to that of Equation (3.4.9) as

()1 1 1
1 ,I L I I LH H or Q f h h= = (3.4.9)

 3-82

where the superscript 1 denotes reach number and the subscript I denote node number.

3.4.1.1 Couple thermal or Salt Rate between the River Network and the Overland Regime.

Numerical approximations of thermal or salt transport equation for one-dimensional river with finite
element methods yield the following matrix

1 1

2 2

1 2 1

c c

c c

c c c c c c
I I I IN I I

c c
N N

E R

E R

C C C C E R

E R

⎧ ⎫ ⎧− − − − − − − − − − − − − −⎡ ⎤
⎪ ⎪ ⎪⎢ ⎥− − − − − − − − − − − − − − ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥− − − − − − − − − − − − − − − − − −
⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪− − − − − − =⎨ ⎬ ⎨⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥ − − − −− − − − − − − − − − − − − − ⎪ ⎪⎢ ⎥

− − − −− − − − − − − − − − − − − − ⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥− − − − − − − − − − − − − −⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩

1 2
1 1

1 2
2 2

1 2

01 2

o o

o o

o o
I I

o
N N

M M

M M

M M

M M

⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪− − − −
⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪+ +⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪− − − −⎪ ⎪ ⎪ ⎪ ⎪ ⎪

− − − −⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎭ ⎩ ⎭ ⎩ ⎭

 (3.4.10)

where the superscript c denotes the canal (channel, river, or stream); CIJ is the I-th row, J-th column
of the coefficient matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the
load vector {R}; N is the number of nodes in the canal; MI is the rate of energy or salt source/sink
from/to the overland flow to/from canal node I; and the superscripts, o1 and o2, respectively, denote
canal bank 1 and 2, respectively. Every canal node I involves 3 unknowns, c

IE , 1o
IM , and 2o

IM .
However, Eq. (3.4.10) gives just one algebraic equation for every canal node I. Clearly, two
additional algebraic equations are need for every canal node I.

Applications of finite element methods to two-dimensional thermal or salt transport equation yield
the following matrix

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

−−
−−
−−

−

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−

−−

−−

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−

−−

−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−

−−−−−−−−−−−−−−
−−−−−−

−−−−−−−−−−−−−−

−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−

−−−−−−−−

o
K

o
J

o
M

o
K

o
J

o

o

o
M

o
K

o
J

o

o

o
MM

o
M

o
M

o
KM

o
KK

o
K

o
K

o
IM

o
jj

o
J

o
J

o
M

o

o
M

oo

M

M

R

R

R

R

R

E

E

E

E

E

CCC

CCCC

CCCC

CC

CCC

2

1

2

1

21

21

21

221

11211

 (3.4.11)

where the superscript o denotes the overland; CIJ is the I-th row, J-th column of the coefficient
matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the load vector {R}; M
is the number of nodes in the overland; and MJ and MK are the rates of thermal or salt sink/source
from/to the overland to/from the canal via nodes J and K, respectively. Equation (3.4.11) indicates
that there is one unknown corresponding to one algebraic equation for every interior node.
However, for every algebraic equation corresponding to an overland-canal interface node, there are

 3-83

two unknowns, the temperature or salinity and the thermal or salt flux. Therefore, for every
overland-river interface node, one additional equation is needed. Since for every canal node, there
are associated two overland-interface nodes, four additional equations are needed for every canal
node I for the four additional unknowns MI

o, MK
o, MI

o1, and MI
o2.

The additional equations are obtained by two interface boundary conditions. The first one is the
continuity of flux. The second one is the assumption that the thermal or salinity rates through the
interface node are due mainly to water flow (i.e., advection). Two of the additional equations are
obtained from the interface condition between the canal node I and the overland node J as

()() ()()()
()() ()()()

1 1 1 11 1 1
2

1 1 1
2

o o o o o c
I W W I I J I I

o o o o o c
J W W J J J J I

M C Q sign Q E sign Q E and

M C Q sign Q E sign Q E

ρ

ρ

= + + −

= + + −
 (3.4.12)

for thermal transport or

()() ()()()
()() ()()()

1 1 1 11 1 1
2

1 1 1
2

o o o o o c
I I I J I I

o o o o o c
J J J J J I

M Q sign Q E sign Q E and

M Q sign Q E sign Q E

= + + −

= + + −
 (3.4.13)

for salt transport. It should be noted that in Equations (3.4.12) and (3.4.13) 1o
IQ = o

JQ , thus the
continuity 1o

IM = o
JM is preserved.

The other two additional equations are obtained from the interface condition between the canal node
I and the overland node K as follows.

()() ()()()
()() ()()()

2 2 2 21 1 1
2

1 1 1
2

o o o o o c
I W W I I K I I

o o o o o c
K W W K K K K I

M C Q sign Q E sign Q E and

M C Q sign Q E sign Q E

ρ

ρ

= + + −

= + + −
 (3.4.14)

for thermal transport or

()() ()()()
()() ()()()

2 2 2 21 1 1
2

1 1 1
2

o o o o o c
I I I K I I

o o o o o c
K K K K K I

M Q sign Q E sign Q E and

M Q sign Q E sign Q E

= + + −

= + + −
 (3.4.15)

for salt transport. It should be noted that in Equations (3.4.12) and (3.4.13) 2o
IQ = o

KQ , thus the
continuity 2o

IM = o
IM is preserved.

When the direct contribution of energy or salt from the overland regime to a junction node L (Fig.
3.4-1) is significant, Equations (3.1.121) and (3.1.122) or Equations (3.1.156) and (3.1.157) must be
modified

 3-84

W Wd C Vρ 0
O O

L i o i oL
iL O iL O

i O N i O N

E M or M
dt ∈ ∈

= Φ + Φ + =∑ ∑ ∑ ∑ (3.4.16)

with LE denoting LT (where LT is the temperature at the junction L) for thermal transport or

d V 0
O O

L i o i oL
iL O iL O

i O N i O N

S M or M
dt ∈ ∈

= Ψ + Ψ + =∑ ∑ ∑ ∑ (3.4.17)

with LE denoting LS (where LS is the salinity at the junction L) for salt transport. Additional NO
unknowns have been introduced in Equation (3.4.16) or (3.4.17). For each overland-junction
interface node, say O (the right frame in Fig. 3.4-1), the finite element equation written out of Eq.
(3.4.11) is

o
O

o
O

o
M

o
OM

o
O

o
OO

oo
O

oo
O MRECECECEC −=+++++2211 (3.4.18)

It is seen that Equation (3.4.18) involves two unknowns, EO

o and MO
o. One equation must be

supplemented to the finite element equation to close the system. This equation is obtained by
formulating energy or salt rates

()() ()()()L
o

O
o

O
o

O
o

OWW
o

O EQsignEQsignQCM −++= 11
2
1ρ (3.4.19)

for thermal transport or

()() ()()()L
o

O
o

O
o

O
o

O
o

O EQsignEQsignQM −++= 11
2
1

 (3.4.20)

for salt transport. Finally, the formulation of i
iLΦ or i

iLΨ is identical to that of o
OM in Equation

(3.4.19) or (3.4.20).

3.4.2 Coupling between 2-D Overland and 3-D Subsurface Flows

The interaction between two-dimensional overland and three-dimensional subsurface flows is rather
simple. For every subsurface node (Node J in Fig. 3.4-2), there will be associated an overland
nodes (Node I in Fig. 3.4-2).

3.4.2.1 Couple Flow Rates between the Overland Regime and Subsurface Media.

Numerical approximations of the diffusive water flow equation for two-dimensional overland with
finite element methods yield the following matrix

 3-85

1 1

2 2

1 2

o o

o o

o o o o o o
I I II IN I I

o o
N N

H R

H R

A A A A H R

H R

⎧ ⎫ ⎧− − − − − − − − − − − − − −⎡ ⎤
⎪ ⎪ ⎪⎢ ⎥− − − − − − − − − − − − − − ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥− − − − − − − − − − − − − − − − − −⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪− − − − − − =⎨ ⎬ ⎨⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥ − − − −− − − − − − − − − − − − − − ⎪ ⎪⎢ ⎥

− − − −⎪ ⎪− − − − − − − − − − − − − −⎢ ⎥
⎪ ⎪⎢ ⎥− − − − − − − − − − − − − −⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩

1

2

io

io

io
I

io
N

Q

Q

Q

Q

⎫ ⎧ ⎫
⎪ ⎪ ⎪
⎪ ⎪ ⎪
⎪ ⎪ ⎪− −⎪ ⎪ ⎪⎪ ⎪ ⎪+⎬ ⎨ ⎬
⎪ ⎪ ⎪− −⎪ ⎪ ⎪ ⎪

− −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎭ ⎩ ⎭

 (3.4.21)

where the superscript o denotes the overland; AIJ is the I-th row, J-th column of the coefficient
matrix [A]; HI denotes the water surface at Node I; RI is I-th entry of the load vector {R}; N is the
number of nodes in the overland; and QI is the rates of water sink/source from/to the overland node I
to/from the corresponding subsurface node (e.g., Node J in Fig. 3.4-2) due to infiltration (the
superscripts, io, denotes the infiltration from overland). Every overland node I involves two
unknowns, HI

o and and QI
io. However, Eq. (3.4.21) gives just one algebraic equation for every

canal node I. Clearly, one additional algebraic equation is needed every overland node I.

I
J

Fig. 3.4-2. Depiction of Interacting Subsurface Nodes and Overland Nodes

Applications of finite element methods to the three-dimensional subsurface flow equation yield the
following matrix

11 12 1 1 1

21 2 2 2

1 2

1 2

s s s s s
M

s s s s
M

s s s s s
J J JJ IM J

o o o s
M M MM M

A A A H R

A A H R

A A A A H R

A A A H

⎡ ⎤ ⎧ ⎫− − − − − − − −
⎢ ⎥ ⎪ ⎪

− − − − − − − − − −⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪− − − − − − − − − − − − − − − − − −⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥− − − − − − =⎨ ⎬
⎢ ⎥ ⎪ ⎪− − − − − − − − − − − − − − − −⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪− − − − − − − − − − − − − − − −
⎢ ⎥ ⎪ ⎪

− − − − − − − −⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

s s
J J

s
M

Q

R

⎧ ⎫ − −⎧ ⎫
⎪ ⎪ ⎪ ⎪− −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪− −⎪ ⎪ ⎪ ⎪⎪ ⎪ −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪− − − −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪− − − −
⎪ ⎪ ⎪ ⎪− −⎩ ⎭⎪ ⎪⎩ ⎭

 (3.4.22)

where the superscript so denotes the subsurface media; AIJ is the I-th row, J-th column of the
coefficient matrix [A]; HJ denotes the total head at Node J; RJ is J-th entry of the load vector {R}; M

 3-86

is the number of nodes in the subsurface media; and QJ is the rates of water source/sink from/to the
overland to/from the subsurface media at node J. Equation (3.4.22) indicates that there is one
unknown corresponding to one algebraic equation for every interior node. However, for every
algebraic equation corresponding to a subsurface-overland interface node, there are two unknowns,
the total head and the flow rate. Therefore, for every subsurface media node interfacing with an
overland node, one additional equation is needed. Since for every overland node, there is associated
one subsurface-interface node, two additional equations are needed for every overland node I for the
two additional unknowns QI

io and QJ
s.

The additional equations are obtained by the interface boundary condition between the overland
node I and the subsurface media node J as

();s io s o io s o
J I J I I J IQ Q H H or Q K H H= = = − (3.4.23)

where K is the exchange coefficient representing the property of the medium separating the overland
and subsurface media, but not being included as part of the media.

3.4.2.2 Couple thermal or Salt Rate between the Overland Regime and Subsurface Media.

Numerical approximations of thermal or salt transport equation for two-dimensional overland regime
with finite element methods yield the following matrix

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

+

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

io
N

io
I

io
2

io
1

o
N

o
I

o
2

o
1

o
N

o
I

o
2

o
1

o
IN

o
II

o
2I

o
1I

M

M

M

M

R

R

R

R

E

E

E

E

CCCC (3.4.24)

where the superscript o denotes the overland; CIJ is the I-th row, J-th column of the coefficient
matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the load vector {R}; N
is the number of nodes in the overland; and MI is the rate of energy or salt source/sink from/to the
subsurface to/from the overland node I (the superscript, io, denotes the infiltration from overland).
Every overland node I involves two unknowns, EI

o, and MI
io. However, Eq. (3.4.24) gives just one

algebraic equation for every canal node I. Clearly, one additional algebraic equation is need for
every overland node I.

Applications of finite element methods to three-dimensional thermal or salt transport equations for
subsurface media yield the following matrix

 3-87

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

−−
−−
−−

−−
−−
−−

−

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−

−−−−−−−−

s
J

s
M

s
J

s
2

s
1

s
M

s
J

s
2

s
1

s
MM

s
2M

s
1M

s
IM

s
JJ

s
2J

s
1J

s
M2

s
21

s
M1

s
12

s
11

M

R

R

R

R

E

E

E

E

CCC

CCCC

CC

CCC

 (3.4.25)

where the superscript s denotes the subsurface media; CIJ is the I-th row, J-th column of the
coefficient matrix [C]; EJ denotes the temperature or salinity at Node J; RJ is J-th entry of the load
vector {R}; M is the number of nodes in the overland ; and MJ is the rate of thermal or salt
sink/source from/to the subsurface node J to/from the corresponding overland node I. Equation
(3.4.25) indicates that there is one unknown corresponding to one algebraic equation for every
interior node. However, for every algebraic equation corresponding an subsurface-overland
interface node, there are two unknowns, the temperature or salinity and the thermal or salt flux.
Therefore, for every subsurface-overland interface node, one additional equation is needed. Since
for every overland node, there is associated one subsurface-interface nodes, two additional equations
are needed for every overland node I and its corresponding subsurface node J for the two additional
unknowns MI

io and MJ
s.

The additional equations are obtained from the interface condition between the overland I and the
subsurface J as

()() ()()()
()() ()()()

1 1 1
2

1 1 1
2

io io io s io o
I W W I I J I I

s s s s s o
J W W J J J J I

M C Q sign Q E sign Q E and

M C Q sign Q E sign Q E

ρ

ρ

= + + −

= + + −
 (3.4.26)

for thermal transport or

()() ()()()
()() ()()()

1 1 1
2

1 1 1
2

io io io s io o
I I I J I I

s s s s s o
J J J J J I

M Q sign Q E sign Q E and

M Q sign Q E sign Q E

= + + −

= + + −
 (3.4.27)

for salt transport. It should be noted that in Equations (3.4.26) or (3.4.27) io
IQ = s

JQ , thus the
continuity io

IM = s
JM is preserved.

3.4.3 Coupling between 3-D Subsurface and 1-D Surface Flows

The interaction between three-dimensional subsurface and one-dimensional river flows involves
three options: (1) river is discretized as finite-width and finite-depth on the three-dimensional
subsurface media (Fig. 3.4-3), (2) river is discretized as finite-width and zero-depth on the three-
dimensional subsurface media (Fig. 3.4-4), and (3) river is discretized as zero-width and zero-depth
on the three-dimensional subsurface media (Fig. 3.4-5). Option 1 is the most realistic one.

 3-88

However, because of the computational demands, it is normally used in small scale studies involving
the investigations of infiltration and discharge between river and subsurface media on a local scale.
Option 2 is normally used in medium scale studies while Option 3 is normally employed in large
scale investigations. In Option 1, for every river node there are associated with a number of
subsurface interfacing nodes such as K, .., J, .., and L(Fig. 3.4-3). In Option 2, for every river node
there are associated with three subsurface interfacing nodes K, J, and L (Fig. 3.4-4). In Option 3, for
every river node there is associated with one subsurface interfacing node J (Fig. 3.4-5).

3.4.3.1 Couple Flow Rates between the River Network and the Subsurface Media.

Numerical approximations of the diffusive water flow equation for one-dimensional river with finite
element methods yield the following matrix

I

J’s
K L

K J’s

I
L

Fig. 3.4-3. Rivers Are Discretized as Finite-Width and

Finite-Depth on the Subsurface Media

I

JK L

K J

K J

L
I

I

L

Fig. 3.4-4. Rivers Are Discretized as Finite-Width and

Zero-Depth on the Subsurface Media

 3-89

I

JK L

K
J

K J

L
I

I

L
EK EL

Fig. 3.4-5. Rivers Are Discretized as Zero-Width and

Zero-Depth on the Subsurface Media

1 1

2 2

1 2

c c

c c

c c c c c c
I I II IN I I

c c
N N

H R

H R

A A A A H R

H R

⎧ ⎫ ⎧− − − − − − − − − − − − − −⎡ ⎤
⎪ ⎪ ⎪⎢ ⎥− − − − − − − − − − − − − − ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥− − − − − − − − − − − − − − − − − −⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪− − − − − − =⎨ ⎬ ⎨⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥ − − − −− − − − − − − − − − − − − − ⎪ ⎪⎢ ⎥

− − − −⎪ ⎪− − − − − − − − − − − − − −⎢ ⎥
⎪ ⎪⎢ ⎥− − − − − − − − − − − − − −⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩

1

2

ic

ic

ic
I

ic
N

Q

Q

Q

Q

⎫ ⎧ ⎫
⎪ ⎪ ⎪
⎪ ⎪ ⎪
⎪ ⎪ ⎪− −⎪ ⎪ ⎪⎪ ⎪ ⎪+⎬ ⎨ ⎬
⎪ ⎪ ⎪− −⎪ ⎪ ⎪ ⎪

− −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪⎭ ⎩ ⎭

 (3.4.28)

where the superscript c denotes the canal (channel, river, or stream); AIJ is the I-th row, J-th column
of the coefficient matrix [A]; HI denotes the water surface at Node I; RI is I-th entry of the load
vector {R}; N is the number of nodes in the canal; QI is the rates of water sink/source from/to the
river node I to/from the subsurface media. Every canal node I involves two unknowns, HI

c and QI
ic.

 However, Eq. (3.4.28) gives just one algebraic equation for every canal node I. Clearly, one
additional algebraic equation is need for every canal node I.

For example, taking Option 2 where there are three nodes associated with one canal node, the
applications of finite element methods to three-dimensional subsurface flow equations yield

11 12 1 1

21 2 2

1 2

1 2

1 2

1 2

s s s s
M

s s s
M

s s s s s
K K KK KM K
s s s s s

J J JJ IM J
s s s s s

L L LM L

s s s
M M MM

A A A H

A A H

A A A A H

A A A A H

A A A A H

A A A H

>>

⎡ ⎤− − − − − − − −
⎢ ⎥

− − − − − − − − − −⎢ ⎥
⎢ ⎥− − − − − − − − − − − − − − − −⎢ ⎥
⎢ ⎥− − − − − −
⎢ ⎥

− − − − − −⎢ ⎥
⎢ ⎥− − − − − −⎢ ⎥
⎢ ⎥− − − − − − − − − − − − − − − −
⎢ ⎥

− − − − − − − −⎢ ⎥⎣ ⎦

1

2

s

s

ss
KK
ss

JJ
ss

LL

s s
M M

R

R

QR
QR
QR

R

⎧ ⎫ ⎧ ⎫ − −⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪ ⎪− −⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪− −− −⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪− −− −
⎪ ⎪ ⎪ ⎪ ⎪ ⎪− −⎩ ⎭⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 (3.4.29)

 3-90

where the superscript s denotes the subsurface meida; AIJ is the I-th row, J-th column of the
coefficient matrix [A]; HJ denotes the total head at Node J; RJ is J-th entry of the load vector {R}; M
is the number of nodes in the subsurface media; and QJ is the rate of water source/sink from/to the
canal to/from the subsurface via node J. Equation (3.4.29) indicates that there is one unknown
corresponding to one algebraic equation for every interior node. However, for every algebraic
equation corresponding to a subsurface-canal interface node, there are two unknowns, the total head
and the flow rate. Therefore, for every subsurface-river interface node, one additional equation is
needed. Since for every canal node, there are associated three subsurface-interface nodes, four
additional equations are needed for every canal node I for the four additional unknowns QI

ic, QK
s,

QJ
s, and QL

s.

The additional equations are obtained the interface condition between the canal node I and the
subsurface nodes K, J, and L as

(); ;

1 1;
4 4

ic rain rain s s s s c s s c
I K L K J L J I J e J I

s ponding s rain ic s ponding s rain ic
K K K K I L L L L I

Q Q Q Q Q Q H H or Q K H H

H H or Q Q Q H H or Q Q Q

+ + = + + = = −

= = + = = +
 (3.4.30)

where QK
rain and QL

rain are the rainfall fluxes through nodes K and L, respectively; HK
ponding and

HL
ponding are the allowable ponding depth at nodes K and L, respectively; and Ke is the exchange

coefficient representing the material property of a layer separating the river and subsurface media
but the layer is not included in the geometrical discretization.

In Option 1, for every canal node I, there are associated a number of subsurface-interface nodes, say
NS, (NS + 1) additional equations are needed for every canal node I for the additional unknowns QI

ic,
QK

s, .., QJ
s, .., and QL

s. These equations are listed below:

()

;

 ;

1 1;
4 4

SN
ic rain rain s s s
I K L K J L

J

s c s s c
J I J e J I

s ponding s rain ic s ponding s rain ic
K K K K I L L L L I

Q Q Q Q Q Q

H H or Q K H H for J on River Bottom

H H or Q Q Q H H or Q Q Q

+ + = + +

= = − ∈

= = + = = +

∑
 (3.4.31)

In Option 3, for every canal node I, there are associated three subsurface-interface nodes K, J, and L
as in Option 2. However, while in Option 2, nodes K and J are located at the interactions of river
banks and subsurface media, in Option 3, nodes K and L can be located far way from the river banks
and node J interacts directly with the canal node I. The four interaction equations are modified
according to the continuity of fluxes as

()1 1 ; ;

;

s ic rain rain c s ic s c
J I K L I J I J I

K L

s ponding s rain s ponding s rain
K K K K L L L L

P PQ Q Q Q H H or Q K H H
E E

H H or Q Q H H or Q Q

⎛ ⎞ ⎛ ⎞
= + − + − = = −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
= = = =

 (3.4.32)

where P is the wet perimeter of the canal and EK and EL are the element length of KJ and JL,

 3-91

respectively.

3.4.3.2 Couple thermal or Salt Rate between the River Network and the Subsurface.

Numerical approximations of thermal or salt transport equation for one-dimensional river with finite
element methods yield the following matrix

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

+

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

ic
N

ic
I

ic

ic

c
N

c
I

c

c

c
N

c
I

c

c

c
IN

c
II

c
I

c
I

M

M

M

M

R

R

R

R

E

E

E

E

CCCC

2

1

2

1

2

1

21 (3.4.33)

where the superscript c denotes the canal (channel, river, or stream); CIJ is the I-th row, J-th column
of the coefficient matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the
load vector {R}; N is the number of nodes in the canal; and MI

ic is the rate of energy or salt
source/sink from/to the subsurface to/from canal node I due to infiltration/exfiltration. Every canal
node I involves two unknowns, EI

c and MI
ic. However, Eq. (3.4.33) gives just one algebraic

equation for every canal node I. Clearly, one additional algebraic equation is need for every canal
node I.

For example, taking Option 2 where there are three nodes associated with one canal node, the
applications of finite element methods to three-dimensional thermal or salt transport equation in the
subsurface media yields

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−
−−
−−

−

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−

−−

=

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−

−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−

−−−−−−−−−−−−−−
−−−−−−

−−−−−−

−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−

−−−−−−−−

<<
s

L

s
J

s
K

s
M

s
L

s
J

s
K

s

s

s
M

s
L

s
J

s
K

s

s

s
MM

s
M

s
M

s
LM

ss
L

s
L

s
M

s
JJ

s
J

s
J

s
KM

s
KK

s
K

s
K

s
M

s

s
M

ss

M

M

M

R

R

R

R

R

R

E

E

E

E

E

E

CCC

CCCC

CCCC

CCCC

CC

CCC

2

1

2

1

21

21

121

21

221

11211

 (3.4.34)

where the superscript s denotes the subsurface media; CIJ is the I-th row, J-th column of the
coefficient matrix [C]; EJ denotes the temperature or salinity at Node J; RJ is J-th entry of the load
vector {R}; M is the number of nodes in the overland ; and MK, MJ and ML are the rates of thermal or
salt sink/source from/to the subsurface water to/from the canal via nodes K, J and L, respectively.
Equation (3.4.34) indicates that there is one unknown corresponding to one algebraic equation for

 3-92

every interior node. However, for every algebraic equation corresponding an subsurface-canal
interface node, there are two unknowns, the temperature or salinity and the thermal or salt flux.
Therefore, for every subsurface-river interface node, one additional equation is needed. Since for
every canal node, there are associated three subsurface-interface nodes, four additional equations are
needed for every canal node I for the four additional unknowns MI

ic, MK
s, MJ

s, and ML
s.

These four additional equations are obtained by the interface condition between the canal node I and
the subsurface nodes K, J, and L as

() ()
()

1 () 1 ()
2 2

ic ic ic c icW W W W
I I I I I

s s s s s s rains rain rains rain
K K J J L L K K L L

C CM Q sign Q E sign Q

Q E Q E Q E Q E Q E

ρ ρ
= − + + ×

+ + − −
 (3.4.35)

and

()() ()()()
()() ()()()
()() ()()()

1 1 1 ,
2
1 1 1 ,
2
1 1 1
2

s s s s s c
K W W K K K K I

s s s s s c
J W W J J J J I

s s s s s c
L W W L L L L I

M C Q sign Q E sign Q E

M C Q sign Q E sign Q E

M C Q sign Q E sign Q E

ρ

ρ

ρ

= + + −

= + + −

= + + −

 (3.4.36)

for thermal transport or

() ()
()

1 11 () 1 ()
2 2

ic ic ic c ic
I I I I I

s s s s s s rains rain rains rain
K K J J L L K K L L

M Q sign Q E sign Q

Q E Q E Q E Q E Q E

= − + + ×

+ + − −
 (3.4.37)

and

()() ()()()

()() ()()()

()() ()()()c
I

s
L

s
L

s
L

s
L

s
L

c
I

s
J

s
J

s
J

s
J

s
J

c
I

s
K

s
K

s
K

s
K

s
K

EQsignEQsignQM

EQsignEQsignQM

EQsignEQsignQM

−++=

−++=

−++=

11
2
1

,11
2
1

,11
2
1

 (3.4.38)

for salt transport. For Option 1 and Option 3, the coupling can be done similarly.

3.4.4 Coupling Among River, Overland, and Subsurface Flows

The interaction among one-dimensional river, two-dimensional overland, and three-dimensional
subsurface flows involves three options: (1) river is discretized as finite-width and finite-depth on
the three-dimensional subsurface media (Fig. 3.4-6), (2) river is discretized as finite-width and zero-
depth on the three-dimensional subsurface media (Fig. 3.4-7), and (3) river is discretized as zero-
width and zero-depth on the three-dimensional subsurface media (Fig. 3.4-8). Option 1 is the most
realistic one. However, because of the computational demands, it is normally used in small scale
studies involving the investigations of infiltration and discharge between river and subsurface media
on a local scale. Option 2 is normally used in medium scale studies while Option 3 is normally

 3-93

employed in large scale investigations. In Option 1, for every river node there are associated with
two overland nodes M and N and a number of subsurface interfacing nodes such as K. , J, .., and L
(Fig. 3.4-6). In Option 2, for every river node I, there are associated with two overland nodes M and
N and three subsurface interfacing nodes K, J, and L (Fig. 3.4-7). In Option 3, for every river node
I, there is associated with two overland nodes M and N one subsurface node J (Fig. 3.4-8).

I

J’s
K L

K
J’s

I
L

M N

M N

Fig. 3.4-6. Interfacing Nodes for Every River Node when Rivers

Are Discretized as Finite-Width and Finite-Depth

I

JK L

K J

I

L

M N

K J L
IM N M N

Fig. 3.4-7. Interfacing Nodes for Every River Node when Rivers

Are Discretized as Finite-Width and Zero-Depth

 3-94

I

JK L

K J

K J

L
I

I

L
EK EL

M N QP

M NP Q

M NP Q

Fig. 3.4-8. Interfacing Nodes for Every River Node when Rivers

Are Discretized as Zero-Width and Zero-Depth

3.4.4.1 Couple Flow Rates among River, Overland, and Subsurface Media.

Numerical approximations of flow equations in river, overland, and subsurface would result in a
system of algebraic equations. For every river node I (Fig. 3.4-7), one or two algebraic equations
(for diffusive wave or fully dynamic wave approaches) are obtained governing the water surface
(diffusive wave approach) or the water surface and discharge (dynamic wave approach) for the node.
 The algebraic equation(s) also includes three additional unknowns: two are flow rates from overland
to the river via two river banks (QI

o1 and QI
o2)and the other is the flow rate from the subsurface

media to river via infiltration/exfiltration (QI
ic.) In the meantime, for the overland node M that

interfaces with the river node I and other subsurface nodes (Fig. 3.4-7), there are two additional
unknowns besides the state variables: one is the boundary flux from the overland to the river (QM

o)
and the other is the infiltration and/or exfiltration flux from overland to the subsurface (QM

io).
Similarly for the overland node N that interfaces with the river node I and other subsurface nodes
(Fig. 3.4-7), there are two additional unknowns besides the state variables: one is the boundary flux
from the overland to the river (QN

o) and the other is the infiltration and/or exfiltration flux from
overland to the subsurface (QN

io). For the subsurface node K that interfaces with the river node I and
overland node M (Fig. 3.4-7), there is one additional unknown (QK

s) beside the state variable.
Similarly, for the subsurface nodes L that interfaces with the river node I and overland node N, there
is one additional unknown (QL

s). Finally for the subsurface node J that interfaces with the river node
I, there is one additional unknown (QJ

s) beside the state variable (the pressure head or total head at
node J). Thus, in Option 2, one needs to set up 10 equations that describe the interactions among
flows in river, overland, and subsurface. These ten equations can be derived based on the continuity
of fluxes and state variables and formulation of each flux at each individual node as follows.

Interaction between Overland Node M and Canal Node I. Two equations are obtained based on
the continuity of flux and state variable or formulation of flux as

()1 1
1; ,o o o c o o c

M I M I I M IQ Q H H or Q f H H= = = (3.4.39)

Interaction between Overland Node N and Canal Node I. Two equations are obtained based on

 3-95

the continuity of flux and state variable or formulation of flux as

()2 2
2; ,o o o c o o c

N I N I I N IQ Q H H or Q f H H= = = (3.4.40)

Interaction between Overland Node M, Subsurface Node K, and Canal Node I. Two equations
are obtained based on the continuity of flux and state variable or formulation of flux as

()1 ;
4

s io ic s o io s o
K M I K M M e K MQ Q Q H H or Q K H H= + = = − (3.4.41)

Interaction between River Bank Node N, Subsurface Node L, and Canal Node I. Two equations
are obtained based on the continuity of flux and state variable or formulation of flux as

()1 ;
4

s io ic s o io s o
L N I L N N e L NQ Q Q H H or Q K H H= + = = − (3.4.42)

Interaction between Subsurface Node J and Canal Node I. Two equations are obtained based on
the continuity of flux and state variable or formulation of flux as

()1 ;
2

s ic s c s s c
J I J I J e J IQ Q H H or Q K H H= = = − (3.4.43)

3.4.4.2 Couple thermal or Salt Rate among River, Overland, and Subsurface Media.

Similar to the coupling of flows among river, overland, and subsurface media, the coupling of
thermal or salinity transport are achieved by imposing the continuity of energy/salt fluxes and
formulation of individual node fluxes.

Interaction between Overland Node M and Canal Node I. Two equations are obtained based on
the continuity of fluxes and the formulation of fluxes as

()() ()()()
()() ()()()

1 1 1 11 1 1 (
2
1 1 1 (
2

o o o o o c
I W W I I M I I

o o o o o c
M W W M M M M I

M C Q sign Q E sign Q E and

M C Q sign Q E sign Q E

ρ

ρ

= + + −

= + + −
 (3.4.44)

for thermal transport or

()() ()()()
()() ()()()

1 1 1 11 1 1 (
2
1 1 1 (
2

o o o o o c
I I I M I I

o o o o o c
M M M M M I

M Q sign Q E sign Q E and

M Q sign Q E sign Q E

= + + −

= + + −
 (3.4.45)

for salt transport.

Interaction between Overland Node N and Canal Node I. Two equations are obtained based on
the continuity of fluxes and the formulation of fluxes as

 3-96

()() ()()()
()() ()()()

2 2 2 21 1 1 (
2

1 1 1 (
2

o o o o o c
I W W I I N I I

o o o o o c
N W W N N N N I

M C Q sign Q E sign Q E and

M C Q sign Q E sign Q E

ρ

ρ

= + + −

= + + −
 (3.4.46)

for thermal transport or

()() ()()()
()() ()()()

2 2 2 21 1 1
2

1 1 1
2

o o o o o c
I I I N I I

o o o o o c
N N N N N I

M Q sign Q E sign Q E and

M Q sign Q E sign Q E

= + + −

= + + −
 (3.4.47)

Interaction between Overland Node M, Subsurface Node K, and Canal Node I. Two equations
are obtained based on the continuity of fluxes and the formulation of fluxes as

()() ()()

()() ()()

1 1 11 1
2 2 4

1 1 11 1
2 2 4

io io io o io s s ic c
M W W M M M M K K I I

s s s s s io o ic c
K W W K K K K M M I I

M C sign Q Q E sign Q Q E Q E and

M C sign Q Q E sign Q Q E Q E

ρ

ρ

⎧ ⎫⎛ ⎞= − + + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞= + + − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (3.4.48)

for thermal transport and

()() ()()

()() ()()

1 1 11 1
2 2 4

1 1 11 1
2 2 4

io io io o io s s ic c
M M M M M K K I I

s s s s s io o ic c
K K K K K M M I I

M sign Q Q E sign Q Q E Q E and

M sign Q Q E sign Q Q E Q E

⎧ ⎫⎛ ⎞= − + + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞= + + − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (3.4.49)

for salt transport.

Interaction between River Bank Node N, Subsurface Node L, and Canal Node I. Two equations
are obtained based on the continuity of fluxes and the formulation of flux as

()() ()()

()() ()()

1 1 11 1
2 2 4

1 1 11 1
2 2 4

io io io o io s s ic c
N W W N N N N L L I I

s s s s s io o ic c
L W W L L L L N N I I

M C sign Q Q E sign Q Q E Q E and

M C sign Q Q E sign Q Q E Q E

ρ

ρ

⎧ ⎫⎛ ⎞= − + + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞= + + − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (3.4.50)

for thermal transport and

()() ()()

()() ()()

1 1 11 1
2 2 4

1 1 11 1
2 2 4

io io io o io s s ic c
N N N N N L L I I

s s s s s io o ic c
L L L L L N N I I

M sign Q Q E sign Q Q E Q E and

M sign Q Q E sign Q Q E Q E

⎧ ⎫⎛ ⎞= − + + −⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞= + + − +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

 (3.4.51)

for salt transport.

 3-97

Interaction between Subsurface Node J and Canal Node I. Two equations are obtained based on
the continuity of fluxes and the formulation of fluxes as

()() ()()

()() ()()

1 11 2 1
2 2
1 1 11 1
2 2 2

ic ic s s ic ic c
I W W I J J I I I

s s s s s ic c
J W W J J J J I I

M C sign Q Q E sign Q Q E and

M C sign Q Q E sign Q Q E

ρ

ρ

⎛ ⎞= + + −⎜ ⎟
⎝ ⎠
⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

 (3.4.52)

for thermal transport and

()() ()()

()() ()()

1 11 2 1
2 2
1 1 11 1
2 2 2

ic ic s s ic ic c
I I J J I I I

s s s s s ic c
J J J J J I I

M sign Q Q E sign Q Q E and

M sign Q Q E sign Q Q E

⎛ ⎞= + + −⎜ ⎟
⎝ ⎠
⎛ ⎞= + + −⎜ ⎟
⎝ ⎠

 (3.4.53)

for salt transport.

3.5 Solving One-Dimensional River/Stream/Canal Network Water Quality Transport
Equations

In this section, we present the numerical approaches employed to solve the governing equations of
reactive chemical transport in 1-D river/stream/canal networks. Ideally, one would like to use a
numerical approach that is accurate, efficient, and robust. Depending on the specific problem at
hand, different numerical approaches may be more suitable. For research applications, accuracy is a
primary requirement, because one does not want to distort physics due to numerical errors. On the
other hand, for large field-scale problems, efficiency and robustness are primary concerns as long as
accuracy remains within the bounds of uncertainty associated with model parameters. Thus, to
provide accuracy for research applications and efficiency and robustness for practical applications,
three coupling strategies were investigated to deal with reactive chemistry. They are: (1) a fully-
implicit scheme, (2) a mixed predictor-corrector/operator-splitting method, and (3) an operator-
splitting method. For each time-step, we first solve the advective-dispersive transport equation with
or without reaction terms, kinetic-variable by kinetic-variable. We then solve the reactive chemical
system node-by-node to yield concentrations of all species.

Five numerical options are provided to solve the advective-dispersive transport equations: Option 1-
application of the Finite Element Method (FEM) to the conservative form of the transport equations,
Option 2 - application of the FEM to the advective form of the transport equations, Option 3 -
application of the modified Lagrangian-Eulerian (LE) approach to the Largrangian form of the
transport equations, Option 4 - LE approach for all interior nodes and downstream boundary nodes
with the FEM applied to the conservative form of the transport equations for the upstream flux
boundaries, and Option 5 - LE approach for all interior and downstream boundary nodes with the
FEM applied to the advective form of the transport equations for upstream flux boundaries.

 3-98

3.5.1 One-Dimensional Bed Sediment Balance Equation

At n+1-th time step, the continuity equation for 1-D bed sediment transport, equation (2.5.1), is
approximated as follows.

() ()
1 1

1 1 1
1 2

n n n n
n n n n n nn n

n n n n
P M P M W P D R W P D R

t

+ +
+ + +−

= − + −
Δ

 (3.5.1.1)

where W1 and W2 are time weighting factors satisfying

1 2 1 21, 0 1, 0 1W W W and W+ = < < < < (3.5.1.2)

 So that

() (){ }1 1 1 1 1
1 2

n n n n n n n n n n
n n n n n nM P M W P D R W P D R t P+ + + + +⎡ ⎤= + − + − Δ⎣ ⎦

 (3.5.1.3)

If the calculated Mn

n+1 < 0, assign Mn
n+1

 =0, so that solve equation (3.5.1.3) and get

(){ }1 1 1 1
1 2 1

n n n n n n n n n
n n n n nR P M W P D W P D R t W P t+ + + +⎡ ⎤= + + − Δ Δ⎣ ⎦

 (3.5.1.4)

3.5.2 Application of the Finite Element Method to the Conservative Form of the Sediment

Transport Equations to Solve 1-D Suspended Sediment Transport

Recall governing equation for 1-D suspended sediment transport, equation (2.5.10), as following.

1 2
s

() () () , n [1,N]
n n n

as os osn n n
x S S S n n

AS QS SK A M M M R D P
t x x x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎛ ⎞+ − = + + + − ∈⎜ ⎟
⎝ ⎠

 (3.5.2.1)

Assign

() 0HS n n HSR R D P and L= − = (3.5.2.2)

where the right hand side term RHS and left hand side term LHS should be continuously calculated as
follows.

 0, * , ;

 0, ,
Sn

n n n

as
s s n HS HS s

as as as
s S S HS HS S

If S M S S and L L S

Else S M M R R M

≤ = = −

> = = +
 (3.5.2.3)

1

1 1 1

1 1 1
1

 0, * , ;

 0, ,
n

n n n

os
S n HS HS

os os os
S S HS HS S

If S M S S and L L S

Else S M M R R M

≤ = = −

> = = +
 (3.5.2.4)

2

2 2 2

2 2 2
2

 0, * ,

 0, ,
n

n n n

os
S n HS HS

os os os
S S HS HS S

If S M S S and L L S

Else S M M R R M

≤ = = −

> = = +
 (3.5.2.5)

Then equation (3.5.2.1) is simplified as

 3-99

() () *n n n
x HS n HS

AS QS SK A L S R
t x x x

∂ ∂ ∂ ∂⎛ ⎞+ − + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (3.5.2.6)

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. For
Galerkin method, choose weighting function identical to base functions. For Petrov-Galerkin
method, apply weighting function one-order higher than the base function to advection term.
Integrate Equation (3.5.2.6) in the spatial dimensions over the entire region as follows.

()
1 1 1

() *
N N Nx x x

nn n
i x HS n i i HS

x x x

QSAS SN K A L S dx W dx N R dx
t x x x

∂∂ ∂ ∂⎡ ⎤⎛ ⎞− + + =⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦∫ ∫ ∫ (3.5.2.7)

Integrating by parts, we obtain

1 1 1 1

1
11

() *

N N N N

NN
N

x x x x
n i i n

i n x i HS n
x x x x

Xx
X n

i HS i n i xX
Xx

AS dW dN SN dx QS dx K A dx N L S dx
t dx dx x

SN R dx W QS N K A
x

∂ ∂
∂ ∂

∂
∂

− + +

= − +

∫ ∫ ∫ ∫

∫

(3.5.2.8)

Approximate solution Sn by a linear combination of the base functions as shown by Equation
(3.5.2.9).

1

() ()
N

n n nj j
j

S S S t N x
=

≈ = ∑
� (3.5.2.9)

Substituting Equation (3.5.2.9) into Equation (3.5.2.8), we obtain

1 1 1

1 1

1

1

() ()

()

N N N

N N

x x xN
ji i

i HS j j x nj
j x x x

x xN
nj n

i j i HS i n i x
j bx x

dNA dW dNN L N dx QN dx K A dx S t
t dx dx dx

S t SN AN dx N R dx n W QS N K A
t x

=

=

⎡ ⎤⎛ ⎞∂
+ − +⎢ ⎥⎜ ⎟⎜ ⎟∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ∂ ∂⎛ ⎞+ = − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∑∫ ∫

(3.5.2.10)

Equation (3.5.2.10) can be written in matrix form as

(){ } { } { }[1] [2] [3] [] n
n

SL L L S M SS B
t

∂⎧ ⎫+ + + = +⎨ ⎬∂⎩ ⎭
 (3.5.2.11)

The matrices [L1], [L2], [L3], [M] and load vectors {SS}, {B} are given by

1

Nx

ij i j
x

M N AN dx= ∫ (3.5.2.12)

1

1 ()
Nx

ij i HS j
x

AL N L N dx
t

∂
∂

= +∫ (3.5.2.13)

1

2
Nx

i
ij j

x

dWL QN dx
dx

= − ∫ (3.5.2.14)

 3-100

1

3
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫ (3.5.2.15)

1

Nx

i i HS
x

SS N R dx= ∫ (3.5.2.16)

n
i i n i x

b

Sn WQS N K A
x

B ∂
∂

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (3.5.2.17)

where all the terms listed above are calculated with the corresponding time weighting value.

At n+1-th time step, equation (3.5.2.11) is transformed as

{ } { } { }1 2[] [] [] [1] [2] [3]
p

p n n
n n

S SL W S W S M SS B where L L L L
t

⎧ ⎫−
+ + = + = + +⎨ ⎬Δ⎩ ⎭

 (3.5.2.18)

So that

{ } { }1[} n
nCMATRX S RLD+ = (3.5.2.19)

where

1
[][] []MCMATRX W L

t
= +

Δ
 (3.5.2.20)

{ } { } { } { }2
[] [] n

n
MRLD W L S SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.2.21)

The above equations are used to solve the suspended sediment concentration at interior nodes where
boundary term {B} is zero.

The equation employed to determine the suspended sediment at junctions can be derived based on
the conservation law of material mass and written as follows.

1

()
() () [() ()]

jNJRTH
j n j s os

n j n j n j n j JTj k
k

dV S
M M R D A Flux

dt =

= + + − + ∑ (3.5.2.22)

where jV is the junction volume, (Sn)j is the suspended sediment concentration at the junction, (Mn
s)j

is artificial source at the junction, (Mn
os)j is overland source at the junction, (Rn)j is erosion rate at the

junction, (Dn)j is deposition rate at the junction, JTjA is the bed area of the junction j, NJTRHj is the
number of river/stream reaches connected to the junction, and Fluxk is the material flux contributed
from k-th reach to the junction.

Flux nk k= −
⎛
⎝
⎜

⎞
⎠
⎟Q S K A

S
x

k
n

k
x

n
k∂

∂
 (3.5.2.23)

To solve equation (3.5.2.22) at n+1-th time step, assign

 3-101

1n
j

HS j

V
L

t

+

=
Δ

 (3.5.2.24)

1 1 1
2 1

()
[() ()]

n n
j n j n n n n

HS j HS j n j n j JT j

V S
R W R W R D A

t
+ + += + + −

Δ
 (3.5.2.25)

where

() () [() - ()]n s n os n n n n
HS j n j n j n j n j JT jR M M R D A= + + (3.5.2.26)

Continue the calculation as follows

1

1

() , () 0 ()
()

() *() , () 0 ()

s s
n j s j HS j HS j n js

n j
s j n j s j HS j HS j s j

M if S R R W M
M

S S if S L L W S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.2.27)

1

1

() , () 0 ()
()

() * () , () 0 ()

os os
n j os j HS j HS j n jos

n j
os j n j os j HS j HS j os j

M if S R R W M
M

S S if S L L W S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.2.28)

Finally, the ordinary differential equation, Eq. (3.5.2.22), is reduced the algebraic equation as
follows

1

()
jNJRTH

HS j n j k HS j
k

L S Flux R
=

− =∑ (3.5.2.29)

So that at junction j

1
1 2

1 1

()
j jNJRTH NJRTH

n n
HS j n j k HS j k

k k

L S W Flux R W Flux+

= =

− = +∑ ∑ (3.5.2.30)

For a reach node neighboring the junctions, assign

{ } { } { }2
[] [] p

n
MRLDW W L S SS

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.5.2.31)

Equation (3.5.2.19) is written as

{ } { } { }[] nCMATRX S Flux RLDW+ = (3.5.2.32)

If nQ > 0, flow is going from reach to the junction

k k
k nFlux nQ S= (3.5.2.33)

If nQ < 0, flow is going from junction to the reach,

()k
k n jFlux nQ S= (3.5.2.34)

So that equations (3.5.2.30) and (3.5.2.32) become a set of equation of (Sn)j and (Sn)k.

 3-102

For boundary node i = b, the boundary term {B} should be calculated as follows.

n n
i i n i x n x

b b

S SB n WQS N K A n QS K A
x x

∂ ∂⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5.2.35)

Dirichlet boundary condition

(,) n n bS S x t= (3.5.2.36)

Variable boundary condition

When flow is coming in from outside (nQ < 0)

 (,) (,)n
n x n b i n b

Sn QS AK nQS x t B nQS x t
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.2.37)

When Flow is going out from inside (nQ > 0)

0 n
x i n

SnAK B nQS
x

∂
− = ⇒ = −

∂
 (3.5.2.38)

which must be assembled into the matrix for the boundary point.

Cauchy boundary condition

(,) (,)
n

n
n x S n b i S b

Sn QS AK Q x t B Q x t
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.2.39)

Neumann boundary condition

(,) (,)
n

n
x S n b i n S b

SnAK Q x t B nQS Q x t
x

∂
− = ⇒ = − −

∂
 (3.5.2.40)

3.5.3 Application of the Finite Element Method to the Advective Form of the Transport

Equations to Solve 1-D Suspended Sediment Transport

Recall governing equation for 1-D suspended sediment transport, equation (2.5.10), as following.

1 2() () () , [1,]
n n n

as os osn n n
x S S S n n s

AS QS SK A M M M R D P n N
t x x x

∂ ∂ ∂ ∂⎛ ⎞+ − = + + + − ∈⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (3.5.3.1)

Conversion to advection form of equation (3.5.3.1) is expressed as

1 2 ()
n n n

as os osn n n
x n S S S n n

S S S A QA Q K A S M M M R D P
t x x x t x

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞+ − + + = + + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.5.3.2)

According to governing equation for 1-D flow, equation (2.1.1), assign

 3-103

1 2() HS n n HS S R E IR R D P and L S S S S S S= − = + − + + + (3.5.3.3)

where the right hand side term RHS and left hand side term LHS should be continuously calculated
in the same way as that in section 3.5.2. Then equation (3.5.3.2) is simplified as

n n n
x HS n HS

S S SA Q K A L *S R
t x x x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎛ ⎞+ − + =⎜ ⎟
⎝ ⎠

 (3.5.3.4)

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate
Equation (3.5.3.4) in the spatial dimensions over the entire region as follows.

1 1 1

*
N N Nx x x

n n n
i x HS n i i HS

x x x

S S SN A K A L S dx W Q dx N R dx
t x x x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎡ ⎤⎛ ⎞− + + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ ∫ (3.5.3.5)

Integrating by parts for the dispersion/diffusion term, we obtain

1 1 1 1

11

*

N N N N

NN

x x x x
n n i n

i i x i HS n
x x x x

xx
n

i HS i x
xx

S S dN SN A dx W Q dx K A dx N L S dx
t x dx x

SN R dx N K A
x

∂ ∂ ∂
∂ ∂ ∂

∂
∂

+ + +

= +

∫ ∫ ∫ ∫

∫

(3.5.3.6)

Approximate solution Sn by a linear combination of the base functions as shown by Equation
(3.5.3.7).

1

() ()
N

n n nj j
j

S S S t N x
=

≈ = ∑
� (3.5.3.7)

Substituting Equation (3.5.3.7) into Equation (3.5.3.6), we obtain

1 1 1

1 1

1

1

 ()

()

N N N

N N

x x xN
j ji

i HS j i x nj
j x x x

x xN
nj n

i j i HS i x
j bx x

dN dNdNN L N dx W Q dx K A dx S t
dx dx dx

S t SN AN dx N R dx n N K A
t x

=

=

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ∂ ∂⎛ ⎞+ = +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∑∫ ∫

(3.5.3.8)

Equation (3.5.3.8) can be written in matrix form as

(){ } { } { }[1] [2] [3] [] n
n

SL L L S M SS B
t

∂⎧ ⎫+ + + = +⎨ ⎬∂⎩ ⎭
 (3.5.3.9)

The matrices [L1], [L2], [L3], [M] and load vectors {SS}, {B} are given by

1

Nx

ij i j
x

M N AN dx= ∫ (3.5.3.10)

1

1
Nx

ij i HS j
x

L N L N dx= ∫ (3.5.3.11)

 3-104

1

2
Nx

j
ij i

x

dN
L W Q dx

dx
= ∫ (3.5.3.12)

1

3
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫ (3.5.3.13)

1

Nx

i i HS
x

SS N R dx= ∫ (3.5.3.14)

n
i i x

b

SB n N K A
x

∂⎛ ⎞= − −⎜ ⎟∂⎝ ⎠
 (3.5.3.15)

where all the terms listed above are calculated with the corresponding time weighting value.

At n+1-th time step, equation (3.5.3.9) is approximated as

{ } { } { }
1

1
1 2[] [] [] [1] [2] [3]

n n
n n n n

n n
S SL W S W S M SS B where L L L L

t

+
+ ⎧ ⎫−

+ + = + = + +⎨ ⎬Δ⎩ ⎭
 (3.5.3.16)

So that
{ } { }1[} n

nCMATRX S RLD+ = (3.5.3.17)

where

1
[][] []MCMATRX W L

t
= +

Δ
 (3.5.3.18)

{ } { } { } { }2
[] [] n

n
MRLD W L S SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.3.19)

The above equations are used to solve the suspended sediment concentration at interior nodes where
boundary term {B} is zero.

At internal boundary points neighboring the junctions, assign

{ } { } { }2
[] [] { }p

n n
MRLDW W L S SS nQS

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.3.20)

Equation (3.5.3.17) is modified as

{ } { } { }[] nCMATRX S Flux RLDW+ = (3.5.3.21)

So that junction concentration can be solved by equations (3.5.2.30) and (3.5.3.21).

For a global boundary node i = b, the boundary term {B} should be calculated as follows.

n n
i i x x

b b

S SB n N K A n K A
x x

∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5.3.22)

Dirichlet boundary condition

 3-105

(,) n n bS S x t= (3.5.3.23)

Variable boundary condition

When flow is coming in from outside (nQ < 0)

 (,) (,)n
n x n b i n n b

Sn QS AK nQS x t B nQS nQS x t
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.3.24)

When Flow is going out from inside (nQ > 0)

0 0n
x i

SnAK B
x

∂
− = ⇒ =

∂
 (3.5.3.25)

Cauchy boundary condition

n

n
n x Sn b i n S b

Sn QS AK Q (x ,t) B nQS Q (x ,t)
x

∂
∂

⎛ ⎞− = ⇒ = −⎜ ⎟
⎝ ⎠

 (3.5.3.26)

Neumann boundary condition

() ()
n

n
x Sn i S

SnAK Q t B Q t
x

∂
− = ⇒ = −

∂
 (3.5.3.27)

3.5.4 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form

of the Transport Equations to Solve 1-D Suspended Sediment Transport

Recall governing equation for 1-D suspended sediment transport in advection form, equation
(3.5.3.2), as follows

1 2 ()
n n n

as os osn n n
x n s s s n n

S S S A QA Q K A S M M M R D P
t x x x t x

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞+ − + + = + + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.5.4.1)

Assign and calculate RHS and LHS the same as that in section (3.5.3). Then equation (3.5.4.1) is
simplified as

*n n n
x HS n HS

S S SA Q K A L S R
t x x x

∂ ∂ ∂ ∂⎛ ⎞+ − + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (3.5.4.2)

Equation (3.5.4.2) in the Lagrangian and Eulerian form is written as follows. In the Lagrangian step

=0 =0 n n n n ndS S S S SA A Q V
d t x t x

∂ ∂ ∂ ∂
τ ∂ ∂ ∂ ∂

= + ⇒ + (3.5.4.3)

where τ is the tracking time, and particle-tracking velocity V is the flow velocity. In the Eulerian
step

*n n
x HS n HS

dS SA K A L S R
d x x

∂ ∂
τ ∂ ∂

⎛ ⎞− + =⎜ ⎟
⎝ ⎠

 (3.5.4.4)

 3-106

Equation (3.5.4.4) written in a slightly different form is shown as follows.

*n
n L

dS D K S R
dτ

− + = (3.5.4.5)

where
n

x
SAD K A

x x
∂ ∂

∂ ∂
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.5.4.6)

HSLK
A

= (3.5.4.7)

HS
L

RR
A

= (3.5.4.8)

Integrating Eq. (3.5.4.5) along a characteristic line to yield the following matrix equation as

{ } { } { }

{ } { } (){ } { } { }

1 1 1 1
1 1

** * 1 *
2 2 1 2

[]

[]

n n n n
n n

n
n n L L

S W D W S

S W D W KS W R W R

τ

τ

+ + + +

+

⎡ ⎤− + =⎣ ⎦Δ

+ − + +
Δ

U K

U

(3.5.4.9)

where * corresponds to the previous time step value at the location where node i is backwardly
tracked in the Lagrangian step, [U] is the unit matrix, and [Kn+1] is a diagonal matrix with K
calculated at the (n+1)-th time step as its diagonal components..

The diffusion term D expressed in term of Sn is solved by the following procedure. Approximate D
by a linear combination of the base functions as follows.

1

ˆ () ()
N

j j
j

D D D t N x
=

≈ = ∑ (3.5.4.10)

Applying the Galerkin finite element method to Eq. (3.5.4.6), we obtain

1 1 1
1

() ()
N N Nx x xN

n
i i j j i x

jx x x

SN ADdx N A D t N x dx N K A dx
x x=

∂ ∂⎛ ⎞= = ⎜ ⎟∂ ∂⎝ ⎠
∑∫ ∫ ∫ (3.5.4.11)

Integrating by parts, we obtain

11 1
1

*
NN N Xx xN

i n n
i j j x i x

j Xx x

dN S SN AN dx D K A dx N K A
dx x x=

⎡ ⎤⎛ ⎞ ∂ ∂
= − +⎢ ⎥⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ (3.5.4.12)

Approximate Sn by a linear combination of the base functions as follows.

S S S t N xn n nj j
j

N

≈ =
=

∑
�

() ()
1

 (3.5.4.13)

Substituting Eq. (3.5.4.13) into Eq. (3.5.4.12), we have

 3-107

11 1
1 1

* *()
NN N Xx xN N

ji n
i j j x n j i x

j j Xx x

dNdN SN AN dx D K A dx S N K A
dx x x= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ∂
= − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫ (3.5.4.14)

Assign matrices [QA], [QD] and load vector {B} as following.

1

Nx

ij i j
x

QA N AN dx= ∫ (3.5.4.15)

1

Nx
ji

ij x
x

dNdNQD K A dx
dx dx

= ∫ (3.5.4.16)

n

i i x
b

SB nN K A
x

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (3.5.4.17)

Equation (3.5.4.14) is expressed as

{ } { } { }[] [] nQA D QD S QB= − + (3.5.4.18)

Lump matrix [QA] into diagonal matrix and update

/ij ij iiQD QD QA= (3.5.4.19)

/i i iiB QB QA= (3.5.4.20)

Then

{ } { } { }[] nD QD S B= − + (3.5.4.21)

where {B} is calculated as follows

Dirichlet boundary condition

() (,)
(,) n j n b

n n b i i x ii

S S x t
S S x t B nN K A QA

x
−

= ⇒ =
Δ

 (3.5.4.22)

where j is the interior node connected to the boundary node.

Variable boundary condition

When flow is coming in from outside (nQ < 0)

[](,) (,)n
n x n b i n n b ii

Sn QS AK nQS x t B nQS nQS x t QA
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.4.23)

When Flow is going out from inside (nQ > 0)

0 0n
x i

SnAK B
x

∂
− = ⇒ =

∂
 (3.5.4.24)

 3-108

Cauchy boundary condition

[](,) (,)n
n x Sn b i n Sn b ii

Sn QS AK Q x t B nQS Q x t QA
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.4.25)

Neumann boundary condition

(,) (,)n
x Sn b i Sn b ii

SnAK Q x t B Q x t QA
x

∂
− = ⇒ = −

∂
 (3.5.4.26)

According to equation (3.5.4.21), Equation (3.5.4.9) can be modified as follows

{ } { }1[} n
nCMATRX S RLD+ = (3.5.4.27)

where
1 1

1 1
[][] []n nUCMATRX W QD W K

τ
+ +⎡ ⎤= + + ⎣ ⎦Δ

 (3.5.4.28)

{ } { } { } (){ } { } { }** * 1 * 1
2 2 1 2 1

[] { }n n
n n L L

URLD S W D W KS W R W R W B
τ

+ += + − + + +
Δ

 (3.5.4.29)

The above equations are used to solve the suspended sediment concentration at interior nodes where
boundary term {Bn+1} is zero.

At the junctions, if nQ > 0, flow is going from the reach to the junction, assign

{ } { } { } { }1 1
1 2 []{ }n n n n

n ii n iiRLDW RLD nQS QA W B W QB S QA+ += + − − (3.5.4.30)

Equation (3.5.4.30) is written as

{ } { } { }1 1[] /n n
n iiCMATRX S Flux QA RLDW+ ++ = (3.5.4.31)

If nQ < 0, flow in going from junction to the reach, apply equation (3.5.2.23)

() ()
() n j n i

i n i x

S S
Flux n Q S K A

x
−⎡ ⎤

= −⎢ ⎥Δ⎣ ⎦
 (3.5.4.32)

where j is the interior node connected to the junction node i.

Junction concentration can be solved with equations (3.5.2.30), (3.5.4.31) and (3.5.4.32).

For boundary node i = b, the boundary term {Bn+1} in equation (3.5.4.29) should be calculated as
follows.

Dirichlet boundary condition

(,)n n bS S x t= (3.5.4.33)

 3-109

The above equation is used for Dirichlet boundary node rather than equation (3.5.4.29).

Variable boundary condition

When flow is coming in from outside (nQ < 0), equation (3.5.4.29) cannot be applied because ∆τ
equations zero. Applying boundary condition, we have

() ()
() (,)n j n i

n i x n b

S S
n Q S AK nQS x t

x
−⎡ ⎤

− =⎢ ⎥Δ⎣ ⎦
 (3.5.4.34)

where j is the interior node connected to the boundary node i.

When Flow is going out from inside (nQ > 0), the boundary term {Bn+1} in equation (3.5.4.29)
should be calculated as follows.

0 0n
x i

SnAK B
x

∂
− = ⇒ =

∂
 (3.5.4.35)

Cauchy boundary condition

Equation (3.5.4.29) cannot be applied because ∆τ equations zero. Applying boundary condition, we
have

() ()
() (,)n j n i

n i x Sn b

S S
n Q S AK Q x t

x
−⎡ ⎤

− =⎢ ⎥Δ⎣ ⎦
 (3.5.4.36)

Neumann boundary condition

The boundary term {Bn+1} in equation (3.5.4.29) should be calculated as follows.

n
x Sn b

SAK Q (x ,t) (,)
x i Sn b iin B Q x t QA∂

∂
− = ⇒ = − (3.5.4.37)

3.5.5 Aplication of the Lagrangian-Eulerian Approach for All Interior Nodes and

Downstream Boundary Nodes with the Finite Element Method Applied to the
Conservative Form of the Transport Equations for the Upstream Flux Boundaries to
Solve 1-D Suspended Sediment Transport

For this option, the matrix equation for interior and downstream boundary nodes is obtained
through the same procedure as that in section 3.5.4, and the matrix equation for junction and
upstream boundary nodes is obtained through the same procedure as that in section 3.5.2.

3.5.6 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and

Downstream Boundary Nodes with the Finite Element Method Applied to the
Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve

 3-110

1-D Suspended Sediment Transport

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.5.4, and the matrix equation for junction and upstream
boundary nodes is obtained through the same procedure as that in section 3.5.3.

3.5.7 Finite Application of the Finite Element Method to the Conservative Form of the

Transport Equations to Solve 1-D Kinetic Variable Transport

3.5.7.1 Fully implicit scheme

Recall the continuity equation for kinetic-variables, equation (2.5.44), can be written in slightly
different form by expanding the time derivative term as

1 2()
n n n n n n

m m
as rs is os osn n n

n x E E E E E E
E QE EAA E K A M M M M M AR
t t x x x

⎛ ⎞∂ ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.1.1)

where nE is the concentration of the n-th kinetic variable, m
nE is the mobile concentration of the n-

th kinetic variable,
n

as
EM is the rate of artificial source of the n-th kinetic variable nE ,

n

rs
EM is the

rate of rainfall source/evaporation sink of the n-th kinetic variable nE , , 1
n

os
EM is the rate of

overland source from Bank 1 of the n-th kinetic variable nE , 2
n

os
EM is the rate of overland source

from Bank 2 of the n-th kinetic variable nE ,
n

is
EM is the rate of exfiltration source of the n-th kinetic

variable nE , and
nER and is the rate of reaction of the n-th kinetic variable nE .

At (n+1)-th time step, equation (3.5.7.1.1) is approximated by

1
1 2() () ()

n n n n n n

n n m m
as rs is os osn n n n

n x E E E E E E
E E QE EAA E K A M M M M M AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.1.2)

where the superscripts n and n+1 represent the time step number. Terms without superscript should be
the corresponding average values calculated with time weighting factors W1 and W2.

According to the fully-implicit scheme, equation (3.5.7.1.2) can be separated into two equations as
follows

1/ 2
1 2() () ()

n n n n n n

n n m m
as rs is os osn n n n

n x E E E E E E
E E QE EAA E K A M M M M M AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.1.3)

1 1/ 2() () 0

n n
n nE E

t

+ +−
=

Δ
 (3.5.7.1.4)

First, we express En
m in terms of (En

m/En)·En to make En’s as primary dependent variables, so that
En

n+1/2 can be solved from Eq. (3.5.7.1.3). Second, we solve equation (3.5.7.1.4) together with
algebraic equations for equilibrium reactions using BIOGEOCHEM to obtain all individual species

 3-111

concentrations. Iteration between these two steps is needed because the new reaction terms Rn
n+1 and

the equation coefficients in equation (3.5.7.1.3) need to be updated with the calculation results of
(3.5.7.1.4). To improve the standard SIA method, the nonlinear reaction terms are approximated by
the Newton-Raphson linearization.

To solve equation (3.5.7.1.3), assign

0 0HS n HS nR and L= = (3.5.7.1.5)

Then the right hand side RHSn and left hand side LHSn should be continuously calculated as following

* , 0

* , 0

rs n

n

rs
R n R HS n HS n Ers

E m
R n R HS n HS n R

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.6)

* , 0 ,

* , 0

as n

n

as
S n S HS n HS n Eas

E m
S n S HS n HS n S

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.7)

1
1

1 11

1 1 1

* , 0

* , 0

os n

n

m os
n HS n HS n Eos

E m
n HS n HS n

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.8)

2
2

2 22

2 2 2

* , 0

* , 0

os n

n

m os
n HS n HS n Eos

E m
n HS n HS n

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.9)

* , 0

* , 0

is n

n

m is
I n I HS n HS n Eis

E m
I n I HS n HS n I

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.10)

where rsnE is the concentration of En in the rainfall source, esnE is the concentration of En in the
evaporation source, asnE is the concentration of En in the artificial source, 1osnE is the concentration
of En in the overland source from bank 1, 2osnE is the concentration of En in the overland source
from bank 2, and isnE is the concentration of En in the exfiltration source from subsurface media.

Equation (3.5.7.1.3) is then simplified as

1/ 2() () () *
n

n n m m
mn n n n

n x HS n n HS n E
E E QE EAA E K A L E R AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − + = +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.1.11)

Express En
m in terms of (En

m /En)En to make En’s as primary dependent variables,

()
n

m m m m
n n n n n n n

n n x x n HS n HS n E
n n n

E E E E E E EAA E Q E K A K A E L R AR
t t x E x E x x x E

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂ ∂
+ + − − + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.5.7.1.12)

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate
Equation (3.5.7.1.12) in the spatial dimensions over the entire region as follows.

 3-112

1 1

1 1

()

()

N N

N N

n

x xm m m
n n n n n n

i x i n x n
n nx x

x xm
n

i HS n n i HS n E
nx x

E E E E E EN A K A dx W Q E K A E dx
t x E x x E x x

E AN L E dx N R AR dx
E t

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂
− + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎛ ⎞∂
+ + = +⎜ ⎟∂⎝ ⎠

∫ ∫

∫ ∫

(3.5.7.1.13)

Integrating by parts, we obtain

()
1 1 1 1

1 1

2
2

1
1

()

(

N N N N

N N

n

x x x xm m m
n i n n i n i n n

i x n x n
n nx x x x

Bx xm m Bmn n n n
i HS n n i HS n E i x i n i xB

n nx x B

E dN E E dW E dW E EN A dx K A dx Q E dx K A E dx
t dx E x dx E dx x

E E E EAN L E dx N R AR dx N K A W QE W K A
E t E x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ∂ ∂∂
+ + = + + − +⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫
2

1

)
Bm

n
n

B

E E
x∂

(3.5.7.1.14)

Approximate solution En by a linear combination of the base functions as follows

1

ˆ () ()
N

n n nj j
j

E E E t N x
=

≈ = ∑ (3.5.7.1.15)

Substituting Equation (3.5.7.1.15) into Equation (3.5.7.1.14), we obtain

1 1

1

1 1

1

()
()

()

N N

N

N N

x xm m
i n i n n

j x j xN nx x nj
nj i jx xm mj xji n n

x i HS n j
n nx x

dW E dW E EQ N dx K A N dx
dx E dx x E t

E t N AN dx
tdNdN E E AK A dx N L N dx

dx E dx E t
=

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂
− +⎪ ⎪⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎡ ⎤∂ ⎛ ⎞ ∂⎪ ⎪⎝ ⎠⎝ ⎠⎢ ⎥

⎢+ ⎜ ⎟⎨ ⎬⎢ ⎥ ⎜ ⎟ ∂⎢⎛ ⎞ ⎛ ⎞∂⎪ ⎪ ⎝ ⎠⎢ ⎥ ⎣ ⎦+ + +⎜ ⎟ ⎜ ⎟⎪ ⎪⎢ ⎥∂⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

∫ ∫
∑ ∫

∫ ∫

()
1

1

()N

n

N

j

x m m
mn n n n

i HS E x i n x n
nx ii b

E E E EN R AR dx n N K A W QE W K A E
E x x

=

⎥ =
⎥

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
+ − − + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑

∑∫

(3.5.7.1.16)

Equation (3.5.7.1.16) can be written in matrix form as

(){ } { } { }[1] [2] [3] [4] [] n
n

EL L L L E M S B
t

∂⎧ ⎫+ + + + = +⎨ ⎬∂⎩ ⎭
 (3.5.7.1.17)

The matrices [L1], [L2], [L3], [L4], [M] and load vectors {S}, {B} are given by

1

1
Nx m

i n
ij j

nx

dW EL Q N dx
dx E

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫ (3.5.7.1.18)

1

(/)2
Nx m

i n n
ij x j

x

dW E EL K A N dx
dx x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

∫ (3.5.7.1.19)

1

3
Nx m

ji n
ij x

nx

dNdN EL K A dx
dx E dx

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ (3.5.7.1.20)

1

4
Nx m

n
ij i HS n j

nx

E AL N L N dx
E t

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

∫ (3.5.7.1.21)

1

Nx

ij i j
x

M N AN dx= ∫ (3.5.7.1.22)

 3-113

()
1

N

n

x

i i HS n E
x

S N R AR dx= +∫ (3.5.7.1.23)

()m m
m n n n n

i i n i x n i x
n b

E E E EB n WQE W K A E N K A
x E x

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂
= − − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.5.7.1.24)

To calculate [L2] through equation (3.5.7.1.19), assign

(/)m
n nE EPPX

x
∂

=
∂

 (3.5.7.1.25)

Then

1 1

(/)N Nx x m
n n

i i
x x

E EN PPXdx N dx
x

∂
=

∂∫ ∫ (3.5.7.1.26)

1 11 1

N Nx x mN N
j n

i j j i
j j nx x j

dN EN N dx PPX N dx
dx E= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫ (3.5.7.1.27)

So that

{ }[1] [2]
m

n

n

EQP PPX QP
E

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (3.5.7.1.28)

Lump [QP1] into diagonal matrix and assign

2 1ij ij iiQP QP QP= (3.5.7.1.29)

Then

{ } []
m

n

n

EPPX QP
E

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (3.5.7.1.30)

Equation (3.5.7.1.17) can be simplified as

{ } { } { }[] [] , [] [1] [2] [3] [4]n
n

EL E M S B where L L L L L
t

∂⎧ ⎫+ = + = + + +⎨ ⎬∂⎩ ⎭
 (3.5.7.1.31)

Further,

{ } { } { } { }1/ 2 1/ 2
1 2

[][] n n n n
n n n n

ML W E W E E E S B
t

+ ++ + − = +
Δ

 (3.5.7.1.32)

So that

{ }1/ 2[] { } n
nCMATRX E RLD+ = (3.5.7.1.33)

where

1
[][] *[] MCMATRX W L

t
= +

Δ
 (3.5.7.1.34)

 3-114

{ } { } { }2
[]{ } [] n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.7.1.35)

The above equations are used to solve for the kinetic variable concentration at interior nodes, where
the boundary term {B} is zero.

The equation employed to determine the kinetic variable at junctions can be derived based on the
conservation law of material mass and written as follows.

1

()
() () () () () ()

j

n n n n n

NJRTH
n j j as rs os is

j n j E j E j E j E j j E j k
k

d E dV
V E M M M M V R Flux

dt dt =

+ = + + + + + ∑ (3.5.7.1.36)

where jV is the junction volume, (En)j is the concentration of the n-th kinetic variable at Junction j,

()
n

as
E jM is the rate of artificial source of En at Junction j, ()

n

rs
E jM is the rate of rainfall source at

Junction j, ()
n

os
E jM is the rate of overland source at Junction j, ()

n

is
E jM is exfiltration source at the

junction, ()
nE jR is the rate kinetic variable concentration change due to reactions at the junction,

NJTRHj is the number of river/stream reaches connected to the junction, and Fluxk is the material
flux of the kinetic variable contributed from the k-th reach to the junction.

()()
m k

k m k n
k n x

EFlux n Q E K A
x

⎡ ⎤∂
= −⎢ ⎥∂⎣ ⎦

 (3.5.7.1.37)

At n+1-th time step, equation (3.5.7.1.36) is approximated by

1

1

() ()
() () () () () ()

j

n n n n n

n n NJRTH
n j n j j as rs os is

j n j E j E j E j E j j E j k
k

E E dV
V E M M M M V R Flux

t dt

+

=

−
+ = + + + + +

Δ ∑ (3.5.7.1.38)

which can be separated into two equations, according to Fully-implicit scheme, as follows

1/ 2

1

() ()
() () () () () ()

j

n n n n n

n n NJRTH
n j n j j as rs os is

j n j E j E j E j E j j E j k
k

E E dV
V E M M M M V R Flux

t dt

+

=

−
+ = + + + + +

Δ ∑ (3.5.7.1.39)

1 1/ 2() ()

0
n n

n j n jE E
t

+ +−
=

Δ
 (3.5.7.1.40)

First, solve equation (3.5.7.1.39) and get (En)j
n+1/2. Second, solve equation (3.5.7.1.40) together with

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to get the individual
species concentration.

To solve equation (3.5.7.1.39), assign

() j
HS n j

V VL
t t

∂
= +

Δ ∂
 (3.5.7.1.41)

2

()
() () ()

n

n n
j n j n

HS n j HS n j j E j

V E
R W R V R

t
= + +

Δ
 (3.5.7.1.42)

1

1 2
n n

k k kFlux W Flux W Flux+= ⋅ + ⋅ (3.5.7.1.43)

 3-115

Continue the calculation as follows

1

1

() *() , () 0 () () () *()
()

() *() , () 0 () () () * /

as as

n

n

S j j S j HS n j HS n j S j jn nas
E j m m

S j n j S j HS j HS n j S j n n

S E if S R R W S E
M

S E if S L L W S E E

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.44)

1

1

() *() , () 0 () () () *()
()

() *() , () 0 () () () * /

os os

n

os j j os j HS n j HS n j os j jn nos
E j m m

os j n j os j HS n j HS n j os j n n

S E if S R R W S E
M

S E if S L L W S E E

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.45)

where ()os jS is the flow rate of overland source to Junction j and ()osn jE is the concentration of En
in the overland source into Junction j.

1

1

() *() , () 0 () () () *()
()

() *() , () 0 () () () * /

rs

n

R j j R j HS n j HS n j R j n jnrs
E j m m

R j n j R j HS n j HS n j R j n n

S E if S R R W S R
M

S E if S L L W S E E

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.46)

1

1

() *() , () 0 () () () *()
()

() *() , () 0 () () () * /
is is

n

I j j I j HS n j HS n j I j jis n n
m mE j

I j n j I j HS n j HS n j I j n n

S E if S R R W S E
M

S E if S L L W S E E
> ⇒ = +⎧

= ⎨ ≤ ⇒ = −⎩
 (3.5.7.1.47)

Then equation (3.5.7.1.39) is approximated by

1

() () - ()
jNJRTH

HS n j n j k HS n j
k

L E Flux R
=

=∑ (3.5.7.1.48)

Assign

{ } { }2
[]{ } *[] n

n
MRLDW W L E S

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.5.7.1.49)

Equation (3.5.7.1.33) is modified as

{ }1/ 2[] { } { } n
nCMATRX E Flux RLDW+ + = (3.5.7.1.50)

The flux term in both equations (3.5.7.1.48) and (3.5.7.1.50) is specified as follows.

If nQ > 0, flow is going from reach to the junction

1/ 2
1 1/ 2

1 21/ 2

[()]() () [()] () [()]
[()]

m k n
k m k k n k n k n m k nn

k n n nk n
n

EFlux Q E W Q E W Q E
E

+
+ +

+= = + (3.5.7.1.51)

where the superscript n denotes the old time step, the superscript 1 / 2n + denotes the intermediate
time step, kFlux is the flux of the n-th kinetic variable from the k-th reach to Junction j, kQ is the
flow rate from the k-th reach to Junction j, ()k

nE is the concentration of the n-th kinetic variable of
the k-th reach, and ()m k

nE is the mobile concentration of the n-th kinetic variable of the k-th reach.

If nQ < 0, flow is going from junction to the reach,

 3-116

1/ 2
1 1/ 2

1 21/ 2

[()]
() () [()] () [()]

[()]

m n
n jk m k n n k n m n

k n j n j n jn
n j

E
Flux Q E W Q E W Q E

E

+
+ +

+= − = − − (3.5.7.1.52)

So that equations (3.5.7.1.48) and (3.5.7.1.50) become a set of equation of ()n jE and ()k
nE .

For boundary node i = b (use B as the input boundary value), the boundary term {B} should be
continuously calculated as follows.

()

()

m m
m n n n n

i i n i x i x n
n b

m m m
m mn n n n n

n x x n n x
n bb

E E E EB n W QE N K A W K A E
E x x

E E E E En QE K A K A E n QE K A
E x x x

⎡ ⎤∂ ∂
= − − −⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤ ⎛ ⎞∂ ∂ ∂
= − − − = − −⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦

(3.5.7.1.53)

Dirichlet boundary condition

(,)m m
n n bE E x t= (3.5.7.1.54)

Variable boundary condition

When flow is coming in from outside (nQ < 0)

(,) (,)
m

m m mn
n x n b i n b

En QE AK nQE x t B nQE x t
x

⎛ ⎞∂
− = ⇒ = −⎜ ⎟∂⎝ ⎠

 (3.5.7.1.55)

When Flow is going out from inside (nQ > 0)

0
m

mn
x i n

EnAK B nQE
x

∂
− = ⇒ = −

∂
 (3.5.7.1.56)

Cauchy boundary condition

(,) (,)
m

m n
n x En b i En b

En QE AK Q x t B Q x t
x

⎛ ⎞∂
− = ⇒ = −⎜ ⎟∂⎝ ⎠

 (3.5.7.1.57)

Neumann boundary condition

(,) (,)
m

mn
x En b i n En b

EnAK Q x t B nQE Q x t
x

∂
− = ⇒ = − −

∂
 (3.5.7.1.58)

3.5.7.2 Mixed Predictor-corrector/Operator-Splitting Scheme

Recall the continuity equation for kinetic-variables, equation (3.5.7.1.1), as follows.

1 2()
n n n n n n

m m
as rs is os osn n n

n x E E E E E E
E QE EAA E K A M M M M M AR
t t x x x

⎛ ⎞∂ ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.2.1)

At (n+1)-th time step, equation (3.5.7.2.1) is approximated by

 3-117

1

1 2() () ()
n n n n n n

n n m m
as rs is os osn n n n

n x E E E E E E
E E QE EAA E K A M M M M M AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.2.2)

According to Mixed Predictor-corrector/Operator-Splitting Scheme, equation (3.5.7.2.2) can be
separated into two equations as follows

1/ 2
1 2() () ()

() ()

n n n n n

n

m n m n m m
m as rs os os isn n n n
n x E E E E E

n im n
E n

E E QE EAA E K A M M M M M
t t x x x

nAAR A E
t

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

∂
+ −

∂
A

(3.5.7.2.3)

1 1/ 2

1 1[() ()] () ()() ()
n n

n m n im n
n n im n im nn n n

E E n n
E E E nA nAR R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A (3.5.7.2.4)

First, solve equation (3.5.7.2.3) and obtain 1/ 2()m n
nE + . Second, solve equation (3.5.7.2.4) together

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain (En)n+1
and the individual species concentration.

To solve equation (3.5.7.2.3), assign and calculate RHSn and LHSn same as that in section (3.5.7.1).
Then equation (3.5.7.2.3) is simplified as

1/ 2() () () ()
n

m n m n m m
m m n im nn n n n
n x HS n n HS n E n

E E QE EA AA E K A L E R AR E
t t x x x t

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂
+ + − + = + −⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.2.5)

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate
Equation (3.5.7.2.5) in the spatial dimensions over the entire region as follows.

()
1 1 1

1

()

N N N

N

n

mx x xm m
n mn n

i x i i HS n n
x x x

x
n im n

i HS n E n
x

QEE E AN A K A dx W dx N L E dx
t x x x t

AN R AR E dx
t

∂⎡ ⎤⎛ ⎞∂ ∂∂ ∂⎛ ⎞− + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦

∂⎛ ⎞+ −⎜ ⎟∂⎝ ⎠

∫ ∫ ∫

∫

(3.5.7.2.6)

Integrating by parts, we obtain

1 1 1 1

1

2
2

1
1

 ()

N N N N

N

n

x x x xm m
m mn i n i

i x n i HS n n
x x x x

Bx mBn im n m n
i HS n E n i n i xB

x B

E dN E dW AN A dx K A dx QE dx N L E dx
t dx x dx t

EAN R AR E dx W QE N K A
t x

∂ ∂ ∂⎛ ⎞+ − + +⎜ ⎟∂ ∂ ∂⎝ ⎠

∂∂⎛ ⎞= + − − +⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫ ∫

∫

(3.5.7.2.7)

Approximate solution En
m by a linear combination of the base functions as follows

1

ˆ () ()
N

m m m
n n nj j

j

E E E t N x
=

≈ = ∑ (3.5.7.2.8)

Substituting Equation (3.5.7.2.8) into Equation (3.5.7.2.7), we obtain

 3-118

1 1 1

1 1

1

1

 ()

()
()

N N N

N N

n

x x xN
j mi i

j x i HS n j nj
j x x x

x xmN
nj n im n

i j i HS n E n i n
j x x

dNdW dN AQN dx K A dx N L N dx E t
dx dx dx t

E t AN AN dx N R AR E dx n W QE
t t

=

=

⎡ ⎤⎛ ⎞∂⎛ ⎞⎢ ⎥− + + +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ∂ ∂⎛ ⎞⎢ ⎥+ = + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫
m

m n
i x

b

EN K A
x

⎡ ⎤∂
−⎢ ⎥∂⎣ ⎦

∑

(3.5.7.2.9)

Equation (3.5.7.2.9) can be written in matrix form as

(){ } { } { }[1] [2] [3] []
m

m n
n

EL L L E M S B
t

⎧ ⎫∂
+ + + = +⎨ ⎬∂⎩ ⎭

 (3.5.7.2.10)

The matrices [L1], [L2], [L3], [M] and load vectors {S}, {B} are given by

1

1
Nx

i
ij j

x

dWL QN dx
dx

= − ∫ (3.5.7.2.11)

1

2
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫ (3.5.7.2.12)

1

3
Nx

ij i HS n j
x

AL N L N dx
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫ (3.5.7.2.13)

1

Nx

ij i j
x

M N AN dx= ∫ (3.5.7.2.14)

1

()
N

n

x
n im n

i i HS n E n
x

AS N R AR E dx
t

∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫ (3.5.7.2.15)

m

m n
i i n i x

b

EB n W QE N K A
x

⎛ ⎞∂
= − −⎜ ⎟∂⎝ ⎠

 (3.5.7.2.16)

where all the terms listed above are calculated with the corresponding time weighting values.
Equation (3.5.7.2.10) is then simplified as

{ } { } { }[] [] , [] [1] [2] [3]
m

m n
n

EL E M S B where L L L L
t

⎧ ⎫∂
+ = + = + +⎨ ⎬∂⎩ ⎭

 (3.5.7.2.17)

Further,

{ } { } { }
1/ 2

1/ 2
1 2

() ()[] *() *() []
m n m n

m n m n n n
n n

E EL W E W E M S B
t

+
+ ⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.5.7.2.18)

So that
{ }1/ 2[] () { } m n

nCMATRX E RLD+ = (3.5.7.2.19)

where

1
[][] *[]MCMATRX W L

t
= +

Δ
 (3.5.7.2.20)

 3-119

{ } { } { }2
[]{ } *[] () m n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.7.2.21)

The above equations are used to solve for the kinetic variable concentration at interior nodes, where
the boundary term {B} is zero.

For junction nodes, recall equation (3.5.7.1.38) as follows.

1

1

() ()
() () () () () ()

j

n n n n n

n n NJRTH
n j n j j as rs os is

j n j E j E j E j E j j E j k
k

E E dV
V E M M M M V R Flux

t dt

+

=

−
+ = + + + + +

Δ ∑ (3.5.7.2.22)

which can be separated into two equations, according to mixed Predictor-corrector/operator-splitting
scheme, as follows

1/ 2

1

() ()
() () () () ()

() ()

n n n n

j

n

m n m n
n j n j j m as rs os is

j n j E j E j E j E j

NJRTH
jn im n

j E j n j k
k

E E dV
V E M M M M

t dt
dV

V R E Flux
dt

+

=

−
+ = + + + +

Δ

− + ∑

(3.5.7.2.23)

1 1/ 2

1 1() [() ()] () ()
() () () ()

n n

n m n im n
n j n j n j j jn n im n im n

j E j j E j n j n j

E E E nV nV
V R V R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A (3.5.7.2.24)

First, solve equation (3.5.7.2.23) and get 1/ 2()m n
n jE + . Second, solve equation (3.5.7.2.24) together

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the
individual species concentration.

To solve equation (3.5.7.2.23), assign

()
n

j j
HS n j

V dV
L

t dt
= +

Δ
 (3.5.7.2.25)

2

()
() () () ()

n

n m n
j n j jn n im n

HS n j HS n j j E j n j

V E dV
R W R V R E

t dt
= + + −

Δ
 (3.5.7.2.26)

1

1 2
n n

k k kFlux W Flux W Flux+= ⋅ + ⋅ (3.5.7.2.27)

Continue the calculation as follows

1

1

() * () , () 0 () () () * ()
()

() * () , () 0 () () ()

as as

n

S j j S j HS n j HS n j S j jn nas
E j m

S j n j S j HS n j HS n j S j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.2.28)

1

1

() *() , () 0 () () () *()
()

() *() , () 0 () () ()

os os

n

os j j os j HS n j HS n j os j jn nos
E j m

os j n j os j HS n j HS n j j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.2.29)

1

1

() *() , () 0 () () () *()
()

() *() , () 0 () () ()

rs rs

n

R j j R j HS n j HS n j R j jn nrs
E j m

R j n j R j HS n j HS n j R j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.2.30)

 3-120

1

1

() *() , () 0 () () () *()
()

() *() , () 0 () () ()

is is

n

I j j I j HS n j HS n j I j jn nis
E j m

I j n j I j HS n j HS n j I j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.2.31)

Then equation (3.5.7.2.23) is approximated by

1

() () ()
jNJRTH

m
HS n j n j k HS n j

k

L E Flux R
=

− =∑ (3.5.7.2.32)

Assign

{ } { }2
[]{ } *[] ()m n

n
MRLDW W L E S

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.5.7.2.33)

Equation (3.5.7.2.19) is modified as

{ }1/ 2[] () { } { } m n
nCMATRX E Flux RLDW+ + = (3.5.7.2.34)

The flux term in both equations (3.5.7.2.32) and (3.5.7.2.34) is specified as follows.

If nQ >0, flow is going from reach to the junction

1 1/ 2
1 2() () [()] () [()]k m k k n m k n k n m k n

k n n nFlux Q E W Q E W Q E+ += = + (3.5.7.2.35)

If nQ < 0, flow is going from junction to the reach,

1 1/ 2
1 2() () [()] () [()]k m k n m n k n m n

k n j n j n jFlux Q E W Q E W Q E+ += − = − − (3.5.7.2.36)

So that equations (3.5.7.2.32) and (3.5.7.2.34) become a set of equations of ()m
n jE and ()m k

nE .

For boundary node i = b, the boundary term {B} should be continuously calculated same as that
using Fully-implicit scheme in section 3.5.5.1.

3.5.7.3 Operator-splitting

Recall the continuity equation for kinetic-variables, equation (3.5.7.1.1), as follows.

1 2()
n n n n n n

m m
as rs is os osn n n

n x E E E E E E
E QE EAA E K A M M M M M AR
t t x x x

⎛ ⎞∂ ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.3.1)

At (n+1)-th time step, equation (3.5.7.3.1) is approximated by

1
1 2() () ()

n n n n n n

n n m m
as rs is os osn n n n

n x E E E E E E
E E QE EAA E K A M M M M M AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.3.2)

According to Operator-splitting scheme, equation (3.5.7.3.2) can be separated into two equations as
follows

 3-121

1/ 2
1 2() () ()

n n n n n

m n m n m m
m as rs os os isn n n n
n x E E E E E

E E QE EAA E K A M M M M M
t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.3.3)

1 1/ 2

1 1[() ()] () ()
n

n m n im n
n im nn n n

E n
E E E nAR E

t t

+ +
+ +− + ∂

= −
Δ ∂

A (3.5.7.3.4)

First, solve equation (3.5.7.3.3) and get 1/ 2()m n
nE + . Second, solve equation (3.5.7.3.4) together with

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain 1()n
nE + and

the individual species concentration.

To solve equation (3.5.7.3.3), assign and calculate RHSn and LHSn same as that in section (3.5.7.1).
Then equation (3.5.7.3.3) is simplified as

1/ 2() () ()m n m n m m
m mn n n n
n x HS n n HS n

E E QE EA AA E K A L E R
t t x x x t

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎛ ⎞+ + − + + =⎜ ⎟ ⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.7.3.5)

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate
Equation (3.5.7.3.5) in the spatial dimensions over the entire region as follows.

()
1 1 1 1

N N N Nmx x x xm m
n mn n

i x i i HS n n i HS n
x x x x

QEE E AN A K A dx W dx N L E dx N R dx
t x x x t

∂⎡ ⎤⎛ ⎞∂ ∂∂ ∂⎛ ⎞− + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫ ∫ ∫ (3.5.7.3.6)

Integrating by parts, we obtain

1 1 1 1

1

2
2

1
1

N N N N

N

x x x xm m
m mn i n i

i x n i HS n n
x x x x

Bx mBm n
i HS n i n i xB

x B

E dN E dW AN A dx K A dx QE dx N L E dx
t dx x dx t

EN R dx W QE N K A
x

∂ ∂ ∂⎛ ⎞+ − + +⎜ ⎟∂ ∂ ∂⎝ ⎠

∂
= − +

∂

∫ ∫ ∫ ∫

∫

(3.5.7.3.7)

Approximate solution m
nE by a linear combination of the base functions as follows

1

ˆ () ()
N

m m m
n n nj j

j

E E E t N x
=

≈ = ∑ (3.5.7.3.8)

Substituting Equation (3.5.7.3.8) into Equation (3.5.7.3.7), we obtain

1 1 1

1 1

1

1

 ()

()

N N N

N N

x x xN
j mi i

j x i HS n j nj
j x x x

x xm mN
nj m n

i j i HS n i n i x
j x x b

dNdW dN AQN dx K A dx N L N dx E t
dx dx dx t

dE t EN AN dx N R dx n W QE N K A
dt x

=

=

⎡ ⎤⎛ ⎞∂⎛ ⎞⎢ ⎥− + + +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎡ ⎤∂
⎢ ⎥+ = − −⎜ ⎟ ⎢ ⎥⎜ ⎟ ∂⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∑∫ ∫

(3.5.7.3.9)

Equation (3.5.8.2.19) can be written in matrix form as

(){ } { } { }[1] [2] [3] []
m

m n
n

dEL L L E M S B
dt

⎧ ⎫
+ + + = +⎨ ⎬

⎩ ⎭
 (3.5.7.3.10)

 3-122

The matrices [L1], [L2], [L3], [M] and load vectors {S}, {B} are given by

1

1
Nx

i
ij j

x

dWL QN dx
dx

= − ∫ (3.5.7.3.11)

1

2
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫ (3.5.7.3.12)

1

3
Nx

ij i HS n j
x

AL N L N dx
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫ (3.5.7.3.13)

1

Nx

ij i j
x

M N AN dx= ∫ (3.5.7.3.14)

1

Nx

i i HS n
x

S N R dx= ∫ (3.5.7.3.15)

m

m n
i i n i x

b

EB n W QE N K A
x

⎛ ⎞∂
= − −⎜ ⎟∂⎝ ⎠

 (3.5.7.3.16)

where all the terms listed above are calculated with the corresponding time weighting values.

Equation (3.5.7.2.10) is simplified as

{ } { } { }[] [] , [] [1] [2] [3]
m

m n
n

dEL E M S B where L L L L
dt

⎧ ⎫
+ = + = + +⎨ ⎬

⎩ ⎭
 (3.5.7.3.17)

Further,

{ } { } { }
1/ 2

1/ 2
1 2

() ()[] *() *() []
m n m n

m n m n n n
n n

E EL W E W E M S B
t

+
+ ⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.5.7.3.18)

So that
{ }1/ 2[] () { } m n

nCMATRX E RLD+ = (3.5.7.3.19)

1
[][] *[]MCMATRX W L

t
= +

Δ
 (3.5.7.3.20)

{ } { } { }2
[]{ } *[] () m n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.7.3.21)

The above equations are used to solve for the kinetic variable concentration at interior nodes, where
the boundary term {B} is zero.

For junction nodes, recall equation (3.5.7.2.22) as follows.

1

1

() ()
() () () () () ()

j

n n n n n

n n NJRTH
n j n j j as rs os is

j n j E j E j E j E j j E j k
k

E E dV
V E M M M M V R Flux

t dt

+

=

−
+ = + + + + +

Δ ∑ (3.5.7.3.22)

which can be separated into two equations, according to Operator-splitting scheme, as follows

 3-123

1/ 2

1

() ()
() () () () ()

j

n n n n

m n m n NJRTH
n j n j j m as rs os is

j n j E j E j E j E j k
k

E E dV
V E M M M M Flux

t dt

+

=

−
+ = + + + +

Δ ∑ (3.5.7.3.23)

1 1/ 2

1 1() [() ()] ()
() ()

n

n m n im n
n j n j n j jn im n

j E j n j

E E E nV
V R E

t t

+ +
+ +− + ∂

= −
Δ ∂

A (3.5.7.3.24)

First, solve equation (3.5.7.3.23) and get 1/ 2()m n
n jE + . Second, solve equation (3.5.7.3.24) together

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the
individual species concentration and 1() n

n jE + .

To solve equation (3.5.7.3.23), assign

()
n

j j
HS n j

V dV
L

t dt
= +

Δ
 (3.5.7.3.25)

2

()
() ()

n m n
j n j n

HS n j HS n j

V E
R W R

t
= +

Δ
 (3.5.7.3.26)

n 1 n

k 1 k 2 kFlux W Flux W Flux+= ⋅ + ⋅ (3.5.7.3.27)

Continue the calculation as follows

1

1

() * () , () 0 () () () * ()
()

() *() , () 0 () () ()

as as

n

S j j S j HS n j HS n j S j jn nas
E j m

S j n j S j HS n j HS n j S j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.3.28)

1

1

() *() , () 0 () () () *()
()

() *() , () 0 () () ()

os os

n

os j j os j HS n j HS n j os j jn nos
E j m

os j n j os j HS n j HS n j j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.3.29)

1

1

() *() , () 0 () () () *()
()

() *() , () 0 () () ()

rs rs

n

R j j R j HS n j HS n j R j jn nrs
E j m

R j n j R j HS n j HS n j R j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.3.30)

1

1

() *() , () 0 () () () *()
()

() *() , () 0 () () ()

is is

n

I j j I j HS n j HS n j I j jn nis
E j m

I j n j I j HS n j HS n j I j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.3.31)

Then equation (3.5.7.3.23) is approximated by

1
() () ()

jNJRTH
m

HS n j n j k HS n j
k

L E Flux R
=

− =∑ (3.5.7.3.32)

Assign

{ } { }2
[]{ } *[] ()m n

n
MRLDW W L E S

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.5.7.3.33)

Equation (3.5.7.3.19) is modified as

{ }1/ 2[] () { } { } m n
nCMATRX E Flux RLDW+ + = (3.5.7.3.34)

The flux term in both equation (3.5.7.3.32) and (3.5.7.3.34) is specified as follows.

 3-124

If nQ > 0, flow is going from reach to the junction

1 1/ 2
1 2() () [()] () [()]k m k k n m k n k n m k n

k n n nFlux Q E W Q E W Q E+ += = + (3.5.7.3.35)

If nQ < 0, flow is going from junction to the reach,

1 1/ 2
1 2() () [()] () [()]k m k n m n k n m n

k n j n j n jFlux Q E W Q E W Q E+ += − = − − (3.5.7.3.36)

Equations (3.5.7.3.32) and (3.5.7.3.34) become a set of equation of ()m
n jE and ()m k

nE .

For boundary node i = b, the boundary term {B} should be continuously calculated same as that
using Fully-implicit scheme in section 3.5.5.1.

3.5.8 Finite Application of the Finite Element Method to the Advective Form of the

Transport Equations to Solve 1-D Kinetic Variable

3.5.8.1 Fully-implicit scheme

Recall the continuity equation for kinetic-variables, equation (2.5.44), as follows.

1 2()
n n n n n n

m m
as rs is os osn n n

n x E E E E E E
E QE EAA E K A M M M M M AR
t t x x x

⎛ ⎞∂ ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.8.1.1)

According to the governing equation of water flow in 1-D river/stream

1 2S R I
A Q S S S S S
t x

∂ ∂
+ = + + + +

∂ ∂
 (3.5.8.1.2)

Equation (3.5.8.1.1) can be modified as follows.

1 2

1 2

()

n n n n n n

m m
mn n n

n x S R I n

as rs is os os
E E E E E E

E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

(3.5.8.1.3)

At n+1-th time step, equation (3.5.8.1.3) is approximated by

1

1 2

1 2

() () ()

n n n n n

n n m m
mn n n n

n x R R I n

as rs is os os
E E E E E n

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

(3.5.8.1.4)

According to Fully-implicit scheme, equation (3.5.8.1.4) can be separated into two equations as
follows

1/ 2

1 2

1 2

() () ()

n n n n n n

n n m m
mn n n n

n x S R I n

as rs is os os
E E E E E E

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + + =⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
+ + + + +

(3.5.8.1.5)

 3-125

1 1/ 2() () 0
n n

n nE E
t

+ +−
=

Δ
 (3.5.8.1.6)

First, solve equation (3.5.8.1.5) and get (En)n+1/2. Second, solve equation (3.5.8.1.6) together with
algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual
species concentration. Iteration between these two steps is needed because reaction term in equation
(3.5.8.1.5) needs to be updated by the results of (3.5.8.1.6).

To solve equation (3.5.8.1.5), assign

1 20 ()HS n HS n S R I
AR and L S S S S S
t

∂
= = + + + + −

∂
 (3.5.8.1.7)

Then the right hand side RHSn and left hand side LHSn should be continuously calculated same as
that in section (3.5.7.1). Equation (3.5.8.1.5) is then simplified as

1/ 2() ()
n

n n m m
mn n n n

n x HS n n HS n E
E E E EAA E Q K A L E R AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − + = +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.8.1.8)

Express En
m in terms of (En

m /En) En
m to make En’s as primary dependent variables,

()
n

m m m m
n n n n n n n

n n x x n HS n n HS n E
n n n

E E E E E E EAA E Q E K A K A E L E R AR
t t x E x E x x x E

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂ ∂
+ + − − + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.5.8.1.9)

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate
Equation (3.5.8.1.9) in the spatial dimensions over the entire region as follows.

()

1 1

1 1

()N N

N N

x xm m m
n n n n n n

i x i n x n
n nx x

x xm
n

i HS n n i HS n n
nx x

E E E E E EN A K A dx W Q E K A E dx
t x E x x E x x

E AN L E dx N R AR dx
E t

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂
− + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎛ ⎞∂
+ + = +⎜ ⎟∂⎝ ⎠

∫ ∫

∫ ∫

(3.5.8.1.10)

Integrating by parts, we obtain

()

1 1 1 1

1 1

1

()

()

N N N N

N N

N

n

x x x xm m m
n n n n n i n n

i i i n x
n nx x x x

x xm m
i n n n

x n i HS n n
nx x

x

i HS n E i x
x

E E E E E dN E EN A dx W Q dx W Q E dx K A dx
t E x x dx E x

dW E E E AK A E dx N L E dx
dx x E t

N R AR dx N K A

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

⎛ ⎞∂ ∂
+ + +⎜ ⎟∂ ∂⎝ ⎠

= + +

∫ ∫ ∫ ∫

∫ ∫

∫
2 2

11

()
B Bm m

n n n n
i x n

n BB

E E E EW K A E
E x x

∂ ∂
+

∂ ∂

(3.5.8.1.11)

Approximate solution En by a linear combination of the base functions as follows

1

ˆ () ()
N

n n nj j
j

E E E t N x
=

≈ = ∑ (3.5.8.1.12)

Substituting Equation (3.5.8.1.12) into Equation (3.5.8.1.11), we obtain

 3-126

1 1 1

1 1

1

1

() ()

()

()

N N N

N N

N

x x xm m m
jn n n i n n

i i j x j
N nx x x

njx xm mj ji n n
x i HS n j

n nx x

x
nj

i j
x

dNE E E dW E EW Q dx W Q N dx K A N dx
E dx x dx x

E t
dNdN E E AK A dx N L N dx

dx E dx E t

E t
N AN dx

t

=

⎧ ⎫⎡ ⎤∂ ∂
+ +⎪ ⎪⎢ ⎥

∂ ∂⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥

⎛ ⎞∂⎪ ⎪⎢ ⎥+ + +⎜ ⎟⎪ ⎪⎢ ⎥∂⎝ ⎠⎣ ⎦⎩ ⎭
⎡⎛ ⎞ ∂

+ ⎜ ⎟⎜ ⎟ ∂⎝ ⎠⎣

∫ ∫ ∫
∑

∫ ∫

∫ ()
1

1

()N

n

x m mN
n n n n

i HS n E i x i x n
j nx b

E E E EN R AR dx n N K A W K A E
E x x=

⎤ ⎡ ⎤∂ ∂
⎢ ⎥ = + + +⎢ ⎥∂ ∂⎢ ⎥ ⎣ ⎦⎦

∑ ∑∫

(3.5.8.1.13)

Equation (3.5.8.1.13) can be written in matrix form as

(){ } { } { }[1] [2] [3] [4] [5] [] n
n

EL L L L L E M S B
t

∂⎧ ⎫+ + + + + = +⎨ ⎬∂⎩ ⎭
 (3.5.8.1.14)

The matrices [L1], [L2], [L3], [L4], [L5], [M] and load vectors {S}, {B} are given by

1

1
Nx m

jn
ij i

nx

dNEL W Q dx
E dx

= ∫ (3.5.8.1.15)

1

()2
Nx m

n n
ij i j

x

E EL W Q N dx
x

∂
=

∂∫ (3.5.8.1.16)

1

(/)3
Nx m

i n n
ij x j

x

dW E EL K A N dx
dx x

∂
=

∂∫ (3.5.8.1.17)

1

4
Nx m

ji n
ij x

nx

dNdN EL K A dx
dx E dx

= ∫ (3.5.8.1.18)

1

5
Nx m

n
ij i HS n j

nx

E AL N L N dx
E t

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

∫ (3.5.8.1.19)

1

Nx

ij i j
x

M N AN dx= ∫ (3.5.8.1.20)

()
1

N

n

x

i i HS n E
x

S N R AR dx= +∫ (3.5.8.1.21)

()m m
n n n n

i i x i x n
n b

E E E EB n N K A W K A E
E x x

⎡ ⎤∂ ∂
= +⎢ ⎥∂ ∂⎣ ⎦

 (3.5.8.1.22)

Equation (3.5.8.1.14) is then simplified as

{ } { } { }[] [] , [] [1] [2] [3] [4] [5]n
n

EL E M S B where L L L L L L
t

∂⎧ ⎫+ = + = + + + +⎨ ⎬∂⎩ ⎭
 (3.5.8.1.23)

Further,

{ } { } { } { }1/ 2 1/ 2
1 2

[][] * * n n n n
n n n n

ML W E W E E E S B
t

+ ++ + − = +
Δ

 (3.5.8.1.24)

So that

 3-127

{ }1/ 2[] { }n
nCMATRX E RLD+ = (3.5.8.1.25)

where

1
[][] *[]MCMATRX W L

t
= +

Δ
 (3.5.8.1.26)

{ } { } { }2
[] { } *[] n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.8.1.27)

The above equations are used to solve for the kinetic variable concentration at interior nodes, where
the boundary term {B} is zero.

At the junction nodes, assign

{ } { }2
[] { } *[] { } n m

n n
MRLDW W L E S nQE

t
= − + +

Δ
 (3.5.8.1.28)

Equation (3.5.8.1.25) is modified as

{ }1/ 2[] { }n
nCMATRX E Flux RLDW+ + = (3.5.8.1.29)

Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.1.48),
and (3.5.8.1.29).

For boundary node i = b, the boundary term {B} should be continuously calculated as follows.

() ()m m m m m
n n n n n n n n n

i i x i x n x x n x
n n bb b

E E E E E E E E EB N K A W K A E n K A K A E n K A
E x x E x x x

⎡ ⎤ ⎡ ⎤ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= + = + = ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦ ⎣ ⎦

 (3.5.8.1.30)

Dirichlet boundary condition

(,)m m
n n bE E x t= (3.5.8.1.31)

Variable boundary condition

When flow is coming in from outside (nQ < 0)

(,) (,)
m

m m m mn
n x n b i n n b

En QE AK nQE x t B nQE nQE x t
x

⎛ ⎞∂
− = ⇒ = −⎜ ⎟∂⎝ ⎠

 (3.5.8.1.32)

When Flow is going out from inside (nQ > 0)

m
n

x i
EnAK 0 B 0

x
∂

∂
− = ⇒ = (3.5.8.1.33)

Cauchy boundary condition

(,) (,)
m

m mn
n x En b i n En b

En QE AK Q x t B nQE Q x t
x

⎛ ⎞∂
− = ⇒ = −⎜ ⎟∂⎝ ⎠

 (3.5.8.1.34)

 3-128

Neumann boundary condition

(,) (,)
m

n
x En b i En b

EnAK Q x t B Q x t
x

∂
− = ⇒ = −

∂
 (3.5.8.1.35)

3.5.8.2 Mixed Predictor-corrector/Operator-Splitting Scheme

Recall the continuity equation for kinetic-variables, equation (3.5.8.1.3), as follows.

1 2

1 2

()

n n n n n n

m m
mn n n

n x S R I n

as rs is os os
E E E E E E

E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + + =⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
+ + + + +

(3.5.8.2.1)

At n+1-th time step, equation (3.5.8.2.1) is approximated by

1

1 2

1 2

() () ()

n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

(3.5.8.2.2)

According to mixed predictor corrector/operator-splitting scheme, equation (3.5.8.2.2) can be
separated into two equations as follows

1

1 2

1 2

() () ()

 ()
n n n n n n

m n m n m m
m mn n n n
n x S R I n

as rs os os is n im n
E E E E E E n

E E E EA AA E Q K A S S S S S E
t t x x x t

AM M M M M AR E
t

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
∂

= + + + + + −
∂

(3.5.8.2.3)

1 1/ 2

1 1[() ()] () ()() ()
n n

n m n im n
n n im n im nn n n

E E n n
E E E nA nAR R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A (3.5.8.2.4)

First, solve equation (3.5.8.2.3) and get 1/ 2()m n
nE + . Second, solve equation (3.5.8.2.4) together with

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain 1n
nE + and the

individual species concentration.

To solve equation (3.5.8.2.3), assign and calculate RHSn and LHSn in the same way as that in Section
(3.5.7.2). Equation (3.5.8.2.3) is then simplified as

1/ 2() () ()
n n n

m n m n m m
m m n im nn n n n
n x HS n HS E n

E E E EA AA E Q K A L E R AR E
t t x x x t

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂
+ + − + = + −⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.8.2.5)

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. For
Galerkin method, choose weighting function identical to base functions. Integrate Equation
(3.5.8.2.5) in the spatial dimensions over the entire region as follows.

 3-129

1 1 1

1

() ()

N N N

n

N

n n

x x xm m m
mn n n

i x i i HS n
x x x

x
n im n

i HS E n
x

E E E AN A K A dx W Q dx N L E dx
t x x x t

AN R A R E dx
t

⎡ ⎤⎛ ⎞∂ ∂ ∂∂ ∂⎛ ⎞− + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦

∂⎡ ⎤+ −⎢ ⎥∂⎣ ⎦

∫ ∫ ∫

∫

(3.5.8.2.6)

Integrating by parts, we obtain

1 1 1 1

1

2

1

 () ()

N N N N

n

N

n n

x x x xm m m
mn i n n

i x i i HS n
x x x x

Bx m
n im n n

i HS E n i x
x B

E dN E E AN A dx K A dx W Q dx N L E dx
t dx x x t

EAN R A R E dx N K A
t x

∂ ∂ ∂ ∂⎛ ⎞+ + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂∂⎡ ⎤= + − +⎢ ⎥∂ ∂⎣ ⎦

∫ ∫ ∫ ∫

∫

(3.5.8.2.7)

Approximate solution En
m by a linear combination of the base functions as follows

1

ˆ () ()
N

m m m
n n nj j

j

E E E t N x
=

≈ = ∑ (3.5.8.2.8)

Substituting Equation (3.5.8.2.8) into Equation (3.5.8.2.7), we obtain

1 1 1

1 1

1

1

 ()

()
() ()

N N N

n

N N

n n

x x xN
j j mi

i x i HS j nj
j x x x

x xm mN
nj n im n n

i j i HS E n i x
j x x

dN dNdN AW Q dx K A dx N L N dx E t
dx dx dx t

E t EAN AN dx N R A R E dx n N K A
t t x

=

=

⎡ ⎤⎛ ⎞∂⎛ ⎞⎢ ⎥+ + +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ∂ ⎛ ∂∂⎡ ⎤⎢ ⎥+ = + − +⎜ ⎟ ⎢ ⎥⎜ ⎟ ∂ ∂ ∂⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫
b

⎞
⎜ ⎟
⎝ ⎠

∑

(3.5.8.2.9)

Equation (3.5.8.2.9) can be written in matrix form as

(){ } { } { }[1] [2] [3] []
m

m n
n

EL L L E M S B
t

⎧ ⎫∂
+ + + = +⎨ ⎬

∂⎩ ⎭
 (3.5.8.2.10)

The matrices [L1], [L2], [L3], [M] and load vectors {S}, {B} are given by

1

1
Nx

j
ij i

x

dN
L W Q dx

dx
= ∫ (3.5.8.2.11)

1

2
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫ (3.5.8.2.12)

1

3
N

n

x

ij i HS j
x

AL N L N dx
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫ (3.5.8.2.13)

1

Nx

ij i j
x

M N AN dx= ∫ (3.5.8.2.14)

1

() ()
N

n n

x
n im n

i i HS E n
x

AS N R A R E dx
t

∂⎡ ⎤= + −⎢ ⎥∂⎣ ⎦∫ (3.5.8.2.15)

 3-130

m
n

i i x
b

EB n N K A
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (3.5.8.2.16)

where all the terms listed above are calculated with the corresponding time weighting values.
Equation (3.5.8.2.10) is then simplified as

{ } { } { }[] [] , [] [1] [2] [3]
m

m n
n

EL E M S B where L L L L
t

⎧ ⎫∂
+ = + = + +⎨ ⎬∂⎩ ⎭

 (3.5.8.2.17)

Further,

{ } { } { }
1/ 2

1/ 2
1 2

() ()[] *() *() []
m n m n

m n m n n n
n n

E EL W E W E M S B
t

+
+ ⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.5.8.2.18)

So that
{ }1/ 2[] () { } m n

nCMATRX E RLD+ = (3.5.8.2.19)

where

1
[][] [] MCMATRX W L

t
= +

Δ
 (3.5.8.2.20)

{ } { } { }2
[] { } [] ()m n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.8.2.21)

The above equations are used to solve for the kinetic variable concentration at interior nodes where
boundary term {B} is zero.

For junction nodes, assign

{ } { }2
[] { } [] () { }m n m

n n
MRLDW W L E S nQE

t
= − + +

Δ
 (3.5.8.2.22)

Equation (3.5.8.2.18) is modified as

{ }1/ 2[] () { }m n
nCMATRX E Flux RLDW+ + = (3.5.8.2.23)

Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.2.32)
and (3.5.8.2.23).

For boundary node i = b, the boundary term {B} should be continuously calculated same as that
using Fully-implicit scheme in section (3.5.8.1).

3.5.8.3 Operator-splitting

Recall the continuity equation for kinetic-variables, equation (3.5.8.1.3), as follows.

1 2

1 2

()

n n n n n n

m m
mn n n

n x S R I n

as rs is os os
E E E E E E

E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + + =⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
+ + + + +

(3.5.8.3.1)

At n+1-th time step, equation (3.5.8.3.1) is approximated by

 3-131

1

1 2

1 2

() () ()

n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

(3.5.8.3.2)

According to Operator-splitting scheme, equation (3.5.8.3.2) can be separated into two equations as
follows

1

1 2

1 2

() () ()

n n n n n

m n m n m m
m mn n n n
n x S R I n

as rs os os is
E E E E E

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + +

(3.5.8.3.3)

1 1/ 2

1 1[() ()] () ()
n

n m n im n
n im nn n n

E n
E E E nAR E

t t

+ +
+ +− + ∂

= −
Δ ∂

A (3.5.8.3.4)

First, solve equation (3.5.8.3.3) and get 1/ 2()m n
nE + . Second, solve equation (3.5.8.3.4) together with

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain 1()n
nE + and

the individual species concentration.

To solve equation (3.5.8.3.3), assign and calculate RHSn and LHSn same as that in section (3.5.8.1).
Equation (3.5.8.3.3) is then simplified as

1/ 2() ()
n n

m n m n m m
m mn n n n
n x HS n HS

E E E EAA E Q K A L E R
t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − + =⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.8.3.5)

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. For
Galerkin method, choose weighting function identical to base functions. Integrate Equation
(3.5.8.3.5) in the spatial dimensions over the entire region as follows.

1 1 1 1

N N N N

n n

x x x xm m m
mn n n

i x i i HS n i HS
x x x x

E E E AN A K A dx W Q dx N L E dx N R dx
t x x x t

⎡ ⎤⎛ ⎞∂ ∂ ∂∂ ∂⎛ ⎞− + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫ ∫ ∫ (3.5.8.3.6)

Integrating by parts, we obtain

1 1 1 1

1

2

1

N N N N

n

N

n

x x x xm m m
mn i n n

i x i i HS n
x x x x

Bx m
n

i HS i x
x B

E dN E E AN A dx K A dx W Q dx N L E dx
t dx x x t

EN R dx N K A
x

∂ ∂ ∂ ∂⎛ ⎞+ + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂
= +

∂

∫ ∫ ∫ ∫

∫

(3.5.8.3.7)

Approximate solution En
m by a linear combination of the base functions as follows

1

ˆ () ()
N

m m m
n n nj j

j

E E E t N x
=

≈ = ∑ (3.5.8.3.8)

Substituting Equation (3.5.8.3.8) into Equation (3.5.8.3.7), we obtain

 3-132

1 1 1

1 1

1

1

()

()

N N N

n

N N

n

x x xN
j j mi

i x i HS j nj
j x x x

x xm mN
nj n

i j i HS i x
j x x b

dN dNdN AW Q dx K A dx N L N dx E t
dx dx dx t

E t EN AN dx N R dx n N K A
t x

=

=

⎡ ⎤⎛ ⎞∂⎛ ⎞⎢ ⎥+ + +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ∂ ⎛ ⎞∂
⎢ ⎥+ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∑∫ ∫

(3.5.8.3.9)

Equation (3.5.8.3.9) can be written in matrix form as

(){ } { } { }[1] [2] [3] []
m

m n
n

EL L L E M S B
t

⎧ ⎫∂
+ + + = +⎨ ⎬∂⎩ ⎭

 (3.5.8.3.10)

The matrices [L1], [L2], [L3], [M] and load vectors {S}, {B} are given by

1

1
Nx

j
ij i

x

dN
L W Q dx

dx
= ∫ (3.5.8.3.11)

1

2
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫ (3.5.8.3.12)

1

3
N

n

x

ij i HS j
x

AL N L N dx
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫ (3.5.8.3.13)

1

Nx

ij i j
x

M N AN dx= ∫ (3.5.8.3.14)

1

N

n

x

i i HS
x

S N R dx= ∫ (3.5.8.3.15)

m

n
i i x

b

EB n N K A
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (3.5.8.3.16)

where all the terms listed above are calculated with the corresponding time weighting values.
Equation (3.5.8.3.10) is then simplified as

{ } { } { }[] [] , [] [1] [2] [3]
m

m n
n

EL E M S B where L L L L
t

⎧ ⎫∂
+ = + = + +⎨ ⎬∂⎩ ⎭

 (3.5.8.3.17)

Further,

{ } { } { }
1/ 2

1/ 2
1 2

() ()[] *() *() []
m n m n

m n m n n n
n n

E EL W E W E M S B
t

+
+ ⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.5.8.3.18)

So that
{ }1/ 2

n[] (E) { }m nCMATRX RLD+ = (3.5.8.3.19)

where

1
[][] []MCMATRX W L

t
= +

Δ
 (3.5.8.3.20)

{ } { } { }2
[] { } [] ()m n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.8.3.21)

 3-133

The above equations are used to solve for the kinetic variable concentration at interior nodes where
boundary term {B} is zero.

For junction nodes, assign

{ } { }2
[] { } [] () { }m n m

n n
MRLDW W L E S nQE

t
= − + +

Δ
 (3.5.8.3.22)

Equation (3.5.8.3.18) is modified as

{ }1/ 2[] () { }m n
nCMATRX E Flux RLDW+ + = (3.5.8.3.23)

Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.3.33)
and (3.5.8.3.23).

For boundary node i = b, the boundary term {B} should be continuously calculated same as that
using Fully-implicit scheme in section (3.5.8.1).

3.5.9 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form

of the Transport Equations

3.5.9.1 Fully-implicit scheme

The continuity equation for kinetic-variables in advective form at (n+1)-th time step, is shown as
follows.

1

1 2

1 2

() () ()

n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

(3.5.9.1.1)

 [Option 1]

Express En

m in terms of En
m /En*En to make En’s as primary dependent variables, equation

(3.5.9.1.1) is modified as

1

1 2
1 2

() ()

()
n n n n n n

m m
n n

n nn n
n n n n

n x

m
as rs os os isn

S R I n E E E E E E
n

E EE E
E E A E EA E Q K A

t t x x x

A ES S S S S E M M M M M AR
t E

+

⎛ ⎞
∂ ∂⎜ ⎟− ∂ ∂ ⎜ ⎟+ + − +

Δ ∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟
⎝ ⎠

∂⎡ ⎤+ + + + − = + + + + +⎢ ⎥∂⎣ ⎦

(3.5.9.1.2)

According to Fully-implicit scheme, equation (3.5.9.1.2) can be separated into two equations as
follows

 3-134

1/ 2

1 2
1 2

() ()

()
n n n n n n

m m
n n

n nn n
n n n n

n x

m
as rs os os isn

S R I n E E E E E E
n

E EE E
E E A E EA E Q K A

t t x x x

A ES S S S S E M M M M M AR
t E

+

⎛ ⎞
∂ ∂⎜ ⎟− ∂ ∂ ⎜ ⎟+ + − +

Δ ∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟
⎝ ⎠

∂⎡ ⎤+ + + + − = + + + + +⎢ ⎥∂⎣ ⎦

(3.5.9.1.3)

1 1/ 2() () 0

n n
n nE E

t

+ +−
=

Δ
 (3.5.9.1.4)

First, solve equation (3.5.9.1.3) and get (En)n+1/2. Second, solve equation (3.5.9.1.4) together with
algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual
species concentration. Iteration between these two steps is needed because reaction term in equation
(3.5.9.1.3) needs to be updated by the results of (3.5.9.1.4).

To solve equation (3.5.9.1.3), assign

1 20 ()
n n

m
n

HS HS S R I
n

A ER and L S S S S S
t E

∂⎡ ⎤= = + + + + −⎢ ⎥∂⎣ ⎦
 (3.5.9.1.5)

Then the right hand side RHSn and left hand side LHSn should be continuously calculated as following.

* , 0

* , 0

rs n

n

rs
R n R HS n HS n Ers

E m
R n R HS n HS n R

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.6)

* , 0 ,

* , 0

as n

n

as
S n S HS n HS n Eas

E m
S n S HS n HS n S

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.7)

1
1

1 11

1 1 1

* , 0

* , 0

os n

n

m os
n HS n HS n Eos

E m
n HS n HS n

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.8)

2
2

2 22

2 2 2

* , 0

* , 0

os n

n

m os
n HS n HS n Eos

E m
n HS n HS n

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.9)

* , 0

* , 0

is n

n

m is
I n I HS n HS n Eis

E m
I n I HS n HS n I

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.10)

Equation (3.5.9.1.3) is then simplified as

1/ 2() ()

n n n

m
n

n n m m
n n n n n nn

n x x
n n

m m
n n

n n
x HS n HS E

E
E E A E E E EEA E Q K A K A

t t E x x x E x

E E
E EQ K A L E R AR
x x x

+

⎛ ⎞
∂⎜ ⎟ ⎛ ⎞− ∂ ∂ ∂ ∂⎜ ⎟+ + − − +⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎜ ⎟ ⎝ ⎠

⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞
∂ ∂⎢ ⎥⎜ ⎟∂⎢ ⎥⎜ ⎟− + = +

∂ ∂ ∂⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

(3.5.9.1.11)

 3-135

Assign the true transport velocity Vtrue as follows.

m m
n n

true x
n n

E EAV Q K A
E x E

⎛ ⎞∂
= − ⎜ ⎟∂ ⎝ ⎠

 (3.5.9.1.12)

m

n
true x

n

EK K
E

= (3.5.9.1.13)

n

m m
n n

x HS
n n

E EL Q K A L
x E x x E

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= − +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.5.9.1.14)

Then equation (3.5.9.1.11) is simplified as

1/ 2() ()
n n

n n
n n n n

true true n HS E
E E E E AA AV K A L E R AR

t x x x t

+ − ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − + + = +⎜ ⎟ ⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5.9.1.15)

Equation (13.5.7.1.15) in the Lagrangian and Eulerian form is as follows.

1/ 2() () 0
n n

n n n n
true

dE E E EV
d t xτ

+ − ∂
= + =

Δ ∂
 (3.5.9.1.16)

n n

n n
true n HS E

dE E AA K A L E R AR
d x x tτ

∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + + = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5.9.1.17)

First, solve equation (3.5.9.1.16) to obtain the Lagrangian values by particle tracking. Then, deal
with Eulerian equation (3.5.9.1.17) by finite element method.

Equation (3.5.9.1.17) written in a slightly different form is shown as follows.

n
n L

dE D KE R
dτ

− + = (3.5.9.1.18)

where
1 n

true
ED K A

A x x
∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠

 (3.5.9.1.19)

A L
tK
A

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠= (3.5.9.1.20)

n nHS E
L

R AR
R

A
+

= (3.5.9.1.21)

Equation (3.5.9.1.18) written in matrix form is then expressed as

{ } { } { } { } { } (){ } { } { }*1/ 2 1 1 1/ 2 * * 1 *
1 1 2 2 1 2

[] []n n n n n
n n n n L L

U UE W D W K E E W D W KE W R W R
τ τ

+ + + + +⎡ ⎤− + = + − + +⎣ ⎦Δ Δ
 (3.5.9.1.22)

where [Kn+1] is the diagonal matrix with K calculated at the (n+1)-th time step as its components, the
diffusion term D expressed in term of En is solved by the following procedure.

 3-136

Approximate D by a linear combination of the base functions as follows.

1

ˆ () ()
N

j j
j

D D D t N x
=

≈ = ∑ (3.5.9.1.23)

According to equation (3.5.9.1.19), the integration of equation (3.5.9.1.22) can be written as

1 1 1
1

() ()
N N Nx x xN

n
i i j j i true

jx x x

EN ADdx N A D t N x dx N K A dx
x x=

∂ ∂⎛ ⎞= = ⎜ ⎟∂ ∂⎝ ⎠
∑∫ ∫ ∫ (3.5.9.1.24)

Integrating by parts, we obtain

1 1

2

1 1

()
N N Bx xN

i n n
i j j true i true

j Bx x

dN E EN AN dx D K A dx N K A
dx x x=

⎡ ⎤⎛ ⎞ ∂ ∂
= − +⎢ ⎥⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ (3.5.9.1.25)

Approximate En by a linear combination of the base functions as follows.

1

ˆ () ()
N

n n nj j
j

E E E t N x
=

≈ = ∑ (3.5.9.1.26)

Equation (3.5.9.1.25) is further expressed as

1 1

2

1 1 1

() ()
N N Bx xN N

ji n
i j j true n j i true

j j Bx x

dNdN EN AN dx D K A dx E N K A
dx x x= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ∂
= − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫ (3.5.9.1.27)

Assign matrices [A1] and [A2] and load vector {B1} as following

1

1
Nx

ij i j
x

A N AN dx= ∫ (3.5.9.1.28)

1

2 ()
Nx

ji
ij true

x

dNdNA K A dx
dx dx

= ∫ (3.5.9.1.29)

1 n
i i true

b

EB nN K A
x

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (3.5.9.1.30)

Equation (3.5.9.1.27) is expressed as

{ } { } { }[1] [2] 1nA D A E B= − + (3.5.9.1.31)

Lump matrix [A1] into diagonal matrix and assign

2 / 1ij ij iiQE A A= (3.5.9.1.32)

1 / 1i i iiB B A= (3.5.9.1.33)
Then

{ } { } { }[] nD QE E B= − + (3.5.9.1.34)

where boundary term {B} is calculated as follows

 3-137

1 1
m m

n n
i i x ii i x n ii

nb b

E EB nN K A A nN K A E A
x x E

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂= − ⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
 (3.5.9.1.35)

Dirichlet boundary condition

()

(,)

() (,) () ()
1 1

m m
n n b

m m m m
n j n b n n j n n i

i i x ii i x n iii

E E x t

E E x t E E E E
B nN K A A nN K A E A

x x

= ⇒

− −
= −

Δ Δ

 (3.5.9.1.36)

where j is the interior node connected to the boundary node.

Variable boundary condition

When flow is coming in from outside (nQ < 0)

()

(,)

() ()
(,) 1 1

m
m mn

n x n b

m m
n n j n n im m

i n n b ii i x n iii

En QE AK nQE x t
x

E E E E
B nQE nQE x t A nN K A E A

x

⎛ ⎞∂
− = ⇒⎜ ⎟∂⎝ ⎠

−
⎡ ⎤= − −⎣ ⎦ Δ

(3.5.9.1.37)

where j is the interior node connected to the boundary node.

When Flow is going out from inside (nQ > 0)

()
() ()

0 1
m mm

n n j n n in
x i i x n iii

E E E EEnAK B nN K A E A
xx

−∂
− = ⇒ = −

Δ∂
 (3.5.9.1.38)

where j is the interior node connected to the boundary node.

Cauchy boundary condition

()

(,)

() ()
 (,) 1 1

m
m n

n x En b

m m
n n j n n im

i n En b ii i x n iii

En QE AK Q x t
x

E E E E
B nQE Q x t A nN K A E A

x

⎛ ⎞∂
− = ⇒⎜ ⎟∂⎝ ⎠

−
⎡ ⎤= − −⎣ ⎦ Δ

(3.5.9.1.39)

where j is the interior node connected to the boundary node.

Neumann boundary condition

()
() ()

(,) (,) 1
m mm

n n j n n in
x En b i En b i x n iii

E E E EEnAK Q x t B Q x t nN K A E A
xx

−∂
− = ⇒ = − −

Δ∂
 (3.5.9.1.40)

where j is the interior node connected to the boundary node.

Equation (3.5.9.1.22) can be written as matrix equation as following

 3-138

{ } { } { }

{ } (){ } { } { } { } { }

1/ 2 1 1/ 2 1 1/ 2
1 1

** * 1 * 1
2 2 1 2 1

[] []

[]

n n n n n
n n n

n n
n n L L

U E W QE E W K E

U E W KE W D W R W R W B

τ

τ

+ + + + +

+ +

⎡ ⎤+ + ⎣ ⎦Δ

= − + + + +
Δ

(3.5.9.1.41)

 [Option 2]

Express En

m in terms of En-En
m and En

m/En*En to make En’s as primary dependent variables, equation
(3.5.9.1.1) is modified as

1

1 2

1 2

() () ()

n n n n n n

n n m
n n n n n

n x S R I n
n

im im
as rs os os isn n

x E E E E E E

E E A E E A EA E Q K A S S S S S E
t t x x x t E

E EQ K A M M M M M AR
x x x

+ − ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂ ∂
= − + + + + + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

(3.5.9.1.42)

According to Fully-implicit scheme, equation (3.5.9.1.42) can be separated into two equations as
follows

1/ 2

1 2

1 2

() () ()

n n n n n n

n n m
n n n n n

n x S R I n
n

im im
as rs os os isn n

x E E E E E E

E E A E E A EA E Q K A S S S S S E
t t x x x t E

E EQ K A M M M M M AR
x x x

+ − ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂ ∂
= − + + + + + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

(3.5.9.1.43)

1 1/ 2() () 0

n n
n nE E

t

+ +−
=

Δ
 (3.5.9.1.44)

First, solve equation (3.5.9.1.43) and get 1/ 2n
nE + . Second, solve equation (3.5.9.1.44) together with

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual
species concentration and 1()n

nE + . Iteration between these two steps is needed because reaction term
in equation (3.5.9.1.43) needs to be updated by the results of (3.5.9.1.44).

To solve equation (3.5.9.1.43), assign

1 20 ()
n n

m
n

HS HS S R I
n

A ER and L S S S S S
t E

∂⎡ ⎤= = + + + + −⎢ ⎥∂⎣ ⎦
 (3.5.9.1.45)

Then the right hand side RHSn and left hand side LHSn should be continuously calculated as following.

* , 0

* , 0 *

rs n n n

n

n n

rs
R R HS HS Enrs

E m m
R n R HS HS R n n

S E if S R R M
M

S E if S L L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.46)

* , 0 ,

* , 0 *

as n n n

n

n

as
S S HS HS Enas

E m m
S n S n HS S n n

S E if S R R M
M

S E if S LHS L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.47)

1
1

1 11

1 1 1

* , 0

* , 0 *

os n n n

n

n n

m os
n HS HS Eos

E m m
n HS HS n n

S E if S R R M
M

S E if S L L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.48)

 3-139

2
2

2 22

2 2 2

* , 0

* , 0 *

os n n n

n

n n

m os
n HS HS Eos

E m m
n HS HS n n

S E if S R R M
M

S E if S L L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.49)

* , 0

* , 0 *

is n n n

n

n n

m is
I n I HS HS Eis

E m m
I n I HS HS I n n

S E if S R R M
M

S E if S L L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.50)

Equation (3.5.9.1.43) is then simplified as

1/ 2() ()
n n n

n n im im
n n n n n n

n x HS n x HS E
E E A E E E EA E Q K A L E Q K A R AR

t t x x x x x x

+ ⎡ ⎤⎛ ⎞− ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + − + = − + +⎢ ⎥⎜ ⎟ ⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
 (3.5.9.1.51)

Assign the true transport velocity Vtrue as follows.

trueAV Q= (3.5.9.1.52)

Then equation (3.5.9.1.51) is simplified as

1/ 2() ()
n n n

n n im im
nn n n n n n

true x HS n x HS E
E E E E A E EA A V K A L E Q K A R AR

t x x x t x x x

+ ⎡ ⎤⎛ ⎞− ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − + + = − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 (3.5.9.1.53)

Equation (13.5.9.1.53) in the Lagrangian and Eulerian form is as follows.

1/ 2() () 0
n n

n n n n
true

dE E E EV
d t xτ

+ − ∂
= + =

Δ ∂
 (3.5.9.1.54)

n n

im im
n n n n

x HS n x HS n E
dE E A E EA K A L E Q K A R AR
d x x t x x xτ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + + = − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 (3.5.9.1.55)

First, solve equation (3.5.9.1.54) to obtain the Lagrangian values by particle tracking. Then, deal
with Eulerian equation (3.5.9.1.55) by finite element method.

Equation (3.5.9.1.55) written in a slightly different form is shown as follows.

*n
n L

dE D K E T R
dτ

− + = + (3.5.9.1.56)

where
1 n

x
ED K A

A x x
∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠

 (3.5.9.1.57)

nHS
AL
tK

A

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠= (3.5.9.1.58)

n nHS E
L

R AR
R

A
+

= (3.5.9.1.59)

1 im im
n n

x
E ET Q K A

A x x x
⎡ ⎤⎛ ⎞∂ ∂ ∂

= −⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
 (3.5.9.1.60)

 3-140

Equation (3.5.9.1.56) written in matrix form is then expressed as

{ } { } { }

{ } { } (){ } { } { } { } { }

1/ 2 1 1 1/ 2
1 1

** * 1 * 1 *
2 2 1 2 1 2

[]

[]

n n n n
n n

n n
n n L L

U E W D W K E

U E W D W KE W T W T W R W R

τ

τ

+ + + +

+ +

⎡ ⎤− + =⎣ ⎦Δ

+ − + + + +
Δ

(3.5.9.1.61)

where [Kn+1] is the diagonal matrix with K calculated at (n+1)-th time step as its components, the
diffusion term D expressed in term of nE and term T expressed in term of im

nE is solved by the
following procedure.

Approximate D by a linear combination of the base functions as follows.

1

ˆ () ()
N

j j
j

D D D t N x
=

≈ = ∑ (3.5.9.1.62)

According to equation (3.5.9.1.57), the integration of equation (3.5.9.1.62) can be written as

1 1 1
1

() ()
N N Nx x xN

n
i i j j i x

jx x x

EN ADdx N A D t N x dx N K A dx
x x=

∂ ∂⎛ ⎞= = ⎜ ⎟∂ ∂⎝ ⎠
∑∫ ∫ ∫ (3.5.9.1.63)

Integrating by parts, we obtain

1 1

2

1 1

()
N N Bx xN

i n n
i j j x i x

j Bx x

dN E EN AN dx D K A dx N K A
dx x x=

⎡ ⎤⎛ ⎞ ∂ ∂
= − +⎢ ⎥⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ (3.5.9.1.64)

Approximate nE by a linear combination of the base functions as follows.

1

ˆ () ()
N

n n nj j
j

E E E t N x
=

≈ = ∑ (3.5.9.1.65)

Equation (3.5.9.1.64) is further expressed as

1 1

2

1 1 1

() ()
N N Bx xN N

ji n
i j j x n j i x

j j Bx x

dNdN EN AN dx D K A dx E N K A
dx x x= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ∂
= − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫ (3.5.9.1.66)

Assign matrices [1A] and [2A] and load vector { 1B } as following

1

1
Nx

ij i j
x

A N AN dx= ∫ (3.5.9.1.67)

1

2 ()
Nx

ji
ij x

x

dNdNA K A dx
dx dx

= ∫ (3.5.9.1.68)

1 n
i i x

b

EB nN K A
x

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (3.5.9.1.69)

Equation (3.5.9.1.66) is expressed as

{ } { } { }[1] [2] 1nA D A E B= − + (3.5.9.1.70)

 3-141

Lump matrix [A1] into diagonal matrix and assign

2 / 1ij ij iiQE A A= (3.5.9.1.71)

1 1 / 1i i iiQB B A= (3.5.9.1.72)
Then

{ } { } { }[] 1nD QE E QB= − + (3.5.9.1.73)

Approximate T by a linear combination of the base functions as follows.

1

ˆ () ()
N

j j
j

T T T t N x
=

≈ = ∑ (3.5.9.1.74)

According to equation (3.5.9.1.60), the integration of equation (3.5.9.1.74) can be written as

1 1 1
1

() ()
N N Nx x x im imN

n n
i i j j i x

jx x x

E EN ATdx N A T t N x dx N Q K A dx
x x x=

⎡ ⎤⎛ ⎞∂ ∂ ∂
= = −⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

∑∫ ∫ ∫ (3.5.9.1.75)

Integrating by parts, we obtain

1 1 1

2

1 1

N N N
Bx x xim im imN

n i n n
i j j i x i x

j x x x B

E dN E EN AN dx T N Q dx K A dx N K A
x dx x x=

⎡ ⎤⎛ ⎞ ∂ ∂ ∂
= + +⎢ ⎥⎜ ⎟⎜ ⎟ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫ (3.5.9.1.76)

Approximate En

im by a linear combination of the base functions as follows.

1

ˆ () ()
N

im im im
n n nj j

j

E E E t N x
=

≈ = ∑ (3.5.9.1.77)

Equation (3.5.9.1.76) is further expressed as

N N

1 1

N

1

x xN N
j im

i j j i n j
j 1 j 1x x

B2x imN
j imi n

x n j i x
j 1 x B1

dN
N AN dx T N Q dx (E)

dx

dNdN EK A dx (E) N K A
dx dx x

∂
∂

= =

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
=⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑∫ ∫

∑ ∫

(3.5.9.1.78)

Assign matrices [A3], and load vector {B2} as following

1

3
Nx

j
ij i

x

dN
A N Q dx

dx
= ∫ (3.5.9.1.79)

2 -
im

n
i i x

b

EB nN K A
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (3.5.9.1.80)

Assign
(2 3) / 1ij ij ij iiQT A A A= + (3.5.9.1.81)

2 2 / 1i i iiQB B A= (3.5.9.1.82)

Equation (3.5.9.1.78) is expressed as

 3-142

{ } { } { }[] 2im
nT QT E QB= + (3.5.9.1.83)

So that
{ } { } { } { } { }[] [] im

n nD T QE E QT E B+ = − + + (3.5.9.1.84)

where boundary term {B} is calculated as follows

1 2 1
m

n
i i i x ii

b

EB QB QB nK A A
x

⎛ ⎞∂
= + = ⎜ ⎟∂⎝ ⎠

 (3.5.9.1.85)

Dirichlet boundary condition

() (,)
(,) 1

m m
n j n bm m

n n b i i x ii

E E x t
E E x t B nN K A A

x
−

= ⇒ =
Δ

 (3.5.9.1.86)

where j is the interior node connected to the boundary node.

Variable boundary condition

When flow is coming in from outside (nQ < 0)

(,) (,) 1
m

m m m mn
n x n b i n n b ii

En QE AK nQE x t B nQE nQE x t A
x

⎛ ⎞∂ ⎡ ⎤− = ⇒ = −⎜ ⎟ ⎣ ⎦∂⎝ ⎠
 (3.5.9.1.87)

When Flow is going out from inside (nQ > 0)

0 0
m

n
x i

EnAK B
x

∂
− = ⇒ =

∂
 (3.5.9.1.88)

Cauchy boundary condition

(,) (,) 1
m

m mn
n x En b i n En b ii

En QE AK Q x t B nQE Q x t A
x

⎛ ⎞∂ ⎡ ⎤− = ⇒ = −⎜ ⎟ ⎣ ⎦∂⎝ ⎠
 (3.5.9.1.89)

Neumann boundary condition

(,) (,)
m

n
x En b i En b

EnAK Q x t B Q x t
x

∂
− = ⇒ = −

∂
 (3.5.9.1.90)

Equation (3.5.9.1.61) can be written as matrix equation as following

{ } { } { } (){ }
{ } (){ } { } { }() { } { } { }

1/ 21/ 2 1 1/ 2 1 1/ 2 1
1 1 1

** * * 1 * 1
2 2 1 2 1

[] [] []

[]

nn n n n n n im
n n n n

n n
n n L L

U E W QE E W K E W QT E

U E W KE W D T W R W R W B

τ

τ

++ + + + + +

+ +

⎡ ⎤+ + −⎣ ⎦Δ

= − + + + + +
Δ

(3.5.9.1.91)

So that
{ }1/ 2[] { }n

nCMATRX E RLD+ = (3.5.9.1.92)

where

 3-143

1 1 1
1 1 1

[][] [] []
im

n n n n

n

EUCMATRX W QE W K W QT
Eτ

+ + +⎡ ⎤= + + −⎣ ⎦Δ
 (3.5.9.1.93)

{ } (){ } { } { }() { } { } { }** * * 1 * 1
2 2 1 2 1

[]{ } n n
n n L L

URLD E W KE W D T W R W R W B
τ

+ += − + + + + +
Δ

 (3.5.9.1.94)

At junctions, if nQ > 0, flow is going from reach to the junction. Assign

{ } { } { } { }1 1 1
1 21 1

nm
m n n nn

n ii x ii
ERLDW RLD nQE A W B W nK A A

x
+ + +

⎧ ⎫⎛ ⎞∂⎪ ⎪= + − − ⎨ ⎬⎜ ⎟∂⎝ ⎠⎪ ⎪⎩ ⎭

 (3.5.9.1.95)

Equation (3.5.9.1.89) is modified as

{ }1/ 2
n[] E / 1 { }n

iiCMATRX Flux A RLDW+ + = (3.5.9.1.96)

If nQ < 0, flow is going from junction to the reach, apply equation (3.5.7.1.57),

() ()
()

m m
n j n im

i n i x

E E
Flux n Q E K A

x
⎡ ⎤−

= −⎢ ⎥
Δ⎢ ⎥⎣ ⎦

 (3.5.9.1.97)

So that junction concentration and flux can be solved by the matrix equation assembled with
equation (3.5.7.1.48), (3.5.9.1.96) and (3.5.9.1.97).

3.5.9.2 Mixed Predictor-corrector/Operator-Splitting Scheme

The continuity equation for kinetic-variables in advective form is shown as follows.

1 2

1 2

()

n n n n n n

m m
mn n n

n x S R I n

as rs os os is
E E E E E E

E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

(3.5.9.2.1)

At (n+1)-th time step, equation (3.5.9.2.1) is approximated by

1

1 2

1 2

() () ()

n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

(3.5.9.2.2)

According to Mixed Predictor-corrector/Operator-Splitting Scheme, equation (3.5.9.2.2) can be
separated into two equations as follows

1/ 2

1 2

1 2

() () ()

 ()
n n n n n n

m n m n m m
m mn n n n
n x S R I n

as rs os os is n im n
E E E E E E n

E E A E E AA E Q K A S S S S S E
t t x x x t

AM M M M M AR E
t

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
∂

= + + + + + −
∂

(3.5.9.2.3)

1 1/ 2

1 1[() ()] () ()() ()
n n

n m n im n
n n im n im nn n n

E E n n
E E E nA nAR R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A (3.5.9.2.4)

 3-144

First, solve equation (3.5.9.2.3) and get 1/ 2()m n
nE + . Second, solve equation (3.5.9.2.4) together

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the
individual species concentration.

To solve equation (3.5.9.2.3), assign and calculate RHSn and LHSn the same as that in section (3.5.7.2).
 Equation (3.5.9.2.3) is then simplified as

1/ 2() () ()
n n

m n m n m m
m m n im nn n n n
n x HS n HS n n

E E A E E AA E Q K A L E R AR E
t t x x x t

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂
+ + − + = + −⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.9.2.5)

Assign the true transport velocity Vtrue as follows.

trueAV Q= (3.5.9.2.6)

Then equation (3.5.9.2.5) is simplified as

1/ 2() () ()
n n n

m n m n m m
m n im nn n n n

true x HS n HS E n
E E E E A AA AV K A L E R AR E

t x x x t t

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎛ ⎞+ − + + = + −⎜ ⎟⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.9.2.7)

Equation (3.5.9.2.7) in the Lagrangian and Eulerian form is as follows.

1/ 2() () 0
m m n m n m

n n n n
true

dE E E EV
d t xτ

+ − ∂
= + =

Δ ∂
 (3.5.9.2.8)

()
n n n

m m
m n im nn n

x HS n HS E n
dE E A AA K A L E R AR E
d x x t tτ

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞− + + = + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.9.2.9)

First, solve equation (3.5.9.2.8) to obtain the Lagrangian values by particle tracking. Then, deal with
Eulerian equation (3.5.9.2.9) by finite element method.

Equation (3.5.9.2.9) written in a slightly different form is shown as follows.

*
m

mn
n L

dE D K E R
dτ

− + = (3.5.9.2.10)

where
1 m

n
x

ED K A
A x x

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

 (3.5.9.2.11)

nHS
AL
tK

A

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠= (3.5.9.2.12)

()
n n

n im n
HS E n

L

AR AR E
tR

A

∂
+ −

∂= (3.5.9.2.13)

Equation (3.5.9.2.10) written in matrix form is then expressed as

 3-145

(){ } { } (){ }
(){ } { } (){ } { } { }

1/ 2 1/ 21 1
1 1

* ** 1 *
2 2 1 2

[]

[]

n nm n n m
n n

m m n
n n L L

U E W D W K E

U E W D W KE W R W R

τ

τ

+ ++ +

+

⎡ ⎤− + =⎣ ⎦Δ

+ − + +
Δ

(3.5.9.2.14)

According to section 3.5.9.1,

{ } { } { }[] m
nD QE E B= − + (3.5.9.2.15)

where [QE] and {B} are the same as those in section 3.5.9.1.

Equation (3.5.9.2.14) can be written as matrix equation as following

(){ } (){ } (){ }
(){ } (){ } { } { } { } { }

1/ 2 1/ 2 1/ 21 1
1 1

* * * 1 * 1
2 2 1 2 1

[] []

[]

n n nm n m n m
n n n

m m n n
n n L L

U E W QE E W K E

U E W KE W D W R W R W B

τ

τ

+ + ++ +

+ +

⎡ ⎤+ + ⎣ ⎦Δ

= − + + + +
Δ

(3.5.9.2.16)

So that
(){ }1/ 2

[] { }
nm

nCMATRX E RLD
+

= (3.5.9.2.17)

where
1 1

1 1
[][] []n nUCMATRX W QE W K

τ
+ +⎡ ⎤= + + ⎣ ⎦Δ

 (3.5.9.2.18)

(){ } (){ } { } { } { } { }* * * 1 * 1
2 2 1 2 1

[]{ } m m n n
n n L L

URLD E W KE W D W R W R W B
τ

+ += − + + + +
Δ

 (3.5.9.2.19)

At junctions, if nQ > 0, flow is going from reach to the junction. Assign

{ } { } { } { }1 1 1
1 21 1

nm
m n n nn

n ii x ii
ERLDW RLD nQE A W B W nK A A

x
+ + +

⎧ ⎫⎛ ⎞∂⎪ ⎪= + − − ⎨ ⎬⎜ ⎟∂⎝ ⎠⎪ ⎪⎩ ⎭

 (3.5.9.2.20)

Equation (3.5.9.1.17) is modified as

{ }1/ 2[] () 1 { }m n
n iiCMATRX E Flux A RLDW+ + = (3.5.9.2.21)

If nQ < 0, flow is going from junction to the reach, apply equation (3.5.7.1.37),

() ()
()

m m
n j n im

i n i x

E E
Flux n Q E K A

x
⎡ ⎤−

= −⎢ ⎥
Δ⎢ ⎥⎣ ⎦

 (3.5.9.2.22)

Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.2.32),
(3.5.9.2.21) and (3.5.9.2.22).

3.5.9.3 Operator-Splitting

The continuity equation for kinetic-variables in advective form is shown as follows.

 3-146

1 2

1 2

()

n n n n n n

m m
mn n n

n x S R I n

as rs os os is
E E E E E E

E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

(3.5.9.3.1)

At n+1-th time step, equation (3.5.9.3.1) is approximated by

1

1 2

1 2

() () ()

n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

(3.5.9.3.2)

According to Operator-splitting scheme, equation (3.5.9.3.2) can be separated into two equations as
follows

1/ 2

1 2

1 2

() () ()

n n n n n

m n m n m m
m mn n n n
n x S R I n

as rs os os is
E E E E E

E E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + +

(3.5.9.3.3)

1 1/ 2

1 1() [() ()] () ()
n

n m n im n
n im nn n n

E n
E E E nAAR E

t t

+ +
+ +− + ∂

= −
Δ ∂

A (3.5.9.3.4)

First, solve equation (3.5.9.3.3) and get 1/ 2()m n
nE + . Second, solve equation (3.5.9.3.4) together

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the
individual species concentration.

To solve equation (3.5.9.3.3), assign and calculate RHSn and LHSn the same as that in section (3.5.8.1).
Equation (3.5.9.3.3) is then simplified as

1/ 2() ()
n n

m n m n m m
m mn n n n
n x HS n HS

E E A E EA E Q K A L E R
t t x x x

+ ⎛ ⎞− ∂ ∂ ∂ ∂
+ + − + =⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.9.3.5)

Assign the true transport velocity Vtrue as follows.

trueAV Q= (3.5.9.3.6)

Then equation (3.5.9.3.5) is simplified as

1/ 2() ()
n n

m n m n m m
mn n n n

true x HS n HS
E E E E AA AV K A L E R

t x x x t

+ ⎛ ⎞− ∂ ∂ ∂ ∂⎛ ⎞+ − + + =⎜ ⎟⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.9.3.7)

Equation (3.5.9.3.7) in the Lagrangian and Eulerian form is as follows.

1/ 2() () 0
m m n m n m

n n n n
true

dE E E EV
d t xτ

+ − ∂
= + =

Δ ∂
 (3.5.9.3.8)

n n

m m
mn n

x HS n HS
dE E AA K A L E R
d x x tτ

⎛ ⎞∂ ∂ ∂⎛ ⎞− + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.9.3.9)

First, solve equation (3.5.9.3.8) to obtain the lagrangian values by particle tracking. Then, deal with
Eulerian equation (3.5.9.3.9) by finite element method.

 3-147

Equation (3.5.9.3.9) written in a slightly different form is shown as follows.

*
m

mn
n L

dE D K E R
dτ

− + = (3.5.9.3.10)

where
1 m

n
x

ED K A
A x x

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

 (3.5.9.3.11)

nHS
AL
tK

A

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠= (3.5.9.3.12)

nHS
L

R
R

A
= (3.5.9.3.13)

Equation (3.5.9.3.10) written in matrix form is then expressed as

(){ } { } (){ }
[] (){ } { } (){ } { } { }

1/ 2 1/ 21 1
1 1

* ** 1 *
2 2 1 2

[]
n nm n n m

n n

m m n
n n L L

U E W D W K E

U
E W D W KE W R W R

τ

τ

+ ++ +

+

⎡ ⎤− + =⎣ ⎦Δ

+ − + +
Δ

(3.5.9.3.14)

According to section 3.5.9.1,

{ } { } { }[] m
nD QE E B= − + (3.5.9.3.15)

where [QE] and {B} are the same as those in section 3.5.9.1.

Equation (3.5.9.3.14) can be written as matrix equation as following

(){ } (){ } (){ }
[] (){ } (){ } { } { } { } { }

1/ 2 1/ 2 1/ 21 1
1 1

* * * 1 * 1
2 2 1 2 1

[] []
n n nm n m n m

n n n

m m n n
n n L L

U E W QE E W K E

U
E W KE W D W R W R W B

τ

τ

+ + ++ +

+ +

⎡ ⎤+ + ⎣ ⎦Δ

= − + + + +
Δ

(3.5.9.3.16)

So that
(){ }1/ 2

[] { }
nm

nCMATRX E RLD
+

= (3.5.9.3.17)

where
n+1 1

1 1
[][] [QE] nUCMATRX W W K

τ
+⎡ ⎤= + + ⎣ ⎦Δ

 (3.5.9.3.18)

[] (){ } (){ } { } { } { } { }* * * 1 * n+1
2 2 1 2 1{ } Bm m n

n n L L

U
RLD E W KE W D W R W R W

τ
+= − + + + +

Δ
 (3.5.9.3.19)

At junctions, if nQ > 0, flow is going from reach to the junction. Assign

{ } { } { } { }1 1 1
1 21 1

nm
m n n nn

n ii x ii
ERLDW RLD nQE A W B W nK A A

x
+ + +

⎧ ⎫⎛ ⎞∂⎪ ⎪= + − − ⎨ ⎬⎜ ⎟∂⎝ ⎠⎪ ⎪⎩ ⎭

 (3.5.9.3.20)

Equation (3.5.9.1.19) is modified as

 3-148

{ }1/ 2[] () 1 { }m n
n iiCMATRX E Flux A RLDW+ + = (3.5.9.3.21)

If nQ < 0, flow is going from junction to the reach, apply equation (3.5.7.1.37),

() ()
()

m m
n j n im

i n i x

E E
Flux n Q E K A

x
⎡ ⎤−

= −⎢ ⎥
Δ⎢ ⎥⎣ ⎦

 (3.5.9.3.22)

Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.3.32),
(3.5.9.3.21) and (3.5.9.3.22).

3.5.10 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and

Downstream Boundary Nodes with the Finite Element Method Applied to the
Conservative Form of the Transport Equations for the Upstream Flux Boundaries to
Solve 1-D Kinetic Variable Transport

3.5.10.1 Fully-Implicit Scheme

For this option, the matrix equation for interior and downstream boundary nodes is obtained
through the same procedure as that in section 3.5.9.1, and the matrix equation for junction and
upstream boundary nodes is obtained through the same procedure as that in section 3.5.7.1.

3.5.10.2 Mixed Predictor-Corrector and Operator-Splitting Method

For this option, the matrix equation for interior and downstream boundary nodes is obtained
through the same procedure as that in section 3.5.9.2, and the matrix equation for junction and
upstream boundary nodes is obtained through the same procedure as that in section 3.5.7.2.

3.5.10.3 Operator-Splitting Approach

For this option, the matrix equation for interior and downstream boundary nodes is obtained
through the same procedure as that in section 3.5.9.3, and the matrix equation for junction and
upstream boundary nodes is obtained through the same procedure as that in section 3.5.7.3.

3.5.11 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and

Downstream Boundary Nodes with the Finite Element Method Applied to the
Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve
1-D Kinetic Variable Transport

3.5.11.1 Fully-Implicit Scheme

For this option, the matrix equation for interior and downstream boundary nodes is obtained
through the same procedure as that in section 3.5.9.1, and the matrix equation for junction and
upstream boundary nodes is obtained through the same procedure as that in section 3.5.8.1.

 3-149

3.5.11.2 Mixed Predictor-Corrector and Operator-Splitting Method

For this option, the matrix equation for interior and downstream boundary nodes is obtained
through the same procedure as that in section 3.5.9.2, and the matrix equation for junction and
upstream boundary nodes is obtained through the same procedure as that in section 3.5.8.2.

3.5.11.3 Operator-Splitting Approach

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.5.9.3, and the matrix equation for junction and upstream
boundary nodes is obtained through the same procedure as that in section 3.5.8.3

3.6 Solving Two-Dimensional Overland Water Quality Transport Equations

In this section, we present the numerical approaches employed to solve the governing equations of
reactive chemical transport. Ideally, one would like to use a numerical approach that is accurate,
efficient, and robust. Depending on the specific problem at hand, different numerical approaches
may be more suitable. For research applications, accuracy is a primary requirement, because one
does not want to distort physics due to numerical errors. On the other hand, for large field-scale
problems, efficiency and robustness are primary concerns as long as accuracy remains within the
bounds of uncertainty associated with model parameters. Thus, to provide accuracy for research
applications and efficiency and robustness for practical applications, three coupling strategies were
investigated to deal with reactive chemistry. They are: (1) a fully-implicit scheme, (2) a mixed
predictor-corrector/operator-splitting method, and (3) an operator-splitting method. For each time-
tep, we first solve the advective-dispersive transport equation with or without reaction terms,
kinetic-variable by kinetic-variable. We then solve the reactive chemical system node-by-node to
yield concentrations of all species.

Five numerical options are provided to solve the advective-dispersive transport equations: Option 1-
application of the Finite Element Method (FEM) to the conservative form of the transport equations,
Option 2 - application of the FEM to the advective form of the transport equations, Option 3 -
application of the modified Lagrangian-Eulerian (LE) approach to the Largrangian form of the
transport equations, Option 4 - LE approach for all interior nodes and downstream boundary nodes
with the FEM applied to the conservative form of the transport equations for the upstream flux
boundaries, and Option 5 - LE approach for all interior and downstream boundary nodes with the
FEM applied to the advective form of the transport equations for upstream flux boundaries.

3.6.1 Two-Dimensional Bed Sediment Balance Equation

At n+1-th time step, the continuity equation for 2-D bed sediment transport, equation (3.2.1), is
approximated as

 3-150

1
1 1

1 2() ()
n n

n n n nn n
n n n n

M M W D R W D R
t

+
+ +−

≈ − + −
Δ

 (3.6.1.1)

So that
() ()1 1 1

1 2
n n n n n n

n n n n n nM M W D R t W D R t+ + += + − Δ + − Δ (3.6.1.2)

If the calculated 1n
nM + < 0, assign 1n

nM + = 0, so that

() () ()1 1 1
1 2 1/ /n n n n n n

n n n n n nR M M W t W D R W D+ + +≈ − Δ + − + (3.6.1.3)

3.6.2 Application of the Finite Element Method to the Conservative Form of the Transport

Equations to Solve 2-D Suspended Sediment Transport

Recall the governing equation for 2-D suspended sediment transport, equation (2.6.10), as follows

() () () , [1,]as rs
n n

n
n n n n sS S

hS S h S M M R D n N
t

∂
∂

+ ∇ ⋅ − ∇ ⋅ ⋅∇ = + + − ∈q K (3.6.2.1)

Assign and calculate the right hand side term RHS and left hand side term LHS as follows.

 0

(1) : 0, , *

(2) : 0, , *

HS HS n n

as
S HS HS S HS HS S n

rs
R HS HS R HS HS R n

Assign L and R R D then continuously calculate

If S L L S ELSE R R S S

If S L L S ELSE R R S S

= = −

≤ = − = +

≤ = − = +

 (3.6.2.2)

where as
nS is the concentration of the n-th fraction suspended sediment in the artificial source and

 rs
nS is the concentration of the n-th fraction suspended sediment in the rainfall source. Then

equation (3.6.2.1) is modified as

() () () *n
n n HS n HS

hS S h S L S R
t

∂
+ ∇ ⋅ − ∇⋅ ⋅∇ + =

∂
q K (3.6.2.3)

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport
equation: choose weighting function identical to base function. For Petriov-Galerkin method, apply
weighting function one-order higher than the base function to advection term. Integrate equation
(3.6.2.3) in the spatial dimensions over the entire region as follows.

() () * () n
i n HS n i n i HS

R R R

hSN h S L S dR W S dR N R dR
t

∂⎡ ⎤− ∇⋅ ⋅∇ + + ∇⋅ =⎢ ⎥∂⎣ ⎦∫ ∫ ∫K q (3.6.2.4)

Further, we obtain

() () *

 ()

n
i i n i n i HS n

R R R R

i HS i n i n
R B B

hSN dR W S dR N h S dR N L S dR
t

N R dR W S dB N h S dB

∂
− ∇ ⋅ + ∇ ⋅ ⋅∇ +

∂

= − ⋅ + ⋅ ⋅∇

∫ ∫ ∫ ∫

∫ ∫ ∫

q K

n q n K

(3.6.2.5)

Approximate solution Sn by a linear combination of the base functions as shown by equation
(3.6.2.6).

 3-151

1

ˆ () ()
N

n n nj j
j

S S S t N R
=

≈ = ∑ (3.6.2.6)

Substituting equation (3.6.2.6) into equation (3.6.2.5), we obtain

1

1

 () ()

()
 ()

N

i HS j i j i j nj
j R R R

N
nj

i j i HS i n i n
j R R B

hN L N dR W N dR N h N dR S t
t

dS t
N hN dR N R dR W S N h S dB

dt

=

=

⎧ ⎫⎡ ⎤∂⎪ ⎪+ − ∇ ⋅ + ∇ ⋅ ⋅∇⎨ ⎬⎢ ⎥∂⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤⎛ ⎞

+ = − ⋅ − ⋅∇⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫ ∫

q K

n q K

(3.6.2.7)

Equation (3.6.2.7) can be written in matrix form as

[1] ([1] [2] [3]){ } { } { }n
n

dSCMATRX Q Q Q S SS B
dt

⎧ ⎫ + + + = +⎨ ⎬
⎩ ⎭

 (3.6.2.8)

where the matrices [CMATRX1], [Q1], [Q2], [Q3] and load vectors {RLD}, and {B} are given by

1ij i j
R

CMATRX N hN dR= ∫
(3.6.2.9)

1 ()ij i HS j
R

hQ N L N dR
t

∂
= +

∂∫ (3.6.2.10)

2ij i j
R

Q W N dR= − ∇ ⋅∫ q
(3.6.2.11)

3ij i j
R

Q N h N dR= − ∇ ⋅ ⋅ ∇∫ K
(3.6.2.12)

ij i HS
R

SS N R dR= ∫
(3.6.2.13)

()i i n i n
B

B n W S N h S dB= − ⋅ − ⋅ ∇∫ q K
(3.6.2.14)

where all the integrations are evaluated with the corresponding time weighting values.

At n+1-th time step, equation (3.6.2.8) is approximated as

1
1

1 2[1] [2]{ } { } { }
n n

n nn n
n n

S SCMATRX CMATRX W S W S SS B
t

+
+⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.6.2.15)

where
[2] [1] [2] [3]CMATRX Q Q Q= + + (3.6.2.16)

So that
1[]{ } { } { }n

nCMATRX S RLD QB+ = + (3.6.2.17)
where

1
[1][] [2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.2.18)

 3-152

2
[1]{ } [2] { } { }n

n
CMATRXRLD W CMATRX S SS

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.6.2.19)

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified
boundary condition and shown as follows.

Dirichlet boundary condition

(, ,)n n b bS S x y t= (3.6.2.20)

Variable boundary condition

< Case 1 > Flow is going in from outside (n·q < 0).

()
B

(, ,) (, ,)n n n b b i i n b bS h S S x y t B W S x y t dB⋅ − ⋅∇ = ⋅ ⇒ = − ⋅∫n q K n q n q
(3.6.2.21)

< Case 2 > Flow is going out from inside (n·q > 0).

()
B

0 n i i nh S B W S dB− ⋅ ⋅∇ = ⇒ = − ⋅∫n K n q
(3.6.2.22)

Cauchy boundary condition

()
B

(, ,) (, ,)n n S n b b i i S n b bS h S Q x y t B WQ x y t dB⋅ − ⋅∇ = ⇒ = −∫n q K
(3.6.2.23)

Neumann boundary condition

()
B B

(, ,) (, ,)n S n b b i i n i S n b bh S Q x y t B W S dB N Q x y t dB− ⋅ ⋅ ∇ = ⇒ = − ⋅ +∫ ∫n K n q
(3.6.2.24)

River/stream-overland interface boundary condition

() () () (){ }

() () (){ }

1

1

B

1 1 1 (, ,)
2

1 1 1 (, ,)
2

D
n n n n b b

D
i i n n b b

S h S sign S sign S x y t

B W sign S sign S x y t dB

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⇒ = − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫

n q K n q n q n q

n q n q n q

(3.6.2.25)

3.6.3 Application of the Finite Element Method to the Advective Form of the Transport

Equations to Solve 2-D Suspended Sediment Transport

Conversion of the governing equation for 2-D suspended sediment transport, equation (2.6.10), to
advection form is expressed as

() as rs
n n

n
n n n n nS S

S hh S h S S M M R D
t t

∂ ∂⎛ ⎞+ ⋅∇ − ∇ ⋅ ⋅∇ + + ∇ ⋅ = + + −⎜ ⎟∂ ∂⎝ ⎠
q K q (3.6.3.1)

According to governing equation for 2-D water flow, equation (2.2.1), assign and calculate the right-

 3-153

hand side term RHS and left hand side term LHS as follows.

Assign - and then continuously calculate

(1) : 0, , *

(2) : 0, , *

HS S R E I HS n n
as

S HS HS S HS HS S n

rs
R HS HS R HS HS R n

L S S S S R R D

If S L L S ELSE R R S S

If S L L S ELSE R R S S

= + + = −

≤ = − = +

≤ = − = +

 (3.6.3.2)

Then equation (3.6.3.1) is modified as

() *n
n n HS n HS

Sh S h S L S R
t

∂
+ ⋅∇ − ∇ ⋅ ⋅∇ + =

∂
q K (3.6.3.3)

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport
equation. Integrate equation (3.6.3.3) in the spatial dimensions over the entire region as follows.

() *n
i n HS n i n i HS

R R R

SN h h S L S dR W S dR N R dR
t

∂⎡ ⎤− ∇⋅ ⋅∇ + + ⋅∇ =⎢ ⎥∂⎣ ⎦∫ ∫ ∫K q (3.6.3.4)

Further, we obtain

() *

 ()

n
i i n i n i HS n

R R R R

i HS i n
R B

SN h dR W S dR N h S dR N L S dR
t

N R dR N h S dB

∂
+ ⋅∇ + ∇ ⋅ ⋅∇ +

∂

= + ⋅ ⋅∇

∫ ∫ ∫ ∫

∫ ∫

q K

n K

(3.6.3.5)

Approximate solution Sn by a linear combination of the base functions as shown by equation
(3.6.3.6).

1

ˆ () ()
N

n n nj j
j

S S S t N R
=

≈ = ∑ (3.6.3.6)

Substituting equation (3.6.3.6) into equation (3.6.3.5), we obtain

()
1

1

()

()
 ()

N

i HS j i j i j nj
j R R R

N
nj

i j i HS i n
j R R B

N L N dR W N dR N h N dR S t

dS t
N hN dR N R dR N h S dB

dt

=

=

⎧ ⎫⎡ ⎤⎪ ⎪+ ⋅∇ + ∇ ⋅ ⋅∇⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤⎛ ⎞
+ = + ⋅ ⋅∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫ ∫

q K

n K

(3.6.3.7)

Equation (3.6.3.7) can be written in matrix form as

[1] ([1] [2] [3]){ } { } { }n
n

dSCMATRX Q Q Q S SS B
dt

⎧ ⎫ + + + = +⎨ ⎬
⎩ ⎭

 (3.6.3.8)

where the matrices [CMATRX1], [Q1], [Q2], [Q3] and load vectors {RLD}, and {B} are given by

1ij i j
R

CMATRX N hN dR= ∫
(3.6.3.9)

1ij i HS j
R

Q N L N dR= ∫
(3.6.3.10)

2ij i j
R

Q W N dR= ⋅ ∇∫ q
(3.6.3.11)

 3-154

3ij i j
R

Q N h N dR= − ∇ ⋅ ⋅ ∇∫ K
(3.6.3.12)

ij i HS
R

SS N R dR= ∫
(3.6.3.13)

()i i n
B

B N h S dB= ⋅ ⋅ ∇∫ n K
(3.6.3.14)

where all the integrations are evaluated with the corresponding time weighting values.

At n+1-th time step, equation (3.6.3.8) is approximated as

1
1

1 2[1] [2]{ } { } { }
n n

n nn n
n n

S SCMATRX CMATRX W S W S SS B
t

+
+⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.6.3.15)

where

[2] [1] [2] [3]CMATRX Q Q Q= + + (3.6.3.16)

So that

1[]{ } { } { }n
nCMATRX S RLD QB+ = + (3.6.3.17)

where

1
[1][] [2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.3.18)

2
[1]{ } [2] { } { }n

n
CMATRXRLD W CMATRX S SS

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.6.3.19)

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified
boundary condition and shown as follows.

 3-155

Dirichlet boundary condition

(, ,)n n b bS S x y t= (3.6.3.20)

Variable boundary condition

< Case 1 > when flow is going in from outside (n·q < 0)

() (, ,) (, ,)n n n b b i i n i n b b
B B

S h S S x y t B N S dB N S x y t dB⋅ − ⋅∇ = ⋅ ⇒ = ⋅ − ⋅∫ ∫n q K n q n q n q
(3.6.3.21)

< Case 2 > Flow is going out from inside (n·q > 0):

() 0 0n ih S B− ⋅ ⋅∇ = ⇒ =n K (3.6.3.22)

Cauchy boundary condition

() (, ,) (, ,)n n S n b b i i n i S n b b
B B

qS h S Q x y t B N S dB N Q x y t dB⋅ − ⋅∇ = ⇒ = ⋅ −∫ ∫n K n q
(3.6.3.23)

Neumann boundary condition

() (, ,) (, ,)n S n b b i i S n b b
B

h S Q x y t B N Q x y t dB− ⋅ ⋅ ∇ = ⇒ = −∫n K
(3.6.3.24)

River/stream-overland interface boundary condition

() () () (){ }

() () (){ }

1

1

1 1 1 (, ,)
2

1 1 1 (, ,)
2

D
n n n n b b

D
i i n i n n b b

B B

S h S sign S sign S x y t

B N S dB N sign S sign S x y t dB

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⇒ = ⋅ − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫

n q K n q n q n q

n q n q n q n q

(3.6.3.25)

3.6.4 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form

of the Transport Equations to Solve 2-D Suspended Sediment Transport

Recall governing equation for 2-D suspended sediment transport in advection form, equation
(3.6.3.1), as follows

n n nS (h S) S asn
n n n

S hh M R D
t t

∂ ∂
∂ ∂

⎛ ⎞+ ⋅∇ − ∇ ⋅ ⋅∇ + + ∇ ⋅ = + −⎜ ⎟
⎝ ⎠

q K q (3.6.4.1)

Assign and calculate RHS and LHS in the same way as that in section 3.6.3. Then equation (3.6.4.1) is
simplified as

n n nS (h S) *Sn
HS HS

Sh L R
t

∂
∂

+ ⋅∇ − ∇ ⋅ ⋅∇ + =q K (3.6.4.2)

Equation (3.6.4.2) in the Lagrangian and Eulerian form is written as follows.

 3-156

In lagrangian step,

0 0n n n
n n

dS S Sh h S S
d t tτ

∂ ∂
= + ⋅∇ = ⇒ + ⋅∇ =

∂ ∂
q v (3.6.4.3)

where particle-tracking velocity v is the flow velocity.

In Eulerian step,

n n(h S) *Sn
HS HS

dSh L R
dτ

− ∇⋅ ⋅∇ + =K (3.6.4.4)

where Δτ is the tracking time, * corresponds to the previous time step value at the location where
node i is tracked through particle tracking in Lagrangian step.

Equation (3.6.4.4) written in a slightly different form is shown as

n*SndS D K RL
dτ

− + = (3.6.4.5)

where
1 ()nD h S
h

= ∇⋅ ⋅∇K (3.6.4.6)

HSLK
h

= (3.6.4.7)

HSRRL
h

= (3.6.4.8)

Equation (3.6.4.5) written in matrix form is then expressed as

{ } { } { }

{ } { } (){ } { } { }

1 1 1 1
1 1

** * 1 *
2 2 1 2

[]

[]

n n n n
n n

n
n n

U S W D W K S

U S W D W KS W RL W RL

τ

τ

+ + + +

+

⎡ ⎤− + =⎣ ⎦Δ

+ − + +
Δ

(3.6.4.9)

where [Kn+1] is a diagonal matrix with K calculated at n+1-th time step as its diagonal components..

The diffusion term D expressed in term of Sn is solved by the following procedure.

Approximate D by a linear combination of the base functions as follows.

1

ˆ () ()
N

j j
j

D D D t N R
=

≈ = ∑ (3.6.4.10)

where N is the number of nodes. According to equation (3.6.4.6), the integration of equation
(3.6.4.10) can be written as

1

() () ()
N

i i j j i n
jR R R

N hDdR N h D t N R dR N h S dR
=

= = ∇ ⋅ ⋅ ∇∑∫ ∫ ∫ K (3.6.4.11)

 3-157

Further, we obtain

1

* () ()
N

i j j i n i n
j R R B

N hN dR D N h S dR N h S dB
=

⎡ ⎤⎛ ⎞
= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∫ ∫ ∫K n K (3.6.4.12)

Approximate Sn by a linear combination of the base functions as follows.

1

() ()
N

n n nj j
j

S S S t N R
=

≈ = ∑
� (3.6.4.13)

Equation (3.6.4.12) is further expressed as

1 1

* () *() ()
N N

i j j i j n j i n
j jR R B

N hN dR D N h N dR S N h S dB
= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= − ∇ ⋅ ⋅ ∇ + ⋅ ⋅∇⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ ∑∫ ∫ ∫K n K (3.6.4.14)

Assign matrices [QA] and [QD] and load vector {QB} as following.

ij i j
R

QA N hN dR= ∫
(3.6.4.15)

()ij i j
R

QD N h N dR= ∇ ⋅ ⋅∇∫ K
(3.6.4.16)

()i i n
B

QB N h S dB= ⋅ ⋅∇∫n K
(3.6.4.17)

Equation (3.6.4.14) is expressed as

{ } { } { }[] [] nQA D QD S QB= − + (3.6.4.18)

Lump matrix [QA] into diagonal matrix and update

/ij ij iiQD QD QA= (3.6.4.19)

/i i iiB QB QA= (3.6.4.20)

Then

{ } { } { }[] nD QD S B= − + (3.6.4.21)

According to equation (3.6.4.21), Equation (3.6.4.9) can be modified as following

{ } { }1[} n
nCMATRX S RLD+ = (3.6.4.22)

where

1 1
1 1

[][] []n nUCMATRX W QD W K
τ

+ +⎡ ⎤= + + ⎣ ⎦Δ
 (3.6.4.23)

{ } { } { } (){ } { } { }** * 1 * 1
2 2 1 2 1

[] { }n n
n n

URLD S W D W KS W RL W RL W B
τ

+ += + − + + +
Δ

 (3.6.4.24)

For interior nodes, the boundary term {B} is zero. For boundary node i = b, {B} should be

 3-158

calculated as follows.

Dirichlet boundary condition

(, ,) ()n n b b i i n ii
B

S S x y t B N h S dB QA= ⇒ = ⋅ ⋅∇∫n K
(3.6.4.25)

Variable boundary condition

< Case 1 > when flow is going in from outside (n·q < 0)

() (, ,)

 (, ,)
n n n b b

i i n ii i n b b ii
B B

S h S S x y t

B N S dB QA N S x y t dB QA

⋅ − ⋅∇ = ⋅

⇒ = ⋅ − ⋅∫ ∫
n q K n q

n q n q
 (3.6.4.26)

< Case 2 > Flow is going out from inside (n·q > 0):

() 0 0n ih S B− ⋅ ⋅∇ = ⇒ =n K (3.6.4.27)

Cauchy boundary condition

() (, ,)

 (, ,)
n n S n b b

i i n ii i S n b b ii
B B

S h S Q x y t

B N S dB QA N Q x y t dB QA

⋅ − ⋅∇ =

⇒ = ⋅ −∫ ∫
n q K

n q
 (3.6.4.28)

Neumann boundary condition

() (, ,) (, ,)n S n b b i i S n b b ii
B

h S Q x y t B N Q x y t dB QA− ⋅ ⋅ ∇ = ⇒ = −∫n K
(3.6.4.29)

River/stream-overland interface boundary condition

() () () (){ }

() () (){ }

1

1

1 1 1 (, ,)
2

1 1 1 (, ,)
2

D
n n n n b b

D
i i n ii i n n b b ii

B B

S h S sign S sign S x y t

B N S dB QA N sign S sign S x y t dB QA

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⇒ = ⋅ − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫

n q K n q n q n q

n q n q n q n q

(3.6.4.30)

At upstream flux boundary nodes, equation (3.6.4.9) cannot be applied because Δτ equals zero.
Thus, we propose a modified LE approach in which the matrix equation for upstream boundary
nodes is obtained by explicitly applying the finite element method to the boundary conditions.
Applying FEM at the upstream variable boundary side, we get

() (, ,)i n n i n b b
B B

N S h S dB N S x y t dB⋅ − ⋅∇ = ⋅∫ ∫n q K n q (3.6.4.31)

So that the following matrix equation can be assembled at the upstream variable boundary node

[]{ } []{ }nQF S QB B= (3.6.4.32)

 3-159

in which

()ij i j i j
B

QF N N N h N dB= ⋅ − ⋅ ⋅∇∫ n q n K (3.6.4.33)

ij i j
B

QB N N dB= ⋅∫ n q (3.6.4.34)

(, ,) i n b bB S x y t= (3.6.4.35)

Similarly, equation (3.6.2.32) can be applied to Cauchy boundary with [QB] and {B} defined
differently as

ij i j
B

QB N N dB= ∫ (3.6.4.36)

(, ,)
ni S b bB Q x y t= (3.6.4.37)

At upstream river/stream-overland interface boundary, [QB] is calculated by equation (3.6.2.34), and
{B} is defined as

1 (, ,) D
i n b bB S x y t= (3.6.4.38)

3.6.5 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and

Downstream Boundary Nodes with the Finite Element Method Applied to the
Conservative Form of the Transport Equations for the Upstream Flux Boundaries to
Solve 2-D Suspended Sediment Transport

For this option, the matrix equation for interior and downstream boundary nodes is obtained
through the same procedure as that in section 3.6.4, and the matrix equation for upstream
boundary nodes is obtained through the same procedure as that in section 3.6.2.

3.6.6 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and

Downstream Boundary Nodes with the Finite Element Method Applied to the
Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve
2-D Suspended Sediment Transport

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.6.4, and the matrix equation for upstream boundary nodes is
obtained through the same procedure as that in section 3.6.3.

3.6.7 Application of the Finite Element Method to the Conservative Form of the Transport

Equations to Solve 2-D Kinetic Variable Transport

 3-160

3.6.7.1 Fully-implicit scheme

Recall the governing equation for 2-D kinetic variable transport, equation (2.6.46), as follows

() () , [1,] as rs is nn n n

m mn
n n n E EE E E

E hh E E h E M M M hR n M N
t t

∂ ∂
∂ ∂

+ + ∇⋅ − ∇⋅ ⋅∇ = + + + ∈ −q K (3.6.7.1.1)

At n+1-th time step, equation (3.6.7.1.1) is approximated by

1() () () () as rs is nn n n

n n
m mn n

n n n EE E E

E E hh E qE hK E M M M hR
t t

∂
∂

+ −
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + + +

Δ
 (3.6.7.1.2)

where the superscripts n and n+1 represent the time step number. Terms without superscript should
be the corresponding average values calculated with time weighting factors W1 and W2.

According to Fully-implicit scheme, equation (3.6.7.1.2) can be separated into two equations as
follows

1/ 2() () () () as rs is nn n n

n n
m mn n

n n n EE E E

E E hh E E h E M M M hR
t t

∂
∂

+ −
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + + +

Δ
q K (3.6.7.1.3)

1 1/ 2() () 0

n n
n nE E

t

+ +−
=

Δ
 (3.6.7.1.4)

First, we express En
m in terms of (En

m/En)·En to make En’s as primary dependent variables, so that
En

n+1/2 can be solved through equation (3.6.7.1.3). Second, we solve equation (3.6.7.1.4) together
with algebraic equations for equilibrium reactions using BIOGEOCHEM to obtain all individual
species concentrations. Iteration between these two steps is needed because the new reaction terms
RAn

n+1 and the equation coefficients in equation (3.6.7.1.3) need to be updated by the calculation
results of (3.6.7.1.4). To improve the standard SIA method, the nonlinear reaction terms are
approximated by the Newton-Raphson linearization.

To solve equation (3.6.7.1.3), assign

0 0HS HSR and L= = (3.6.7.1.5)

Then the right hand side RHS and left hand side LHS should be continuously calculated as following.

* , 0

* , 0

rs n

n

rs
R n R HS n HS n Ers

E m
R n R HS n HS n R

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.7.1.6)

* , 0 ,

* , 0

as n

n

as
S n S HS n HS n Eas

E m
S n S HS n HS n S

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.7.1.7)

* , 0

* , 0

is n

n

m is
I n I HS n HS n Eis

E m
I n I HS n HS n I

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.7.1.8)

Equation (3.6.7.1.3) is then simplified as:

 3-161

1/ 2() () () ()
n

n n
m m mn n

n n n HS n HS E
E E hh E E h E L E R hR

t t
∂
∂

+ −
+ + ∇ ⋅ − ∇ ⋅ ⋅∇ + = +

Δ
q K (3.6.7.1.9)

Express En
m in terms of (En

m /En) En
m to make En’s as primary dependent variables,

1/ 2() ()

n

n n m m
n n n n

n n
n n

m m
n n

n HS n HS E
n n

E E E Eh E h E
t E E

E E hh E L E R hR
E E t

∂
∂

+ ⎛ ⎞ ⎛ ⎞−
+ ∇ ⋅ − ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞
− ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

q K

K

(3.6.7.1.10)

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport
equation. Integrate equation (3.6.7.1.10) in the spatial dimensions over the entire region as follows.

 ()
n

m m m
n n n n

i n i n n
n n nR R

m
n

HS n i HS E
nR Ri

E E E EN h h E dR W E h E dR
t E E E

E hN L E dR N R hR dR
E t

∂
∂

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ⎪ ⎪− ∇ ⋅ ⋅ ∇ + ∇ ⋅ − ∇ ⋅ ⋅ ∇⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
⎛ ⎞

+ + = +⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫

K q K

(3.6.7.1.11)

Further, we obtain

 ()

n

m m m
n n n n

i i n i n i n
n n nR R R R

m
n

HS n i HS E
nR Ri

m
n

i n
nB

E E E EN h dR W E dR N h E dR W h E dR
t E E E

E hN L E dR N R hR dR
E t

EW E dB
E

∂
∂

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
− ∇ ⋅ + ∇ ⋅ ⋅ ∇ + ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
+ + = +⎜ ⎟

⎝ ⎠

− ⋅

∫ ∫ ∫ ∫

∫ ∫

∫

q K K

n q
m m

n n
i n i n

n nB B

E EN h E dB W h E dB
E E

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫n K n K

(3.6.7.1.12)

Approximate solution En by a linear combination of the base functions as follows

1

ˆ () ()
N

n n nj j
j

E E E t N R
=

≈ = ∑ (3.6.7.1.13)

Substituting Equation (3.6.7.1.13) into Equation (3.6.7.1.12), we obtain

1

 ()

()

m m
n n

i j i jN
n nR R

njm mj n n
i j HS j

n nR R i

nj
i j

R

E EW N dR W h N dR
E E

E t
E E hN h N dR N L N dR
E E t

E t
N hN dR

t

∂
∂

=

⎧ ⎫⎡ ⎤⎡ ⎤⎛ ⎞
− ∇ ⋅ + ∇ ⋅ ⋅ ∇⎪ ⎪⎢ ⎥⎢ ⎥⎜ ⎟

⎪ ⎪⎝ ⎠⎢ ⎥⎣ ⎦
⎨ ⎬⎢ ⎥⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥+ ∇ ⋅ ⋅ ∇ + +⎜ ⎟ ⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

⎡ ⎤∂⎛ ⎞
+ ⎢⎜ ⎟ ∂⎢⎝ ⎠⎣ ⎦

∫ ∫
∑

∫ ∫

∫

q K

K

()
1

n

N

i HS E
j R

m m m
n n n

i n i n i n
n n nB B B

N R hR dR

E E EW E dB N h E dB W h E dB
E E E

=

= +⎥
⎥

⎡ ⎤⎛ ⎞ ⎛ ⎞
− ⋅ + ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∫

∫ ∫ ∫n q n K n K

 (3.6.7.1.14)

Equation (3.6.7.1.14) can be written in matrix form as

(){ } { } { }[1] [1] [2] [3] [4]n
n

ECMATRX Q Q Q Q E SS B
t

∂⎧ ⎫ + + + + = +⎨ ⎬∂⎩ ⎭
 (3.6.7.1.15)

 3-162

The matrices [CMATRX1], [Q1], [Q2], [Q3], [Q4], and load vectors {SS}, {B} are given by

1ij i j
R

CMATRX N hN dR= ∫
(3.6.7.1.16)

1
m

n
ij i j

nR

EQ W N dR
E

= − ∇ ⋅∫ q (3.6.7.1.17)

2
m

n
ij i j

nR

EQ W h N dR
E

⎡ ⎤⎛ ⎞
= ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫ K (3.6.7.1.18)

3
m

n
ij i j

nR

EQ N h N dR
E

⎛ ⎞
= ∇ ⋅ ⋅ ∇⎜ ⎟

⎝ ⎠
∫ K (3.6.7.1.19)

4
m

n
ij HS j

nR i

E hQ N L N dR
E t

∂
∂

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∫ (3.6.7.1.20)

()ni i HS E
R

SS N R hR dR= +∫
(3.6.7.1.21)

m m m

n n n
i i n i n i n

n n nB B B

E E EB W E dB N h E dB W h E dB
E E E

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − ⋅ + ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫ ∫n q n K n K (3.6.7.1.22)

Equation (3.6.7.1.15) is then simplified as

{ } { } { }[1] [2]n
n

ECMATRX CMATRX E SS B
t

∂⎧ ⎫ + = +⎨ ⎬∂⎩ ⎭
 (3.6.7.1.23)

where
[2] [1] [2] [3] [4]CMATRX Q Q Q Q= + + + (3.6.7.1.24)

Further,

() () { } { }
1/ 2

1/ 2
1 2

{ } { }
[1] [2] { } { }

n n
n n n n

n n

E E
CMATRX CMATRX W E W E SS B

t

+
+

−
+ + = +

Δ
 (3.6.7.1.25)

So that
{ }1/ 2[] { } n

nCMATRX E RLD+ = (3.6.7.1.26)

where

1
[1][] *[2] CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.7.1.27)

{ } { } { }2
[1]{ } *[2] n

n
CMATRXRLD W CMATRX E SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.6.7.1.28)

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified
boundary condition and shown as follows.

()m m
i i n i n

B B

B W E dB N h E dB= − ⋅ + ⋅ ⋅∇∫ ∫n q n K
(3.6.7.1.29)

Dirichlet boundary condition

 3-163

(, ,)m m

n n b bE E x y t= (3.6.7.1.30)

Variable boundary condition

< Case 1 > when flow is going in from outside (n·q <0)

() (, ,) (, ,)m m m m
n n n b b i i n b b

B

E h E E x y t B W E x y t dB⋅ − ⋅∇ = ⋅ ⇒ = − ⋅∫n q K n q n q
(3.6.7.1.31)

< Case 2 > Flow is going out from inside (n·q > 0):

() 0 m m
n i i n

B

h E B W E dB− ⋅ ⋅∇ = ⇒ = − ⋅∫n K n q
(3.6.7.1.32)

Cauchy boundary condition

() (, ,) (, ,)m m m m
n n En b b i i En b b

B

E h E Q x y t B W Q x y t dB⋅ − ⋅∇ = ⇒ = −∫q Kn
(3.6.7.1.33)

Neumann boundary condition

() (, ,) (, ,)m m m
n En b b i i n i En b b

B B

h E Q x y t B W E dB N Q x y t dB− ⋅ ⋅ ∇ = ⇒ = − ⋅ −∫ ∫n K n q
(3.6.7.1.34)

River/stream-overland interface boundary condition

() () () () (){ }
() () () (){ }

1

1

1 1 1 (, ,)
2

1 1 1 (, ,)
2

mm m m D
n n n n b b

mm D
i i n n b b

B

E h E sign E sign E x y t

B W sign E sign E x y t dB

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⇒ = − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫

n q K n q n q n q

n q n q n q

(3.6.7.1.35)

Note: In the equation (3.6.7.1.18), assign

3.6.7.2 Mixed Predictor-corrector/Operator-splitting scheme

Recall the governing equation for 2-D kinetic variable transport at n+1-th time step, equation
(3.6.7.1.2), as follows

1() () () () as rs is nn n n

n n
m mn n

n n n EE E E

E E hh E E h E M M M hR
t t

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + + +

Δ ∂
q K (3.6.7.2.1)

According to mixed Predictor-corrector/Operator-splitting scheme, equation (3.6.7.2.1) can be
separated into two equations as follows

()

1/ 2() () () ()

()as rs is nn n n

m n m n
m m mn n
n n n

n im n
E nE E E

E E hh E E h E
t t

hM M M h R E
t

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ =

Δ ∂
∂

+ + + −
∂

q K
(3.6.7.2.2)

 3-164

1 1/ 2
1 1[() ()] () ()() () ()

n n

n m n im n
n n im n im nn n n

E E n n
E E E n h n hhR h R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A (3.6.7.2.3)

First, solve equation (3.6.7.2.2) and get (En
m)n+1/2. Second, solve equation (3.6.7.2.3) together with

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual
species concentration.

Assign and calculate the right hand side RHS and left hand side LHS the same as that in section
3.6.7.1, equation (3.6.7.2.2) is then simplified as:

()
1/ 2() () () () ()

n

m n m n nm m m im nn n
n n HS n HS E n

E E h hh E h E L E R h R E
t t t

+ − ∂ ∂⎛ ⎞+ ∇ ⋅ − ∇ ⋅ ⋅∇ + + = + −⎜ ⎟Δ ∂ ∂⎝ ⎠
q K (3.6.7.2.4)

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport
equation. Integrate equation (3.6.7.2.4) in the spatial dimensions over the entire region as follows

() ()

 ()
n

m
n m mn

i n i n
R R

m n im n
i HS n i HS E n

R R

EN h h E dR W E dR
t

h hN L E dR N R hR E dR
t t

⎡ ⎤∂
− ∇ ⋅ ⋅ ∇ + ∇ ⋅⎢ ⎥∂⎣ ⎦

∂ ∂⎛ ⎞ ⎛ ⎞+ + = + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

K q

(3.6.7.2.5)

Further, we obtain

()

() ()
n

m
m m mn

i i n i n i HS n
R R R R

n im n m m
i HS E n i n i n

R B B

E hN h dR W E dR N h E dR N L E dR
t t

hN R hR E dR W E dB N h E dB
t

∂ ∂⎛ ⎞− ∇ ⋅ + ∇ ⋅ ⋅∇ + +⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞= + − − ⋅ + ⋅ ⋅∇⎜ ⎟∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫ ∫

q K

n q n K

(3.6.7.2.6)

Approximate solution En
m by a linear combination of the base functions as follows

1

ˆ () ()
N

m m m
n n nj j

j

E E E t N R
=

≈ = ∑ (3.6.7.2.7)

Substituting Equation (3.6.7.2.7) into Equation (3.6.7.2.6), we obtain

()
1

1

()

()
 ()

n

N
m

i j i j i HS j nj
j R R R

mN
njn n im n

i j i HS E n
j R R

m
i n

hW N dR N h N dR N L N dR E t
t

E t hN h N dR N R hR E dR
t t

W E dB

=

=

⎧ ⎫⎡ ⎤∂⎪ ⎪⎛ ⎞− ∇ ⋅ + ∇ ⋅ ⋅∇ + +⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤∂⎛ ⎞ ∂⎛ ⎞+ = + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

− ⋅

∑ ∫ ∫ ∫

∑ ∫ ∫

q K

n q ()m
i n

B B

N h E dB+ ⋅ ⋅∇∫ ∫n K

(3.6.7.2.8)

Equation (3.6.7.2.8) can be written in matrix form as

(){ } { } { }[1] [1] [3] [4]
m

mn
n

ECMATRX Q Q Q E SS B
t

⎧ ⎫∂
+ + + = +⎨ ⎬∂⎩ ⎭

 (3.6.7.2.9)

The matrices [CMATRX1], [Q1], [Q3], [Q4], and load vectors {SS}, {B} are given by

 3-165

1ij i j
R

CMATRX N hN dR= ∫
(3.6.7.2.10)

1ij i j
R

Q W N dR= − ∇ ⋅∫ q
(3.6.7.2.11)

()3ij i j
R

Q N h N dR= ∇ ⋅ ⋅ ∇∫ K
(3.6.7.2.12)

4ij HS j
iR

hQ N L N dR
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫ (3.6.7.2.13)

()
n

n im n
i i HS E n

R

hSS N R hR E dR
t

∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫ (3.6.7.2.14)

()m m
i i n i n

B B

B W E dB N h E dB= − ⋅ + ⋅ ⋅∇∫ ∫n q n K
(3.6.7.2.15)

Equation (3.6.7.2.9) is then simplified as

{ } { } { }[1] [2]n
n

ECMATRX CMATRX E SS B
t

∂⎧ ⎫ + = +⎨ ⎬∂⎩ ⎭
 (3.6.7.2.16)

where
[2] [1] [3] [4]CMATRX Q Q Q= + + (3.6.7.2.17)

Further,

{ } { }

1/ 2

1/ 2
1 2

{() } {() }
 [1]

[2] {() } {() }

m n m n
n n

m n m n
n n

E E
CMATRX

t
CMATRX W E W E SS B

+

+

⎡ ⎤−⎣ ⎦
Δ

⎡ ⎤+ + = +⎣ ⎦

(3.6.7.2.18)

So that
{ }1/ 2[] () { }m n

nCMATRX E RLD+ = (3.6.7.2.19)

where

1
[1][] *[2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.7.2.20)

{ } { } { }2
[1]{ } *[2] ()m n

n
CMATRXRLD W CMATRX E SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.6.7.2.21)

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is the same as that in section 3.6.7.1.

3.6.7.3 Operator-splitting scheme

Recall the governing equation for 2-D kinetic variable transport at n+1-th time step, equation
(3.6.7.1.2), as follows

1() () () () as rs is nn n n

n n
m mn n

n n n EE E E

E E hh E E h E M M M hR
t t

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + + +

Δ ∂
q K (3.6.7.3.1)

According to Operator-splitting scheme, equation (3.6.7.3.1) can be separated into two equations as
follows

 3-166

1/ 2() () () () as rs is

n n n

m n m n
m m mn n
n n n E E E

E E hh E E h E M M M
t t

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + +

Δ ∂
q K (3.6.7.3.2)

1 1/ 2

1 1() [() ()] ()
n

n m n im n
n im nn n n

E n
E E E nhhR E

t t

+ +
+ +− + ∂

= −
Δ ∂

A (3.6.7.3.3)

First, solve equation (3.6.7.3.2) and get (En
m)n+1/2. Second, solve equation (3.6.7.3.3) together with

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual
species concentration.

Equation (3.6.7.3.2) can be solved through the same procedure as that in section 3.6.7.2, except for
the load vectors {SS}, which is calculated by the following equation.

1

e

e

M
e

i i HS
e R

SS N R dR
=

= ∑ ∫ (3.6.7.3.4)

3.6.8 Application of the Finite Element Method to the Advective Form of the Transport

Equations to Solve 2-D Kinetic Variable Transport

3.6.8.1 Fully-implicit scheme

Conversion of the equation for 2-D kinetic variable transport Fully-implicit scheme transport step,
equation (3.6.7.1.3), to advection form is expressed as

()
1/ 2() () ()

as rs is nn n n

n n
m m mn n

n n n n

EE E E

E E hh E E h E E
t t

M M M hR

+ − ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅ ∇ + ∇ ⋅ =

Δ ∂
+ + +

q K q (3.6.8.1.1)

where S R Ih t S S S∂ ∂ + ∇⋅ = + +q according to governing equation for 2-D flow.

To solve equation (3.6.8.1.1), assign

0 HS HS S R IR and L S S S h t= = + + − ∂ ∂ (3.6.8.1.2)

Then the right hand side RHS and left hand side LHS should be continuously calculated the same as
that in section 3.6.7.1. Equation (3.6.8.1.1) is then simplified as:

()
n

m m mn
n n n HS n HS E

E hh E E h E L E R hR
t t

∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + = +

∂ ∂
q K (3.6.8.1.3)

Express En
m in terms of (En

m /En) En
m to make En’s as primary dependent variables,

n

m m
n n n

n n
n n

m m
n n

n HS n H E
n n

E E Eh E h E
t E E

E E hh E L E R S hR
E E t

⎛ ⎞ ⎛ ⎞∂
+ ⋅ ∇ − ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
−∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

q K

K

(3.6.8.1.4)

 3-167

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport
equation. Integrate equation (3.6.8.1.4) in the spatial dimensions over the entire region as follows.

 ()
n

m m m
n n n n

i n i n n
n n nR R

m
n

i HS n i HS E
nR R

E E E EN h h E dR W E h E dR
t E E E

E hN L E dR N R hR dR
E t

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ⎪ ⎪− ∇ ⋅ ⋅ ∇ + ⋅ ∇ − ∇ ⋅ ⋅ ∇⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
⎛ ⎞∂

+ + = +⎜ ⎟∂⎝ ⎠

∫ ∫

∫ ∫

K q K

(3.6.8.1.5)

Further, we obtain

()
n

m m
n n n

i i n i n
n nR R R

m m
n n

i n i HS n
n nR R

m
n

i HS E i n i
nR B

E E EN h dR W E dR N h E dR
t E E

E E hW h E dR N L E dR
E E t

EN R hR dR n N hK E dB n W h
E

⎛ ⎞∂
− ⋅∇ + ∇ ⋅ ⋅ ∇⎜ ⎟∂ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
+ ∇ ⋅ ⋅ ∇ + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
= + + ⋅ ⋅ ∇ + ⋅⎜ ⎟

⎝ ⎠

∫ ∫ ∫

∫ ∫

∫ ∫

q K

K

m
n

n
nB

EK E dB
E

⎡ ⎤⎛ ⎞
⋅ ∇⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫

(3.6.8.1.6)

Approximate solution En by a linear combination of the base functions as follows

1

ˆ () ()
N

n n nj j
j

E E E t N R
=

≈ = ∑ (3.6.8.1.7)

Substituting Equation (3.6.8.1.7) into Equation (3.6.8.1.6), we obtain

1

()

m m m
n n n

i j i j i jN
n n nR R R

njm mj n n
i j i HS j

n nR R

i j

E E EW N dR W N dR W h N dR
E E E

E t
E E hN h N dR N L N dR
E E t

N hN d

=

⎧ ⎫⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞
⋅ ∇ + ⋅ ∇ + ∇ ⋅ ⋅ ∇⎪ ⎪⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟

⎪ ⎪⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
⎨ ⎬⎢ ⎥⎛ ⎞ ⎛ ⎞∂⎪ ⎪⎢ ⎥+ ∇ ⋅ ⋅ ∇ + +⎜ ⎟ ⎜ ⎟⎪ ⎪⎢ ⎥∂⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

+

∫ ∫ ∫
∑

∫ ∫

q q K

K

()
1

()

n

N
nj

i HS E
j R R

m m
n n

i n i n
n nB B

E t
R N R hR dR

t

E En N h E dB n W h E dB
E E

=

⎡ ⎤∂⎛ ⎞
= +⎢ ⎥⎜ ⎟ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∫ ∫

∫ ∫K K

 (3.6.8.1.8)

Equation (3.6.8.1.8) can be written in matrix form as

(){ } { } { }[1] [1] [2] [3] [4] [5]n
n

ECMATRX Q Q Q Q Q E SS B
t

∂⎧ ⎫ + + + + + = +⎨ ⎬∂⎩ ⎭
 (3.6.8.1.9)

The matrices [CMATRX1], [Q1], [Q2], [Q3], [Q4], [Q5], and load vectors {SS}, {B} are given by

1ij i j
R

CMATRX N hN dR= ∫
(3.6.8.1.10)

1
m

n
ij i j

nR

EQ W N dR
E

= ⋅ ∇∫ q (3.6.8.1.11)

 3-168

2
m

n
ij i j

nR

EQ W N dR
E

⎛ ⎞
= ⋅ ∇⎜ ⎟

⎝ ⎠
∫ q (3.6.8.1.12)

3
m

n
ij i j

nR

EQ W h N dR
E

⎡ ⎤⎛ ⎞
= ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫ K (3.6.8.1.13)

4
m

n
ij i j

nR

EQ N h N dR
E

⎛ ⎞
= ∇ ⋅ ⋅ ∇⎜ ⎟

⎝ ⎠
∫ K (3.6.8.1.14)

5
m

n
ij i HS j

nR

E hQ N L N dR
E t

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

∫ (3.6.8.1.15)

()ni i HS E
R

SS N R hR dR= +∫
(3.6.8.1.16)

m m

n n
i i n i n

n nB B

E EB N h E dB W h E dB
E E

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫n K n K (3.6.8.1.17)

Equation (3.6.8.1.9) is then simplified as

{ } { } { }[1] [2]n
n

ECMATRX CMATRX E SS B
t

∂⎧ ⎫ + = +⎨ ⎬∂⎩ ⎭
 (3.6.8.1.18)

where
[2] [1] [2] [3] [4] [5]CMATRX Q Q Q Q Q= + + + + (3.6.8.1.19)

Further,

() () { } { }
1/ 2

1/ 2
1 2

{ } { }
[1] [2] { } { }

n n
n n n n

n n

E E
CMATRX CMATRX W E W E SS B

t

+
+

−
+ + = +

Δ
 (3.6.8.1.20)

So that
{ }1/ 2[] { }n

nCMATRX E RLD+ = (3.6.8.1.21)

where

1
[1][] *[2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.8.1.22)

{ } { } { }n
2 n

[CMATRX1]{RLD} W *[CMATRX2] E SS B
t

⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠
 (3.6.8.1.23)

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified
boundary condition and shown as follows.

()m
i i n

B

B N h E dB= ⋅ ⋅∇∫ n K
(3.6.8.1.24)

Dirichlet boundary condition

(, ,)m m
n n b bE E x y t= (3.6.8.1.25)

Variable boundary condition

 3-169

< Case 1 > when flow is going in from outside (n·q < 0)

() (, ,) (, ,)m m m m m
n n n b b i i n i n b b

B B

E h E E x y t B N E dB N E x y t dB⋅ − ⋅∇ = ⋅ ⇒ = ⋅ − ⋅∫ ∫n q K n q n q n q
(3.6.8.1.26)

< Case 2 > Flow is going out from inside (n·q > 0):

() 0 0m
n ih E B− ⋅ ⋅∇ = ⇒ =n K (3.6.8.1.27)

Cauchy boundary condition

() (, ,) (, ,)m m m m m
n n En b b i i n i En b b

B B

E h E Q x y t B N E dB N Q x y t dB⋅ − ⋅∇ = ⇒ = ⋅ −∫ ∫n q K n q
(3.6.8.1.28)

Neumann boundary condition

() (, ,) (, ,)m m m
n En b b i i En b b

B

h E Q x y t B N Q x y t dB− ⋅ ⋅∇ = ⇒ = −∫n K
(3.6.8.1.29)

River/stream-overland interface boundary condition

() () () () (){ }
() () () (){ }

1

1

1 1 1 (, ,)
2
1 1 1 (, ,)
2

mm m m D
n n n n b b

mm m D
i i n i n n b b

B B

E h E sign E sign E x y t

B N E dB N sign E sign E x y t dB

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅ ⇒⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= ⋅ − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫

n q K n q n q n q

n q n q n q n q

(3.6.8.1.30)

3.6.8.2 Mixed Predictor-corrector/Operator-splitting scheme

Conversion of the equation for 2-D kinetic variable transport mixed Predictor-corrector/Operator-
splitting scheme transport step, equation (3.6.7.2.3), to advection form is expressed as

()
1/ 2() () ()

()as rs is nn n n

m n m n
m m m mn n
n n n n

n im n
E nE E E

E E hh E E h E E
t t

hM M M hR E
t

+ − ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅∇ + ∇ ⋅ =

Δ ∂
∂

+ + + −
∂

q K q
(3.6.8.2.1)

where S R Ih t S S S∂ ∂ + ∇⋅ = + +q according to governing equation for 2-D flow.

To solve equation (3.6.8.2.1), assign the right hand side RHS and left hand side LHS the same as that
in section 3.6.8.1. Equation (3.6.8.2.1) is then simplified as:

() ()
n

m
m m m m n im nn
n n n HS n HS E n

E h hh E E h E L E R hR E
t t t

∂ ∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + = + −

∂ ∂ ∂
q K (3.6.8.2.2)

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport
equation. Integrate equation (3.6.8.2.4) in the spatial dimensions over the entire region as follows.

 3-170

()

 ()
n

m
m mn

i n i n
R R

m n im n
i HS n i HS E n

R R

EN h h E dR W E dR
t

h hN L E dR N R hR E dR
t t

⎡ ⎤∂
− ∇ ⋅ ⋅ ∇ + ⋅ ∇⎢ ⎥∂⎣ ⎦

∂ ∂⎛ ⎞ ⎛ ⎞+ + = + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

K q

(3.6.8.2.3)

Further, we obtain

()

() ()
n

m
m m mn

i i n i n i HS n
R R R R

n im n m
i HS E n i n

R B

E hN h dR W E dR N h E dR N L E dR
t t

hN R hR E dR n N hK E dB
t

∂ ∂⎛ ⎞− ⋅∇ + ∇ ⋅ ⋅∇ + +⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞= + − + ⋅ ⋅∇⎜ ⎟∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫

q K

(3.6.8.2.4)

Approximate solution En
m by a linear combination of the base functions as follows

1

ˆ () ()
N

m m m
n n nj j

j

E E E t N R
=

≈ = ∑ (3.6.8.2.5)

Substituting Equation (3.6.8.2.5) into Equation (3.6.8.2.4), we obtain

()

()

1

1

 ()

()
()

n

N
m

i j i j i HS j nj
j R R R

mN
nj n im n m

i j i HS E n i n
j R R B

hW N dR N h N dR N L N dR E t
t

E t hN hN dR N R hR E dR N h E dB
t t

=

=

⎧ ⎫⎡ ⎤∂⎪ ⎪⎛ ⎞⋅∇ + ∇ ⋅ ⋅∇ + +⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤∂⎛ ⎞ ∂⎛ ⎞+ = + − + ⋅ ⋅∇⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫ ∫

q K

n K

(3.6.8.2.6)

Equation (3.6.8.2.6) can be written in matrix form as

(){ } { } { }[1] [1] [4] [5]n
n

ECMATRX Q Q Q E SS B
t

∂⎧ ⎫ + + + = +⎨ ⎬∂⎩ ⎭
 (3.6.8.2.7)

The matrices [CMATRX1], [Q1], [Q4], [Q5], and load vectors {SS}, {B} are given by

1ij i j
R

CMATRX N hN dR= ∫
(3.6.8.2.8)

1ij i j
R

Q W N dR= ⋅∇∫ q
(3.6.8.2.9)

()4ij i j
R

Q N h N dR= ∇ ⋅ ⋅ ∇∫ K
(3.6.8.2.10)

5ij i HS j
R

hQ N L N dR
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫ (3.6.8.2.11)

()
n

n im n
i i HS E n

R

hSS N R hR E dR
t

∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫ (3.6.8.2.12)

()i i n
B

B N h E dB= ⋅ ⋅∇∫ n K
(3.6.8.2.13)

Equation (3.6.8.2.7) is then simplified as

 3-171

{ } { } { }[1] [2]n
n

ECMATRX CMATRX E SS B
t

∂⎧ ⎫ + = +⎨ ⎬∂⎩ ⎭
 (3.6.8.2.14)

where
[2] [1] [4] [5]CMATRX Q Q Q= + + (3.6.8.2.15)

Further,

() () { } { }
1/ 2

1/ 2
1 2

{ } { }
[1] [2] { } { }

n n
n n n n

n n

E E
CMATRX CMATRX W E W E SS B

t

+
+

−
+ + = +

Δ
 (3.6.8.2.16)

So that
{ }1/ 2[] { }n

nCMATRX E RLD+ = (3.6.8.2.17)

where

1
[1][] *[2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.8.2.18)

{ } { } { }2
[1]{ } *[2] n

n
CMATRXRLD W CMATRX E SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.6.8.2.19)

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified
boundary condition calculated the same as that in section 3.6.8.1.

3.6.8.3 Operator-splitting scheme

Conversion of the equation for 2-D kinetic variable transport operator spitting scheme transport step,
equation (3.6.7.3.3), to advection form is expressed as

()
1/ 2() () () as rs is

n n n

m n m n
m m m mn n
n n n n E E E

E E hh E E h E E M M M
t t

+ − ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅ ∇ + ∇ ⋅ = + +

Δ ∂
q K q (3.6.8.3.1)

where S R Ih t q S S S∂ ∂ + ∇⋅ = + + according to governing equation for 2-D flow.

Equation (3.6.8.3.1) can be solved through the same procedure as that in section 3.6.8.2, except for
the load vectors {SS}, which is calculated by the following equation.

1

e

e

M
e

i i HS
e R

SS N R dR
=

= ∑ ∫ (3.6.8.3.2)

3.6.9 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form

of the Transport Equations to Solve 2-D Kinetic Variable Transport

3.6.9.1 Fully-implicit scheme

Recall the equation for 2-D kinetic variable transport Fully-implicit scheme transport step in
advection form, equation (3.6.8.1.1), as follows

()
1/ 2() () () as rs is nn n n

n n
m m mn n

n n n n EE E E

E E hh E E h E E M M M hR
t t

+ − ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅ ∇ + ∇ ⋅ = + + +

Δ ∂
q K q (3.6.9.1.1)

 3-172

Express En
m in terms of (En

m/En)En or En-En
im to make En’s as primary dependent variables, equation

(3.6.9.1.1) is modified as

() ()

()

as rs is nn n n

m
n n

n n n n
n

im im
n n EE E E

E h Eh E E h E E
t t E

E h E M M M hR

∂ ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅ ∇ + ∇ ⋅

∂ ∂

= ⋅ ∇ − ∇ ⋅ ⋅ ∇ + + +

q K q

q K

(3.6.9.1.2)

To solve equation (3.6.9.1.2), assign

()0 m
HS HS S R I n nR and L S S S h t E E= = + + − ∂ ∂ (3.6.9.1.3)

Then the right hand side RHS and left hand side LHS should be continuously calculated as following.

* , 0

* , 0

rs n

n

rs
R n R HS n HS n Ers

E m
R n R HS n HS n R

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.9.1.4)

* , 0 ,

* , 0

as n

n

as
S n S HS n HS n Eas

E m
S n S HS n HS n S

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.9.1.5)

* , 0

* , 0

is n

n

m is
I n I HS n HS n Eis

E m
I n I HS n HS n I

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.9.1.6)

Equation (3.6.8.1.1) is then simplified as:

()()
n

im imn
n n n HS n n n HS E

E hh E E h E L E E h E R hR
t t

∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + = ⋅∇ − ∇ ⋅ ⋅∇ + +

∂ ∂
q K q K (3.6.9.1.7)

Assign the true transport velocity vtrue as follows

trueh =v q (3.6.9.1.8)

Equation (3.6.9.1.7) in the Lagrangian and Eulerian form is written as follows. In Lagrangian step,

true0 0n n n n
n n

dE E dE Eh h E E
d t d tτ τ

∂ ∂
= + ⋅∇ = ⇒ = + ⋅∇ =

∂ ∂
q v (3.6.9.1.9)

In Eulerian step,

()()
n

im imn
n HS n n n HS E

dE hh h E L E E h E R hR
d tτ

∂⎛ ⎞− ∇⋅ ⋅∇ + + = ⋅∇ − ∇⋅ ⋅∇ + +⎜ ⎟∂⎝ ⎠
K q K (3.6.9.1.10)

Equation (3.6.9.1.10) written in a slightly different form is shown as

n
n L

dE D KE T R
dτ

− + = + (3.6.9.1.11)

where
1 ()nD h E
h

= ∇⋅ ⋅∇K (3.6.9.1.12)

 3-173

HS
hL
tK

h

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠= (3.6.9.1.13)

nHS E
L

R hR
R

h
+

= (3.6.9.1.14)

()1 im im
n nT E h E

h
⎡ ⎤= ⋅∇ − ∇⋅ ⋅∇⎣ ⎦q K (3.6.9.1.15)

According to section 3.6.4,

{ } { } { }[1] [2] 1nA D A E B= − + (3.6.9.1.16)
where

1ij i j
R

A N hN dR= ∫
(3.6.9.1.17)

2 ()ij i j
R

A N h N dR= ∇ ⋅ ⋅∇∫ K
(3.6.9.1.18)

1 ()i i n
B

B N h E dB= ⋅ ⋅∇∫n K
(3.6.9.1.19)

Lump matrix [A1] into diagonal matrix and assign

2 / 1ij ij iiQE A A= (3.6.9.1.20)

1 1 / 1i i iiQB B A= (3.6.9.1.21)
Then

{ } { }{ 1} 1D D QB= + (3.6.9.1.22)
where

{ }{ 1} [] nD QE E= − (3.6.9.1.23)

Approximate T by a linear combination of the base functions as follows:

1

ˆ () ()
N

j j
j

T T T t N R
=

≈ = ∑ (3.6.9.1.24)

According to equation (3.6.9.1.24), the integration of equation (3.6.9.1.15) can be written as

()
1

() ()
N

im im
i i j j i n n

jR R R

N hTdR N h T t N R dR N E h E dR
=

⎡ ⎤= = ⋅∇ − ∇ ⋅ ⋅ ∇⎣ ⎦∑∫ ∫ ∫ q K (3.6.9.1.25)

Further, we obtain

() ()
1

N
im im im

i j j i n i n i n
j R R R B

N hN dR T N E dR N h E dR N h E dB
=

⎡ ⎤⎛ ⎞
= ⋅ ∇ + ∇ ⋅ ⋅ ∇ − ⋅ ⋅∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∫ ∫ ∫ ∫q K n K (3.6.9.1.26)

Approximate En
im by a linear combination of the base functions as follows:

 3-174

1

ˆ () ()
N

im im im
n n nj j

j

E E E t N R
=

≈ = ∑ (3.6.9.1.27)

Equation (3.6.9.1.26) is further expressed as

() ()

1 1

1

 ()

()

N N
im

i j j i j n j
j jR R

N
im im

i j n j i n
j R B

N hN dR T N N dR E

N h N dR E N h E dB

= =

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅∇⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞

+ ∇ ⋅ ⋅ ∇ − ⋅ ⋅∇⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑∫ ∫

∑ ∫ ∫

q

K n K

(3.6.9.1.28)

Assign matrices [A3], and load vector {B2} as following

3ij i j
R

A N N dR= ⋅ ∇∫ q
(3.6.9.1.29)

()2 im
i i n

B

B N h E dB= − ⋅ ⋅∇∫n K
(3.6.9.1.30)

Assign

(2 3) / 1ij ij ij iiQT A A A= + (3.6.9.1.31)

2 2 / 1i i iiQB B A= (3.6.9.1.32)

Equation (3.6.9.1.28) is expressed as

{ } { }{ 1} 2T T QB= + (3.6.9.1.33)
where

{ }{ 1} [] im
nT QT E= (3.6.9.1.34)

So that equation (3.6.9.1.11) is then expressed as

1 1n
n L

dE D KE T R B
dτ

− + = + + (3.6.9.1.35)

where B=B1+B2. For boundary node i = b, the boundary term {B} should be calculated as follows.

For Dirichlet boundary condition

()(, ,) 1m m m
n n b b i i n ii

B

E E x y t B N h E dB A= ⇒ = ⋅ ⋅ ∇∫ n K
(3.6.9.1.36)

Variable boundary condition

< Case 1 > when flow is going in from outside (n·q < 0)

() (, ,)

1 (, ,) 1

m m m
n n n b b

m m
i i n ii i n b b ii

B B

E h E E x y t

B N E dB A N E x y t dB A

⋅ − ⋅∇ = ⋅ ⇒

= ⋅ − ⋅∫ ∫

n q K n q

n q n q
 (3.6.9.1.37)

< Case 2 > Flow is going out from inside (n·q > 0):

 3-175

(, ,) 0 0m

n b b ih E x y t B⎡ ⎤− ⋅ ⋅∇ = ⇒ =⎣ ⎦n K (3.6.9.1.38)

Cauchy boundary condition

1

 (, ,) (, ,) ()

 (, ,) ()

()

m m
n b b n b b b

m
i i n b b b ii

B

N
m

i j nj ii i ii
j B B

E x y t h E x y t q t

B N E x y t q t dB QA

N N dB E t QA N dB B QA
=

⎡ ⎤⋅ − ⋅∇ =⎣ ⎦

⎡ ⎤⇒ = ⋅ −⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅ −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∑ ∫ ∫

n q K

n q

n q

(3.6.9.1.39)

Neumann boundary condition

(, ,) () ()m
n b b b i i b ii i ii

B B

h E x y t q t B N q t dB QA N dB B QA
⎛ ⎞

⎡ ⎤− ⋅ ⋅ ∇ = ⇒ = − = − ⎜ ⎟⎣ ⎦
⎝ ⎠

∫ ∫n K (3.6.9.1.40)

River/stream-overland interface boundary condition

1

 (, ,) (, ,) (())

 (, ,) (())

()

m m
n b b n b b b b

m
i i n b b b b ii

B

N
m

i j nj ii i ii
j B B

E x y t h E x y t q h t

B N E x y t q h t dB QA

N N dB E t QA N dB B QA
=

⎡ ⎤⋅ − ⋅∇ = ⇒⎣ ⎦

⎡ ⎤= ⋅ −⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅ −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∑ ∫ ∫

n q K

n q

n q

(3.6.9.1.41)

Equation (3.6.9.1.35) written in matrix form is then expressed as

() { } { }
{ } { } { } { } { } { }

* * * *
1 2 1 2

* * *
1 2 1 2 1 2

[] { } { } { 1} { 1 } []{ } []{ }

 1 1

TT
n n n n

U E E W D W D W K U E W K U E

W T W T W RL W RL W B W B
τ

− − − + +
Δ

= + + + + +

 (3.6.9.1.42)

At upstream flux boundary nodes, equation (3.6.9.1.42) cannot be applied because Δτ equals zero.
Thus, we propose a modified LE approach in which the matrix equation for upstream boundary
nodes is obtained by explicitly applying the finite element method to the boundary conditions. For
example, at the upstream variable boundary

() (, ,)m m m
i n n i n b b

B B

N n qE hK E dB N n qE x y t dB⋅ − ⋅∇ = ⋅∫ ∫ (3.6.9.1.43)

So that the following matrix equation can be assembled at the boundary nodes

[]{ } []{ }m
nQF E QB B= (3.6.9.1.44)

in which

()ij i j i j
B

QF N N N h N dB= ⋅ − ⋅ ⋅∇∫ n q n K (3.6.9.1.45)

 3-176

ij i j
B

QB N N dB= ⋅∫ n q (3.6.9.1.46)

(, ,) m
i n b bB E x y t= (3.6.9.1.47)

3.6.9.2 Mixed Predictor-corrector/Operator-splitting scheme

Recall the simplified equation for 2-D kinetic variable transport mixed Predictor-corrector/Operator-
splitting scheme transport step in advection form, equation (3.6.8.2.2), as follows

() ()
n

m
m m m n im nn

n n HS n HS E n
E h hh E h E L E R hR E

t t t
∂ ∂ ∂⎛ ⎞+ ⋅∇ − ∇ ⋅ ⋅∇ + + = + −⎜ ⎟∂ ∂ ∂⎝ ⎠

q K (3.6.9.2.1)

Assign the true transport velocity vtrue as follows

1
1 2

n n
trueh W W+= = +v q q q (3.6.9.2.2)

Equation (3.6.9.2.1) in the Lagrangian and Eulerian form is written as follows. In lagrangian step,

0 0
m m m

m mn n n
n true n

dE E Eh h E E
d t tτ

∂ ∂
= + ⋅∇ = ⇒ + ⋅∇ =

∂ ∂
q v (3.6.9.2.3)

In Eulerian step,

() ()
n

m
m m n im nn

n HS n HS E n
dE h hh h E L E R hR E
d t tτ

∂ ∂⎛ ⎞− ∇⋅ ⋅∇ + + = + −⎜ ⎟∂ ∂⎝ ⎠
K (3.6.9.2.4)

Equation (3.6.9.3.4) written in a slightly different form is shown as

*
m

mn
n L

dE D K E R
dτ

− + = (3.6.9.2.5)

where
1 ()m

nD h E
h

= ∇⋅ ⋅∇K (3.6.9.2.6)

HS
hL
tK

h

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠= (3.6.9.2.7)

()
n

n im n
HS E n

L

hR hR E
tR

h

∂+ −
∂= (3.6.9.2.8)

Equation (3.6.9.2.5) written in matrix form is then expressed as

() { } { }
{ } (){ }

TTm m* * m * m*
n n 1 2 1 n 2 n

*
1 L 2 L

[U] {E } {E } W {D} W {D } W K [U]{E } W K [U]{E }

 W R W R
τ

− − − + +
Δ

= +

 (3.6.9.2.9)

Same as that in section 3.6.9.1,

 3-177

{ } { } { }[] m
nD QD E QB= − + (3.6.9.2.10)

At upstream flux boundary nodes, equation (3.6.9.2.9) cannot be applied because Δτ equals zero.
Thus, we propose a modified LE approach in which the matrix equation for upstream boundary
nodes is obtained by explicitly applying the finite element method to the boundary conditions.

3.6.9.3 Operator-splitting scheme

Equation (3.6.8.3.2) can be solved through the same procedure as that in section 3.6.9.2, except that

HS
L

RR
h

= (3.6.9.3.1)

3.6.10 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and

Downstream Boundary Nodes with the Finite Element Method Applied to the
Conservative Form of the Transport Equations for the Upstream Flux Boundaries to
Solve 2-D Kinetic Variable Transport

3.6.10.1 Fully-Implicit Scheme

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.6.9.1, and the matrix equation for upstream boundary nodes
is obtained through the same procedure as that in section 3.6.7.1.

3.6.10.2 Mixed Predictor-Corrector and Operator-Splitting Method

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.6.9.2, and the matrix equation for upstream boundary nodes
is obtained through the same procedure as that in section 3.6.7.2.

3.6.10.3 Operator-Splitting Approach

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.6.9.3, and the matrix equation for upstream boundary nodes
is obtained through the same procedure as that in section 3.6.7.3.

3.6.11 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and

Downstream Boundary Nodes with the Finite Element Method Applied to the
Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve
2-D Kinetic Variable Transport

3.6.11.1 Fully-Implicit Scheme

For this option, the matrix equation for interior and downstream boundary nodes is obtained through

 3-178

the same procedure as that in section 3.6.9.1, and the matrix equation for upstream boundary nodes
is obtained through the same procedure as that in section 3.6.8.1.

3.6.11.2 Mixed Predictor-Corrector and Operator-Splitting Method

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.6.9.2, and the matrix equation for upstream boundary nodes
is obtained through the same procedure as that in section 3.6.8.2.

3.6.11.3 Operator-Splitting Approach

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.6.9.3, and the matrix equation for upstream boundary nodes
is obtained through the same procedure as that in section 3.6.8.3.

3.7 Solving Three-Dimensional Subsurface Water Quality Transport Equations

In this section, we present the numerical approaches employed to solve the governing equations of
reactive chemical transport. Ideally, one would like to use a numerical approach that is accurate,
efficient, and robust. Depending on the specific problem at hand, different numerical approaches
may be more suitable. For research applications, accuracy is a primary requirement, because one
does not want to distort physics due to numerical errors. On the other hand, for large field-scale
problems, efficiency and robustness are primary concerns as long as accuracy remains within the
bounds of uncertainty associated with model parameters. Thus, to provide accuracy for research
applications and efficiency and robustness for practical applications, three coupling strategies were
investigated to deal with reactive chemistry. They are: (1) a fully-implicit scheme, (2) a mixed
predictor-corrector/operator-splitting method, and (3) an operator-splitting method. For each time-
step, we first solve the advective-dispersive transport equation with or without reaction terms,
kinetic-variable by kinetic-variable. We then solve the reactive chemical system node-by-node to
yield concentrations of all species.

Five numerical options are provided to solve the advective-dispersive transport equations: Option 1-
application of the Finite Element Method (FEM) to the conservative form of the transport equations,
Option 2 - application of the FEM to the advective form of the transport equations, Option 3 -
application of the modified Lagrangian-Eulerian (LE) approach to the Largrangian form of the
transport equations, Option 4 - LE approach for all interior nodes and downstream boundary nodes
with the FEM applied to the conservative form of the transport equations for the upstream flux
boundaries, and Option 5 - LE approach for all interior and downstream boundary nodes with the
FEM applied to the advective form of the transport equations for upstream flux boundaries.

3.7.1 Application of the Finite Element Method to the Conservative Form of the Reactive

Chemical Transport Equations

 3-179

3.7.1.1 Fully-Implicit Scheme

Assign the right-hand side term RHS and left hand side term LHS as follows.

 0, , , 0

 0, , 0,
n

asn n

as m
E n HS HS

as as
E HS HS En

If q M qE L q R

Else q M qE L R M

≤ = = − =

> = = =
 (3.7.1.1.1)

Then equation (2.7.22) is modified as

() ()
n

m m mn
n n n HS n HS E

E E E E L E R R
t t

θθ θ θ∂ ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅∇ + = +

∂ ∂
V D (3.7.1.1.2)

According to the fully-implicit scheme, equation (3.7.1.1.2) can be separated into two equations as
follows.

1/ 2

() ()
n

n n
m m mn n

n n n HS n HS E
E E E E E L E R R

t t
θθ θ θ

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅∇ + = +

Δ ∂
V D (3.7.1.1.3)

1 1/ 2

0
n n

n nE E
t

+ +−
=

Δ
 (3.7.1.1.4)

First, we express En
m in terms of (En

m/En)·En or (En–En
im) to make En’s as primary dependent

variables, so that En
n+1/2 can be solved through equation (3.7.1.1.3). It is noted that the approach of

expressing En
m in terms of (En

m/En)·En improves model accuracy but is less robust than the approach
of expressing En

m in terms of (En–En
im) taken in Yeh et al. [2004]. Second, we solve equation

(3.7.1.1.4) together with algebraic equations for equilibrium reactions using BIOGEOCHEM [Fang
et al., 2003] to obtain all individual species concentrations. Iteration between these two steps is
needed because the new reaction terms RAn

n+1 and the equation coefficients in equation (3.7.1.1.3)
need to be updated by the calculation results of (3.7.1.1.4). To improve the standard SIA method, the
nonlinear reaction terms are approximated by the Newton-Raphson linearization.

Option 1: Express En

m in terms of (En
m /En) En

m

n

m m
n n n

n n
n n

m m
n n

n HS n HS E
n n

E E EE E
t E E

E EE L E R R
E E t

θ θ

θθ θ

⎛ ⎞ ⎛ ⎞∂
+ ∇ ⋅ − ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
− ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

V D

D
 (3.7.1.1.5)

Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport
equation: choose weighting function identical to base function. For Petriov-Galerkin method, apply
weighting function one-order higher than the base function to advection term. Integrate equation
(3.7.1.1.5) in the spatial dimensions over the entire region as follows.

 3-180

()
n

m m
n n n

i n HS n
n nR

m m
n n

i n n i HS E
n nR R

E E EN E L E dR
t E E t

E EW E E dR N R R dR
E E

θθ θ

θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
− ∇ ⋅ ⋅ ∇ + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪+ ∇ ⋅ − ∇ ⋅ ⋅ ∇ = +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∫

∫ ∫

D

V D

 (3.7.1.1.6)

Further, we obtain

()

n

m m
n n n

i i n i n
n nR R R

m m
n n

i n i HS n i HS E
n nR R R

m m m
n n n

i n i n i
n n nB B

E E EN dR W E dR N E dR
t E E

E EW E dR N L E dR N R R dR
E E t

E E EW E dB N E dB W
E E E

θ θ

θθ θ

θ θ

⎛ ⎞∂
− ∇ ⋅ + ∇ ⋅ ⋅ ∇⎜ ⎟∂ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
+ ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
− ⋅ + ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎜ ⎟

⎝ ⎠

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

V D

D

n V n D n D n
B

E dB
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫

 (3.7.1.1.7)

Approximate solution En by a linear combination of the base functions as follows.

1

ˆ () ()
N

n n nj j
j

E E E t N R
=

≈ = ∑ (3.7.1.1.8)

Substituting equation (3.7.1.1.8) into equation (3.7.1.1.7), we obtain

1

1

()

()

N
nj

i j
j R

m mN
n n

i j i j nj
j n nR R

m m
n n

i j i HS
n nR R

E t
N N dR

t

E EW N dR W N dR E t
E E

E EN N dR N L
E E

θ

θ

θθ

=

=

⎡ ⎤∂⎛ ⎞
⎢ ⎥⎜ ⎟ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎧ ⎫⎧ ⎫⎡ ⎤⎛ ⎞⎪⎪ ⎪ ⎪+ − ∇ ⋅ + ∇ ⋅ ⋅ ∇⎨⎨ ⎬ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭⎩ ⎭

⎛ ⎞ ∂
+ ∇ ⋅ ⋅ ∇ + +⎜ ⎟

⎝ ⎠

∑ ∫

∑ ∫ ∫

∫ ∫

V D

D

()
1

()

 ()
n

N

j nj
j

m m
i HS E i n i n

R B B

N dR E t
t

N R R dR W E dB N E dBθ θ

=

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪
⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

= + − ⋅ + ⋅ ⋅∇

∑

∫ ∫ ∫n V n D

 (3.7.1.1.9)

Equation (3.7.1.1.9) can be written in matrix form as

{ } { }[1] [2] [3] { } { }n
n n

EQ Q E Q E RLS B
t

∂⎧ ⎫ + + = +⎨ ⎬∂⎩ ⎭
 (3.7.1.1.10)

where the matrices [Q1], [Q2], [Q3] and load vectors {RLS}, and {B} are given by

1ij i j
R

Q N N dRθ= ∫ (3.7.1.1.11)

 3-181

2
m m

n n
ij i j i j

n nR R

E EQ W N dR W N dR
E E

θ
⎡ ⎤⎛ ⎞

= − ∇ ⋅ + ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫ ∫V D (3.7.1.1.12)

3
m m

n n
ij i j i HS j

n nR R

E EQ N N dR N L N dR
E E t

θθ
⎛ ⎞ ⎛ ⎞∂

= ∇ ⋅ ⋅ ∇ + +⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
∫ ∫D (3.7.1.1.13)

()
ni i HS E

R

RLS N R R dRθ= +∫ (3.7.1.1.14)

() m m
i i n i n

B B

B W E dB N E dBθ= − ⋅ + ⋅ ⋅∇∫ ∫n V n D (3.7.1.1.15)

At n+1-th time step, equation (3.7.1.1.10) is approximated as

{ } { } { } { }
{ } { }

1/ 2
1 1/ 2

1 2

1 1/ 2
1 2

1 1
1 2 1 2

[1] [2] [2]

 [3] [3]

 { } { } { } { }

n n
n n n n n n

V n V n

n n n n
n n

n n n n

E E
Q W Q E W Q E

t
W Q E W Q E

W RLS W RLS W B W B

+
+ +

+ +

+ +

−
+ +

Δ
+ +

= + + +

(3.7.1.1.16)

where WV1, WV2, W1 and W2 are time weighting factors, matrices and vectors with superscripts n+1
and n are evaluated over the region at the new time step n+1 and at the old time step n, respectively.

So that

{ }

{ }

1 1 1/ 2
1 1

1 1
2 2 1 2 1 2

[1] [2] [3]

[1] [2] [3] { } { } { } { }

n n n
V n

n n n n n n n
V n

Q W Q W Q E
t
Q W Q W Q E W SS W SS W B W B

t

+ + +

+ +

⎛ ⎞+ +⎜ ⎟Δ⎝ ⎠
⎛ ⎞= − − + + + +⎜ ⎟Δ⎝ ⎠

 (3.7.1.1.17)

Option 2: Express En

m in terms of En-En
im

Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport
equation. Integrate equation (3.7.1.1.3) in the spatial dimensions over the entire region as follows.

() ()

 ()
n

m m mn
i n n HS n i n

R R

i HS E
R

EN E E L E dR W E dR
t t

N R R dR

θθ θ

θ

∂ ∂⎡ ⎤ ⎡ ⎤+ − ∇ ⋅ ⋅ + + ∇ ⋅⎢ ⎥ ⎣ ⎦∂ ∂⎣ ⎦

= +

∫ ∫

∫

D V
 (3.7.1.1.18)

Further, we obtain

 3-182

()

()

 ()
n

m m mn
i n i n i n i HS n

R R R R

m m
i HS E i n i n

R B B

EN E dR W E dR N E dR N L E dR
t t

N R R dR W E dB N E dB

θθ θ

θ θ

∂ ∂⎛ ⎞+ − ∇ ⋅ + ∇ ⋅ ⋅∇ +⎜ ⎟∂ ∂⎝ ⎠

= + − ⋅ + ⋅ ⋅∇

∫ ∫ ∫ ∫

∫ ∫ ∫

V D

n V n D
 (3.7.1.1.19)

Approximate solution En by a linear combination of the base functions as equation (3.7.1.1.8).
Substituting equation (3.7.1.1.8) into equation (3.7.1.1.19), we obtain

()

1 1

1 1

()
 () +

() ()

()
n

N N
njn m

i j i j nj
j jR R

N N
m

i j nj i j i HS j nj
j jR R R

i HS E i
R

E t
N N dR W N dR E t

t

N N dR E t N N dR N L N dR E t
t

N R R dR W

θ

θ θ

θ

= =

= =

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞
+ − ∇ ⋅⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎡ ⎤∂ ⎪ ⎪+ ∇ ⋅ ⋅ ∇ +⎢ ⎥ ⎨ ⎬⎜ ⎟ ⎢ ⎥∂⎢ ⎥ ⎪ ⎪⎝ ⎠ ⎣ ⎦⎩ ⎭⎣ ⎦

= + − ⋅

∑ ∑∫ ∫

∑ ∑∫ ∫ ∫

∫

V

D

n V () m m
n i n

B B

E dB N E dBθ+ ⋅ ⋅∇∫ ∫ n D

 (3.7.1.1.20)

Equation (3.7.1.1.20) can be written in matrix form as

{ } { } { }[1] [4] [2] [3] { } { }m mn
n n n

EQ Q E Q E Q E RLS B
t

∂⎧ ⎫ + + + = +⎨ ⎬∂⎩ ⎭
 (3.7.1.1.21)

where the matrices [Q1], [Q4], [Q2], [Q3] and load vectors {RLS}, and {B} are given by

1 , 4ij i j ij i j
R R

Q N N dR Q N N dR
t
θθ ∂

= =
∂∫ ∫ (3.7.1.1.22)

2ij i j
R

Q W N dR= − ∇ ⋅∫ V (3.7.1.1.23)

()3ij i j i HS j
R R

Q N N dR N L N dRθ= ∇ ⋅ ⋅∇ +∫ ∫D (3.7.1.1.24)

()
ni i HS E

R

RLS N R R dRθ= +∫ (3.7.1.1.25)

() m m
i i n i n

B B

B W E dB N E dBθ= − ⋅ + ⋅ ⋅∇∫ ∫n V n D (3.7.1.1.26)

Express En
m in terms of En-En

im, equation (3.7.1.1.21) is modified as

{ } { } { } { } { }[1] [4] [2] [3] [2] [3]

{ } { }

im imn
n n n n n

EQ Q E Q E Q E Q E Q E
t

RLS B

∂⎧ ⎫ + + + = +⎨ ⎬∂⎩ ⎭
+ +

 (3.7.1.1.27)

At n+1-th time step, equation (3.7.1.1.27) is approximated as

 3-183

{ } { } { } { } { }

{ } { } (){ }
(){ } (){ } (){ }

1/ 2
1/ 2 1 1/ 2

1 2

1/ 21 1/ 2 1
1 2 1

1/ 21
2 1 2

1 1
1 2 1 2

[1] [4] [2] [2]

[3] [3] [2]

[2] [3] [3]

{ } { } { }

n n
n n n n n n n

n V n V n

nn n n n n im
n n V n

n n nn im n im n im
V n n n

n n n

E E
Q Q E W Q E W Q E

t

W Q E W Q E W Q E

W Q E W Q E W Q E

W RLS W RLS W B W

+
+ + +

++ + +

++

+ +

−
+ + +

Δ

+ + =

+ + +

+ + + + { }nB

 (3.7.1.1.28)

So that

{ } { }

() (){ } () (){ }

1 1 1/ 2
1 1

1/ 21 1
2 2 1 1

1 1
1 2 1 2

[1] [1][4] [2] [3]

[2] [3] * [2] [3]

{ } { } { } { }

n n n n
V n n

n nn n m n n im
V n V n

n n n n

Q QQ W Q W Q E E
t t

W Q W Q E W Q W Q E

W SS W SS W B W B

+ + +

++ +

+ +

⎛ ⎞+ + + = −⎜ ⎟Δ Δ⎝ ⎠

+ + + +

+ + +

(3.7.1.1.29)

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified
boundary condition and shown as follows.

Dirichlet boundary condition

(, , ,)m m
n n b b bE E x y z t= (3.7.1.1.30)

Variable boundary condition

< Case 1 > when flow is going in from outside (n·V <0)

() (, , ,) (, , ,)m m m m
n n n b b b i i n b b bE E E x y z t B N E x y z t dBθ⋅ − ⋅∇ = ⋅ ⇒ = − ⋅∫

B

n V D n V n V (3.7.1.1.31)

< Case 2 > Flow is going out from inside (n·V > 0):

() 0 m m
n i i n

B

E B N E dBθ− ⋅ ⋅∇ = ⇒ = − ⋅∫n D n V (3.7.1.1.32)

Cauchy boundary condition

() (, , ,) (, , ,)m m
n n

m m
n n b b b i i b b bE E

B

E E Q x y z t B N Q x y z t dBθ⋅ − ⋅∇ = ⇒ = −∫n V D (3.7.1.1.33)

Neumann boundary condition

 3-184

 () (, , ,)

 (, , ,)

m
n

m
n

m
n b b bE

m
i i n i b b bE

B B

E Q x y z t

B N E dB N Q x y z t dB

θ− ⋅ ⋅∇ =

⇒ = − ⋅ −∫ ∫

n D

n V
 (3.7.1.1.34)

River/stream-subsurface interface boundary condition

(){ }
(){ }

1

1

 ()

 [1 ()] [1 ()]
2

 [1 ()] [1 ()]
2

m m
n n

Dm m
n n

Dm m
i i n n

B

E E

sign E sign E

B N sign E sign E dB

θ⋅ − ⋅∇
⋅

= + ⋅ + − ⋅ ⇒

⋅
= − + ⋅ + − ⋅∫

n V D
n V n V n V

n V n V n V

(3.7.1.1.35)

Overland-subsurface interface boundary condition

(){ }
(){ }

2

2

 ()

 [1 ()] [1 ()]
2

 [1 ()] [1 ()]
2

m m
n n

Dm m
n n

Dm m
i i n n

B

E E

sign E sign E

B N sign E sign E dB

θ⋅ − ⋅∇
⋅

= + ⋅ + − ⋅ ⇒

⋅
= − + ⋅ + − ⋅∫

n V D
n V n V n V

n V n V n V

(3.7.1.1.36)

3.7.1.2 Mixed Predictor-Corrector and Operator-Splitting Method

According to the mixed predictor-corrector (on reaction rates) and operator-splitting (on immobile
part of the kinetic variable) method, equation (3.7.1.1.2) can be separated into two equations as
follows.

() ()1/ 2

() ()

 ()
n

n nm m
n n m m m

n n n

m n im n
HS n HS E n

E E
E E E

t t

L E R R E
t

θθ θ

θθ

+
− ∂

+ + ∇ ⋅ − ∇ ⋅ ⋅∇
Δ ∂

∂
+ = + −

∂

V D
 (3.7.1.2.1)

1 1/ 2 1/ 2

1 1[() ()] () ()
n n

n m n im n
n n im n im nn n n

E E n n
E E E n nR R E E

t t t
θ θθ θ

+ + +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A
 (3.7.1.2.2)

First, solve equation (3.7.1.2.1) and get (En

m)n+1/2. Second, solve equation (3.7.1.2.2) together with
algebraic equations representing equilibrium reactions using BIOGEOCHM scheme to obtain the
individual species concentration.

Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport
equation. Integrate equation (3.7.1.2.1) in the spatial dimensions over the entire region as follows.

 3-185

()

 ()
n

m
m mn

i n HS n
R

m n im n
i n i HS E n

R R

EN E L E dR
t t

W E dR N R R E dR
t

θθ θ

θθ

⎡ ⎤∂ ∂⎛ ⎞− ∇ ⋅ ⋅ ∇ + +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
∂⎛ ⎞+ ∇ ⋅ = + −⎜ ⎟∂⎝ ⎠

∫

∫ ∫

D

V
 (3.7.1.2.3)

Further, we obtain

()

 () ()
n

m
m m mn

i i n i n i HS n
R R R R

n im n m m
i HS E n i n i n

R B B

EN dR W E dR N E dR N L E dR
t t

N R R E dR W E dB N E dB
t

θθ θ

θθ θ

∂ ∂⎛ ⎞− ∇ ⋅ + ∇ ⋅ ⋅∇ + +⎜ ⎟∂ ∂⎝ ⎠
∂⎛ ⎞= + − − ⋅ + ⋅ ⋅∇⎜ ⎟∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫ ∫

V D

n V n D
 (3.7.1.2.4)

Approximate solution En
m by a linear combination of the base functions as follows.

1

ˆ () ()
N

m m m
n n nj j

j
E E E t N R

=

≈ = ∑ (3.7.1.2.5)

Substituting equation (3.7.1.2.5) into equation (3.7.1.2.4), we obtain

1 1

1

()
 ()

 () ()

()
n

mN N
nj m

i j i j nj
j jR R

N
m

i j i HS j nj
j R R

n im n
i HS E n

R

E t
N N dR W N dR E t

t

N N dR N L N dR E t
t

N R R E dR
t

θ

θθ

θθ

= =

=

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞
− ∇ ⋅⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤∂⎪ ⎪⎛ ⎞+ ∇ ⋅ ⋅∇ + +⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∂⎛ ⎞= + − −⎜ ⎟∂⎝ ⎠

∑ ∑∫ ∫

∑ ∫ ∫

∫

V

D

()m m
i n i n

B B

W E dB N E dBθ⋅ + ⋅ ⋅∇∫ ∫n V n D

 (3.7.1.2.6)

Equation (3.7.1.2.6) can be written in matrix form as

{ } { }[1] [2] [3] { } { }
m

m mn
n n

dEQ Q E Q E RLS B
dt

⎧ ⎫
+ + = +⎨ ⎬

⎩ ⎭
 (3.7.1.2.7)

where the matrices [Q1], [Q2], and [Q3], and load vectors {RLS} and {B} are given by

1ij i j
R

Q N N dRθ= ∫ (3.7.1.2.8)

2ij i j
R

Q W N dR= − ∇ ⋅∫ V (3.7.1.2.9)

()3ij i j i HS j
R R

Q N N dR N L N dR
t
θθ ∂⎛ ⎞= ∇ ⋅ ⋅∇ + +⎜ ⎟∂⎝ ⎠∫ ∫D (3.7.1.2.10)

 3-186

()
n

n im n
i i HS E n

R

RLS N R R E dR
t
θθ ∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫ (3.7.1.2.11)

()m m
i i n i n

B

B W E dB N E dBθ= − ⋅ + ⋅ ⋅∇∫ ∫
B

n V n D (3.7.1.2.12)

At n+1-th time step, equation (3.7.1.2.7) is approximated as

(){ } (){ } (){ } (){ }
(){ } (){ }

 1/ 2

 1/ 2 1
1 2

 1/ 2 1 1 1
1 2 1 2 1 2

 [1] [2] [2]

[3] [3] { } { } { } { }

n nm m
n n n nn m n m

V n V n

n nn m n m n n n n
n n

E E
Q W Q E W Q E

t

W Q E W Q E W RLS W RLS W B W B

+

++

++ + +

−
+ +

Δ

+ + = + + +

 (3.7.1.2.13)

So that

(){ }
(){ }

 1/ 21 1
1 1 2 2

 1 1
1 2 1 2

[1] [1][2] [3] [2] [3] *

 { } { } { } { }

nn n m n n
V n V

nm n n n n
n

Q QW Q W Q E W Q W Q
t t

E W RLS W RLS W B W B

++ +

+ +

⎛ ⎞ ⎛ ⎞+ + = − −⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

+ + + +
 (3.7.1.2.14)

The boundary term {B} is calculated according to the specified boundary conditions the same as that
in section 3.7.1.1.

3.7.1.3 Operator-Splitting Approach

According to the operator-splitting approach, equation (3.7.1.1.2) can be separated into two
equations as follows.

() ()1/ 2

() ()
n nm m

n n m m m
n n HS n HS

E E
E E L E R

t t
θθ θ

+
− ∂⎛ ⎞+ ∇ ⋅ − ∇⋅ ⋅∇ + + =⎜ ⎟Δ ∂⎝ ⎠

V D (3.7.1.3.1)

1 1/ 2

1 1[() ()] ()
n

n m n im n
n im nn n n

E n
E E E nR E

t t
θθ

+ +
+ +− + ∂

= −
Δ ∂

A
 (3.7.1.3.2)

First, solve equation (3.7.1.3.1) and get (En
m)n+1/2. Second, solve equation (3.7.1.3.2) together with

algebraic equations representing equilibrium reactions using BIOGEOCHM scheme to obtain the
individual species concentration.

Equation (3.7.1.3.1) can be solved through the same procedure as that in section 4.1.2, except for the
load vectors {RLS}, which is calculated by the following equation.

i i HS
R

RLS N R dR= ∫ (3.7.1.3.3)

3.7.2 Application of the Finite Element Method to the Advective Form of the Reactive

 3-187

Transport Equations

3.7.2.1 Fully-Implicit Scheme

Conversion of equation (2.7.22) to advection form is expressed as

() () , [1, -]as nn

m m mn
n n n n E EE

E E E E E M R n M N
t t

θθ θ θ∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + ∇ ⋅ = + ∈

∂ ∂
V D V (3.7.2.1.1)

According to equation (2.3.1), the right-hand side term RHS and left hand side term LHS can be
assigned as follows.

 0, , , 0

 0, , ,

as
n

as as as
n n n

m
n HSE

o

HS HSE E E
o

hIf q M qE L n F RHS
t

hElse q M M L q n F R M
t

ρ
ρ

ρ
ρ

⎛ ⎞⎛ ⎞ ∂
≤ = = − − =⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ∂
> = = − − =⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

V

V

iA

iA

 (3.7.2.1.2)

Then equation (3.7.2.1.1) is modified as

()
n

m m mn
n n n HS n HS E

E E E E L E R R
t t

θθ θ θ∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + = +

∂ ∂
V D (3.7.2.1.3)

According to the fully-implicit scheme, equation (3.7.2.1.3) can be separated into two equations as
follows.

1/ 2

() *
n

n n
m m mn n

n n n HS n HS E
E E E E E L E R R

t t
θθ θ θ

+ − ∂
+ + ⋅∇ − ∇⋅ ⋅∇ + = +

Δ ∂
V D (3.7.2.1.4)

1 1/ 2

0
n n

n nE E
t

+ +−
=

Δ
 (3.7.2.1.5)

First, solve equation (3.7.2.1.4) and get (En)n+1/2. Second, solve equation (3.7.2.1.5) together with
algebraic equations representing equilibrium reactions using BIOGEOCHEM scheme to obtain the
individual species concentration. Iteration is needed because reaction term in equation (3.7.2.1.4)
needs to be updated by the results of (3.7.2.1.5).

Option 1: Express En

m in terms of (En
m/En) En

n

m m
n n n

n n
n n

m m
n n

n HS n HS E
n n

E E EE E
t E E

E EE L E R R
E E t

θ θ

θθ θ

⎛ ⎞ ⎛ ⎞∂
+ ⋅∇ − ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
− ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

V D

D
 (3.7.2.1.6)

Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport
equation. Integrate equation (3.7.2.1.6) in the spatial dimensions over the entire region as follows.

 3-188

()
n

m m
n n n

i n HS n
n nR

m m
n n

i n n i HS E
n nR R

E E EN E L E dR
t E E t

E EW E E dR N R R dR
E E

θθ θ

θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
− ∇ ⋅ ⋅ ∇ + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪+ ⋅∇ − ∇ ⋅ ⋅ ∇ = +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∫

∫ ∫

D

V D

 (3.7.2.1.7)

Further, we obtain

()

n

m m
n n n

i n i n
n nR R R

m m
n n

i n i HS n i HS E
n nR R R

m m
n n

i n i
n nB

E E EN dR W E dR N E dR
t E E

E EW E dR N L E dR N R R dR
E E t

E EN E dB W
E E

θ θ

θθ θ

θ θ

⎛ ⎞ ⎛ ⎞∂
+ ⋅∇ + ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
+ ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛
+ ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎜ ⎟

⎝ ⎠ ⎝

∫ ∫ ∫

∫ ∫ ∫

∫

iV D

D

n D n D n
B

E dB
⎡ ⎤⎞
⎢ ⎥⎜ ⎟

⎠⎣ ⎦
∫

 (3.7.2.1.8)

Approximate solution En by a linear combination of the base functions as follows.

1

ˆ () ()
N

n n nj j
j

E E E t N R
=

≈ = ∑ (3.7.2.1.9)

Substituting equation (3.7.2.1.9) into equation (3.7.2.1.8), we obtain

1 1

1

()
 ()

 () ()

mN N
nj n

i j i j nj
j j nR R

m mN
n n

i j nj i j nj
j n nR R

E t EN N dR W N dR E t
t E

E EW N dR E t W N dR E t
E E

θ

θ

= =

=

⎧ ⎫⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞⎪ ⎪+ ⋅ ∇⎢ ⎥ ⎨ ⎬⎜ ⎟ ⎢ ⎥⎜ ⎟∂⎢ ⎥ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎩ ⎭
⎧⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪⎪ ⎪+ ⋅ ∇ + ∇ ⋅ ⋅ ∇⎢ ⎥ ⎨⎨ ⎬⎜ ⎟ ⎢ ⎥⎜ ⎟

⎢ ⎥ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎩ ⎭⎩

∑ ∑∫ ∫

∑ ∫ ∫

V

V D

()

1

1

 ()

 ()
n

N

j

m mN
n n

i j i HS j nj
j n nR R

m
i HS E i n

R B

E EN N dR N L N dR E t
E E t

N R R dR N E dB

θθ

θ θ

=

=

⎫⎪
⎬

⎪ ⎪⎭
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂⎪ ⎪+ ∇ ⋅ ⋅ ∇ + +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

= + + ⋅ ⋅∇

∑

∑ ∫ ∫

∫ ∫

D

n D

 (3.7.2.1.10)

Equation (3.7.2.1.10) can be written in matrix form as

{ } { }[1] [2] [3] { } { }n
n n

EQ Q E Q E RLS B
t

∂⎧ ⎫ + + = +⎨ ⎬∂⎩ ⎭
 (3.7.2.1.11)

where the matrices [Q1], [Q2], [Q3] and load vectors {SS}, and {B} are given by

1 n
ij i j

R

Q N N dRθ= ∫ (3.7.2.1.12)

 3-189

 2
m

n
ij i j

nR

m m
n n

i j i j
n nR R

EQ W N dR
E

E EW N dR W N dR
E E

θ

⎛ ⎞
= ⋅ ∇⎜ ⎟

⎝ ⎠
⎡ ⎤⎛ ⎞

+ ⋅ ∇ + ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫

∫ ∫

V

V D
 (3.7.2.1.13)

3
m m

n n
ij i j i HS j

n nR R

E EQ N N dR N L N dR
E E t

θθ
⎛ ⎞ ⎛ ⎞∂

= ∇ ⋅ ⋅ ∇ + +⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
∫ ∫D (3.7.2.1.14)

()
ni i HS E

R

RLS N R R dRθ= +∫ (3.7.2.1.15)

()m
i i n

B

B N E dBθ= ⋅ ⋅∇∫n D (3.7.2.1.16)

At n+1-th time step, equation (3.7.2.1.11) is approximated as

{ } { } { } { } { }
{ }

1/ 2
1 1/ 2 1 1/ 2

1 2 1

1 1
2 1 2 1 2

[1] [2] [2] [3]

[3] { } { } { } { }

n n
n n n n n n n n

V n V n n

n n n n n n
n

E E
Q W Q E W Q E W Q E

t
W Q E W RLS W RLS W B W B

+
+ + + +

+ +

−
+ + +

Δ
+ = + + +

 (3.7.2.1.17)

So that

{ } { }1 1 1/ 2
1 1 2 2

1 1
1 2 1 2

[1] [1][2] [3] [2] [3]

{ } { } { } { }

n n n n n n
V n V n

n n n n

Q QW Q W Q E W Q W Q E
t t

W RLS W RLS W B W B

+ + +

+ +

⎛ ⎞ ⎛ ⎞+ + = − −⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠
+ + + +

 (3.7.2.1.18)

Option 2: Express En

m in terms of En-En
im

Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport
equation. Integrate equation (3.7.2.1.6) in the spatial dimensions over the entire region as follows.

()

()
n

m m mn
i n n HS n i n

R R

i HS E
R

EN E E L E dR W E dR
t t

N R R dR

θθ θ

θ

∂ ∂⎡ ⎤+ − ∇ ⋅ ⋅ ∇ + ⋅ + ⋅∇ =⎢ ⎥∂ ∂⎣ ⎦

+

∫ ∫

∫

D V
 (3.7.2.1.19)

Further, we obtain

()

()

()
n

m mn
i i n i n i n

R R R R

m m
i HS n i HS E i n

R R B

EN dR N E dR W E dR N E dR
t t

N L E dR N R R dR N E dB

θθ θ

θ θ

∂ ∂
+ + ⋅∇ + ∇ ⋅ ⋅∇ +

∂ ∂

⋅ = + + ⋅ ⋅∇

∫ ∫ ∫ ∫

∫ ∫ ∫

V D

n D
 (3.7.2.1.20)

 3-190

Approximate solution En by a linear combination of the base functions as equation (3.7.2.1.9).
Substituting equation (3.7.2.1.9) into equation (3.7.2.1.20), we obtain

()

1 1

1 1

()
 + ()

() + ()

 ()
n

N N
nj

i j i j nj
j jR R

N N
m m

i j nj i j i HS j nj
j jR R R

i HS E
R

E t
N N dR N N E t dR

t t

W N dR E t N N dR N L N dR E t

N R R dR N

θθ

θ

θ

= =

= =

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞∂
+⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪⋅∇ ∇ ⋅ ⋅∇ +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

= + + ⋅

∑ ∑∫ ∫

∑ ∑∫ ∫ ∫

∫

V D

n () m
i n

B

E dBθ ⋅∇∫ D

 (3.7.2.1.21)

Equation (3.7.2.1.21) can be written in matrix form as

{ } { } { }[1] [4] [2] [3] { } { }m mn
n n n

EQ Q E Q E Q E RLS B
t

∂⎧ ⎫ + + + = +⎨ ⎬∂⎩ ⎭
 (3.7.2.1.22)

where the matrices [Q1], [Q2], [Q3] and load vectors {SS}, and {B} are given by

1 , 4ij i j ij i j
R R

Q N N dR Q N N dR
t
θθ ∂

= =
∂∫ ∫ (3.7.2.1.23)

2ij i j
R

Q W N dR= ⋅∇∫ V (3.7.2.1.24)

()3ij i j i HS j
R R

Q N N dR N L N dRθ= ∇ ⋅ ⋅∇ +∫ ∫D (3.7.2.1.25)

()
ni i HS E

R

RLS N R R dRθ= +∫ (3.7.2.1.26)

()m
i i n

B

B N E dBθ= ⋅ ⋅∇∫ n D (3.7.2.1.27)

Express En
m in terms of En-En

im, equation (3.7.2.1.22) is modified as

{ } { } { }

{ } { }

[1] [4] [2] [3]

[2] [3] { } { }

n
n n n

im im
n n

EQ Q E Q E Q E
t

Q E Q E RLS B

∂⎧ ⎫ + + + =⎨ ⎬∂⎩ ⎭

+ + +
 (3.7.2.1.28)

At n+1-th time step, equation (3.7.2.1.28) is approximated as

 3-191

{ } { } { } { } { }

{ } { } (){ }
(){ } (){ } (){ }

1/ 2
1/ 2 1 1/ 2

1 2

1/ 21 1/ 2 1
1 2 1

1/ 21
2 1 2

1 1
1 2 1 2

[1] [4] [2] [2]

[3] [3] [2]

[2] [3] [3]

{ } { } { }

n n
n n n n n n n

n V n V n

nn n n n n im
n n V n

n n nn im n im n im
V n n n

n n n

E E
Q Q E W Q E W Q E

t

W Q E W Q E W Q E

W Q E W Q E W Q E

W RLS W RLS W B W

+
+ + +

++ + +

++

+ +

−
+ + +

Δ

+ + =

+ + +

+ + + + { }nB

 (3.7.2.1.29)

So that

{ } { }

() (){ } () (){ }

1 1 1/ 2
1 1

1/ 2

2 2 1 1

1 1
1 2 1 2

[1] [1][4] [2] [3]

[2] [3] [2] [3]

{ } { } { } { }

n n n n
V n n

n nn n m n n im
V n V n

n n n n

Q QQ W Q W Q E E
t t

W Q W Q E W Q W Q E

W RLS W RLS W B W B

+ + +

+

+ +

⎛ ⎞+ + + =⎜ ⎟Δ Δ⎝ ⎠

− + + + +

+ + +

(3.7.2.1.30)

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified
boundary condition and shown as follows.

Dirichlet boundary condition

(, , ,)m m
n n b b bE E x y z t= (3.7.2.1.31)

Variable boundary condition

< Case 1 > when flow is going in from outside (n·V < 0)

 () (, , ,)

 (, , ,)

m m m
n n n b b b

m m
i i n i n b b b

E E E x y z t

B N E dB N E x y z t dB

θ⋅ − ⋅∇ = ⋅

⇒ = ⋅ − ⋅∫ ∫
B B

n V D n V

n V n V (3.7.2.1.32)

< Case 2 > Flow is going out from inside (n·V > 0):

() 0 0m
n iE Bθ− ⋅ ⋅∇ = ⇒ =n D (3.7.2.1.33)

Cauchy boundary condition

 () (, , ,)

 (, , ,)

m
n

m
n

m m
n n b b bE

m
i i n i b b bE

B

n E E Q x y z t

B N E dB N Q x y z t dB

θ⋅ − ⋅∇ =

⇒ = ⋅ −∫ ∫
B

V D

n V
 (3.7.2.1.34)

Neumann boundary condition

() (, , ,) (, , ,)m m
n n

m
n b b b i i b b bE E

B

E Q x y z t B N Q x y z t dBθ− ⋅ ⋅∇ = ⇒ = −∫n D (3.7.2.1.35)

 3-192

River/stream-subsurface interface boundary condition

(){ }
(){ }

1

1

() [1 ()] [1 ()]
2

 [1 ()] [1 ()]
2

Dm m m m
n n n n

Dm m m
i i n i n n

B B

E E sign E sign E

B N E dB N sign E sign E dB

θ ⋅
⋅ − ⋅∇ = + ⋅ + − ⋅ ⇒

⋅
= ⋅ − + ⋅ + − ⋅∫ ∫

n Vn V D n V n V

n Vn V n V n V
 (3.7.2.1.36)

Overland-subsurface interface boundary condition

(){ }
(){ }

2

2

() [1 ()] [1 ()]
2

 [1 ()] [1 ()]
2

Dm m m m
n n n n

Dm m m
i i n i n n

B

E E sign E sign E

B N E dB N sign E sign E dB

θ ⋅
⋅ − ⋅∇ = + ⋅ + − ⇒

⋅
= ⋅ − + ⋅ + − ⋅∫ ∫

B

n Vn V D n V n × V

n Vn V n V n V
 (3.7.2.1.37)

3.7.2.2 Mixed Predictor-Corrector and Operator-Splitting Method

According to the mixed predictor-corrector (on reaction rates) and operator-splitting (on immobile
part of the kinetic variable) method, equation (3.7.2.1.3) can be separated into two equations as
follows.

() ()1/ 2

()

()
n

n nm m
n n m m m m

n n n HS n

n im n
HS E n

E E
E E E L E

t t

R R E
t

θθ θ

θθ

+
− ∂

+ + ⋅∇ − ∇ ⋅ ⋅∇ + =
Δ ∂

∂
+ −

∂

V D
 (3.7.2.2.1)

1 1/ 2

1 1[() ()] () ()
n n

n m n im n
n n im n im nn n n

E E n n
E E E n nR R E E

t t t
θ θ+ +

+ +− + ∂ ∂
= − − +

Δ ∂ ∂
A A

 (3.7.2.2.2)

First, solve equation (3.7.2.2.1) and get (En
m)n+1/2. Second, solve equation (3.7.2.2.2) together with

algebraic equations representing equilibrium reactions using BIOGEOCHM scheme to obtain the
individual species concentration.

Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport
equation. Integrate equation (3.7.2.2.1) in the spatial dimensions over the entire region as follows.

()

()
n

m
m m mn

i n HS n i n
R R

n im n
i HS E n

R

EN E L E dR W E dR
t t

N R R E dR
t

θθ θ

θθ

⎡ ⎤∂ ∂⎛ ⎞− ∇ ⋅ ⋅ ∇ + + + ⋅∇ =⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
∂⎛ ⎞+ −⎜ ⎟∂⎝ ⎠

∫ ∫

∫

D V
 (3.7.2.2.3)

Further, we obtain

 3-193

()

 () ()
n

m
m m mn

i i n i n i HS n
R R R R

n im n m
i HS E n i n

R B

EN dR W E dR N E dR N L E dR
t t

N R R E dR N E dB
t

θθ θ

θθ θ

∂ ∂⎛ ⎞+ ⋅∇ + ∇ ⋅ ⋅∇ + +⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞= + − + ⋅ ⋅∇⎜ ⎟∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫

V D

n D
 (3.7.2.2.4)

Approximate solution En
m by a linear combination of the base functions as follows.

1

ˆ () ()
N

m m m
n n nj j

j
E E E t N R

=

≈ = ∑ (3.7.2.2.5)

Substituting equation (3.7.2.2.5) into equation (3.7.2.2.4), we obtain

1 1

1

()
()

 () ()

 () (
n

mN N
njn m

i j i j nj
j jR R

N
m

i j i HS j nj
j R R

n im n
i HS E n i

R B

E t
N N dR W N dR E t

t

N N dR N L N dR E t
t

N R R E dR N
t

θ

θθ

θθ θ

= =

=

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞
+ ⋅ ∇⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤∂⎪ ⎪⎛ ⎞+ ∇ ⋅ ⋅∇ + +⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∂⎛ ⎞= + − + ⋅⎜ ⎟∂⎝ ⎠

∑ ∑∫ ∫

∑ ∫ ∫

∫ ∫

V

D

n D)m
nE dB⋅ ∇

 (3.7.2.2.6)

Equation (3.7.2.2.6) can be written in matrix form as

{ } { }[1] [2] [3] { } { }
m

m mn
n n

dEQ Q E Q E RLS B
dt

⎧ ⎫
+ + = +⎨ ⎬

⎩ ⎭
 (3.7.2.2.7)

where the matrices [Q1], [Q2], and [Q3], and load vectors {RLS} and {B} are given by

1ij i j
R

Q N N dRθ= ∫ (3.7.2.2.8)

2ij i j
R

Q W N dR= ⋅∇∫ V (3.7.2.2.9)

()3ij i j i HS j
R R

Q N N dR N L N dR
t
θθ ∂⎛ ⎞= ∇ ⋅ ⋅∇ + +⎜ ⎟∂⎝ ⎠∫ ∫D (3.7.2.2.10)

()
n

n im n
i i HS E n

R

RLS N R R E dR
t
θθ ∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫ (3.7.2.2.11)

()m
i i n

B

B N E dBθ= ⋅ ⋅∇∫n D (3.7.2.2.12)

At n+1-th time step, equation (3.7.2.2.7) is approximated as

 3-194

(){ } (){ } (){ }
(){ } (){ } (){ }

 1/ 2

 1/ 21
1

 1/ 2 1
2 1 2

1 1
1 2 1 2

 [1] [2]

[2] [3] [3]

 { } { } { } { }

n nm m
n n nn m

V n

n n nn m n m n m
V n n n

n n n n

E E
Q W Q E

t

W Q E W Q E W Q E

W RLS W RLS W B W B

+

++

++

+ +

−
+

Δ

+ + +

= + + +

(3.7.2.2.13)

So that

(){ }
(){ }

 1/ 21 1
1 1 2 2

 1 1
1 2 1 2

[1] [1][2] [3] [2] [3] *

 { } { } { } { }

n nnn n m n n
V n V

nm n n n n
n

Q QW Q W Q E W Q W Q
t t

E W RLS W RLS W B W B

++ +

+ +

⎛ ⎞ ⎛ ⎞
+ + = − −⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

+ + + +

 (3.7.2.2.14)

The boundary term {B} is calculated according the same as that in section 3.7.2.1.

3.7.3 Operator-Splitting Approach

According to the operator-splitting approach, equation (3.7.2.1.2) can be separated into two
equations as follows.

() ()1/ 2

()
n nm m

n n m m m
n n HS n HS

E E
E E L E R

t t
θθ θ

+
− ∂⎛ ⎞+ ⋅∇ − ∇ ⋅ ⋅∇ + + =⎜ ⎟Δ ∂⎝ ⎠

V D (3.7.2.3.1)

1 1/ 2

1 1[() ()] ()
n

n m n im n
n im nn n n

E n
E E E nR E

t t
θ+ +

+ +− + ∂
= −

Δ ∂
A

 (3.7.2.3.2)

First, solve equation (3.7.2.3.1) and get (En
m)n+1/2. Second, solve equation (3.7.2.3.2) together with

algebraic equations representing equilibrium reactions using BIOGEOCHM scheme to obtain the
individual species concentration.

Equation (3.7.2.3.1) can be solved through the same procedure as that in section 4.1.2, except for the
load vectors {RLS}, which is calculated by the following equation.

i i HS
R

RLS N R dR= ∫ (3.7.2.3.3)

3.7.4 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form

of the Reactive Transport Equations

3.7.4.1 Fully-Implicit Scheme

Option 1: Express En

m in terms of (En
m /En) En

Express En

m in terms of (En
m/En) En to make En’s as primary dependent variables, equation

 3-195

(3.7.2.1.4) is modified as

() -

n

m m m
n n n n

n n n
n n n

m m m
n n n

HS n HS E
n n n

E E E EE E E
t t E E E

E E EL E R R
E E E

θθ θ θ

θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
+ + ⋅ ∇ ⋅ ∇ − ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⋅∇ − ∇ ⋅ ⋅ ∇ + = +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

V D D

V D

 (3.7.3.1.1)

Assign the particle tracking velocity Vtrack as follows

1 -
m m

n n
track

n n

E E
E E

θ
θ

⎡ ⎤⎛ ⎞
= ⋅ ∇⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
V V D (3.7.3.1.2)

Equation (3.7.3.1.1) in Lagrangian-Eulerian form is written as

In Lagrangian step,

0n n
track n

DE E E
D tτ

∂
= + ⋅∇ =

∂
V (3.7.3.1.3)

In Eulerian step,

n
n L

DE D KE R
Dτ

− + = (3.7.3.1.4)

where
m

n
n

n

ED E
E

θ θ
⎛ ⎞

= ∇ ⋅ ⋅∇⎜ ⎟
⎝ ⎠

D (3.7.3.1.5)

1 m m m
n n n

HS
n n n

E E EK L
E E t E

θθ
θ

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂⎪ ⎪= ⋅ ∇ − ∇ ⋅ ⋅ ∇ + +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
V D (3.7.3.1.6)

()1
nL HS ER R Rθ

θ
= + (3.7.3.1.7)

The integration of equation (3.7.3.1.5) can be written as

() ()
m m

n n
i i n i n

n nR R B

E EN DdR N E dR N E dB
E E

θ θ θ= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇∫ ∫ ∫D n D (3.7.3.1.8)

Approximate D and En by linear combination of the base functions as follows.

1

ˆ () ()
N

j j
j

D D D t N R
=

≈ = ∑ (3.7.3.1.9)

 3-196

1

ˆ () ()
N

n n nj j
j

E E E t N R
=

≈ = ∑ (3.7.3.1.10)

Put Equations (3.7.3.1.9) and (3.7.3.1.10) into Equation (3.7.3.1.8), we obtain

1

1

() ()

N

i j j
j R

m mN
n n

i j nj i n
j n nR B

N N dR D

E EN N dR E N E dB
E E

θ

θ θ

=

=

⎡ ⎤⎛ ⎞
∗⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫

∑ ∫ ∫D n D

 (3.7.3.1.11)

Assign matrices [QA] and [QD] and load vector {B} as following.

ij i j
R

QA N N dRθ= ∫ (3.7.3.1.12)

()
m

n
ij i j

nR

EQD N N dR
E

θ= ∇ ⋅ ⋅∇∫ D (3.7.3.1.13)

()
m

n
i i n

nB

EB N E dB
E

θ= ⋅ ⋅∇∫n D (3.7.3.1.14)

Equation (3.7.3.1.11) is expressed as

[]{ } []{ } { }nQA D QD E B= − + (3.7.3.1.15)

Lump matrix [QA] into diagonal matrix and update

ij ij iiQD QD QA= (3.7.3.1.16)

() ()
m

m n
i i n ii i n ii

nB B

EB N E dB QA N E dB QA
E

θ θ= ⋅ ⋅∇ − ⋅ ⋅∇∫ ∫n D n D (3.7.3.1.17)

Then

{ } []{ } { }nD QD E B= − + (3.7.3.1.18)

Equation (3.7.3.1.4) written in matrix form is then expressed as

{ }

{ } []{ }() { } { } { }

1 1 1/ 2
1 1

** * 1 * 1
2 2 1 2 1

[] []

[] { }

n n n
n

m n n
n n L L

U W QD W K E

U E W K E W D W R W R W B

τ

τ

+ + +

+ +

⎛ ⎞⎡ ⎤+ + =⎜ ⎟⎣ ⎦Δ⎝ ⎠

− + + + +
Δ

 (3.7.3.1.19)

where [U] is the unit matrix, Δτ is the tracking time, W1 and W2 are time weighting factors, matrices

 3-197

and vectors with n+1 and n+1/2 are evaluated over the region at the new time step n+1. Matrices and
vectors with superscript * corresponds to the n-th time step values interpolated at the location where
a node is tracked through particle tracking in Lagrangian step.

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified
boundary condition and shown as follows.

Dirichlet boundary condition

(, , ,)

() ()

m m
n n b b b

m
m n

i i n ii i n ii
nB B

E E x y z t

EB N E dB QA N E dB QA
E

θ θ

= ⇒

= ⋅ ⋅∇ − ⋅ ⋅∇∫ ∫n D n D
 (3.7.3.1.20)

Variable boundary condition

< Case 1 > when flow is going in from outside (n·V < 0)

() (, , ,)

(, , ,) ()

m m m m
n n n b b b i i n ii

m
m n

i n b b b ii i n ii
nB B

E E VE x y z t B N E dB QA

EN E x y z t dB QA N E dB QA
E

θ

θ

⋅ − ⋅∇ = ⋅ ⇒ = ⋅

− ⋅ − ⋅ ⋅∇

∫

∫ ∫

B

n V D n n V

n V n D
 (3.7.3.1.21)

< Case 2 > Flow is going out from inside (n·V > 0):

 () 0 ()
m

m n
n i i n ii

nB

EE B N E dB QA
E

θ θ− ⋅ ⋅∇ = ⇒ = − ⋅ ⋅∇∫n D n D (3.7.3.1.22)

Cauchy boundary condition

() (, , ,)

(, , ,) ()

m
n

m
n

m m m
n n b b b i i n iiE

B
m

n
i b b b ii i n iiE

nB B

n VE D E Q x y z t B N E dB QA

EN Q x y z t dB QA N E dB QA
E

θ

θ

⋅ − ⋅∇ = ⇒ = ⋅

− − ⋅ ⋅∇

∫

∫ ∫

n V

n D
 (3.7.3.1.23)

Neumann boundary condition

() (, , ,) (, , ,)

()

m m
n n

m
n b b b i i b b b iiE E

B
m

n
i n ii

nB

E Q x y z t B N Q x y z t dB QA

EN E dB QA
E

θ

θ

− ⋅ ⋅∇ = ⇒ = −

− ⋅ ⋅∇

∫

∫

n D

n D
 (3.7.3.1.24)

River/stream-subsurface interface boundary condition

 3-198

(){ }

(){ }

1

1

() [1 ()] [1 ()]
2

 ()

 [1 ()] [1 ()]
2

Dm m m m
n n n n

m
m n

i i n ii i n ii
nB B

Dm m
i n n ii

B

E E sign E sign E

EB N E dB QA N E dB QA
E

N sign E sign E dB QA

θ

θ

⋅
⋅ − ⋅∇ = + ⋅ + − ⋅

⇒ = ⋅ − ⋅ ⋅∇

⋅− + ⋅ + − ⋅

∫ ∫

∫

n Vn V D n V n V

n V n D

n V n V n V

 (3.7.3.1.25)

Overland-subsurface interface boundary condition

(){ }

(){ }

2

2

() [1 ()] [1 ()]
2

 ()

 [1 ()] [1 ()]
2

Dm m m m
n n n n

m
m n

i i n ii i n ii
nB B

Dm m
i n n ii

B

E E sign E sign E

EB N E dB QA N E dB QA
E

N sign E sign E dB QA

θ

θ

⋅
⋅ − ⋅∇ = + ⋅ + − ⋅

⇒ = ⋅ − ⋅ ⋅∇

⋅− + ⋅ + − ⋅

∫ ∫

∫

n Vn V D n V n V

n V n D

n V n V n V

 (3.7.3.1.26)

Option 2: Express En

m in terms of En-En
m

Express En

m in terms of En-En
m to make En’s as primary dependent variables, equation (3.7.2.1.4)

is modified as

()

()

n

n
n n n HS n

im im im
n n HS n HS E

E E E E L E
t t

E E L E R R

θθ θ

θ θ

∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ +

∂ ∂
= ⋅∇ − ∇ ⋅ ⋅∇ + + +

V D

V D
 (3.7.3.1.27)

Assign the particle tracking velocity Vtrack as follows

1
track θ

=V V (3.7.3.1.28)

Equation (3.7.3.1.27) in Lagrangian-Eulerian form is written as

In Lagrangian step,

0n n
track n

DE E E
D tτ

∂
= + ⋅∇ =

∂
V (3.7.3.1.29)

In Eulerian step,

n
n L

DE D KE T R
Dτ

− + = + (3.7.3.1.30)

where

 3-199

()nD Eθ θ= ∇ ⋅ ⋅∇D (3.7.3.1.31)

HSL
tK

θ

θ

∂+
∂=

(3.7.3.1.32)

()im im
n nT E Eθ θ= ⋅∇ − ∇ ⋅ ⋅∇V D (3.7.3.1.33)

()1
n

im
L HS n HS EnR L E R Rθ

θ
= + + (3.7.3.1.34)

The integration of equation (3.7.3.1.31) can be written as

() ()i i n i n
R R B

N DdR N E dR N E dBθ θ θ= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇∫ ∫ ∫D n D (3.7.3.1.35)

Approximate D and En by linear combination of the base functions as follows.

1

ˆ () ()
N

j j
j

D D D t N R
=

≈ = ∑ (3.7.3.1.36)

1

ˆ () ()
N

n n nj j
j

E E E t N R
=

≈ = ∑ (3.7.3.1.37)

Put Equations (3.7.3.1.36) and (3.7.3.1.37) into Equation (3.7.3.1.35), we obtain

1

1

() ()

N

i j j
j R

N

i j nj i n
j R B

N N dR D

N N dR E N E dB

θ

θ θ

=

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫

∑ ∫ ∫D n D

 (3.7.3.1.38)

Assign matrices [QA] and [QD] and load vector {B} as following.

ij i j
R

QA N N dRθ= ∫ (3.7.3.1.39)

()ij i j
R

QD N N dRθ= ∇ ⋅ ⋅∇∫ D (3.7.3.1.40)

1 ()i i n
B

B N E dBθ= ⋅ ⋅∇∫ n D (3.7.3.1.41)

Equation (3.7.3.1.31) is expressed as

 3-200

[]{ } []{ } { 1}nQA D QD E B= − + (3.7.3.1.42)

Similarly,

[]{ } []{ } { 2}im
nQA T QT E B= + (3.7.3.1.43)

where
()ij i j i j

R R

QT N N dR N N dRθ= ⋅∇ − ∇ ⋅ ⋅∇∫ ∫V D (3.7.3.1.44)

2 ()im
i i n

B

B N E dBθ= − ⋅ ⋅∇∫ n D (3.7.3.1.45)

Lump matrix [QA] into diagonal matrix and update

ij ij iiQD QD QA= (3.7.3.1.46)

1 1i i iiB B QA= (3.7.3.1.47)

ij ij iiQT QT QA= (3.7.3.1.48)

2 2i i iiB B QA= (3.7.3.1.49)

Then

{ } []{ } { 1}nD QD E B= − + (3.7.3.1.50)

{ } []{ } { 2}im
nT QT E B= + (3.7.3.1.51)

Assign

1 2 ()m
i i i i n ii

B

B B B N E dB QAθ= + = ⋅ ⋅∇∫ n D (3.7.3.1.52)

So that
{ } { } []{ } []{ } { }im

n nD T QD E QT E B+ = − + + (3.7.3.1.53)

Equation (3.7.3.1.30) written in matrix form is then expressed as

{ } { } []{ }()

(){ } { } { } { }

1 1 1/ 2
1 1 2

 11 * 1 1
1 2 1 2 1

[] [] []

[] ({ } { })

n n n
n n n

nn im n n
n L L

U UW QD W K E E W K E

W QT E W D T W R W R W B

τ τ
∗+ + + ∗

++ + ∗ +

⎛ ⎞⎡ ⎤+ + = −⎜ ⎟⎣ ⎦Δ Δ⎝ ⎠

+ + + + + +

 (3.7.3.1.54)

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified
boundary condition and shown as follows.

 3-201

Dirichlet boundary condition

(, , ,) ()m m m
n n b b b i i n ii

B

E E x y z t B N E dB QAθ= ⇒ = ⋅ ⋅∇∫ n D (3.7.3.1.55)

Variable boundary condition

< Case 1 > when flow is going in from outside (n·V < 0)

 () (, , ,)

 (, , ,)

m m m
n n n b b b

m m
i i n ii i n b b b ii

B

E E E x y z t

B N E dB QA N E x y z t dB QA

θ⋅ − ⋅∇ = ⋅

⇒ = ⋅ − ⋅∫ ∫
B

n V D n V

n V n V (3.7.3.1.56)

< Case 2 > Flow is going out from inside (n·V > 0):

 () 0 0m
n in E Bθ− ⋅ ⋅∇ = ⇒ =D (3.7.3.1.57)

Cauchy boundary condition

 () (, , ,)

 (, , ,)

m
n

m
n

m m
n n b b bE

m
i i n ii i b b b iiE

B B

E E Q x y z t

B N E dB QA N Q x y z t dB QA

θ⋅ − ⋅∇ =

⇒ = ⋅ −∫ ∫

n V D

n V
 (3.7.3.1.58)

Neumann boundary condition

() (, , ,) (, , ,)m m
n n

m
n b b b i i b b b iiE E

B

E Q x y z t B N Q x y z t dB QAθ− ⋅ ⋅∇ = ⇒ = −∫n D (3.7.3.1.59)

River/stream-subsurface interface boundary condition

(){ }

(){ }

1

1

() [1 ()] [1 ()]
2

 [1 ()] [1 ()]
2

Dm m m m
n n n n

m
i i n ii

B

Dm m
i n n ii

B

E E sign E sign E

B N E dB QA

N sign E sign E dB QA

θ ⋅
⋅ − ⋅ ∇ = + ⋅ + − ⋅

⇒ = ⋅

⋅− + ⋅ + − ⋅

∫

∫

n Vn V D n V n V

n V

n V n V n V

 (3.7.3.1.60)

Overland-subsurface interface boundary condition

 3-202

(){ }

(){ }

2

2

() [1 ()] [1 ()]
2

 [1 ()] [1 ()]
2

Dm m m m
n n n n

m
i i n ii

B

Dm m
i n n ii

B

E E sign E sign E

B N E dB QA

N sign E sign E dB QA

θ ⋅
⋅ − ⋅∇ = + ⋅ + − ⋅

⇒ = ⋅

⋅− + ⋅ + − ⋅

∫

∫

n Vn V D n V n V

n V

n V n V n V

 (3.7.3.1.61)

At upstream flux boundary nodes, equation (3.7.3.1.19) and (3.7.3.1.54) cannot be applied because
Δτ equals zero. Thus, we propose a modified LE approach in which the matrix equation for upstream
boundary nodes is obtained by explicitly applying the finite element method to the boundary
conditions. For example, at the upstream variable boundary

() (, , ,)m m m
i n n i n b b b

B B

N E E dB N E x y z t dBθ⋅ − ⋅∇ = ⋅∫ ∫n V D n V (3.7.3.1.62)

So that the following matrix equation can be assembled at the boundary nodes

[]{ } []{ }m
nQF E QB B= (3.7.3.1.63)

in which

()ij i j i j
B

QF N N N N dBθ= ⋅ − ⋅ ⋅∇∫ n V n D (3.7.3.1.64)

ij i j
B

QB N N dB= ⋅∫ n V (3.7.3.1.65)

(, , ,)m
j n j b b bB E x y z t= (3.7.3.1.66)

where (, , ,)m
n j b b bE x y z t is the value of (, , ,)m

n b b bE x y z t evaluated at point j.

3.7.4.2 Mixed Predictor-Corrector and Operator-Splitting Method

Equation (3.7.2.2.1) in Lagrangian-Eulerian form is written as follows.

In Lagrangian step,

0
m m

mn n
track n

DE E E
D tτ

∂
= + ⋅∇ =

∂
V (3.7.3.2.1)

where particle tracking velocity is Vtrack is defined in Equation (3.7.3.1.28) .

In Eulerian step,

 3-203

m
mn

n L
DE D KE R
Dτ

− + = (3.7.3.2.2)

where
()m

nD Eθ θ= ∇ ⋅ ⋅∇D (3.7.3.2.3)

HSL
tK

θ

θ

∂+
∂=

(3.7.3.2.4)

1 ()
n

n im n
L HS E nR R R E

t
θθ

θ
∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

 (3.7.3.2.5)

According to equation (3.7.3.1.50)

[]{ } []{ } { }m
nQA D QD E B= − + (3.7.3.2.6)

n

ij i j
R

QA N N dRθ= ∫ (3.7.3.2.7)

()ij i j
R

QD N N dRθ= ∇ ⋅ ⋅∇∫ D (3.7.3.2.8)

()m
i i n

B

B n N E dBθ= ⋅ ⋅∇∫ D (3.7.3.2.9)

Lump matrix [QA] into diagonal matrix and update

ij ij iiQD QD QA= (3.7.3.2.10)

i i iiB B QA= (3.7.3.2.11)

Then

{ } []{ } { }m
nD QD E B= − + (3.7.3.2.12)

Equation (3.7.3.2.2) written in matrix form is then expressed as

(){ } (){ }
{ } []{ }() { } { } { }

1/ 21 1
1 1

1 1
2 2 1 2 1

[] [] [] []

nn n m m
n n

m n n
n

U UW QD W K E E

W D W K E W RL W RL W B

τ τ
+ ∗+ +

∗
∗ + ∗ +

⎛ ⎞+ + =⎜ ⎟Δ Δ⎝ ⎠

+ − + + +

 (3.7.3.2.13)

At upstream flux boundary nodes, equation (3.7.3.2.13) cannot be applied because Δτ equals zero.

 3-204

Thus, we propose a modified LE approach in which the matrix equation for upstream boundary
nodes is obtained by explicitly applying the finite element method to the boundary conditions as in
Section 3.7.3.1.

3.7.4.3 Operator-Splitting Approach

Equation (3.7.2.3.1) can be solved through the same procedure as that in section 4.5.2, except that

HS
n

RRL
θ

= (3.7.3.3.1)

3.7.5 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and

Downstream Boundary Nodes with the Finite Element Method Applied to the
Conservative Form of the Reactive Transport Equations for the Upstream Flux
Boundaries

3.7.5.1 Fully-Implicit Scheme

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.7.3.1, and the matrix equation for upstream boundary nodes
is obtained through the same procedure as that in section 3.7.1.1.

3.7.5.2 Mixed Predictor-Corrector and Operator-Splitting Method

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.7.3.2, and the matrix equation for upstream boundary nodes
is obtained through the same procedure as that in section 3.7.1.2.

3.7.5.3 Operator-Splitting Approach

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.7.3.3, and the matrix equation for upstream boundary nodes
is obtained through the same procedure as that in section 3.7.1.3.

3.7.6 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and

Downstream Boundary Nodes with the Finite Element Method Applied to the
Advective Form of the Reactive Transport Equations for the Upstream Flux
Boundaries

3.7.6.1 Fully-Implicit Scheme

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.7.3.1, and the matrix equation for upstream boundary nodes
is obtained through the same procedure as that in section 3.7.2.1.

 3-205

3.7.6.2 Mixed Predictor-Corrector and Operator-Splitting Method

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.7.3.2, and the matrix equation for upstream boundary nodes
is obtained through the same procedure as that in section 3.7.2.2.

3.7.6.3 Operator-Splitting Approach

For this option, the matrix equation for interior and downstream boundary nodes is obtained through
the same procedure as that in section 3.7.3.3, and the matrix equation for upstream boundary nodes
is obtained through the same procedure as that in section 3.7.2.3.

3.8 Numerical Implementation of Reactive Transport Coupling among Various Media

This section addresses numerical implement of coupling reactive chemical transport simulations
among various media including (1) between 1D river and 2D surface runoff, (2) between 2D surface
runoff and 3D subsurface media, (3) between 3D subsurface media and 1D river networks, and (4)
among 1D river networks, 2D surface runoff, and 3D subsurface media. For sediment transport
simulations, only the coupling between 1D river network and 2D surface runoff is needed, which is
similar to the coupling of reactive chemical transport between the two media. Without loss of
generality, numerical implementations of coupling for scalar transport (including sediment and
kinetic-variable transport) are heuristically given for finite element approximations of the
conservative form of transport equations. For Largrangian-Eulerian approximations or finite
element approximation of the advective form of transport equations, the implementations of
numerical coupling among various media remain valid except care must be taken that the fluxes
denote the total fluxes of advective and dispersive/diffusive fluxes.

3.8.1 Coupling between 1D-River and 2D-Overland Water Quality Transport

The interaction between one-dimensional river and two-dimensional surface runoff involves two
cases: one is between surface runoff and river nodes (left frame in Fig. 3.8-1) and the other is
between surface runoff and junction nodes (right frame in Fig. 3.8-1). For every river node (Node I
in the left frame of Fig. 3.8-1), there will be associated with two overland nodes (Nodes J and K in
the left frame of Fig. 3.8-1). For every junction node (Node L in the right frame of Fig. 3.8-1), there
will be associated with a number of overland nodes such as Nodes J, K, O, etc (right frame of Fig.
3.8-1). It should be noted that nodes, such as Nodes J and K in the right frame of Figure 3.8-1,
contribute fluxes to both the river as source/sink of Node I and the Junction as source/sink of Node
L.

 3-206

IJ K

J
I

K

L

O

Fig. 3.8-1. Depiction of Interacting River Nodes and Overland Nodes (left) and Junction

Node and Overland Nodes (Right)

Numerical approximations of suspended-sediment or kinetic-variable transport equations for one-
dimensional river with finite element methods yield the following matrix

1 1

2 2

1 2 1

c c

c c

c c c c c c
I I I IN I I

c c
N N

E R

E R

C C C C E R

E R

⎧ ⎫ ⎧− − − − − − − − − − − − − −⎡ ⎤
⎪ ⎪ ⎪⎢ ⎥− − − − − − − − − − − − − − ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥− − − − − − − − − − − − − − − − − −
⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪− − − − − − =⎨ ⎬ ⎨⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥ − − − −− − − − − − − − − − − − − − ⎪ ⎪⎢ ⎥

− − − −− − − − − − − − − − − − − − ⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥− − − − − − − − − − − − − −⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩

1 2
1 1

1 2
2 2

1 2

01 2

o o

o o

o o
I I

o
N N

M M

M M

M M

M M

⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪− − − −
⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪+ +⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪− − − −⎪ ⎪ ⎪ ⎪ ⎪ ⎪

− − − −⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎭ ⎩ ⎭ ⎩ ⎭

 (3.8.1)

where the superscript c denotes the canal (channel, river, or stream); CIJ is the I-th row, J-th column
of the coefficient matrix [C]; EI denotes the concentration of a suspended sediment or a kinetic
variable at Node I; RI is I-th entry of the load vector {R}; N is the number of nodes in the canal; MI
is the rate of suspended-sediment or kinetic-variable source/sink from (to) the overland flow to
(from)canal node I; and the superscripts, o1 and o2, respectively, denote canal bank 1 and 2,
respectively. Every canal node I involves 3 unknowns, EI

c, MI
o1, and MI

o2. However, Eq. (3.8.1)
gives just one algebraic equation for every canal node I. Clearly, two additional algebraic equations
are need for every canal node I. It should be noted that MI

o1 and MI
o2denote the following

integrations in transforming Eq. (2.5.10) and its initial and boundary conditions or Eq. (2.5.44) and
its initial and boundary conditions to Eq. (3.8.1)

1 1

1 1 2 2
N N

n n

X X
o os o os

I I S I I S
X X

M N M dx and M N M dx= =∫ ∫ (3.8.2)

for the transport of the n-th suspended-sediment fraction

 3-207

1 1

1 1 2 2
N N

i i

X X
o os o os

I I E I I E
X X

M N M dx and M N M dx= =∫ ∫ (3.8.3)

for the transport of the i-th kinetic variable.

Applications of finite element methods to two-dimensional suspended-sediment or kinetic-variable
transport equation yield the following matrix

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

−−
−−
−−

−

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−

−−

−−

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−

−−

−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−

−−−−−−−−−−−−−−
−−−−−−

−−−−−−−−−−−−−−

−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−

−−−−−−−−

o
K

o
J

o
M

o
K

o
J

o

o

o
M

o
K

o
J

o

o

o
MM

o
M

o
M

o
KM

o
KK

o
K

o
K

o
IM

o
jj

o
J

o
J

o
M

o

o
M

oo

M

M

R

R

R

R

R

E

E

E

E

E

CCC

CCCC

CCCC

CC

CCC

2

1

2

1

21

21

21

221

11211

 (3.8.4)

where the superscript o denotes the overland; CIJ is the I-th row, J-th column of the coefficient
matrix [C]; EI denotes the concentration of suspended sediment or kinetic variable at Node I; RI is I-
th entry of the load vector {R}; M is the number of nodes in the overland ; and MJ and MK are the
fluxes [M/t] of suspended sediment or kinetic variable from (to) the overland to (from) the canal via
nodes J and K, respectively. Equation (3.8.4) indicates that there is one unknown corresponding to
one algebraic equation for every interior node. However, for every algebraic equation corresponding
to an overland-canal interface node, there are two unknowns, the concentration of suspended
sediment or kinetic variable and the sediment or chemical fluxes. Therefore, for every overland-
river interface node, one additional equation is needed. Since for every canal node, there are
associated two overland-interface nodes, four additional equations are needed for every canal node I
for the four additional unknowns MJ

o, MK
o, MI

o1, and MI
o2.

Before we proceed further, let us refresh ourselves that MJ

o and MK
o denote the following integration

in transforming Eq. (2.6.10) and its initial and boundary conditions or Eq. (2.6.46) and its initial and
boundary conditions to Eq. (3.8.4)

() () o o
J J n J n K K n K n

B B

M W S N h S dB and M W S N h S dB= − ∇ = − ∇∫ ∫n q K n q Ki i i i (3.8.5)

for the transport of the n-th suspended-sediment fraction

() () o m m o m m
J J i J i K K i K i

B B

M W E N h E dB and M W E N h E dB= − ∇ = − ∇∫ ∫n q K n q Ki i i i (3.8.6)

for the transport of the i-th kinetic variable.

The additional equations are obtained from two interface boundary conditions: one is the continuity

 3-208

of flux and the other is the assumption that the flux of suspended sediments or kinetic variables
through the interface node is due mainly to water flow (i.e., advection). Two of the four additional
equations are obtained from the interface condition between the canal node I and the overland node J
as

()() ()()()c
I

o
J

o
J

o
J

o
J

o
J

o
I

o
J EQsignEQsignQMandMM −++== 11

2
11 (3.8.7)

For suspended sediment transport, o
JE and c

IE denote

o o c c
J n J I nIE S and E S= = (3.8.8)

where o
n JS is the concentration of the suspended sediment of the n-th fraction at Node J in the

overland domain and c
n IS is the concentration of the suspended sediment of the n-th fraction at

Node I in the canal domain. For the transport of kinetic variables, o
JE and c

IE denote

o m o c m c
J i J I i IE E and E E= = (3.8.9)

where m o
i JE is the concentration of the mobile portion of the i-th kinetic variable at Node J in the

overland domain and m c
i IE is the concentration of the mobile portion of the i-th kinetic variable at

Node I in the canal domain.

The other two additional equations are obtained from the interface condition between the canal Node
I and the overland Node K as follows

()() ()()()1 1 1 1
2

o o o o o o o c
K I K K K K K IM M and M Q sign Q E sign Q E= = + + − (3.8.10)

The definition of o
KE is similar to that of o

JE .

When the direct contribution of suspended sediment or chemicals from the overland regime to a
junction node L (Fig. 3.8-1) is significant, the mass balance equation can be written as

d V 0
O O

L i o i oL
iL O iL O

i O N i O N

E M or M
dt ∈ ∈

= Ψ + Ψ + =∑ ∑ ∑ ∑ (3.8.11)

where V L is the volume of the L-th junction, i
iLΨ is the mass flux from the iL-th node of i-th reach

to the L-th junction, and o
OM is the mass flux from the O-th node of the overland regime (superscript

o t represent overland regime). Additional NO unknowns have been introduced in Equation (3.8.11).
 For each overland-junction interface node, say O (the right frame in Fig. 3.8.1), the finite element
equation written out of Eq. (3.8.4) is

o
O

o
O

o
M

o
OM

o
O

o
OO

oo
O

oo
O MRECECECEC −=+++++2211 (3.8.12)

 3-209

It is seen that Equation (3.4.17) involves two unknowns, o
OE and o

OM . One equation must be
supplemented to the finite element equation to close the system. This equation is obtained by
formulating fluxes as

()() ()()()L
o

O
o

O
o

O
o

O
o

O EQsignEQsignQM −++= 11
2
1

 (3.8.13)

Equations (3.8.11), (3.8.12), and (3.8.13) for a system of equations for the set of unknowns LE ,
o

OE and o
OM .

3.8.2 Coupling between 2D-Overalnd and 3D-Subsurface Water Quality Transport

The interaction between two-dimensional overland and three-dimensional subsurface water quality
transport is not as straightforward as that between 1D-river and 2D-overland regime because the i-th
kinetic variable in the 2D-voerland is not necessary to have the same set of species as the i-th kinetic
variable in the 3D-subsurface media. We will assume that there is no exchange of suspended
sediment between 2D-overland and 3D-subsurface media. Only exchanges of aqueous-phase species
take place. For every subsurface node (Node J in Fig. 3.8-2), there will be associated an overland
nodes (Node I in Fig. 3.8-2).

I
J

Fig. 3.8-2. Depiction of Interacting Subsurface Nodes and Overland Nodes

Numerical approximations of kinetic-variable transport equation for two-dimensional overland
regime with finite element methods yield the following matrix

 3-210

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

+

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

io
N

io
I

io
2

io
1

o
N

o
I

o
2

o
1

o
N

o
I

o
2

o
1

o
IN

o
II

o
2I

o
1I

M

M

M

M

R

R

R

R

E

E

E

E

CCCC (3.8.14)

where the superscript o denotes the overland; CIJ is the I-th row, J-th column of the coefficient
matrix [C]; EI denotes the concentration of a kinetic variable at Node I; RI is I-th entry of the load
vector {R}; N is the number of nodes in the overland; and MI is the rate of the kinetic-variable
source/sink from (to) the subsurface to (from) the overland node I (the superscript, io, denotes the
exfiltration from subsurface media to overland). Every overland node I involves two unknowns, EI

o,
and MI

io. However, Eq. (3.8.14) gives just one algebraic equation for every canal node I. Clearly,
one additional algebraic equation is need for every overland node I. To formulate this equation, it is
noted that, for the i-th overland kinetic variable, io

IM is the source/sink rate of the i-th kinetic
variable at the I-th node due to infiltration (negative value) or exfitration (positive value). This
equation is obtained as follows

()() ()()1() 1 1
2

a a

io io io o s io o o
I I I ij jJ I ij jI

j M j M
M Q sign Q a C sign Q a C

∈ ∈

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠
∑ ∑ (3.8.15)

where Ma is the set of aqueous species, o
ija is the ij-th entry of the decomposed unit matrix via

diagonalization of the reaction network in the overland domain, s
jJC is the concentration of the j-th

subsurface species at the J-th node of the subsurface domain, and o
jIC is the concentration of the j-th

overland species at the I-th node of the overland domain.

Applications of finite element methods to three-dimensional kinetic-variable transport equations for
subsurface media yield the following matrix

11 12 1 1 1

21 2 2 2

1 2

1 2

s s s s s
M

s s s s
M

s s s s s
J J JJ IM J

s s s s
M M MM M

C C C E R

C C E R

C C C C E R

C C C E

⎡ ⎤ ⎧ ⎫− − − − − − − −
⎢ ⎥ ⎪ ⎪

− − − − − − − − − −⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪− − − − − − − − − − − − − − − − − −
⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥− − − − − − =⎨ ⎬
⎢ ⎥ ⎪ ⎪− − − − − − − − − − − − − − − −⎢ ⎥ ⎪ ⎪
⎢ ⎥− − − − − − − − − − − − − − − −⎪ ⎪
⎢ ⎥ ⎪ ⎪

− − − − − − − −⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

s s
J J

s
M

M

R

⎧ ⎫ − −⎧ ⎫
⎪ ⎪ ⎪ ⎪− −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪− −
⎪ ⎪ ⎪ ⎪⎪ ⎪ −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪− − − −⎪ ⎪ ⎪ ⎪

− − − −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪− −⎩ ⎭⎪ ⎪⎩ ⎭

 (3.8.16)

where the superscript s denotes the subsurface media; CIJ is the I-th row, J-th column of the

 3-211

coefficient matrix [C]; EJ denotes the temperature or salinity at Node J; RJ is J-th entry of the load
vector {R}; M is the number of nodes in the subsurface; and MJ is the rate of thermal or salt
sink/source from/to the subsurface node J to/from the corresponding overland node I. Equation
(3.8.15) indicates that there is one unknown corresponding to one algebraic equation for every
interior node. However, for every algebraic equation corresponding to a subsurface-overland
interface node, there are two unknowns, the concentration of the i-th subsurface kinetic variable at
node J, s

JE , and its flux, s
JM . Therefore, one additional equation is needed. This equation is

obtained from

()() ()()1() 1 1
2

a a

s s s s s s s o
J J J ij jJ J ij jI

j M j M
M Q sign Q a C sign Q a C

∈ ∈

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠
∑ ∑ (3.8.17)

where s
ija is the ij-th entry of the decomposed unit matrix via diagonalization of the reaction network

in the subsurface media.

3.8.3 Coupling between 3-D Subsurface and 1-D Surface Flows

The interaction between three-dimensional subsurface and one-dimensional river water quality
transport involves three options: (1) river is discretized as finite-width and finite-depth on the three-
dimensional subsurface media (Fig. 3.8-3), (2) river is discretized as finite-width and zero-depth on
the three-dimensional subsurface media (Fig. 3.4-4), and (3) river is discretized as zero-width and
zero-depth on the three-dimensional subsurface media (Fig. 3.4-5). Option 1 is the most realistic
one. However, because of the computational demands, it is normally used in small scale studies
involving the investigations of infiltration and discharge between river and subsurface media on a
local scale. Option 2 is normally used in medium scale studies while Option 3 is normally employed
in large scale investigations. In Option 1, for every river node there are associated with a number of
subsurface interfacing nodes such as K, .., J, .., and L(Fig. 3.8-3). In Option 2, for every river node
there are associated with three subsurface interfacing nodes K, J, and L (Fig. 3.8-4). In Option 3, for
every river node there is associated with one subsurface interfacing node J (Fig. 3.8-5).

I

J’s
K L

K J’s

I
L

Fig. 3.8-3. Rivers Are Discretized as Finite-Width and

Finite-Depth on the Subsurface Media

 3-212

I

JK L

K J

K J

L
I

I

L

Fig. 3.8-4. Rivers Are Discretized as Finite-Width and

Zero-Depth on the Subsurface Media

I

JK L

K
J

K J

L
I

I

L
EK EL

Fig. 3.8-5. Rivers Are Discretized as Zero-Width and

Zero-Depth on the Subsurface Media

Numerical approximations of i-th kinetic-variable transport equation for one-dimensional river with
finite element methods yield the following matrix

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

+

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

=

⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−−−−−
−−−−−−−−−−−−−−

ic
N

ic
I

ic

ic

c
N

c
I

c

c

c
N

c
I

c

c

c
IN

c
II

c
I

c
I

M

M

M

M

R

R

R

R

E

E

E

E

CCCC

2

1

2

1

2

1

21 (3.8.18)

where the superscript c denotes the canal (channel, river, or stream); CIJ is the I-th row, J-th column

 3-213

of the coefficient matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the
load vector {R}; N is the number of nodes in the canal; and MI

ic is the mass rate of the kinetic-
variable source/sink from (to) the subsurface to (from) canal node I due to infiltration/exfiltration.
Every canal node I involves two unknowns, EI

c and MI
ic. However, Eq. (3.8.18) gives just one

algebraic equation for every canal node I. Clearly, one additional algebraic equation is need for
every canal node I.

For example, taking Option 2 where there are three nodes associated with one canal node, the
applications of finite element methods to three-dimensional kinetic-variable transport equation in the
subsurface media yields

⎪
⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−
−−

−−
−−
−−

−

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−

−−

=

⎪
⎪
⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

−−

−−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−−−−−

−−−−−−−−−−−−−−
−−−−−−

−−−−−−

−−−−−−

−−−−−−−−−−−−−−
−−−−−−−−−−

−−−−−−−−

<<
s

L

s
J

s
K

s
M

s
L

s
J

s
K

s

s

s
M

s
L

s
J

s
K

s

s

s
MM

s
M

s
M

s
LM

ss
L

s
L

s
M

s
JJ

s
J

s
J

s
KM

s
KK

s
K

s
K

s
M

s

s
M

ss

M

M

M

R

R

R

R

R

R

E

E

E

E

E

E

CCC

CCCC

CCCC

CCCC

CC

CCC

2

1

2

1

21

21

121

21

221

11211

 (3.8.19)

where the superscript s denotes the subsurface media; CIJ is the I-th row, J-th column of the
coefficient matrix [C]; EJ denotes the temperature or salinity at Node J; RJ is J-th entry of the load
vector {R}; M is the number of nodes in the overland ; and MK, MJ and ML are the rates of thermal or
salt sink/source from/to the subsurface water to/from the canal via nodes K, J and L, respectively.
Equation (3.8.19) indicates that there is one unknown corresponding to one algebraic equation for
every interior node. However, for every algebraic equation corresponding a subsurface-canal
interface node, there are two unknowns, concentration of the kinetic variable and its flux. Therefore,
for every subsurface-river interface node, one additional equation is needed. Since for every canal
node, there are associated three subsurface-interface nodes, four additional equations are needed for
every canal node I for the four additional unknowns MI

ic, MK
s, MJ

s, and ML
s.

These four additional equations are obtained with the assumptions that only aqueous species are
involved in the exchange between the canal node I and the subsurface nodes K, J, and L and the
exchange is mainly due to advection. These assumptions result in the following four equations:

()() ()1 1() 1 1 ()
2 2

a

a a a a a

ic ic ic c c ic
I I I ij jI I

j M

s c s s c s s c s rains c rain rains c rain
K ij jK J ij jJ L ij jL K ij jK L ij jL

j M j M j M j M j M

M Q sign Q a C sign Q

Q a C Q a C Q a C Q a C Q a C

∈

∈ ∈ ∈ ∈ ∈

⎛ ⎞
= − + + ×⎜ ⎟

⎝ ⎠
⎛ ⎞

+ + − −⎜ ⎟
⎝ ⎠

∑

∑ ∑ ∑ ∑ ∑
 (3.8.20)

 3-214

()() ()()1 1() 1 () 1
2 2

a a

s s s s c s s s s
J J J ij jI J J ij jJ

j M j M
M Q sign Q a C Q sign Q a C

∈ ∈

⎛ ⎞ ⎛ ⎞
= − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ (3.8.21)

()() ()()1 1() 1 () 1
2 2

a a

s s s s c s s s s
K K K ij jI K K ij jK

j M j M
M Q sign Q a C Q sign Q a C

∈ ∈

⎛ ⎞ ⎛ ⎞
= − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ (3.8.22

()() ()()1 1() 1 () 1
2 2

a a

s s s s c s s s s
L L L ij jI L L ij jL

j M j M
M Q sign Q a C Q sign Q a C

∈ ∈

⎛ ⎞ ⎛ ⎞
= − + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ (3.8.23)

where Ma is the set of aqueous species, c
ija is the ij-th entry of the decomposed unit matrix via

diagonalization of the reaction network in the canal domain, c
jIC is the concentration of the j-th

canal species at the I-th node of the canal domain, s
jJC is the concentration of the j-th subsurface

species at the J-th node of the subsurface domain, s
jKC is the concentration of the j-th subsurface

species at the K-th node of the subsurface domain, s
jLC is the concentration of the j-th subsurface

species at the L-th node of the subsurface domain, rain
jKC is the concentration of the j-th species of the

rainfall that falls on the K-th node of the subsurface domain, rain
jLC is the concentration of the j-th

species of the rainfall that falls on the L-th node of the subsurface domain, and s
ija is the ij-th entry

of the decomposed unit matrix via diagonalization of the reaction network in the subsurface domain.

3.8.4 Coupling Among River, Overland, and Subsurface Flows

The interaction among one-dimensional river, two-dimensional overland, and three-dimensional
subsurface flows involves three options: (1) river is discretized as finite-width and finite-depth on
the three-dimensional subsurface media (Fig. 3.8-6), (2) river is discretized as finite-width and zero-
depth on the three-dimensional subsurface media (Fig. 3.8-7), and (3) river is discretized as zero-
width and zero-depth on the three-dimensional subsurface media (Fig. 3.4-8). Option 1 is the most
realistic one. However, because of the computational demands, it is normally used in small scale
studies involving the investigations of infiltration and discharge between river and subsurface media
on a local scale. Option 2 is normally used in medium scale studies while Option 3 is normally
employed in large scale investigations. In Option 1, for every river node there are associated with
two overland nodes M and N and a number of subsurface interfacing nodes such as K. , J, .., and L
(Fig. 3.8-6). In Option 2, for every river node I, there are associated with two overland nodes M and
N and three subsurface interfacing nodes K, J, and L (Fig. 3.4-7). In Option 3, for every river node
I, there is associated with two overland nodes M and N one subsurface node J (Fig. 3.8-8).

 3-215

I

J’s
K L

K
J’s

I
L

M N

M N

Fig. 3.8-6. Interfacing Nodes for Every River Node when Rivers

Are Discretized as Finite-Width and Finite-Depth

I

JK L

K J

I

L

M N

K J L
IM N M N

Fig. 3.8-7. Interfacing Nodes for Every River Node when Rivers

Are Discretized as Finite-Width and Zero-Depth

I

JK L

K J

K J

L
I

I

L
EK EL

M N QP

M NP Q

M NP Q

Fig. 3.8-8. Interfacing Nodes for Every River Node when Rivers

Are Discretized as Zero-Width and Zero-Depth

 3-216

Similar to the coupling of salt transport among river, overland, and subsurface media, the coupling
of water quality transport is achieved by imposing the continuity of water quality fluxes and
formulation of individual node fluxes.

Interaction between Overland Node M and Canal Node I. Two equations are obtained based on
the continuity of fluxes and the formulation of fluxes as

()() ()()()
()() ()()()

1 1 1 11 1 1 (
2
1 1 1 (
2

o o o o o c
I I I M I I

o o o o o c
M M M M M I

M Q sign Q E sign Q E and

M Q sign Q E sign Q E

= + + −

= + + −
 (3.8.24)

Interaction between Overland Node N and Canal Node I. Two equations are obtained based on
the continuity of fluxes and the formulation of fluxes as

()() ()()()
()() ()()()

2 2 2 21 1 1 (
2

1 1 1 (
2

o o o o o c
I I I N I I

o o o o o c
N N N N N I

M Q sign Q E sign Q E and

M Q sign Q E sign Q E

= + + −

= + + −
 (3.8.25)

Interaction between Overland Node M, Subsurface Node K, and Canal Node I. Two equations
are obtained based on the continuity of fluxes and the formulation of fluxes as

()() ()()

()() ()()

1 1 11 1
2 2 4

1 1 11 1
2 2 4

a a a

a a a

io io io o o io s o s ic o c c
M M M ij jM M K ij jK I ij jI I

j M j M j M

s s s s s s io s o ic s c
K K K ij jK K M ij jM I ij jI

j M j M j M

M sign Q Q a C sign Q Q a C Q a C E

and

M sign Q Q a C sign Q Q a C Q a C

∈ ∈ ∈

∈ ∈ ∈

⎧ ⎫⎛ ⎞⎪ ⎪= − + + −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

⎧ ⎛ ⎞⎪= + + − +⎜ ⎟⎨ ⎜ ⎟⎪ ⎝ ⎠⎩

∑ ∑ ∑

∑ ∑ ∑
⎫⎪
⎬
⎪⎭

 (3.8.26)

where Ma is the set of aqueous species, o
ija is the ij-th entry of the decomposed unit matrix via

diagonalization of the reaction network in the overland domain.

Interaction between River Bank Node N, Subsurface Node L, and Canal Node I. Two equations
are obtained based on the continuity of fluxes and the formulation of fluxes

()() ()()

()() ()()

1 1 11 1
2 2 4

1 1 11 1
2 2 4

a a a

a a a

io io io o o io s o s ic o c
N N N ij jN N L ij jL I ij jI

j M j M j M

s s s s s s io s o ic s c
L L L ij jL L N ij jN I ij jI

j M j M j M

M sign Q Q a C sign Q Q a C Q a C

and

M sign Q Q a C sign Q Q a C Q a C

∈ ∈ ∈

∈ ∈ ∈

⎧ ⎫⎛ ⎞⎪ ⎪= − + + −⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

⎧ ⎫⎛ ⎞⎪ ⎪= + + − +⎜ ⎟⎨ ⎬⎜ ⎟⎪ ⎝ ⎠⎩

∑ ∑ ∑

∑ ∑ ∑
⎪⎭

 (3.8.27)

 3-217

Interaction between Subsurface Node J and Canal Node I. Two equations are obtained based on
the continuity of fluxes and the formulation of fluxes as

()() ()()

()() ()()

1 11 2 1
2 2

1 1 11 1
2 2 2

a a

a a

ic ic s c s ic ic c c
I I J ij jJ I I ij jI

j M j M

s s s s s s ic s c
J J J ij jJ J I ij jI

j M j M

M sign Q Q a C sign Q Q a C and

M sign Q Q a C sign Q Q a C

∈ ∈

∈ ∈

⎛ ⎞
= + + −⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞

= + + −⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑

∑ ∑
 (3.8.28)

3.9 Vastly Different Time Scales among Various Media

The time scales for hydrology and hydraulics and water quality transport in river/stream/canal
networks, overland regime and subsurface media are vastly different. The time scale for flow and
transport may be in the order of seconds and minutes in 1D-river/stream/canal networks, minutes in
2D-overland regime, and hours, days or even weeks in 3D-subsurface media. To handle this kind of
very different time-scale problems, the approach of using variable time-step sizes among different
domains is taken. Figure 3.9-1 shows the model structure of over-all coupling between various
interfacial media. In Figure 3.9-1, Δt = GT is the global time-step size (it is noted that total
simulation time may consist of several Δt’s); GTS is the number of time steps in each GT and ΔtGT is
the time-step size; 3DF is the number of time steps for 3D flow simulations in each GT and Δt3DF is
time step size; 2DF is the number of time steps for 2D flow simulations and Δt2DF is the time step
size; 1DF is the number of time steps for 1D flow simulations and Δt1DF is the time step size.

Figures 3.9-2 shows the detail structure on 1D only river/stream/canal networks simulations. For
flow computation in one time step, we first linearize all coefficients in and boundary conditions (by
linearize boundary conditions, we mean, for example, to fix variable-type boundary conditions if
they are prescribed) for the governing equations using previous iterates and solve the linearized
equations within the nonlinear loop. Within the nonlinear loop, first solve flow equations to obtain
HQW1, where HQW1 is the water depth and discharge for the 1D case; then for every several flow
time steps, solve salinity and thermal transport equation to yield C1 and T1, where C1 and T1 are the
salt concentration and temperature, respectively. When fluid flow and salt and thermal transport are
solved to convergences, repeat one more nonlinear loop to provide flow fields (i.e., HQW1) for the
simulation of reactive chemical transport. The solution of reactive chemical transport would render
CR1, where CR1 is the concentration of reactive biogeochemical species for 1D. After density-
dependent flow fields, salinity, temperature, and reactive chemical transport are solved, proceed to
the next time step. Figures 3.9-3 and 3.9-4 show detail computational structures for simulations in
2D overland and 3D subsurface media, respectively.

Figures 3.9-5, 3.9-6, and 3.9-7 show detail structures for simulating in coupled 1D and 2D, coupled
2D and 3D, and coupled 3D and 1D flow and transport, respectively. In all eight figures, the
naming convention of the state-variables is systematic combination of H, Q, C, T, CR, R, W, P, 0, 1,
2, and 3. H denotes water depth or head, Q denotes discharge, C denote salt concentration, T denote
temperature, CR denote concentration of reactive entities, R denotes source/sinks, W denotes
working iterative values, P denotes previous time, 0 denote initial values, 1 denote 1D, 2 denotes 2D,

 3-218

and 3 denotes 3D. For example, HQW1 (at convergence, HQW1 would be HQ1) is the water depth
and discharge of the iterative working values for 1D case; CR2 is the concentrations of reactive
entities for 2D cases; TP1 is the temperature at the previous time step for 1D cases. DIV denotes
the divergence of the velocity, i.e. DIV = ∇⋅V.

 3-219

Global time step loop, ΔtGT = GT/GTS

I. Global nonlinear iteration loop:
linearize model coefficients and fix interface/variable-type

boundary conditions based on the previous nonlinear iterate

Global period loop, Δt = GT

Density-, temperature-
dependent 1DF

(Δt1DF = ΔtGT*GTS/1DF)

Density-, temperature-
dependent 2DF

(Δt2DF = ΔtGT*GTS/2DF)

Density-, temperature-
dependent 3DF

(Δt3DF = ΔtGT*GTS/3DF)

Interface Coupling

To obtain a convergent
flow solution within
one global time step

Note: ΔtGT = Δt3DF for (1) 3D only, (2) 1D/3D, (3) 2D/3D, and (4) 1D/2D/3D simulations.
 = Δt2DF for (1) 2D only and (2) 1D/2D simulations.
 = Δt1Df for 1D simulations only.

To obtain flow and
transport solutions

within one global time step

2D/3D 3D/1D

2D/1D

II. Repeat the last global nonlinear iteration with nonlinear reactive
transport equations also solved in respective transport time step loops

Fig. 3.9-1. Overall Coupled Structure of WASH123D

 3-220

Global (1DF) time step loop, ΔtGT = Δt1DF = GT/GTS

Global period loop, Δt = GT

To obtain a convergent
flow solution within

one global (1DF) time step

To obtain flow and transport
solutions within one global

(1DF) time step

Solving linearized 1D flow equation

Solving linear 1D salt transport equation

Solving linear 1D heat transfer equation

1DT time step loop (Δt1DT = Δt1DF*1DF/1DT)

II. Repeat the last global nonlinear iteration with nonlinear reactive
transport equations also solved in the 1D transport

time step loop (within a 1DF time step)

I. Global nonlinear iteration loop:
linearize model coefficients and fix variable-type boundary

conditions based on the previous nonlinear iterate

C1

T1

HQW1

CP1 = C1, TP1=T1

HQP1=HQW1,
RP1=R1,
RDIVP1=RDIV1

HQP1, RP1, RDIVP1, CP10, TP10

CP1=CP10, TP1=TP10

CP10=C1, TP10=T1
CRP1=CR1

CR1

Fig. 3.9-2. Computation Structure of WASH123D for 1D only Simulations

 3-221

Global (2DF) time step loop, ΔtGT = Δt2DF = GT/GTS

Global period loop, Δt = GT

To obtain a convergent
flow solution within

one global (2DF) time step

To obtain flow and transport
solutions within one global

(2DF) time step

Solving linearized 2D flow equation

Solving linear 2D salt transport equation

Solving linear 2D heat transfer equation

2DT time step loop (Δt2DT = Δt2DF*2DF/2DT)

II. Repeat the last global nonlinear iteration with nonlinear reactive
transport equations also solved in the 2D transport

time step loop (within a 2DF time step)

I. Global nonlinear iteration loop:
linearize model coefficients and fix variable-type boundary

conditions based on the previous nonlinear iterate

HQP2, RP2, RDIVP2, CP20, TP20

CP2=CP20, TP2=TP20

CP20=C2, TP20=T2
CRP2=CR2

C2

T2

HQW2

CP2 = C2, TP2=T2

HQP2=HQW2,
RP2=R2,
RDIVP2=RDIV2

CR2

Fig. 3.9-3. Computation Structure of WASH123D for 2D only Simulations

 3-222

Global (3DF) time step loop, ΔtGT = Δt3DF = GT/GTS

Global period loop, Δt = GT

To obtain a convergent
flow solution within

one global (3DF) time step

To obtain flow and transport
solutions within one global

(3DF) time step

Solving linearized 3D flow equation

Solving linear 3D salt transport equation

Solving linear 3D heat transfer equation

3DT time step loop (Δt3DT = Δt3DF*3DF/3DT)

II. Repeat the last global nonlinear iteration with nonlinear reactive
transport equations also solved in the 3D transport

time step loop (within a 3DF time step)

I. Global nonlinear iteration loop:
linearize model coefficients and fix variable-type

boundary conditions based on the previous nonlinear iterate

H3

C3

T3

CP3 = C3, TP3=T3

HP3=H3

HP3, CP30, TP30

CP3=CP30, TP3=TP30

CP30=C3, TP30=T3
CRP3=CR3

CR3

Fig. 3.9-4. Computation Structure of WASH123D for 3D only Simulations

 3-223

Global (2DF) time step loop, ΔtGT = Δt2DF = GT/GTS

Global period loop, Δt = GT

To obtain a convergent
flow solution within

one global (2DF) time step

II. Repeat the last global nonlinear iteration with nonlinear reactive
transport equations also solved in respective transport

time step loops (within a 2DF time step)

To obtain flow and transport
solutions within one global

(2DF) time step

Solving linearized 2D flow equation

Solving linearized 1D flow equation

Solving linear 2D salt transport equation

Solving linear 2D heat transfer equation

2DT time step loop (Δt2DT = Δt2DF*2DF/2DT)

1DF time step loop (Δt1DF = Δt2DF*2DF/1DF)

Solving linear 1D salt transport equation

Solving linear 1D heat transfer equation

1DT time step loop (Δt1DT = Δt1DF*1DF/1DT)

I. Global nonlinear iteration loop:
linearize model coefficients and fix interface/variable-type

boundary conditions based on the previous nonlinear iterate

1D/2D
coupling

HQP, RP2, RDIVP2, CP20, TP20;
HQP10, RP10, RDIVP10, CP10, TP10.

CP2=CP20, TP2=TP20;
HQP1=HQP10, RP1=RP10, RDIVP1=RDIVP10;
CP1=CP10, TP1=TP10.

CP20=C2, TP20=T2; CRP2=CR2
HQP10=HQW1, RP10=R1, RDIVP10=RDIV1;
CP10=C1, TP10=T1; CRP1=CR1

CP1 = C1, TP1=T1

HQP1=HQW1,
RP1=R1,
RDIVP1=RDIV1

CP2 = C2, TP2=T2

HQP2=HQW2,
RP2=R2,
RDIVP2=RDIV2

C2

T2

C1

T1

HQW1

HQW2

CR1, CR2

Fig. 3.9-5. Computation Structure of WASH123D for Coupled 1D/2D Simulations

 3-224

Global (3DF) time step loop, ΔtGT = Δt3DF = GT/GTS

Global period loop, Δt = GT

To obtain a convergent
flow solution within

one global (3DF) time step

II. Repeat the last global nonlinear iteration with nonlinear reactive
transport equations also solved in respective transport

time step loops (within a 3DF time step)

To obtain flow and transport
solutions within one global

(3DF) time step

Solving linearized 3D flow equation

Solving linearized 2D flow equation

Solving linear 3D salt transport equation

Solving linear 3D heat transfer equation

3DT time step loop (Δt3DT = Δt3DF*3DF/3DT)

2DF time step loop (Δt2DF = Δt3DF*3DF/2DF)

Solving linear 2D salt transport equation

Solving linear 2D heat transfer equation

2DT time step loop (Δt2DT = Δt2DF*2DF/2DT)

I. Global nonlinear iteration loop:
linearize model coefficients and fix interface/variable-type

boundary conditions based on the previous nonlinear iterate

2D/3D
coupling

HP3, CP30, TP30;
HQP20, RP20, RDIVP20, CP20, TP20.

CP3=CP30, TP3=TP30;
HQP2=HQP20, RP2=RP20, RDIVP2=RDIVP20;
CP2=CP20, TP2=TP20.

CP30=C3, TP30=T3; CRP3=CR3
HQP20=HQW2, RP20=R2, RDIVP20=RDIV2;
CP20=C2, TP20=T2; CRP2=CR2.

H3

HQW2

C2

T2

C3

T3

CP2 = C2, TP2=T2

HQP2=HQW2,
RP2=R2,
RDIVP2=RDIV2

CP3 = C3, TP3=T3

HP3=H3

CR2, CR3

Fig. 3.9-6. Computation Structure of WASH123D for Coupled 2D/3D Simulations

 3-225

Global (3DF) time step loop, ΔtGT = Δt3DF = GT/GTS

Global period loop, Δt = GT

To obtain a convergent
flow solution within

one global (3DF) time step

II. Repeat the last global nonlinear iteration with nonlinear reactive
transport equations also solved in respective transport

time step loops (within a 3DF time step)

To obtain flow and transport
solutions within one global

(3DF) time step

Solving linearized 3D flow equation

Solving linearized 1D flow equation

Solving linear 3D salt transport equation

Solving linear 3D heat transfer equation

3DT time step loop (Δt3DT = Δt3DF*3DF/3DT)

1DF time step loop (Δt1DF = Δt3DF*3DF/1DF)

Solving linear 1D salt transport equation

Solving linear 1D heat transfer equation

1DT time step loop (Δt1DT = Δt1DF*1DF/1DT)

I. Global nonlinear iteration loop:
linearize model coefficients and fix interface/variable-type

boundary conditions based on the previous nonlinear iterate

1D/3D
coupling

HP3, CP30, TP30;
HQP10, RP10, RDIVP10, CP10, TP10.

CP3=CP30, TP3=TP30;
HQP1=HQP10, RP1=RP10, RDIVP1=RDIVP10;
CP1=CP10, TP1=TP10.

CP30=C3, TP30=T3; CRP3=CR3
HQP10=HQW1, RP10=R1, RDIVP10=RDIV1;
CP10=C1, TP10=T1; CRP1=CR1.

CP1 = C1, TP1=T1

HQP1=HQW1,
RP1=R1,
RDIVP1=RDIV1

CP3 = C3, TP3=T3

HP3=H3

C3

T3

C1

T1

H3

HQW1

CR3, CR1

Fig. 3.9-7. Computation Structure of WASH123D for Coupled 3D/1D Simulations

Global (3DF) time step loop, tGT = t3DF = GT/GTS

Global period loop, t = GT

To obtain a convergent
flow solution within

one global (3DF) time step

II. Repeat the last 3D coupling/nonlinear iteration with nonlinear
reactive transport equations also solved in respective transport time

step loops (within a 3DF time step)

To obtain flow and transport
solutions within one global

(3DF) time step

Solving linearized 3D flow equation

Solving nonlinear 2D flow equation

2DF time step loop (t2DF = t3DF*3DF/2DF)

Solving linear 2D salt transport equation

Solving linear 2D heat transfer equation

Part I. 3D Coupling/nonlinear iterations:

HP3, CP3, TP3, CRP3;
HQP20, RP20, RDIVP20, CP20, TP20, CRP2;
HQP10, RP10, RDIVP10, CP10, TP10, CRP1

HW3

HQW2

C2

T2

HQP2=HQP20, RP2=RP20, RDIVP2=RDIVP20;
CP2=CP20, TP2=TP20;
HQP1=HQP10, RP1=RP10, RDIVP1=RDIVP10;
RO2CNDP1=RO2CNDP10;
CP1=CP10, TP1=TP10.

HP3=HW3;
CP3 = C3, TP3=T3

CRP3=CR3;
HQP20=HQW2, RP20=R2, RDIVP20=RDIV2; ROUTNDP2=ROUTND2
CP20=C2, TP20=T2, CRP2=CR2;
HQP10=HQW1, RP10=R1, RDIVP10=RDIV1; RO2CNDP10=RO2CND1
ROUTNDP1=ROUTND1;
CP10=C1, TP10=T1, CRP1=CR1.

Solving linear 3D salt transport equation

Solving linear 3D heat transfer equation

C3

T3

2D Coupling/nonlinear iterations:

Solving nonlinear 1D flow equation

1DF time step loop (t1DF = t2DF*2DF/1DF)

Solving linear 1D salt transport equation

Solving linear 1D heat transfer equation

HQW1

C1

T1

HQP1=HQW1;
RP1=R1;
RDIVP1=RDIV1;
CP1=C1, TP1=T1

1D coupling iteration loop:

HQP2=HQW2;
RP2=R2;
RDIVP2=RDIV2;
RO2CNDP1=RO2CND1;
CP2=C2, TP2=T2

CR1, CR2, CR3

< Def >
HP3, HW3 = 3D presssure head
CP3, C3 = 3D salt concentration
TP3, T3 = 3D temperature
CRP3, CR3 = 3D reactive chemical concentration
HQP2, HQP20, HQW2 = 2D stage and velocity
RP2, RP20, R2 = 2D overall source/sink
RDIVP2, RDIVP20, RDIV2 = 2D velocity divergence
CP2, CP20, C2 = 2D salt concentration
TP2, TP20, T2 = 2D temperature
CRP2, CR2 = 2D reactive chemical concentration
HQP1, HQP10, HQW1 = 1D stage and velocity
RP1, RP10, R1 = 1D overall source/sink
RDIVP1, RDIVP10, RDIV1 = 1D velocity divergence
CP1, CP10, C1 = 1D salt concentration
TP1, TP10, T1 = 1D temperature
CRP1, CR1 = 1D reactive chemical concentration

1D/2D
coupling

2D/3D
coupling

ROUTND2

1D/3D
coupling

HQP2=HQP20, RP2=RP20, RDIVP2=RDIVP20;
CP2=CP20, TP2=TP20;
HQP1=HQP10, RP1=RP10, RDIVP1=RDIVP10;
CP1=CP10, TP1=TP10.

RO2CND1

RO2CNDW1

ROUTNDW1

ROUTND1

RO2CNDP1

ROUTNDP1

interpolation
 in time

interpolation
 in time

ROUTNDP2

ROUTNDW2

Fig. 3.9-8. Computation Structure of WASH123D for Coupled 1D/2D/3D Simulations

3-226

	3 NUMERICAL APPROACHES
	3.1 Solving One-Dimensional River/Stream/Canal Network Flow Equations
	3.1.1 The Lagrangian-Eulerian Finite Element Method for Dynamic Wave
	3.1.2 Numerical Approximations of Diffusive Wave Approaches.
	3.1.3 The Semi-Lagrangian Method for Kinematic Wave
	3.1.4 Numerical Approximations of Thermal Transport
	3.1.5 Numerical Approximations of Salinity Transport

	3.2 Solving the Two-Dimensional Overland Flow Equations
	3.2.1 The Lagrangian-Eulerian Finite Element Method for Dynamic Waves
	3.2.2 Numerical Approximation of Diffusive Wave Equations
	3.2.3 The Semi-Lagrangian Method for Kinematic Wave
	3.2.4 Numerical Approximations of Salinity Transport

	3.3 Solving the Three-Dimensional Subsurface Flow Equations
	3.3.1 Finite Element Approximations of the Flow Equations
	3.3.2 Numerical Approximations of Thermal Transport Equations
	3.3.3 Numerical Approximations of Salinity Transport

	3.4 Numerical Implementation of Flow Coupling among Various Media
	3.4.1 Coupling between 1-D River Networks and 2-D Overland Flows
	3.4.1.1 Couple Flow Rates between the River Network and the Overland Regime.

	3.4.2 Coupling between 2-D Overland and 3-D Subsurface Flows
	3.4.2.1 Couple Flow Rates between the Overland Regime and Subsurface Media.
	3.4.2.2 Couple thermal or Salt Rate between the Overland Regime and Subsurface Media.

	3.4.3 Coupling between 3-D Subsurface and 1-D Surface Flows
	3.4.3.1 Couple Flow Rates between the River Network and the Subsurface Media.
	3.4.3.2 Couple thermal or Salt Rate between the River Network and the Subsurface.

	3.4.4 Coupling Among River, Overland, and Subsurface Flows
	3.4.4.1 Couple Flow Rates among River, Overland, and Subsurface Media.
	3.4.4.2 Couple thermal or Salt Rate among River, Overland, and Subsurface Media.

	3.5 Solving One-Dimensional River/Stream/Canal Network Water Quality Transport Equations
	3.5.1 One-Dimensional Bed Sediment Balance Equation
	3.5.2 Application of the Finite Element Method to the Conservative Form of the Sediment Transport Equations to Solve 1-D Suspended Sediment Transport
	3.5.3 Application of the Finite Element Method to the Advective Form of the Transport Equations to Solve 1-D Suspended Sediment Transport
	3.5.4 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form of the Transport Equations to Solve 1-D Suspended Sediment Transport
	3.5.5 Aplication of the Lagrangian-Eulerian Approach for All Interior Nodes and Downstream Boundary Nodes with the Finite Element Method Applied to the Conservative Form of the Transport Equations for the Upstream Flux Boundaries to Solve 1-D Suspended Sediment Transport
	3.5.6 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and Downstream Boundary Nodes with the Finite Element Method Applied to the Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve 1-D Suspended Sediment Transport
	3.5.7 Finite Application of the Finite Element Method to the Conservative Form of the Transport Equations to Solve 1-D Kinetic Variable Transport
	3.5.7.1 Fully implicit scheme
	3.5.7.2 Mixed Predictor-corrector/Operator-Splitting Scheme
	3.5.7.3 Operator-splitting

	3.5.8 Finite Application of the Finite Element Method to the Advective Form of the Transport Equations to Solve 1-D Kinetic Variable
	3.5.8.1 Fully-implicit scheme
	3.5.8.2 Mixed Predictor-corrector/Operator-Splitting Scheme
	3.5.8.3 Operator-splitting

	3.5.9 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form of the Transport Equations
	3.5.9.1 Fully-implicit scheme
	3.5.9.2 Mixed Predictor-corrector/Operator-Splitting Scheme
	3.5.9.3 Operator-Splitting

	3.5.10 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and Downstream Boundary Nodes with the Finite Element Method Applied to the Conservative Form of the Transport Equations for the Upstream Flux Boundaries to Solve 1-D Kinetic Variable Transport
	3.5.10.1 Fully-Implicit Scheme
	3.5.10.2 Mixed Predictor-Corrector and Operator-Splitting Method
	3.5.10.3 Operator-Splitting Approach

	3.5.11 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and Downstream Boundary Nodes with the Finite Element Method Applied to the Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve 1-D Kinetic Variable Transport
	3.5.11.1 Fully-Implicit Scheme
	3.5.11.2 Mixed Predictor-Corrector and Operator-Splitting Method
	3.5.11.3 Operator-Splitting Approach

	3.6 Solving Two-Dimensional Overland Water Quality Transport Equations
	3.6.1 Two-Dimensional Bed Sediment Balance Equation
	3.6.2 Application of the Finite Element Method to the Conservative Form of the Transport Equations to Solve 2-D Suspended Sediment Transport
	3.6.3 Application of the Finite Element Method to the Advective Form of the Transport Equations to Solve 2-D Suspended Sediment Transport
	3.6.4 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form of the Transport Equations to Solve 2-D Suspended Sediment Transport
	3.6.5 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and Downstream Boundary Nodes with the Finite Element Method Applied to the Conservative Form of the Transport Equations for the Upstream Flux Boundaries to Solve 2-D Suspended Sediment Transport
	3.6.6 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and Downstream Boundary Nodes with the Finite Element Method Applied to the Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve 2-D Suspended Sediment Transport
	3.6.7 Application of the Finite Element Method to the Conservative Form of the Transport Equations to Solve 2-D Kinetic Variable Transport
	3.6.7.1 Fully-implicit scheme
	3.6.7.2 Mixed Predictor-corrector/Operator-splitting scheme
	3.6.7.3 Operator-splitting scheme

	3.6.8 Application of the Finite Element Method to the Advective Form of the Transport Equations to Solve 2-D Kinetic Variable Transport
	3.6.8.1 Fully-implicit scheme
	3.6.8.2 Mixed Predictor-corrector/Operator-splitting scheme
	3.6.8.3 Operator-splitting scheme

	3.6.9 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form of the Transport Equations to Solve 2-D Kinetic Variable Transport
	3.6.9.1 Fully-implicit scheme
	3.6.9.2 Mixed Predictor-corrector/Operator-splitting scheme
	3.6.9.3 Operator-splitting scheme

	3.6.10 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and Downstream Boundary Nodes with the Finite Element Method Applied to the Conservative Form of the Transport Equations for the Upstream Flux Boundaries to Solve 2-D Kinetic Variable Transport
	3.6.10.1 Fully-Implicit Scheme
	3.6.10.2 Mixed Predictor-Corrector and Operator-Splitting Method
	3.6.10.3 Operator-Splitting Approach

	3.6.11 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and Downstream Boundary Nodes with the Finite Element Method Applied to the Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve 2-D Kinetic Variable Transport
	3.6.11.1 Fully-Implicit Scheme
	3.6.11.2 Mixed Predictor-Corrector and Operator-Splitting Method
	3.6.11.3 Operator-Splitting Approach

	3.7 Solving Three-Dimensional Subsurface Water Quality Transport Equations
	3.7.1 Application of the Finite Element Method to the Conservative Form of the Reactive Chemical Transport Equations
	3.7.1.1 Fully-Implicit Scheme
	3.7.1.2 Mixed Predictor-Corrector and Operator-Splitting Method
	3.7.1.3 Operator-Splitting Approach

	3.7.2 Application of the Finite Element Method to the Advective Form of the Reactive Transport Equations
	3.7.2.1 Fully-Implicit Scheme
	3.7.2.2 Mixed Predictor-Corrector and Operator-Splitting Method

	3.7.3 Operator-Splitting Approach
	3.7.4 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form of the Reactive Transport Equations
	3.7.4.1 Fully-Implicit Scheme
	3.7.4.2 Mixed Predictor-Corrector and Operator-Splitting Method
	3.7.4.3 Operator-Splitting Approach

	3.7.5 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and Downstream Boundary Nodes with the Finite Element Method Applied to the Conservative Form of the Reactive Transport Equations for the Upstream Flux Boundaries
	3.7.5.1 Fully-Implicit Scheme
	3.7.5.2 Mixed Predictor-Corrector and Operator-Splitting Method
	3.7.5.3 Operator-Splitting Approach

	3.7.6 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and Downstream Boundary Nodes with the Finite Element Method Applied to the Advective Form of the Reactive Transport Equations for the Upstream Flux Boundaries
	3.7.6.1 Fully-Implicit Scheme
	3.7.6.2 Mixed Predictor-Corrector and Operator-Splitting Method
	3.7.6.3 Operator-Splitting Approach

	3.8 Numerical Implementation of Reactive Transport Coupling among Various Media
	3.8.1 Coupling between 1D-River and 2D-Overland Water Quality Transport
	3.8.2 Coupling between 2D-Overalnd and 3D-Subsurface Water Quality Transport
	3.8.3 Coupling between 3-D Subsurface and 1-D Surface Flows
	3.8.4 Coupling Among River, Overland, and Subsurface Flows

	3.9 Vastly Different Time Scales among Various Media

	Figure 3.9.8 1D-2D-3D Coupling StructureN.pdf
	Page-1�

