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3 NUMERICAL APPROACHES 

 
In this chapter, we are to present the numerical approaches employed to solve the governing 
equations of flow and transport given in the previous section.  In our model, transport is assumed not 
to influence flow.  Three time scales are considered in the model.  They are (1) for three-dimensional 
subsurface flow, (2) for three-dimensional subsurface transport and two-dimensional overland 
flow/transport, and (3) for one-dimensional river/stream/canal flow/transport.  In general, a three-
dimensional flow time step may include several two-dimensional flow time steps and a two-
dimensional flow time step can cover many one-dimensional flow time steps.  The time scale for 
three-dimensional subsurface transport is set to be the same as that for two-dimensional overland 
flow/transport because kinetic chemical reactions are taken into account.  During each three-
dimensional flow time step, we solve three-dimensional subsurface flow by employing the updated 
two-dimensional flow conditions to achieve the surface/subsurface interface boundary conditions 
and determine the infiltration/seepage for two-dimensional flow computation included in this three-
dimensional flow time step.  During each two-dimensional flow time step, we first solve three-
dimensional reactive chemical transport with the updated two-dimensional transport result (i.e., at 
the previous time) used for implementing variable boundary conditions on the interface boundary 
and determine the dissolve chemical flux through the surface/subsurface interface.  This flux is 
actually the source/sink to two-dimensional dissolve chemical transport through infiltration/seepage. 
 Then we solve two-dimensional flow equations to determine the water stage/depth and velocity of 
overland flow.  Finally, we solve two-dimensional reactive chemical transport equations for the 
distribution of dissolved chemicals, sediments, and particulate chemicals.  Within a one-dimensional 
flow time step, the river/stream flow equations are solved first and the one-dimensional transport 
equations are solved by using the newly-computed flow results.  The interaction between one-
dimensional river/stream and two-dimenional overland flow/transport is taken into account by using 
the updated computational results.  Depth or stage difference-dependent fluxes are employed to 
determine the flow through this one-dimensional/two-dimensional interface. 
 
 

3.1 Solving One-Dimensional River/Stream/Canal Network Flow Equations 
 
As mentioned earlier in this report, we desire to implement a hybrid model to accurately simulate 
surface water flow under a wide range of physical conditions though it is still under investigation 
and further study is required.  In our investigation to date, we would apply the hybrid Lagrangian-
Eulerian finite element method to solve dynamical wave models, the hybrid Lagrangian-Eulerian or 
conventional finite element method to solve diffusion wave models, and the semi-Lagrangian 
method for kinematic wave models.  In this and the next subsections, we will present the numerical 
approaches used in the method of characteristics and the Lagrangian approach for solving the one-
dimensional river/stream/canal flow and two-dimensional overland flow equations, respectively.  In 
either approach, the Picard method is employed to deal with the nonlinearity. 
 
3.1.1 The Lagrangian-Eulerian Finite Element Method for Dynamic Wave 
 
Substituting Equations (2.1.10) through (2.1.12) into Equations (2.1.19) and (2.1.20) and rearranging 



 3-2

the resulting equations, we obtain 
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where D is the diffusive transport of waves, K+ is the decay coefficient of the positive gravity wave, 
S+ is the source/sink of the positive wave, K- is the decay coefficient of the negative gravity wave, 
and S- is the source/sink of the negative wave. 
 
Integrating Equations (3.1.1) and (3.1.2) along their respective characteristic lines from xi at new 
time-level to xi1

* and xi2
* (Fig. 3.1-1), we obtain 
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where (referring to Figure 3.1-1) Vi, ωi are the values of V and ω at xi (xi = coordinate of  node i) at 
new time level; Vi1

* and ωi1
* are the values of V and ω point xi1

* (where xi1
* is the location of a 

fictitious particle backward tracked from xi along the first characteristics); Δτ1 is the time determined 
by backward tracking along the first characteristic;  Di is the value of D at node i at new time level; 
Di1

* is the value of D at point xi1
*; (K+)i and (S+)i are the values of K+ and S+, respectively at node i 
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at new time level; (K+)i1
* and (S+)i1

* are the values of K+ and S+, respectively at node xi1
* ; N is the 

number of nodes; Vi2
* and ωi2

* are the values of V and ω point xi2
* (where xi2

* is the location of a 
fictitious particle backward tracked from xi along the second characteristics); Δτ2 is the time 
determined by backward tracking along the second characteristic; Di2

* is the value of D at point xi2
*; 

(K-)i and (S-)i are the values of K- and S-, respectively at node i at new time level; and (K)i2
* and (S-)i2

* 
are the values of K- and S-, respectively at node xi2

*. 
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Fig. 3.1-1.  Backward Tracking along Characteristics in One Dimension. 

 
 

In Equations (3.1.7) and (3.1.8), the primitive variables at the backward tracked location are 
interpolated with those at the global nodes at both new time and old time as 
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in which the superscript (n) denotes time level (n); k1
(i) and k2

(i) are the two nodes of the element in 
which the backward tracking from node i, along the first characteristic, stops;  j1

(i) and j2
(i) are the 

two nodes of the element in which the backward tracking from node i, along the second 
characteristic, stops; a1(i), a2(i), a3(i), a4(i), b1(i), b2(i), b3(i), and b4(i) are the interpolation parameters 
associated with the backtracking of the i-th node, all in the range of [0,1].  It should be noted that we 
may use two given parameters to determine where to stop in the backward tracking: one is for 
controlling tracking time and the other one is for controlling tracking distance.  After the primitive 
variables at the backward tracked points are interpolated, all other parameters (such as the decay 
coefficients and source/sink terms) are functions of these variables and can be calculated. 
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To compute the eddy diffusion terms Di, we rewrite the first equation in Equation (3.1.3) as 
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in which the momentum flux due to turbulence is modeled with the eddy diffusion hypothesis.  
Applying the Galerkin finite element method to Equation (3.1.13), we obtain the following matrix 
equation for D as 
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where Ni and Nj, functions of x, are the base functions of nodes at xi and xj, respectively. 
 
Lumping the matrix [a], we can solve Eq. (3.1.14) for Di as follows 
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Following the identical procedure that leads Eq. (3.1.13) to Eq. (3.1.19), we have 
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where {F(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {F}, {a} and {b}, respectively. 
Similar to Eqs. (3.1.9) and (3.1.10), Di1

* and Di2
* at the backward tracked location are interpolated 

with {D} and {D(n)} as 
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Substituting Equations (3.1.9) through (3.1.12) and Equations (3.1.19) through (3.1.22) into 
Equations (3.1.7) and (3.1.8) and implementing boundary conditions given Section 2.1.1, we obtain 
a system of 2N simultaneous algebraic equations for the 2N unknowns (Vi for i = 1, 2, .., N and ωi for 
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i = 1, 2, .., N).  If the eddy diffusion terms are not included and the backward tracking is performed 
to reach the time level n (Fig. 3.1-2), then Eqs. (3.1.7) and (3.1.8) are reduced to a set of N 
decoupled pairs of equations as 
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Equation (3.1.23) ) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there are several possibilities: (1) both equations in Eq. (3.1.23) are replaced with 
two boundary equations, (2) one of the two equations is replaced with a boundary condition equation 
while the other remains unchanged, and (3) both equations stay valid.  These conditions are 
addressed below. 
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Fig. 3.1-2.  Backward Tracking along Characteristics to the Toot in One Dimension. 

 
 
Open upstream boundary condition: 
 
If the flow is supercritical, Eq. (3.1.23) is replaced with 
 

( ) upiiciiupii MAhgAVandQAV =+= 2  (3.1.25)
 

where Vi the cross-sectionally averaged velocity at node i, Ai is the cross-sectional area at node i, Qup 
is the flow rate of the incoming fluid from the upstream, (hc)i is the water depth to the centroid of the 
cross-sectional area at node i, and Mup is the momentum-impulse of the incoming fluid from the 
upstream.  It should be noted that both the water depth and velocity in the upstream must be 
measured to provide values of Qup and Mup.  Equation (3.1.25) provides two equations for the 
solution of Vi and hi.  If the flow is critical, Eq. (3.1.23) for the boundary point i is replaced with 
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where Bi is the top width of the cross-section at node i.  Equation (3.1.26) provides two equations to 
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solve for Vi and hi.  If the flow is subcritical, Eq. (3.1.23) is replaced with 
 

upiilii QAVandbaVa ==+ ω1211  (3.1.27)
 

which is solved for Vi and hi. 
 
Open downstream boundary condition: 
 
If the flow is supercritical, Eq. (3.1.23) is used to solve for Vi and hi on node i.  If the flow is critical, 
the following equation 
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is used to solve for Vi and hi.  If the flow is subcritical, the following equation is used to solve for Vi 
and hi 
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where Qdn(h), a function of h, is the rating curve function for the downstream boundary and hdn(t), a 
function of t, is the water depth at the downstream boundary.  The adaption of Eq. (3.1.29) depends 
on the physical configuration at the boundary. 
 
Closed upstream boundary condition: 
 
If the flow is supercritical or critical, Eq. (3.1.23) is replaced with Vi = 0 and hi = 0.  If the flow is 
subcritical, Vi = 0 and the second equation in Eq. (3.1.23) is used to calculate hi. 
 
Closed downstream boundary conditions: 
 
At the closed downstream boundary, physical condition dictates that the velocity at the boundary is 
zero.  Therefore, supercritical flow cannot occur because c is greater or equal to zero.   For critical 
flow, Vi = 0 and hi = 0 at the closed boundary point xi.  For the subcritical flow, Vi = 0 and the first 
equation in Eq. (3.1.23) is used to calculate hi. 
 
Natural internal boundary condition at junctions: 
 
For example, consider the junction node J joined by three reaches (Fig. 3.1-3), we have one 
unknown: the water surface elevation or the stage, HJ.  The governing equation for this junction is 
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for the case when the storage effect of the junction is accounted for, or 
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for the case when the storage effect of the junction is small. 
 
For the node IJ, we need to set up two equations for VIJ and hIJ.  Let us say that node IJ is a 
downstream point if the flow is from the node IJ toward the junction J.  On the other hand, we say 
that the node IJ is an upstream point if the flow is from the junction J toward the node IJ.  Now we 
can set up two equations for each node IJ.  This is demonstrated as follows. 
 

J

1J 2J

3J

1 2

3
 

Fig. 3.1-3.  A Three-Reach Junction 
 
 
If IJ is a downstream point, we have three cases to consider: 
 
(1). Subcritical flow – 
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(2). Supercritical flow – 
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(3). Critical flow – 
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If IJ is an upstream point, we have three cases to consider: 
 
(1) Subcritical flow - 
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(2). Supercritical flow – 
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(3). Critical flow – 
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Equation (3.1.30) or (3.1.31) and for I =1, 2, and 3, one of Eqs. (3.1.32) through (3.1.37) form 7 
equations that can be solved for 7 unknowns V1J, h1J, V2J, h2J, V3J, h3J, and HJ.  In theory, a 
substitution of the governing equations for the internal junction nodes into Eq. (3.1.30) or (3.1.31) 
eliminates all VIJ and hIJ, and the reduced Eq. (3.1.30) or (3.1.31) relates HJ to all unknowns at nodes 
other than that at node IJ.  However, in practice, the 7 junction equations are solved simultaneously 
with all other discretized algebraic equations.  
 
Controlled internal boundary condition at weirs: 
 
For any weir (W), there are two river/stream/canal reaches connecting to it.  The node 1W located at 
the boundary between the 1th reach and the Wth weir is termed the controlled internal boundary of the 
first reach while the node 2W is called the controlled internal boundary of the second reach (Fig. 3.1-
4).  The specification of boundary conditions for the internal boundaries separated by a weir requires 
elaboration. 
 

W

1W 2W
Reach 1 Reach 2

 
Fig. 3.1-4.  A Flow-Control Weir 

 
 

The flow configuration around the weir and its surrounding reaches may be very dynamic under 
transient flows.  Both of the water stages at nodes 1W and 2W (H1W and H2W) may be below the weir, 
both may be above the weir, or one below the weir while the other is above the weir (Fig. 3.1-5).   
Governing equations of flow at internal boundary nodes 1W and 2W depend on the changing 
dynamics of water stages around the weir.  When both stages H1W and H2W are below the height of 
the weir, the two reaches connecting the weir are decoupled.  When at least one of the stages is 
above the weir, two reaches are either sequentially coupled or fully coupled via the weir.  Here for 
sake of simplicity of discussions, we assume that the flow direction is from Reach 1 to Reach 2.  In 
other words, Reach 1 is an upstream reach and Reach 2 is a downstream reach.  If the flow direction 
is reversed, we can have the boundary condition similarly prescribed. 
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Flow Separating Weir
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hW

 
Fig. 3.1-5.  Flow Configurations around a Weir. 

 
There five unknowns, V1W (velocity of the upstream reach node 1W), h1W (the water depth of the 
upstream node 1W), QW (flow rate over the weir), V2W (the velocity of the downstream reach node 
2W), and h2W (the water depth of the downstream node 2W); five equations must be set up for this 
weir complex consisting of a upstream reach node, a weir, and a downstream node. The governing 
equations for these five unknowns can be obtained depending on the flow conditions at the upstream 
and downstream reaches separated by a weir.  The flow condition can be supercritical, critical, or 
subcritical at node 1W and node 2W.  There are nine combinations.  Five governing equations for 
each combination are given below. 
 
Case 1: Supercritical flow at node 1W and supercritical flow at 2W (slowly varying flow) 
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where hLW is the head loss between nodes 1W and 2W and FW is the force exerted by the weir 
between nodes 1W and 2W.  For this case, the computation is straightforward.  First Eq. (3.1.38), 
which constitutes two equations for two unknowns V1W and h1W, is used to solve for these two 
unknowns.  Then the flow rate through the weir, QW, and the momentum-impulse and energy line at 
point 1W, M1W and H1W, are simply calculated with Eq. (3.1.39).  Finally, either the first two 
equations or the last two equations in Eq. (3.1.40) constitute two equations for two unknowns V2W 
and h2W.  These two unknowns are obtained by solving either first two equations or the last two 
equations in Eq. (3.1.40). 
 
Case 2: Supercritical flow at node 1W and critical flow at 2W 
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21221211112111 baVaandbaVa WWWW =−=+ ωω  (3.1.41)
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For this case, the computation is straightforward.  First Eq. (3.1.41), which constitutes two equations 
for two unknowns V1W and h1W, is used to solve for these two unknowns.  Then the flow rate through 
the weir QW is simply calculated with Eq. (3.1.42).  Finally, Equation (3.1.43) constitutes two 
equations for two unknowns V2W and h2W.  These two unknowns are obtained by solving the two 
equations in Eq. (3.1.43). 
 
Case 3: Supercritical flow at node 1W and subcritical flow at 2W (Hydraulic Jump) 
 

11 1 12 1 1 21 1 22 1 2W W W Wa V a b and a V a bω ω+ = − =  (3.1.44)
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WWWWW QAuandbaVa ==− 222222221 ω  (3.1.46)
 

For this case, the computation is straightforward.  First Eq. (3.1.44), which constitutes two equations 
for two unknowns V1W and h1W, is used to solve for these two unknowns.  Then the flow rate through 
the weir QW is simply calculated with Eq. (3.1.45).  Finally, Equation (3.1.46) constitutes two 
equations for two unknowns V2W and h2W.  These two unknowns are obtained by solving the two 
equations in Eq. (3.1.46). 
 
Case 4: Critical flow at node 1W and supercritical flow at 2W 
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For this case, the computation is straightforward.  First Eq. (3.1.47), which constitutes two equations 
for two unknowns V1W and h1W, is used to solve for these two unknowns.  Then the flow rate through 
the weir QW and the momentum-impulse and energy line at point 1W, M1W and H1W, are simply 
calculated with Eq. (3.1.48).   Finally, either the first two equations or the last two equations in Eq. 
(3.1.49) constitute two equations for two unknowns V2W and h2W.  These two unknowns are obtained 
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by solving either two equations or the last two equations in Eq. (3.1.49). 
 
Case 5: Critical flow at node 1W and critical flow at 2W 
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WWW AVQ 11=  (3.1.51)
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For this case, the computation is straightforward.  First Eq. (3.1.50), which constitutes two equations 
for two unknowns V1W and h1W, is used to solve for these two unknowns.  Then the flow rate through 
the weir QW is simply calculated with Eq. (3.1.51).  Finally, Equation (3.1.52) constitutes two 
equations for two unknowns V2W and h2W.  These two unknowns are obtained by solving the two 
equations in Eq. (3.1.52). 
 
Case 6: Critical flow at node 1W and subcritical flow at 2W (Hydraulic Jump) 
 

,13
1

1
2

1
1112111 ==+

W

WW
WW gA

BQandbaVa ω  (3.1.53)

 

WWW AVQ 11=  (3.1.54)
 

WWWWW QAVandbaVa ==− 222222221 ω  (3.1.55)
 
For this case, the computation is straightforward.  First Eq. (3.1.53), which constitutes two equations 
for two unknowns V1W and h1W, is used to solve for these two unknowns.  Then the flow rate through 
the weir QW is simply calculated with Eq. (3.1.54).  Finally, Equation (3.1.46) constitutes two 
equations for two unknowns V2W and h2W.  These two unknowns are obtained by solving the two 
equations in Eq. (3.1.55). 
 
Case 7: Subcritical flow at node 1W and Supercritical flow at 2W (Critical must occur at the 

weir) 
 

0QAV,baVa WW1W11W112W111 =−=ω+  (3.1.56)
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where hL1W is the head loss between the weir and node 1W, F1W is the force exerted by the weir 
between the weir and node 1W, hL2W is the head loss between the weir and node 2W, and F2W is the 
force exerted by the weir between the weir and node 2W.  For this case, in addition to the five 
unknowns, V1W, h1W, QW, V2W, and h2W, two more unknowns, hW and VW, appear in Eqs. (3.1.56) 
through (3.1.58).  These seven unknowns are obtained by solving seven simultaneous equations 
contained in Eqs. (3.1.56) through (3.1.58). 
 
Case 8: Subcritical flow at node 1W and critical flow at 2W 
 

0QAV,baVa WW1W11W112W111 =−=ω+  (3.1.59)
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(3.1.60

 
For this case, five equations in Eqs. (3.1.59) and (3.1.60) are solved for the five unknowns, V1W, h1W, 
QW, V2W, and h2W. 
 
Case 9: Subcritical flow at node 1W and Subcritical flow at 2W (slowly varying flow) 
 

0QAV,baVa WW1W11W112W111 =−=ω+  (3.1.61)
 

( ) ( )

21 2 22 2 2 2 2

2 2
2 1

2 2 1 1

2 2 2 2 2 1 1 1 1 1

, 0

2 2

W W W W W

W W
W o W LW W o W

W W W Wc W W W W W Wc W

a V a b V A Q
and

V Vh Z h h Z
g g

or
V A V gh A F V A V gh A

ω

ρ ρ

− = − =

+ + + = + +

+ + = +

 (3.1.62)

 
For this case, five equations in Eqs. (3.1.59) and (3.1.60) are solved for the five unknowns, V1W, h1W, 
QW, V2W, and h2W 
 
Controlled internal boundary condition at Gates: 
 
For any gate (G), there are two river/stream/canal reaches connecting to it.  The node 1G located at 
the boundary between the 1th reach and the Gth gate is termed the controlled internal boundary of the 
first reach while the node 2G is called the controlled internal boundary of the second reach (Fig. 3.1-
6).  The specification of boundary conditions for the internal boundaries separated by a gate can be 
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made similar to that of a weir. 
 

G

1G 2G

Reach 1 Reach 2

Gate

 
Fig. 3.1-6.  A Flow-Control Gate. 

 
 
The flow configuration around the gate and its surrounding reaches may be very dynamic under 
transient flows.  Depending on the water stages at nodes 1G and 2G (H1G and H2G), we have several 
configurations (Fig. 3.1-7).  Governing equations for flow at nodes 1G and 2G and through the gate 
depend on the changing dynamics of water stages around the gate.  These equations can be obtained 
identical to those for a weir by changing the letter from W to G.  Similar approaches can be used for 
culverts change the letter from W to C (for culverts).  The only differences among various types of 
structures are the formulation of energy losses over the structures and/or the formulation of forces 
exerting on the fluids by the structures. 
 

h1G

Free flow, not influenced by gate opening

hG

h2G
hGh1G h2G

hG
h1G h2G

hG
h1G h2G hG

h1G h2G

Submerged  flow, not influenced by gate opening

Free flow, but influenced by gate opening
Submerged flow, influenced by gate opening Decoupled flow

 
Fig. 3.1-7.  Flow Configurations around a Gate. 

 
 
3.1.2 Numerical Approximations of Diffusive Wave Approaches. 
 
Two options are provided in this report to solve the diffusive wave flow equations.  One is the finite 
element method and the other is the particle tracking method. 
 
3.1.2.1 Galerkin Finite Element Method.  Recall the diffusive wave is governed by Eq. (2.1.47) 
which is repeated here as 
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Applying the Galerkin finite element method to Eq. (3.1.63), we obtain the following matrix 
equation. 
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where Ni and Nj are the base functions of nodes at xi and xj, respectively; n is the unit outward 
direction, n = 1 at a downstream point and n = -1 at an upstream point; [M] is the mass matrix, [S] is 
the stiff matrix, {H} is the solution vector of H, {Qρw} is the load vector due to density and wind 
stress effects, {QB} is the flow rate through the boundary nodes of a river/stream/canal reach, {QS} 
is the flow rate from artificial source/sink, {QR} is the flow rate from rainfall, {QE} is the flow rate 
due evapotranspiration, {QI} is the flow rate to infiltration, {Q1} is the flow rate from overland flow 
via river bank 1, and {Q2} is the flow rate from overland flow via river bank 2.  It should be noted 
that {QI} is the interaction between the river/stream/canal reach and subsurface flows and {Q1} and 
{Q2} between the river/stream/canal (via bank 1 and bank 2) and overland flows. 
 
Approximating the time derivative term in Eq. (3.1.64) with a time-weighted finite difference, we 
reduce the diffusive equation and its boundary conditions to the following matrix equation 
 

[ ]{ } { } { } { } { } { }1 2B IC H L Q Q Q Q= + + + +  (3.1.67)
in which 

[ ] [ ] [ ] { } [ ] [ ]( ) ( ){ } { } { } { } { }, 1 n
w S R E

M M
C S L S H Q Q Q Q

t t ρθ θ
⎛ ⎞

= + = − − + + + −⎜ ⎟Δ Δ⎝ ⎠
 (3.1.68)

 

where [C] is the coefficient matrix, {L} is the load vector from initial condition, density and wind 
effects, artificial sink/sources, rainfall, and evapotranspiration; Δt is the time step size; θ is the time 
weighting factor; and {H(n)} is the value of {H} at old time level n.  The global and internal 
boundary (junctions, weirs, and gates) conditions must be used to provide {QB} in Eq. (3.1.67).  The 
interaction between the overland and river/stream/canal flows must be implemented to evaluate {Q1} 
and {Q2}; and the interaction between the subsurface and river/stream/canal flows must be 
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implemented to calculate {QI}.  The interactions will be addressed in Section 3.4. 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.1.67) is 
 

, 1 1 , 1 1 2I I I I I I BI II I IC H C H L Q Q Q Q− − + = + + + +  (3.1.69)
 

where (I-1) is the corresponding interior node of the node I.  In the above equation there are two 
unknowns HI and QBI; either HI or QBI, or the relationship between HI and QBI must be specified.  
The numerical implementation of these boundary conditions are described as follows. 
 
Dirichlet-boundary condition: prescribed water depth or state 
 
If HI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,I-1, CI,I, 
CI,I+1) and  right-hand side (LI, QII, Q1I, Q2I) obtained before the implementation of boundary 
conditions for this equation are stored in a temporary array, then an identity equation is created as 
 

DIdI NIHH ∈= ,  (3.1.70)
 

where HId is the prescribed total head on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving these unknowns, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Hi’s.  After Hi’s are obtained, Eq. (3.1.69) is then 
used to back calculate ND QBI’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Hi’s 
accurately except for roundoff errors.  However, if an iterative solver is used, a stopping criteria 
must be strict enough so that the converged solution of N Hi’s are accurate enough to the exact 
solution.  With such accurate Hi’s, then one can be sure that the back-calculated ND QBI’s are 
accurate.  
 
Flux boundary condition: prescribed flow rate 
 
If QBI is given (flux boundary condition), all coefficients (CI,I-1, CI,I, CI,I+1) and  right-hand side (LI, 
QII, Q1I, Q2I) obtained before the implementation of boundary conditions for this equation are stored 
in a temporary array, then Eq. (3.1.69) is modified to incorporate the boundary conditions and used 
to solve for HI.  The modification of Eq. (3.1.69) is straightforward. Because QBI is a known 
quantity, it contributes to the load on the right hand side.  This type of boundary conditions is very 
easy to implement.  After Hi’s are obtained, the original Eq. (3.1.69), which is stored in a temporary 
array, is used to back calculate NC QBI’s on flux boundaries (where NC is the number of flux 
boundary nodes).  These back-calculated QBI’s should be theoretically identical to the input QBI’s.  
However, because of round-off errors (in the case of direct solvers) or because of stopping criteria 
(in the case of iterative solvers), the back-calculated QBI’s will be slightly different from the input 
QBI’s.  If the differences between the two are significant, it is an indication that the solvers have not 
yielded accurate solutions. 
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Water depth-dependent boundary condition: prescribed rating curve 
 
If the relationship is given between QBI and HI (rating curve boundary condition), all coefficients 
(CI,I-1, CI,I, CI,I+1) and right-hand side (LI, QII, Q1I, Q2I) obtained before the implementation of 
boundary conditions for this equation are stored in a temporary array, then Eq. (3.1.69) is modified 
to incorporate the boundary conditions and used to solve for HI.  The rating-relationship is used to 
eliminate one of the unknowns, say QBI, and the modified Eq. (3.1.69) is used to solve for, say HI.  
After HI is solved, the original Eq. (3.1.69) (recall the original Eq. (3.1.69) must be and has been 
stored in a temporary array) is used to back-calculate QBI. 
 
Junction boundary condition: 
 
If the node IJ is an internal node that connects a junction J, then node IJ is treated as an internal 
boundary node.  For example, consider three reaches with three internal nodes connecting to the 
junction J (Fig. 3.1-8).   After applying the finite element method to Eq. (3.1.63), we have a total of 
(1J + 2J + 3J) algebraic equations.  The algebraic equations for Nodes 1J, 2J, and 3J can be written 
based on Eq. (3.1.69) 
 

J

1J 2J

3J

1J-1 2J-1

3J-1
 

Fig. 3.1-8.  A Three-Reach Junction 
 
 

1 1 1 1 1 1 1 1 1
1 ,1 1 1 1 1 ,1 1 1 1 1 11 21J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + +  (3.1.71)

 
2 2 2 2 2 2 2 2 2

2 ,2 1 2 1 2 ,2 2 2 2 2 12 22J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + +  (3.1.72)
 

3 3 3 3 3 3 3 3 3
3 ,3 1 3 1 3 ,3 3 3 3 3 13 23J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + +  (3.1.73)

 

where the superscript denotes the reach number and subscript denotes local node number in a reach, 
for example, H1J

1 denotes the total head at the 1J-th node in Reach 1.  For a convenient discussion, 
let us associate each of the unknowns, H1

1, …, H1J-1
1 to each of the 1J-1 finite element equations in 

Reach 1.  Similarly, we associate each of the unknowns, H1
2, ..,  H2J-2

2 to each of the 2J-1 finite 
element equations in Reach 2 and each of the unknowns and H1

3, ..,  H3J-1
3 to each of the 3J-1 finite 

element equations in Reach 3.  The unknown, Q1J
1, Q2J

2, and Q3J
3, are absent from these (1J-1 + 2J-

1 + 3J-1) equations.  In other words, we can say each equation governs one unknown.  However, 
two unknowns, H1J

1 and Q1J
1, appear in Eq. (3.1.71).  Similarly, Equation (3.1.72) has two 

unknowns, H2J
2 and Q2J

2, and Equation (3.1.73) has two unknowns, H3J
3 and Q3J

3.  The number of 
unknowns, (1J + 2J + 3J) total heads and Q1J

1, Q2J
2, and Q3J

3, is more than the number of equations, 
(1J + 2J + 3J) finite element equations.  Three more governing equations must be set up, which can 
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be obtained based on the continuity of energy lines.  This is described as follows. 
 
Assume the entrance loss to the junction and exit loss from the junction are negligible, we have the 
following three equations 
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where A1J
1, A2J

2, and A3J
3 are the cross-sectional area at Nodes 1J of Reach 1, Node 2J of Reach 2, 

and Node 3J of Reach 3, respectively; hJ is the water depth at the Junction J; and ZoJ is the bottom 
elevation at the Junction J.  It is noted that the second terms on the left hand side of Eqs. (3.1.74) 
through (3.1.76) are generally ignored in computation implementation to give more robust solutions. 
 
The water depth at Junction J is not decoupled from river/stream/canal reaches.  The water budget 
equation for the Junction J is 
 

3

1

i
iJ J

iJ
iJ

dV dh Q
dh dt

=

=

= ∑  (3.1.77)

 
When J

J

dV
dh

is small, the water budget Eq. (3.1.77) is not employed.  Instead, the following equation, 

resulting from the requirement that the summation of flow rates is equal to zero, is used 
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Equations (3.1.71) through (3.1.76) and Eq. (3.1.77) or Eq. (3.1.78) constitute 7 equations for seven 
unknowns, A1J

1, A2J
2, A3J

3, Q1J
1, Q2J

2, Q3J
3, and hJ.  If there are NJ junctions, there will be NJ blocks 

of seven equations.  These NJ blocks of equations should be solved iteratively along with NR block of 
finite element equations where NR is the number of reaches.  In other words, the whole system of 
algebraic equations can be solved with block iterations.  Each block of equations can be solved 
directly.  For example, each of NR block of finite element equations can be solved with an efficient 
tri-diagonal matrix solver such as the Thomas algorithm.  Each of the NJ block of seven equations 
can be solved with the Gaussian direct elimination with full pivoting. 
 
Control Structure Boundary Condition: 
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The control structures may include weirs, gates, culverts, etc.  For the two internal boundary nodes 
separated by a weir (Fig. 3.1-9), Q1W = Q2W = QW, where QW is given by 
 

)(
3
2

121212 WeirSubmergedhhhifhhhBCQ WWWWWWWWW >>−=  (3.1.79)
 

)(
3
2

33
2

1211 WeirFallFreehhifhhBCQ WWWWWWW <=  (3.1.80)
 

where CW is the weir coefficient, BW is the weir width [L].  The flow rate QW is equal to zero when 
both the upstream and downstream stages are below the weir elevation. 

 

h1W h2W

Sumerged Weir

hW h2W
h1W

Free Fall Weir

hW

 
Fig. 3.1-9.  Submerged versus Free Fall Weir. 

 
 
Similarly, for two internal boundary nodes separated by a gate, Q1G = Q2G = QG.  When the flow 
is not influenced by the gate opening (Fig. 3.1-10), the flow rate is given by 

 

h1G

Free flow, not influenced by gate opening

hG

h2G
hGh1G h2G

Submerged  flow, not influenced by gate opening  
Fig. 3.1-10.  Gate Opening Does Not Affect Flow. 
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where CG is the gate coefficient and BG is the gate width [L].  When the gate opening affects the 
flow (Fig. 3.1-11), the flow rate is given by 
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GGGGGGGGGGG hhandhhhifhhhBCQ 112121 3
2

3
2

<>>−=  (3.1.84)

 
 

hG
h1G h2G

hG
h1G h2G

Free flow, but influenced by gate opening
Submerged flow, influenced by gate opening

 
Fig. 3.1-11.  Gate Opening Affects Flow. 

 
For two internal boundary nodes separated by a culvert, Q1C = Q2C = QC.  Various formulae for QC 
can be found in the literature. 
 
3.1.2.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the diffusive wave equation, instead of Eq. (3.1.63), 
using the definition of Q = VA, we expand Eq. (2.1.1) to yield following diffusive wave equation in 
the Lagrangian form 
 

1 2
V

S R E I
D A VKA S S S S S S where K
D xτ

∂
+ = + − + + + =

∂
 (3.1.85)

 
To use the semi-Lagrangian method to solve the diffusive wave equation, we integrate Eq. (3.1.85) 
along its characteristic line from xi at new time level to xi

* at old time level or on the boundary (Fig. 
3.1-12), we obtain 
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Fig. 3.1-12.  Backward Particle Tracking in One Dimension. 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed (Fig. 3.1-12); Ki

(n+1), Ai
(n+1), SSi

(n+1), SRi
(n+1), SEi

(n+1), SIi
(n+1), S1i

(n+1), and S2i
(n+1) 

respectively, are the values of K, A, SS, SR, SE, SI, S1, and S2, respectively, at xi at new time level t = 
(n+1)Δt; and Ki

*, Ai
*, SSi

*, SRi
*, SEi

*, SIi
*, S1i

*, and S2i
*, respectively, are the values of K, A, SS, SR, SE, 

SI, S1, and S2, respectively, at the location xi
*.  Since the velocity V and the decay coefficient K are 

functions of A, this is a nonlinear hyperbolic problem.  Equation (3.1.86) is solved iteratively to 
yield the cross-sectional area A, and hence the water depth h.  The iteration procedure is outlined as 
follows: 
 

(i)  Given the value of A(k) at the k-th iteration, compute h and H. 
(ii)  Apply finite element method to the following equation to obtain V 
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(iii)  Perform particle tracking to locate x* and obtain all the *-superscripted quantities. 
(iv)  Apply the finite element method to the following equation to obtain K 

 

x
VK

∂
∂

=  (3.1.88)
 

(v)  Solve Eq. (3.1.86) along with the boundary condition to obtain new A(k+1) 
(vi)  Check if A(k+1) converges, if yes go to the next time step. 
(vii)  If A(k+1) does not converge,  update A with A(k)  ←  ωA(k+1) + (1-ω)A(k) and repeat 

Steps (i) through (vi). 
 
When the wave is transported out of the region at a boundary node (i.e., when N•V ≥ 0), a boundary 
condition is not needed.  When the wave is transported into the region at a node (i.e., when N•V < 
0), a boundary condition must be specified.  As in the Galerkin finite element method, three types of 
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boundary conditions may be encountered. 
 
Dirichlet boundary condition: 
 
For the Dirichlet boundary, the water depth is prescribed, thus the cross sectional area, A, is 
computed from the relationship between the cross section area versus depth curve as 
 

DIdIDIdI NIAANIHH ∈=⇒∈= ,,  (3.1.89)
 
 
Flux boundary condition: 
 
For the flux boundary, the flow rate is prescribed as function of time at the boundary node, from 
which the boundary value is computed as 
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where Qup(t), a function of time t, is the prescribed flow rate [L3/t] and V(n+1,k) is the value of V at 
new time and previous iteration. 
 
Water depth-dependent boundary condition: prescribed rating curve 
 
For the boundary where a rating curve is used to describe the relationship between water depth, h, 
and the discharge, Q, the cross sectional area, A, on the boundary is computed with 
 

)()1(),1( hfAV nkn =++  (3.1.91)
 

where f(h) is the rating curve which is a function of h.  Equation (3.1.91) is solved iteratively to yield 
A(n+1). 
 
Junction Boundary Condition: 
 
If the node IJ is an internal boundary node that connects a junction J, then HIJ is a function of water 
depth, hIJ-1, of its immediately internal node and of water surface at the junction J, HJ.  This 
functional relationship is obtained by applying the finite element method to Eq. (3.1.63) to yield the 
governing equation for Node IJ similar to Eqs. (3.1.71) through (3.73) 
 

1 1 1 1 1 1 1 1 1
1 ,1 1 1 1 1 ,1 1 1 1 1 11 21J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + +  (3.1.92)

 
2 2 2 2 2 2 2 2 2

2 ,2 1 2 1 2 ,2 2 2 2 2 12 22J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + +  (3.1.93)
 

3 3 3 3 3 3 3 3 3
3 ,3 1 3 1 3 ,3 3 3 3 3 13 23J J J J J J J J I J J JC H C H L Q Q Q Q− − + = + + + +  (3.1.94)

 

where the superscript denotes the reach number and subscript denotes node number in a reach, for 
example, H1J

1 denotes the total head at the 1J-th node in Reach 1.  Equation (3.1.92) has two 
unknowns, H1J

1 and Q1J
1, the unknown H1J-1

1 is obtained by inverting A1J-1
1, which is obtained from 
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particle tracking in Reach 1.  Similarly, Equation (3.1.93) has two unknowns, H2J
2 and Q2J

2, and 
Equation (3.1.94) has two unknowns, H3J

3 and Q3J
3.  The number of unknowns (6) is more than the 

number of equations (3).  Three more governing equations must be set up, which can be obtained 
based on the continuity of energy lines.  This is described as follows. 
 
Assume the entrance loss to the junction and exit loss from the junction are negligible, we have the 
following three equations 
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where A1J
1, A2J

2, and A3J
3 are the cross-sectional area at Nodes 1J of Reach 1, Node 2J of Reach 2, 

and Node 3J of Reach 3, respectively; hJ is the water depth at the Junction J; and ZoJ is the bottom 
elevation at the Junction J.    It is noted that the second terms on the left hand side of Eqs. (3.1.95) 
through (3.1.97) are generally ignored in computation implementation to give more robust solutions. 
 
The water depth at Junction J is not decoupled from river/stream/canal reaches.  The water budget 
equation for the Junction J is 
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When J

J

dV
dh

 is small, the water budget Eq. (3.1.98) is not employed.  Instead, the following equation, 

resulting from the requirement that the summation of flow rates is equal to zero, is used 
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Equations (3.1.92) through (3.1.97) and Eq. (3.1.98) or Eq. (3.1.99) constitute 7 equations for seven 
unknowns, A1J

1, A2J
2, A3J

3, Q1J
1, Q2J

2, Q3J
3, and hJ.  These equations should be solved iteratively 

along with particle tracking for all internal nodes of the three reaches connecting the junction node J. 
 The seven linearized equations can be solved with the Gaussian direct elimination with full 
pivoting. 
 
Control structure boundary condition: 
 
To facilitate the implementation of internal boundary conditions of control structures, we discretize 
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the two internal boundary nodes of every structure with the finite element method.  Then we can 
implement the boundary conditions similar to that in finite element modeling of diffusive wave 
approaches. 
 
 
3.1.3 The Semi-Lagrangian Method for Kinematic Wave 
 
To use the Lagrangian method to solve the kinematic wave equation, Eq. (2.1.65) is rewritten in the 
Lagrangian form as follows 
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in which K is the decay coefficient of the wave and S is the source/sink of the wave.  Integrating Eq. 
(3.1.100) along its characteristic line from xi at new time level to xi

* (Fig. 3.1-12), we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed (Fig. 3.1-12); Ki

(n+1), Ai
(n+1), SSi

(n+1), SRi
(n+1), SEi

(n+1), SIi
(n+1), S1i

(n+1), and S2i
(n+1) 

respectively, are the values of K, A, SS, SR, SE, SI, S1, and S2, respectively, at xi at new time level t = 
(n+1)Δt; and Ki

*, Ai
*, SSi

*, SRi
*, SEi

*, SIi
*, S1i

*, and S2i
*, respectively, are the values of K, A, SS, SR, SE, 

SI, S1, and S2, respectively, at the location xi
*.  Because of density and wind effects, the velocity V 

and the decay coefficient K are functions of A, this is nonlinear problem.  However, because the 
nonlinearity due to density and wind effects are normally very weak, Equation (3.1.101) is 
considered a linear hyperbolic problem with the nonlinear effects evaluated using the values of A at 
previous time.  This equation is used to compute the cross-sectional area A, and hence the water 
depth h, at all nodes except for the upstream boundary node. 
 
Because the wave is transported into the region at an upstream node, a boundary condition must be 
specified.  The flow rate is normally given as a function of time at an upstream node, from which the 
boundary value is computed as 
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where Qup(t), a function of time t, is the prescribed flow rate [L3/t]. 
 
 
3.1.4 Numerical Approximations of Thermal Transport 
 
Two options are provided in this report to solve the thermal transport equation.  One is the finite 
element method and the other is the particle tracking method. 
 
3.1.4.1 Finite Element Method.  Recall the thermal transport equation is governed by Eq. (2.1.67) 
which is rewritten in a slightly different form as 
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Applying the finite element method to Eq. (3.1.103), we obtain the following matrix equation 
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where Wi(x) is the weighting function of node at xi; Ni(x) and Nj(x), functions of x, are the base 
functions of nodes at xi and xj, respectively; [M] is the mass matrix, [V] is the stiff matrix due to 
advective transport; [D] is the stiff matrix due to dispersion/diffusion/conduction; {T} is the solution 
vector of temperature; {ΦB} is the vector due to boundary conditions, which can contribute to load 
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vector and/or coefficient matrix; {Φa} is the load vector due to artificial energy source; {Φr} is the 
load vector due to energy in rainfall; {Φn} is the load vector due to net radiation; {Φb} is the vector 
due to backward radiation, which is a nonlinear function of temperature and contributes to both the 
load vector and coefficient matrix; {Φe} is the vector due to energy consumed for evaporation, 
which is a nonlinear function of temperature and contributes to both the load vector and coefficient 
matrix; {Φs} is the vector due to sensible heat, which is a linear function of temperature and 
contributes to both the load vector and coefficient matrix; {Φc} is the vector due to chemical 
reaction, which is not considered in this version, but can be added easily; {Φi} is the vector due to 
interaction with subsurface exfiltraing water; {Φo1} is the vector due to interaction with overland 
water via river bank 1; and {Φo2} is the vector due to interaction with overland water via river bank 
2. 
 
Approximating the time derivative term in Eq. (3.1.104) with a time-weighted finite difference, we 
reduce the advective-diffusive equation and its boundary conditions to the following matrix equation 
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where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial 
sink/sources, rainfall, and net radiation; Δt is the time step size; θ is the time weighting factor for the 
dispersion and linear terms; θv is the time weighting factor for the velocity term; and {T(n)} is the 
value of {T} at old time level n.  The global and internal boundary (junctions, weirs, and gates) 
conditions must be used to provide {ΦB} in Eq. (3.1.109).  The interaction between the overland and 
river/stream/canal flows must be implemented to evaluate {Φo1} and {Φo2}; and the interaction 
between the subsurface and river/stream/canal flows must be implemented to calculate {Φi}.  The 
interactions will be addressed in Section 3.4. 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.1.109) is 
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In the above equations there are two unknowns TI and ΦBI; either TI or ΦBI, or the relationship 
between TI and ΦBI must be specified.  The numerical implementation of these boundary conditions 
is described as follows. 
 
Direchlet boundary condition: prescribed temperature 
 
If TI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,I-1, CI,I, 
CI,I+1) and  right-hand side (LI, ΦI

b, ΦI
e, ΦI

s, ΦI
i, ΦI

o1, ΦI
o2) obtained before the implementation of 

boundary conditions for this equation are stored in a temporary array, then an identity equation is 
created as 
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DId NITT ∈= ,1  (3.1.112)
 

where TId is the prescribed temperature on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving these unknowns, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Ti’s.  After Ti’s for all nodes are solved from the 
matrix equation, Eq. (3.1.111) is then used to back calculate ND ΦBI’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Ti’s 
accurately except for roundoff errors.  However, if an iterative solver is used, stopping criteria must 
be strict enough so that the converged solutions of N Ti’s are accurate enough to the exact solution.  
With such accurate Ti’s, then can be sure that the back-calculated ND ΦBI’s are accurate.  
 
Cauchy boundary condition: prescribed heat flux 
 
If ΦBI is given (Cauchy flux boundary condition), all coefficients (CI,I-1, CI,I, CI,I+1) and  right-hand 
side (LI, ΦI

a, ΦI
r, ΦI

n, ΦI
i, ΦI

o1, ΦI
o2)  obtained before the implementation of boundary conditions for 

this equation are stored in a temporary array, then Eq. (3.1.111) is modified to incorporate the 
boundary conditions and used to solve for TI.  The modification of Eq. (3.1.111) is straightforward. 
Because ΦBI is a known quantity, it contributes to the load on the right hand side.  This type of 
boundary conditions is very easy to implement.  After Ti’s are obtained, the original Eq. (3.1.111), 
which is stored in a temporary array, is used to back calculate NC ΦBI’s on flux boundaries (where 
NC is the number of flux boundary nodes).  These back-calculated ΦBI’s should be theoretically 
identical to the input ΦBI’s.  However, because of round-off errors (in the case of direct solvers) or 
because of stopping criteria (in the case of iterative solvers), the back-calculated ΦBI’s will be 
slightly different from the input ΦBI’s.  If the differences between the two are significant, it is an 
indication that the solvers have not yielded accurate solutions. 
 
Neumann boundary condition: prescribed gradient of temperature 
 
At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature 
gradient is given.  For this case, all coefficients (CI,I-1, CI,I, CI,I+1) and  right-hand side (LI, ΦI

a, ΦI
r, 

ΦI
n, ΦI

i, ΦI
o1, ΦI

o2) obtained before the implementation of boundary conditions for this equation are 
stored in a temporary array, then Eq. (3.1.111) is modified to incorporate the boundary conditions 
and used to solve for TI.  For the Neumann boundary condition, ΦBI contributes to both the matrix 
coefficient and load vector, thus both the coefficient matrix [C] and the load vector {L} must be 
modified.  Recall 
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Apply this equation to Node I, we have 
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where nI is the unit outward normal vector at the boundary node I, ΦnbI is the Neumann boundary 
flux at node I.  Substitution of Eq. (3.1.114) into Eq. (3.1.111), we have the modified coefficient 
matrix and load vector; thus the modified Eq. (3.1.111).  This modified equation is used to solve TI.  
After TI is solved, the original Eq. (3.1.111) (recall the original Eq. (3.1.111) must be and has been 
stored in a temporary array) is used to back-calculate ΦBI. 
 
Variable Boundary Condition: 
 
At the variable boundary condition Node I, the implementation of boundary conditions can be made 
identical to that for a Cauchy boundary condition node if the flow is directed into the 
river/stream/canal reach.  If the flow is going out of the reach, the boundary condition is 
implemented similar to the implementation of Neuman boundary condition with ΦnbI = 0.  The 
assumption of zero Neumann flux implies that a Neuman node must be far away from the 
source/sink. 
 
Junction boundary condition: 
 
If the node IJ is an internal node that connects a junction J, then node IJ is treated as an internal 
boundary node.  For example, consider three reaches with three internal nodes connecting to the 
junction J (Fig. 3.1-8).   After applying the finite element method to Eq. (3.1.103), we have a total of 
(1J + 2J + 3J) algebraic equations.  The algebraic equations for Nodes 1J, 2J, and 3J can be written 
based on Eq. (3.1.111) 
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where the superscript denotes the reach number and subscript denotes local node number in a reach, 
for example, T1J

1 denotes the temperature at the 1J-th node in Reach 1.  For a convenient discussion, 
let us associate each of the unknowns, T1

1, - - T1J-1
1 to each of the 1J-1 finite element equations in 

Reach 1.  Similarly, we associate each of the unknowns, T1
2, - - T2J-2

2 to each of the 2J-1 finite 
element equations in Reach 2 and each of the unknowns and T1

3, - - T3J-1
3 to each of the 3J-1 finite 

element equations in Reach 3.  The unknown, Φ1J
1, Φ2J

2, and Φ3J
3, are absent from these (1J-1 + 2J-1 

+ 3J-1) equations.  In other words, we can say each equation governs one unknown.  However, two 
unknowns, T1J

1 and Φ1J
1, appear in Eq. (3.1.115).  Similarly, Equation (3.1.116) has two unknowns, 

T2J
2 and Φ2J

2, and Equation (3.1.117) has two unknowns, T3J
3 and Φ3J

3.   The number of unknowns, 
(1J + 2J + 3J) temperatures and Φ1J

1, Φ2J
2, and Φ3J

3, is more than the number of equations, (1J + 2J + 
3J) finite element equations.  Three more governing equations must be set up, which can be obtained 
with the assumption that the energy flux is due mainly to advection as 
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where Q1J
1, Q2J

2, and Q3J
3, respectively, are the volumetric flow rates from/to  Nodes 1J, 2J, and 3J, 

respectively, to/from the junction J [cf. Eqs. (3.1.71), (3.1.72), and (3.1.73), respectively]. 
 
Equations (3.1.118) through (3.1.120) introduce one additional unknown, TJ.  One additional 
equation must be set up which can be done based on the energy budget at the junction J.  The rate of 
change of energy at the junction J must be equal to the net energy rate from all reaches that join at J. 
  This energy budget can be written as 
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When the storage effect of the junction is small, the energy budget Eq. (3.1.121) is not employed.  
Instead, the following equation, resulting from the requirement that the summation of heat flux is 
equal to zero, is used 
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Equations (3.1.115) through (3.1.120) and Eq. (3.1.121) or Eq. (3.1.122) constitute 7 equations for 
seven unknowns, T1J

1, T2J
2, T3J

3, Φ1J
1, Φ2J

2, Φ3J
3, and TJ.  If there are NJ junctions, there will be NJ 

blocks of seven equations.  These NJ blocks of equations should be solved iteratively along with NR 
block of finite element equations where NR is the number of reaches.  In other words, the whole 
system of algebraic equations can be solved with block iterations.  Each block of equations can be 
solved directly.  For example, each of NR blocks of finite element equations can be solved with an 
efficient tri-diagonal matrix solver such as the Thomas algorithm.  Each of the NJ blocks of seven 
equations can be solved with the Gaussian direct elimination with full pivoting. 
 
Control structure boundary condition: 
 



 3-29

The control structures may include weirs, gates, culverts, etc.  For the two internal boundary nodes 
1S and 2S separated by a structure, the boundary conditions at these two nodes are given by 
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where Φ1S is the energy flux through node 1S; Φ2s is the energy flux through node 2S; and Q is the 
flow rate through the structure S;  sign(Q) is equal 1.0 if the flow is from node 1S to node 2S, -1.0 if 
flow is from node 2S to node 1S; T1S is the temperature at node 1S; and T2S is the temperature at 
node 2S. 
 
3.1.4.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the thermal transport equation, we expand Eq. 
(3.1.103) to yield following advection-dispersion equation in the Lagrangian form 
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To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq. 
(3.1.125) along its characteristic line from xi at new time level to xi

* (Fig. 3.1-12), we obtain 
 

( ) ( )
( ) ( ) ( ) Ni

DDTKTK

O
i

O
i

O
i

O
i

I
i

I
i

S
i

S
ii

n
iii

n
i

n
i

nnn

n

∈Φ+Φ
Δ

+Φ+Φ
Δ

+Φ+Φ
Δ

+

Φ+Φ
Δ

++
Δ

+⎟
⎠
⎞

⎜
⎝
⎛ Δ

−=⎟
⎠
⎞

⎜
⎝
⎛ Δ

+

+++

++++

,
222

222
1

2
1

*22*11*

**)1(**)1()1(

)1()1()1(

)1(

τττ

ττττ

 (3.1.127)

 

where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), Φi
S(n+1), Φi

I(n+1), Φi
O1(n+1), and Φi

O2(n+1) respectively, are 
the values of K, T, D, ΦS, ΦI, ΦO1, and ΦO2, respectively, at xi at new time level t = (n+1)Δt; and Ki

*, 
Ti

*, Di
*, Φi

S*, Φi
I*, Φi

O1*, and Φi
O2*, respectively, are the values of K, T, D, ΦS, ΦI, ΦO1, and ΦO2, 

respectively, at the location xi
*.  

 
To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq. 
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(3.1.126) as 
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Applying the Galerkin finite element method to Eq. (3.1.128) at new time level (n+1), we obtain the 
following matrix equation for {D(n+1)} as 
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where the superscript (n+1) denotes the time level; Ni and Nj are the base functions of nodes at xi 
and xj, respectively. 
 
Lumping the matrix [a(n+1)], we can solve Eq. (3.1.129) for DI

(n+1) as follows 
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where aII
(n+1) is the lumped aii

(n+1).  Following the identical procedure that leads Eq. (3.1.128) to Eq. 
(3.1.134), we have 
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where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)}, 
respectively. 
 
With {D(n)} calculated with Eq. (3.1.135), {D*} can be interpolated.  Substituting Eq. (3.1.134) into 
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Eq. (3.1.127) and implementing boundary conditions given in Section 2.1.4, we obtain a system of N 
simultaneous algebraic equations N unknowns (Ti

(n+1) for i = 1, 2, .., N.)  If the dispersion/diffusion 
term is not included, then Eq. (3.1.127) is reduced to a set of N decoupled equations as 
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Equations (3.1.136) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there two possibilities: Eq. (3.1.136) is replaced with a boundary equations when the 
flow is directed into the reach or Eq. (3.1.136) is still valid when the flow is direct out of the reach.  
In other words, when the thermal energy is transported out of the region at a boundary node (i.e., 
when n•V ≥ 0), a boundary condition is not needed and Equation (3.1.136) is used to compute the 
Ti

(n+1).  When the thermal energy is transported into the region at a node (i.e., when n•V < 0), a 
boundary condition must be specified. 
 
Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the 
algebraic equation for the boundary node is obtained by applying the finite element method to the 
boundary node.    For this alternative approach, the implementation of boundary conditions at global 
boundary nodes, internal junction nodes, and internal nodes connecting to control structures is 
identical to that in the finite element approximation of solving the thermal transport equation. 
 
 
3.1.5 Numerical Approximations of Salinity Transport 
 
Two options are provided in this report to solve the salinity transport equation.  One is the finite 
element method and the other is the particle tracking method. 
 
3.1.5.1 Finite Element Method.  Recall the salinity transport equation is governed by Eq. (2.1.86) 
which is rewritten in a slightly different form as 
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Applying the finite element method to Eq. (3.1.139), we obtain the following matrix equation 
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in which 
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where Wi is the weighting function of node at xi; Ni and Nj are the base functions of nodes at xi and 
xj, respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the 
stiff matrix due to dispersion/diffusion/conduction; [K] is the stiff matrix due to the linear term; {S} 
is the solution vector of salinity; {ΨB} is the vector due to boundary conditions, which can 
contribute to load vector and/or coefficient matrix; {Ψa} is the load vector due to artificial salt 
source; {Ψr} is the load vector due to salt in rainfall; {Ψi} is the vector due to interaction with 
subsurface exfiltraing water; {Ψo1} is the vector due to interaction with overland water via river 
bank 1; and {Ψo2} is the vector due to interaction with overland water via river bank 2. 
 
Approximating the time derivative term in Eq. (3.1.140) with a time-weighted finite difference, we  
reduce the advective-diffusive equation and its boundary conditions to the following matrix 
equation. 
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where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial 
sink/sources and rainfall; Δt is the time step size; θ is the time weighting factor for the dispersion 
and linear terms; θv is the time weighting factor for the velocity term; and {S(n)} is the value of {S} 
at old time level n.  The global and internal boundary (junctions, weirs, and gates) conditions must 
be used to provide {ΦB} in Eq. (3.1.144).  The interaction between the overland and 
river/stream/canal flows must be implemented to evaluate {Ψo1} and {Ψo2}; and the interaction 
between the subsurface and river/stream/canal flows must be implemented to calculate {Ψi}.  The 
interactions will be addressed in Section 3.4. 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.1.144) is 
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In the above equations there are two unknowns TI and ΦBI; either TI or ΦBI, or the relationship 
between TI and B

IΨ  must be specified.  The numerical implementation of these boundary conditions 
is described as follows. 
 
Direchlet boundary condition: prescribed salinity 
 
If SI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,I-1, CI,I, 
CI,I+1) and  right-hand side (LI, ΨI

i, ΨI
o1, ΨI

o2) obtained before the implementation of boundary 
conditions for this equation are stored in a temporary array, then an identity equation is created as 
 

DIdI NISS ∈= ,  (3.1.147)
 

where SId is the prescribed salinity on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving these unknowns, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Si’s.  After Si’s for all nodes are solved from the 
matrix equation, Eq. (3.1.146) is then used to back calculate ND ΨI

B’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Si’s 
accurately except for roundoff errors.  However, if an iterative solver is used, stopping criteria must 
be strict enough so that the converged solution of N Si’s are accurate enough to the exact solution.  
With such accurate Si�s, then can be sure that the back-calculated ND ΨI

B ‘s are accurate.  
 
Cauchy boundary condition: prescribed salt flux 
 
If ΨI

B is given (Cauchy flux boundary condition), all coefficients (CI,I-1, CI,I, CI,I+1) and  right-hand 
side (LI, ΨI

i, ΨI
o1, ΨI

o2) obtained before the implementation of boundary conditions for this equation 
are stored in a temporary array, then Eq. (3.1.146) is modified to incorporate the boundary 
conditions and used to solve for SI.  The modification of Eq. (3.1.146) is straightforward.  Because 

B
IΨ  is a known quantity, it contributes to the load on the right hand side.  This type of boundary 

conditions is very easy to implement.  After Si�s are obtained, the original Eq. (3.1.146), which is 
stored in a temporary array, isused to back calculate NC B

IΨ ’s on flux boundaries (where NC is the 
number of flux boundary nodes).  These back-calculated B

IΨ ’s should be theoretically identical to 
the input B

IΨ ’s.  However, because of round-off errors (in the case of direct solvers) or because of 
stopping criteria (in the case of iterative solvers), the back-calculated will be slightly different from 
the input B

IΨ ’s.  If the differences between the two are significant, it is an indication that the solvers 
have not yielded accurate solutions. 
 
Neumann boundary condition: prescribed gradient of salinity 
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At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature 
gradient is given.  For this case, all coefficients (CI,I-1, CI,I, CI,I+1) and  right-hand side (LI, ΨI

i, ΨI
o1, 

ΨI
o2) obtained before the implementation of boundary conditions for this equation are stored in a 

temporary array, then Eq. (3.1.146) is modified to incorporate the boundary conditions and used to 
solve for SI.  For the Neumann boundary condition, B

IΨ  contributes to both the matrix coefficient 
and load vector, thus both the coefficient matrix [C] and the load vector {L} must be modified.  
Recall 
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Apply this equation to Node I, we have 
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where nI is the unit outward normal vector at the boundary node I, nb
IΨ  is the Neumann boundary 

flux at node I.  Substitution of Eq. (3.1.149) into Eq. (3.1.146), we have the modified coefficient 
matrix and load vector; thus the modified Eq. (3.1.146).  This modified equation is used to solve SI.  
After SI is solved, the original Eq. (3.1.146) (recall the original Eq. (3.1.146) must be and has been 
stored in a temporary array) is used to back-calculate ΨI

B. 
 
Variable boundary condition: 
 
At the variable boundary condition Node I, the implementation of boundary conditions can be made 
identical to that for a Cauchy boundary condition node if the flow is directed into the 
river/stream/canal reach.  If the flow is going out of the reach, the boundary condition is 
implemented similar to the implementation of Neuman boundary condition with nb

IΨ = 0.  The 
assumption of zero Neumann flux implies that a Neuman node must be far away from the 
source/sink. 
 
Junction boundary condition: 
 
If the node IJ is an internal node that connects a junction J, then node IJ is treated as an internal 
boundary node.  For example, consider three reaches with three internal nodes connecting to the 
junction J (Fig. 3.1-8).   After applying the finite element method to Eq. (3.1.139), we have a total of 
(1J + 2J + 3J) algebraic equations.  The algebraic equations for Nodes 1J, 2J, and 3J can be written 
based on Eq. (3.1.146) 
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where the superscript denotes the reach number and subscript denotes local node number in a reach, 
for example, S1J

1 denotes the salinity at the 1J-th node in Reach 1.  For a convenient discussion, let 
us associate each of the unknowns, S1

1, …, S1J-1
1 to each of the 1J-1 finite element equations in 

Reach 1.  Similarly, we associate each of the unknowns, S1
2, …, S2J-2

2 to each of the 2J-1 finite 
element equations in Reach 2 and each of the unknowns and S1

3, …, S3J-1
3 to each of the 3J-1 finite 

element equations in Reach 3.  The unknowns, Ψ1J
1, Ψ2J

2, and Ψ3J
3, are absent from these (1J-1 + 2J-

1 + 3J-1) equations.  In other words, we can say each equation governs one unknown.  However, two 
unknowns, S1J

1 and Ψ1J
1, appear in Equation (3.1.150).  Similarly, Equation (3.1.151) has two 

unknowns, S2J
2 and Ψ2J

2, and Equation (3.1.152) has two unknowns, S3J
3 and Ψ3J

3.   The number of 
unknowns, (1J + 2J + 3J) salinities and Ψ1J

1, Ψ2J
2, and Ψ3J

3, is more than the number of equations, 
(1J + 2J + 3J) finite element equations.  Three more governing equations must be set up, which can 
be obtained with the assumption that the salt flux is due mainly to advection as 
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where Q1J
1, Q2J

2, and Q3J
3, respectively, are the volumetric flow rates from/to  Nodes 1J, 2J, and 3J, 

respectively, to/from the junction J [cf. Eqs. (3.1.71), (3.1.72), and (3.1.73), respectively]. 
 
Equations (3.1.153) through (3.1.155) introduce one additional unknown, SJ.  One additional 
equation must be set up which can be done based on the energy budget at the junction J.  The rate of 
change of energy at the junction J must be equal to the net energy rate from all reaches that join at J. 
 This energy budget can be written as 
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When the storage effect of the junction is small, the salt budget Eq. (3.1.156) is not employed.  
Instead, the following equation, resulting from the requirement that the summation of salt flux is 
equal to zero, is used 
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Equations (3.1.150) through (3.1.155) and Eq. (3.1.156) or Eq. (3.1.157) constitute 7 equations for 
seven unknowns, S1J

1, S2J
2, S3J

3, Ψ1J
1, Ψ2J

2, Ψ3J
3, and SJ.  If there are NJ junctions, there will be NJ 

blocks of seven equations.  These NJ blocks of equations should be solved iteratively along with NR 
block of finite element equations where NR is the number of reaches.  In other words, the whole 
system of algebraic equations can be solved with block iterations.  Each block of equations can be 
solved directly.  For example, each of NR blocks of finite element equations can be solved with an 
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efficient tri-diagonal matrix solver such as the Thomas algorithm.  Each of the NJ blocks of seven 
equations can be solved with the Gaussian direct elimination with full pivoting. 
 
Control structure boundary condition: 
 
The control structures may include weirs, gates, culverts, etc.  For the two internal boundary nodes 
1S and 2S separated by a structure, the boundary conditions at these two nodes are given by 
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where Ψ1S is the salt flux through node 1S; Φ2s is the salt flux through node 2S; and Q is the flow 
rate through the structure S;  sign(Q) is equal 1.0 if the flow is from node 1S to node 2S, -1.0 if flow 
is from node 2S to node 1S; S1S is the temperature at node 1S; and S2S is the temperature at node 2S. 
 
3.1.5.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the salt transport equation, we expand Eq. (3.1.139) 
to yield following advection-dispersion equation in the Lagrangian form 
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To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq. 
(3.1.160) along its characteristic line from xi at new time level to xi

* (Fig. 3.1-12), we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; Ki

(n+1), Si
(n+1), Di

(n+1), Ψi
S(n+1), Ψi

I(n+1), Ψi
O1(n+1), and Ψi

O2(n+1) respectively, are 
the values of K, S, D, ΨS, ΨI, ΨO1, and ΨO2, respectively, at xi at new time level t = (n+1)Δt; and Ki

*, 
Si

*, Di
*, Ψi

S*, Ψi
I*, Ψi

O1*, and Ψi
O2*, respectively, are the values of K, S, D, ΨS, ΨI, ΨO1, and ΨO2, 

respectively, at the location xi
*. 

 



 3-37

To compute the dispersion/diffusion terms Di
(n+1) and Di

*, we rewrite the second equation in Eq. 
(3.1.161) as 
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Applying the finite element method to Eq. (3.1.163) at new time level (n+1), we obtain the following 
matrix equation for {D(n+1)} as 
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where the superscript (n+1) denotes the time level; Ni and Nj are the base functions of nodes at xi 
and xj, respectively. 
 
Lumping the matrix [a(n+1)], we can solve Eq. (3.1.164) for DI

(n+1) as follows 
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where aII
(n+1) is the lumped aii

(n+1).  Following the identical procedure that leads Eq. (3.1.163) to Eq. 
(3.1.169), we have 
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where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)}, 
respectively. 
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With {D(n)} calculated with Eq. (3.1.170), {D*} can be interpolated.  Substituting Eq. (3.1.169) into 
Eq. (3.1.162) and implementing boundary conditions given in Section 2.1.4, we obtain a system of N 
simultaneous algebraic equations N unknowns (Si

(n+1) for i = 1, 2, .., N.)  If the dispersion/diffusion 
term is not included, then Eq. (3.1.162) is reduced to a set of N decoupled equations as 
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Equation (3.1.171) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there are two possibilities: Eq. (3.1.171) is replaced with a boundary equation when 
the flow is directed into the reach or Eq. (3.1.171) is still valid when the flow is direct out of the 
reach.  In other words, when the salt is transported out of the region at a boundary node (i.e., when 
N•V ≥ 0), a boundary condition is not needed and Equation (3.1.171) is used to compute the Si

(n+1).  
When the salt is transported into the region at a node (i.e., when N•V < 0), a boundary condition 
must be specified. 
 
Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the 
algebraic equation for the boundary node is obtained by applying the finite element method to the 
boundary node rather than the use of particle tracking.  For this alternative approach, the 
implementation of boundary conditions at global boundary nodes, internal junction nodes, and 
internal nodes connecting to control structures is identical to that in the finite element approximation 
of solving the salt transport equation. 
 
 

3.2 Solving the Two-Dimensional Overland Flow Equations 
 
As in solving the one-dimensional flow equations for river/stream/canal networks, we employ a 
variety of numerical approaches to solve two-dimensional overland flow equations.  For fully 
dynamic wave models, we cast the governing equations in characteristic forms and solve the 
governing equations with the hybrid Lagrangian-Eulerian finite element method.  For diffusive wave 
models, we use either the conventional finite element methods or hybrid Lagrangian-Eulerian finite 
element methods.  For kinematic wave models, we use semi-Lagrangian methods. 
 
3.2.1 The Lagrangian-Eulerian Finite Element Method for Dynamic Waves 
 
To facilitate the application of hybrid Lagrangian-Eulerian finite element method to fully dynamic 
wave models, substituting A1, A2, A3, B1, B2, and B3 in Eq. (2.2.27); R1, R2, and R3 in Eq. (2.2.9); and 
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Dx and Dy in (2.2.10) into Eqs. (2.2.28) through and (2.2.30), and rearranging the resulting equations, 
we obtain 
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where D⊗  is the diffusive transport of the vorticity wave; ±D  is the diffusive transport of the 
positive and negative gravity waves;  K is the decay coefficient for all three waves; and ⊗S , S+, and 
S- are the sources/sinks of the vorticity, positive, and negative waves, respectively. 
 
Integrating Eqs. (3.2.1) through (3.2.3) along their respective characteristic lines from x to x1*, x2*, 



 3-40

and x3* (Fig. 3.2-1), we obtain 
 

 

 
Fig. 3.2-1.  Backward Particle Tracking along Characteristic Lines in Two Dimensions. 
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where u1
*, v1

*, and Δτ1 are determined by backward tracking along the first characteristic; c2
*, u2

*, 
v2

*, and Δτ2 are determined by backward tracking along the second characteristic; c3
*, u3

*, v3
*, and 

Δτ3 are determined by backward tracking along the third characteristic; and all other variables with a 
superscript * are determined similarly at the roots of particle tracking. 
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In Eqs. (3.2.11) through (3.2.13), the primitive variables at the backward tracked locations are 
interpolated with those at the global nodes and at both new and old time levels as 
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where a1 through a8, b1 through b8, and d1 through d8 are interpolation parameters, all in the ranges 
of [0,1];  k1, k2, k3, and k4 are nodes of the element that the backward tracking, along the first 
characteristic, stops at;  j1, j2, j3, and j4 are nodes of the element that the backward tracking, along 
the second characteristic, stops at;  m1, m2, m3, and m4 are nodes of the element that the backward 
tracking, along the third characteristic, stops at (Fig. 3.2-1).  It should be noted that we may use two 
given parameters to determine where to stop in the backward tracking: one is for controlling tracking 
time and the other one is for controlling tracking distance.  After the primitive variables at the 
backward tracked points are interpolated, all other parameters (such as the decay coefficients and 
source/sink terms) are functions of these variables and can be calculated. 
 
To calculate Dx and Dy, we multiple Eqs. (3.2.5) and (3.2.6) by h to yield 
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Applying the Galerkin finite element method to Eqs. (3.2.22) and (3.2.23), we obtain the following 
matrix equations for Dx and Dy 
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[ ]{ } [ ]{ } [ ]{ } { }yy FvQEuQDDQA =++  (3.2.25)
where 
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Lumping the matrix [QA], we can explicitly compute {Dx} and {Dy} in terms of {u} and {v}. 
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Following the identical procedure that leads Eqs. (3.2.22) and (3.2.23) to Eqs. (3.2.31) and (2.3.32), 
we have 
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where the superscript (n) denotes that the variables are to be evaluated at the old time level n. 
 
Similar to Eqs. (3.2.13) through (3.2.21), (Dxi

*)1, (Dxi
*)2, and (Dxi

*)3 and (Dyi
*)1, (Dyi

*)2, and (Dyi
*)3 at 

the backward tracked location are interpolated with {D} and {D(n)} as 
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ymyi DdDdDdDdDdDdDdDdD +++++++=  (3.2.40)
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Fig. 3.2-2.  Backward Tracking Along Characteristic Line to the Root in Two Dimensions 

 
 
Substituting Eqs. (3.2.13) through (3.2.21) and Eqs. (3.2.35) through (3.2.40) into Eqs. (3.2.10) 
through (3.2.12) and implementing boundary conditions given Section 2.2.1, we obtain a system of 
3N simultaneous algebraic equations for the 3N unknowns (ui for i = 1, 2, .., N, vi for i = 1, 2, .., N, 
and and ci for i = 1,2, .., N).  If the eddy diffusion terms are not included and the backward tracking 
is performed to reach the time level n (Fig. 3.2-2), then Eqs. (3.2.8) through (3.2.10) are reduced to a 
set of N decoupled triplets of equations as 
 

11 12 13 1

21 22 23 2

31 32 33 3

,
,

, for all interior nodes

a u a v a c B
a u a v a c B

a u a v a c B

+ + =
+ + =

+ + =
 (3.2.41)

where 
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Equations (3.2.41) is applied to all interior nodes without having to make any modification.  On a 
boundary point, any one of the three equations in Eq. (3.2.41) must be replaced by a boundary 
condition equation if its corresponding wave is directed into the region from the outside world.  On 
the other hand, if the corresponding wave is going out of the region, then the equation is valid.  
These conditions are addressed below for four types of physical boundaries: open upstream, open 
downstream, closed upstream, and closed downstream boundary nodes. 
 
Open upstream boundary condition: 
 
If the flow is supercritical, all three waves are directed into the region from the outside world, thus 
Eq. (3.2.41) is replaced with 
 

( ) up
yy

up
xx

up
n MghnvhMghnuhtqh =+⋅=+⋅=⋅

2
;

2
;

22
)( VnVnVn  (3.2.45)

 

where V = (u, v) is the vertically averaged velocity with u as the x-component and v the y-
component; n is the outward  unit vector normal to the boundary; qn

up(t) is the flow rate of the 
incoming fluid from the upstream; and Mx

up and My
up, respectively, are the x- and y-components, 

respectively, of the momentum-impulse from the upstream. 
 
If the flow is subcritical, one of the gravitational wave is going out of the region, thus Eq. (3.2.41) 
for the boundary point i is replaced with 
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where l  is the unit vector parallel to the boundary segment and )(upqA , a function of time t, is the 
flow rate parallel to the boundary. 
 
Open downstream boundary condition: 
 

If the flow is supercritical, all three waves are transported out of the region and Eq. (3.2.41) 
remains valid for the boundary point; thus  
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21 22 23 2

31 32 33 3

,
,
, int
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a u a v a c B
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 (3.2.47)

 
 
If the flow is subcritical, the vorticity wave and one the gravity waves are transported out of the 
region while the other gravity wave is transported into the region.  Under such circumstance, 
Equation (3.2.41) may be replaced with 
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 (3.2.48)

 

where ( )hq dn
n , a function of h, is the rating curve function for the downstream boundary and hdn(t), a 

function of t, is the water depth at the downstream boundary.  As to which three equations in of Eq. 
(3.2.48) must be used depends on the physical configuration at the boundary. 
 
Closed upstream boundary condition: 
 
If the flow is supercritical, all three waves are transported from the boundary into the region of 
interest.  Since neither flow nor momentum-impulse is transported from the outside world onto the 
boundary, the following boundary condition can be used 
 

0
2

;0
2

;0
22

=+⋅=+⋅=⋅
ghnvhghnuhh yx VnVnVn  (3.2.49)

 
The solution of Eq. (3.2.49) is not unique.  One of the possible solution is h = 0, u = 0, and v = 0.  If 
the flow is subcritical, one of the two gravity waves is transported out of the region, thus Equation 
(3.2.41) can be replaced with 
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21 22 23 3 2
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⋅ = ⋅ = = + =

⋅ = ⋅ = = + =

n V l V

n V l V
 (3.2.50)

 
Closed downstream boundary condition:  
 
At the closed downstream boundary, physical condition dictates that the normal flux should be zero. 
 In the meantime, one of the gravity wave is transported out of the region.  Thus, the water depth and 
velocity on the boundary are determined by the internal flow dynamics and the condition of zero 
normal flux.  The boundary condition can be stated as 
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3.2.2 Numerical Approximation of Diffusive Wave Equations 
 
Two options are provided in this report to solve the diffusive wave flow equations.  One is the finite 
element method and the other is the particle tracking method. 
 
3.2.2.1 Galerkin Finite Element Method.  Recall the diffusive wave is governed by Eq. (2.2.44) 
which is repeated here as 
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2
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S R E I
H hK H S S S S
t gh
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− ∇⋅ ∇ + ∇ Δ − = + − +⎢ ⎥⎜ ⎟∂ ⎢ ⎥⎝ ⎠⎣ ⎦

 (3.2.52)

 
Applying the Galerkin finite element method to Eq. (3.2.52), we obtain the following matrix 
equation 
 

[ ] { } [ ]{ } { } { } { } { } { } { }w B S R E I

d H
M S H Q Q Q Q Q Q

dt ρ+ = + + + − +  (3.2.53)
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,    ,   ,    Si i S Ri i R Ei i E Ii i IQ N S d Q N S d Q N S d Q N S d
ℜ ℜ ℜ ℜ

= ℜ = ℜ = ℜ = ℜ∫ ∫ ∫ ∫  (3.2.55)
 

where Ni and Nj are the base functions of nodes at xi and xj, respectively; n is the outward-normal 
unit vector; [M] is the mass matrix, [S] is the stiff matrix, {H} is the solution vector of H, {Qρw} is 
the load vector due to density and wind stress effects, {QB} is the flow rate through the boundary 
nodes, {QS} is the flow rate from artificial source/sink, {QR} is the flow rate from rainfall, {QE} is 
the flow rate due to evapotranspiration, and {QI} is the flow rate to infiltration.  It should be noted 
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that {QI} is the interaction between the overland and subsurface flows. 
 
Approximating the time derivative term in Eq. (3.2.53) with a time-weighted finite difference, we 
reduce the diffusive equation and its boundary conditions to the following matrix equation 
 

[ ]{ } { } { } { }B IC H L Q Q= + +  (3.2.56)
in which 

[ ] [ ] [ ] { } [ ] ( )[ ] { } { } { } { } { }( ),   1 n
w S R E

M M
C S L S H Q Q Q Q

t t ρθ θ
⎛ ⎞

= + = − − + + + −⎜ ⎟
Δ Δ⎝ ⎠

 (3.2.57)

 

where [C] is the coefficient matrix, {L} is the load vector from initial condition, density and wind 
effects, artificial sink/sources, rainfall, and evapotranspiration; Δt is the time step size; θ is the time 
weighting factor; and {H(n)} is the value of {H} at old time level n.  The global boundary conditions 
must be used to provide {QB} in Eq. (3.2.56).  The interaction between the overland and subsurface 
flows must be implemented to calculate {QI}.  The interactions will be addressed in Section 3.4. 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.2.56) is 
 

,1 1 ,1 ,I I I I N N I II BIC H C H C H L Q Q+ + + + = + +… …  (3.2.58)
 
In the above equation there are two unknowns HI and QBI; either HI or QBI, or the relationship 
between HI and QBI must be specified.  The numerical implementation of these boundary conditions 
is described as follows. 
 
Dirichlet boundary condition: prescribed water depth or stage 
 
If HI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1,  ..., CI,I, ..., 
CI,N) and  right-hand side (LI and QII) obtained before the implementation of boundary conditions for 
this equation are stored in a temporary array, then an identity equation is created as 
 

DIdI NIHH ∈= ,  (3.2.59)
 

where HId is the prescribed total head on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving this unknown, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Hi’s.  After Hi’s are obtained, Eq. (3.2.58) is then 
used to back calculate ND QBI’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Hi�s 
accurately except for roundoff errors.  However, if an iterative solver is used, a stopping criterion 
must be strict enough so that the converged solution of N Hi’s is accurate enough to the exact 
solution.  With such accurate Hi’s, then one can be sure that the back-calculated ND QBI’s are 
accurate.  
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Flux boundary condition: prescribed flow rate 
 
If QBI is given (flux boundary condition), all coefficients (CI,1,  ..., CI,I, ..., CI,N) and the right-hand 
side (LI and QII) obtained before the implementation of boundary conditions for this equation are 
stored in a temporary array, then Eq. (3.2.58) is modified to incorporate the boundary conditions and 
used to solve for HI.  The modification of Eq. (3.2.58) is straightforward.  Because QBI is a known 
quantity, it contributes to the load on the right hand side.  This type of boundary conditions is easy to 
implement.  After Hi�s are obtained, the original Eq. (3.2.58), which is stored in a temporary array, 
is used to back calculate NC QBI’s on flux boundaries (where NC is the number of flux boundary 
nodes).  These back-calculated QBI’s should be theoretically identical to the input QBI’s.  However, 
because of round-off errors (in the case of direct solvers) or because of stopping criteria (in the case 
of iterative solvers), the back-calculated QBI’s will be slightly different from the input QBI’s.  If the 
differences between the two are significant, it is an indication that the solvers have not yielded 
accurate solutions.   
 
Water depth-dependent boundary condition: prescribed rating curve 
 
If the relationship is given between QBI and HI (rating curve boundary condition), all coefficients 
(CI,1,  ..., CI,I, ..., CI,N) and the right-hand side (LI and QII) obtained before the implementation of 
boundary conditions for this equation are stored in a temporary array, then Eq. (3.2.58) is modified 
to incorporate the boundary conditions and used to solve for HI.  The rating-relationship is used to 
eliminate one of the unknowns, say QBI, and the modified Eq. (3.2.58) is used to solve for, say HI.  
After HI is solved, the original Eq. (3.2.58) (recall the original Eq. (3.2.58) must be and has been 
stored in a temporary array) is used to back-calculate QBI. 
 
3.2.2.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the diffusive wave equation, instead of Eq. (3.2.52), 
we expand Eq. (2.2.1) to yield following diffusive wave equation in the Lagrangian form 
 

V
S R E I

D h Kh S S S S where K
Dτ

+ = + − + = ∇⋅ V  (3.2.60)
 

 
To use the semi-Lagrangian method to solve the diffusive wave equation, we integrate Eq. (3.2.60) 
along its characteristic line from xi at new time level to xi

* at old time level or on the boundary (Fig. 
3.2-3), we obtain 
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Fig. 3.2-3.  Backward Particle Tracking in Two Dimension. 
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 (3.2.61)

 

where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed (Fig. 3.2-3); ( 1)n

iK + ), ( 1)n
ih + , ( 1)n

SiS + , ( 1)n
RiS + , ( 1)n

EiS + , and ( 1)n
IiS + , respectively, are the 

values of K, h, SS, SR, SE, and SI, respectively, at xi at new time level t = (n+1)Δt; and *
iK , *

ih , *
SiS , 

*
RiS , *

EiS , and *
IiS , respectively, are the values of K, h, SS, SR, SE, and SI, respectively, at the location 

xi
*.  Since the velocity V and the decay coefficient K are functions of h, this is a nonlinear hyperbolic 

problem. 
 
Equation (3.2.61) is solved iteratively to yield the water depth h, and hence the water stage H.  The 
iteration procedure is outlined as follows: 
 

(i)  Guess the value of h(k) at the k-th iteration, compute H. 
(ii)  Apply finite element method to the following equation to obtain V 
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 (iii)  Perform particle tracking to locate x* and obtain all the *-superscripted quantities. 
(iv)  Apply the finite element method to the following equation to obtain K 

 
V⋅∇=K  (3.2.63)
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 (v)  Solve Eq. (3.2.61) along with the boundary condition to obtain new h(k+1) 
(vi)  Check if h(k+1) converges, if yes go to the next time step. 
(vii) If h(k+1) does not converge,  update h with h(k)  ←  ωh(k+1) + (1-ω)h(k) and repeat Steps 

(i) through (vi). 
 
When the wave is transported out of the region at a boundary node (i.e., when N•V ≥ 0), a boundary 
condition is not needed.  When the wave is transported into the region at a node (i.e., when N•V < 
0), a boundary condition must be specified.  As in the finite element method, three types of boundary 
conditions may be encountered. 
 
Dirichlet boundary condition: 
 
For the Dirichlet boundary, the water depth is prescribed as 
 

DId NIhh ∈= ,1  (3.2.64)
 
Flux boundary condition: 
 
For the flux boundary, the flow rate is prescribed as function of time at the boundary node, from 
which the boundary value is computed as 
 

( )
),1(

)1(
kn

upn

V
tq

h +
+ =  (3.2.65)

 

where qup(t), a function of time t, is the prescribed flow rate [L3/t/L] and V(n+1,k) is the value of V at 
new time and previous iteration. 
 
Water depth-dependent boundary condition: prescribed rating curve 
 
For the boundary where a rating curve is used to describe the relationship between water depth, h, 
and volumetric flow rate, q;  thus, the water depth, h, on the boundary is computed with 
 

( )hfhV nkn =++ )1(),1(  (3.2.66)
 

where f(h) is the rating curve which is a function of h.  Equation (3.1.91) is solved iteratively to 
yield h(n+1). 
 
3.2.3 The Semi-Lagrangian Method for Kinematic Wave 
 
To use the semi-Lagrangian method to solve the kinematic wave equation, Eq. (2.2.50) is rewritten 
in the Lagrangian form as follows 
 

V
S R E I

D h Kh S S S S where K
Dτ

+ = + − + = ∇⋅ V  (3.2.67)
 

in which K is the decay coefficient of the wave.  Integrating Eq. (3.1.100) along its characteristic 
line from xi at new time level  to xi

* at old time level or on the boundary (Fig. 3.2-3), we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; ( 1)n

iK + ), ( 1)n
ih + , ( 1)n

SiS + , ( 1)n
RiS + , ( 1)n

EiS + , and ( 1)n
IiS + , respectively, are the values of K, 

h, SS, SR, SE, and SI, respectively, at xi at new time level t = (n+1)Δt; and *
iK , *

ih , *
SiS , *

RiS , *
EiS , and 

*
IiS , respectively, are the values of K, h, SS, SR, SE, and SI, respectively, at the location xi

*.  Because of 
density and wind effects, the velocity V and the decay coefficient K are functions of h, this is a 
nonlinear problem.  However, because the nonlinearity due to density and wind effects are normally 
very weak, Equation (3.2.68) is considered a linear hyperbolic problem with the nonlinear effects 
evaluated using the values of h at previous time.  This equation is used to compute the water depth, 
h, at all nodes except for the upstream boundary node. 
 
Because the wave is transported into the region at an upstream node, a boundary condition must be 
specified.  The flow rate is normally given as a function of time at an upstream node, from which the 
boundary value is computed as 
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where qup(t), a function of time t, is the prescribed flow rate [L3/t/L]. 
 
3.2.2 Numerical Approximations of Thermal Transport 
 
Two options are provided in this report to solve the thermal transport equation.  One is the finite 
element method and the other is the particle tracking method. 
 
3.2.4.1 Finite Element Method.  Recall the thermal transport equation is governed by Eq. (2.2.52) 
which is rewritten in a slightly different form as 
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Applying the finite element method to Eq. (3.2.70), we obtain the following matrix equation 
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{ } { } { } { } { } { } { } { } { }cisebnraB

TKTDTV
dt
TdM

Φ+Φ+Φ−Φ−Φ−Φ+Φ+Φ+Φ−=

+++
 (3.2.71)

in which 
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where Wi is the weighting function of node at xi; Ni and Nj are the base functions of nodes at xi and 
xj, respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the 
stiff matrix due to dispersion/diffusion/conduction; {T} is the solution vector of temperature; {ΦB} 
is the vector due to boundary conditions, which can contribute to load vector and/or coefficient 
matrix; {Φa} is the load vector due to artificial energy source; {Φr} is the load vector due to energy  
contained  in rainfall; {Φn} is the load vector due to net radiation; {Φb} is the vector due to 
backward radiation, which is a nonlinear function of temperature and contributes to both the load 
vector and coefficient matrix; {Φe} is the vector due to energy consumed for evaporation, which is a 
nonlinear function of temperature and contributes to both the load vector and coefficient matrix; 
{Φs} is the vector due to sensible heat, which is a linear function of temperature and contributes to 
both the load vector and coefficient matrix; {Φc} is the vector due to chemical reaction, which is not 
considered in this version, but can be added easily; and {Φi} is the vector due to interaction with 
subsurface exfiltraing water. 
 
Approximating the time derivative term in Eq. (3.2.71) with a time-weighted finite difference, we 
reduce the advective-diffusive equation and its boundary conditions to the following matrix equation 
 

[ ]{ } { } { } { } { } { } { }isebBLTC Φ+Φ−Φ−Φ−Φ−=  (3.2.76)
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where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial 
sink/sources, rainfall, and net radiation; Δt is the time step size; θ is the time weighting factor for the 
dispersion and linear terms; θv is the time weighting factor for the velocity term; and {T(n)} is the 
value of {T} at old time level n.  The global boundary conditions must be used to provide {ΦB} in 
Eq. (3.2.76).  The interaction between the overland and subsurface flows must be implemented to 
calculate {Φi}.  The interactions will be addressed in Section 3.4. 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.2.76) is 
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In the above equations there are two unknowns TI and ΦI

B; either TI or ΦI
B, or the relationship 

between TI and B
IΦ  must be specified.  The numerical implementation of these boundary conditions 

is described as follows. 
 
Direchlet boundary condition: prescribed temperature 
 
If TI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1, .., CI,I, .., 
CI,N) and the right-hand side terms (LI, ΦI

b, ΦI
e, ΦI

s, ΦI
i) obtained before the implementation of 

boundary conditions for this equation are stored in a temporary array, then an identity equation is 
created as 
 

DIdI NITT ∈= ,  (3.2.79)
 

where TId is the prescribed temperature on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving this unknown, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Ti’s.  After Ti’s for all nodes are solved from the 
matrix equation, Eq. (3.2.78) is then used to back calculate ND ΦI

B’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Ti’s 
accurately except for roundoff errors.  However, if an iterative solver is used, a stopping criterion 
must be strict enough so that the converged solution of N Ti’s are accurate enough to the exact 
solution.  With such accurate Ti’s, then can be sure that the back-calculated ND ΦI

B’s are accurate.  
 
Cauchy boundary condition: prescribed heat flux 
 
If ΦBI is given (Cauchy flux boundary condition), all coefficients (CI,1, .., CI,I, .., CI,N) and  right-hand 
side terms (LI, ΦI

a, ΦI
r, ΦI

n, ΦI
i) obtained before the implementation of boundary conditions for this 

equation are stored in a temporary array, then Eq. (3.2.78) is modified to incorporate the boundary 
conditions and used to solve for TI.  The modification of Eq. (3.2.78) is straightforward. Because ΦI

B 
is a known quantity, it contributes to the load on the right hand side.  This type of boundary 
conditions is very easy to implement.  After Ti’s are obtained, the original Eq. (3.2.78), which is 
stored in a temporary array, is used to back calculate NC ΦI

B’s on flux boundaries (where NC is the 
number of flux boundary nodes).  These back-calculated ΦI

B’s should be theoretically identical to 
the input ΦI

B’s.  However, because of round-off errors (in the case of direct solvers) or because of 
stopping criteria (in the case of iterative solvers), the back-calculated ΦI

B’s will be slightly different 
from the input ΦI

B’s.  If the differences between the two are significant, it is an indication that the 
solvers have not yielded accurate solutions. 
 
Neumann boundary condition: prescribed gradient of temperature 
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At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature 
gradient is given.  For this case, all coefficients (CI,1, .., CI,I, .., CI,N) and  right-hand side terms (LI, 
ΦI

a, ΦI
r, ΦI

n, ΦI
i) obtained before the implementation of boundary conditions for this equation are 

stored in a temporary array, then Eq. (3.2.78) is modified to incorporate the boundary conditions and 
used to solve for TI.  For the Neumann boundary condition, ΦI

B contributes to both the matrix 
coefficient and load vector, thus both the coefficient matrix [C] and the load vector {L} must be 
modified.  Recall 
 

( )dBThNTCW
B

iWWi
B
i ∫ ∇−⋅=Φ HDqn ρ  (3.2.80)

 
Substituting Eq. (2.2.58) into Eq. (3.2.80), we have 
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where [CB] and {LB} are the coefficient matrix and load vector due to Neumann boundary.  Adding 
the I-th equation in Eq. (3.2.81) to Eq. (3.2.78), we obtained a modified equation, which can be 
solved for solve TI.  After TI is solved, the original Eq. (3.2.78) (recall the original Eq. (3.2.78) must 
be and has been stored in a temporary array) is used to back-calculate ΦI

B. 
 
Variable boundary condition: 
 
At the variable boundary condition Node I, the implementation of boundary conditions can be made 
identical to that for a Cauchy boundary condition node if the flow is directed into the region.  If the 
flow is going out of the region, the boundary condition is implemented similar to the implementation 
of Neuman boundary condition with LBI = 0.  The assumption of zero Neumann flux implies that a 
Neuman node must be far away from the source/sink. 
 
3.2.4.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the thermal transport equation, we expand Eq. 
(3.2.70) to yield following advection-dispersion equation in the Lagrangian form 
 

h
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To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq. 
(3.2.82) along its characteristic line from xi at new time level to xi

* at old time level or on the 
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boundary (Fig. 3.2-3), we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), Φi
S(n+1), and Φi

I(n+1) respectively, are the values of K, T, 
D, ΦS, and ΦI, respectively, at xi at new time level t = (n+1)Δt; and Ki

*, Ti
*, Di

*, Φi
S*, and Φi

I*, 
respectively, are the values of K, T, D, ΦS, and ΦI, respectively, at the location xi

*.  
 
To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq. 

(3.2.83) as 
 

( )ThhDCWW ∇⋅⋅∇= HDρ  (3.2.85)
 
Applying the Galerkin finite element method to Eq. (3.2.85) at new time level (n+1), we obtain the 
following matrix equation for {D(n+1)} as 
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where the superscript (n+1) denotes the time level; N and N are the base functions of nodes at xi and 
xj, respectively. 
 
Lumping the matrix [a(n+1)], we can solve Eq. (3.2.86) for DI

(n+1) as follows 
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where aII
(n+1) is the lumped aii

(n+1).  Following the identical procedure that leads Eq. (3.2.85) to Eq. 
(3.2.91), we have 
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where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)}, 
respectively. 
 
With {D(n)} calculated with Eq. (3.2.92), {D*} can be interpolated.  Substituting Eq. (3.2.91) into Eq. 
(3.2.84) and implementing boundary conditions given in Section 2.2.4, we obtain a system of N 
simultaneous algebraic equations N unknowns (Ti

(n+1) for i = 1, 2, .., N.)  If the dispersion/diffusion 
term is not included, then Eq. (3.2.84) is reduced to a set of N decoupled equations as 
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Equation (3.2.93) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there two possibilities: Eq. (3.2.93) is replaced with a boundary equation when the 
flow is directed into the region or Eq. (3.2.93) is still valid when the flow is direct out of the region.  
In other words, when the thermal energy is transported out of the region at a boundary node (i.e., 
when N•V ≥ 0), a boundary condition is not needed and Equation (3.2.93) is used to compute the 
Ti

(n+1).  When the thermal energy is transported into the region at a node (i.e., when N•V < 0), a 
boundary condition must be specified. 
 
Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the 
algebraic equation for the boundary node is obtained by applying the finite element method to the 
boundary node.    For this alternative approach, the implementation of boundary conditions at global 
boundary nodes is identical to that in the finite element approximation of solving the thermal 
transport equation. 
 
3.2.4 Numerical Approximations of Salinity Transport 
 
Two options are provided in this report to solve the salinity transport equation.  One is the finite 
element method and the other is the particle tracking method. 
 
3.2.5.1 Finite Element Method.  Recall the salinity transport equation is governed by Eq. (2.2.60) 
which is rewritten in a slightly different form as 
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Applying the finite element method to Eq. (3.2.96), we obtain the following matrix equation 
 

[ ] { } [ ]{ } [ ]{ } [ ]{ } { } { } { } { } { }ieraBSKSDSV
dt
SdM Ψ+Ψ−Ψ+Ψ+Ψ−=+++  (3.2.97)

in which 

( )∫ ∫

∫ ∫ ∫

∇⋅−⋅=Ψ
∂
∂

=

∇⋅⋅∇=⋅∇==

r B
ii

B
ijiij

R R R
jiijjiijjiij

dBShNSWdRN
t
hNK

dRNhNDdRNWVdxhNNM

S

S

Dqn

Dq

,

,,,

 (3.2.98)

 

,   ,  ,   a as r rs e es i is
i i S i i s i i s i i s

R R R R

N M dR N M dR N M dR N M dRΨ = Ψ = Ψ = Ψ =∫ ∫ ∫ ∫  (3.2.99)
 

where Wi is the weighting function of node at xi; Ni and Nj are the base functions of nodes at xi and 
xj, respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the 
stiff matrix due to dispersion/diffusion/conduction; [K] is the stiff matrix due to the linear term; {S} 
is the solution vector of salinity; {ΨB} is the vector due to boundary conditions, which can 
contribute to load vector and/or coefficient matrix; {Ψa} is the load vector due to artificial salt 
source; {Ψr} is the load vector due to salt in rainfall; {Ψe} is the vector due to evapotranspiration, 
which is most likely to be zero; and {Ψi} is the vector due to interaction with subsurface exfiltraing 
water. 
 
Approximating the time derivative term in Eq. (3.2.97) with a time-weighted finite difference, we 
reduce the advective-diffusive equation and its boundary conditions to the following matrix 
equation. 
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where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial 
sink/sources and rainfall; Δt is the time step size; θ is the time weighting factor for the dispersion 
and linear terms; θv is the time weighting factor for the velocity term; and {S(n)} is the value of {S} 
at old time level n.  The global boundary conditions must be used to provide {ΨB} in Eq. (3.2.100).  
The interaction between the overland and subsurface flows must be implemented to calculate {Ψi}.  
The interactions will be addressed in Section 3.4. 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.2.100) is 
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In the above equations there are two unknowns TI and ΨI

B; either TI or ΨI
B, or the relationship 

between TI and ΨI
B must be specified.  The numerical implementations of these boundary conditions 

are described as follows. 
 
Dirichlet boundary condition: prescribed salinity 
 
If SI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1, .., CI,I, .., 
CI,N) and the right-hand side terms (LI and ΨI

i) obtained before the implementation of boundary 
conditions for this equation are stored in a temporary array, then an identity equation is created as 
 

DIdI NISS ∈= ,  (3.2.103)
 

where SId is the prescribed salinity on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving this unknown, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Si’s.  After Si’s for all nodes are solved from the 
matrix equation, Eq. (3.2.100) is then used to back calculate ND ΨI

B’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Si’s 
accurately except for roundoff errors.  However, if an iterative solver is used, a stopping criterion 
must be strict enough so that the converged solution of N Si’s are accurate enough to the exact 
solution.  With such accurate Si’s, then can be sure that the back-calculated ND ΨBI’s are accurate.  
 
Cauchy boundary condition: prescribed salt flux 
 
If ΨI

B is given (Cauchy flux boundary condition), all coefficients (CI,1, ..,  CI,I, .., CI,N) and  the right-
hand side terms (LI and ΨI

i) obtained before the implementation of boundary conditions for this 
equation are stored in a temporary array, then Eq. (3.2.102) is modified to incorporate the boundary 
conditions and used to solve for SI.  The modification of Eq. (3.2.102) is straightforward.  Because 
ΨI

B is a known quantity, it contributes to the load on the right hand side.  This type of boundary 
conditions is very easy to implement.  After Si’s are obtained, the original Eq. (3.2.102), which is 
stored in a temporary array, is used to back calculate NC ΨI

B’s on flux boundaries (where NC is the 
number of flux boundary nodes).  These back-calculated ΨI

B’s should be theoretically identical to 
the input ΨI

B’s.  However, because of round-off errors (in the case of direct solvers) or because of 
stopping criteria (in the case of iterative solvers), the back-calculated ΨI

B’s will be slightly different 
from the input ΨI

B’s.  If the differences between the two are significant, it is an indication that the 
solvers have not yielded accurate solutions. 
 
Neumann boundary condition: prescribed gradient of salinity 
 
At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature 
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gradient is given.  For this case, all coefficients (CI,, .., CI,I, .., CI,N) and the right-hand side terms (LI 
and ΨI

i) obtained before the implementation of boundary conditions for this equation are stored in a 
temporary array, then Eq. (3.2.102) is modified to incorporate the boundary conditions and used to 
solve for SI.  For the Neumann boundary condition, ΨI

B contributes to both the matrix coefficient 
and load vector, thus both the coefficient matrix [C] and the load vector {L} must be modified.  
Recall 
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S
ii

B
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Substituting Eq. (2.2.66) into Eq. (3.2.104), we have  
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where [CB] and {LB} are the coefficient matrix and load vector due to Neumann boundary.  Adding 
the I-th equation in Eq. (3.2.105) to Eq. (3.2.102), we obtained a modified equation, which can be 
solved for solve SI.  After SI is solved, the original Eq. (3.2.102) (recall the original Eq. (3.2.102) 
must be and has been stored in a temporary array) is used to back-calculate ΨI

B. 
 
Variable boundary condition: 
 
At the variable boundary condition Node I, the implementation of boundary conditions can be made 
identical to that for a Cauchy boundary condition node if the flow is directed into the 
river/stream/canal reach.  If the flow is going out of the reach, the boundary condition is 
implemented similar to the implementation of Neuman boundary condition with ΨI

nb = 0.  The 
assumption of zero Neumann flux implies that a Neuman node must be far away from the 
source/sink. 
 
3.2.5.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the salt transport equation, we expand Eq. (3.2.96) to 
yield following advection-dispersion equation in the Lagrangian form 
 

h
whereDKS

Dt
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in which 
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To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq. 
(3.2.106) along its characteristic line from xi at new time level to xi

* at old time level or on the 
boundary (Fig. 3.2-3), we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), Ψi
S(n+1), and Ψi

I(n+1) respectively, are the values of K, T, 
D, ΨS, and ΨI, respectively, at xi at new time level t = (n+1)Δt; and Ki

*, Ti
*, Di

*, Ψi
S*, and Ψi

I*, 
respectively, are the values of K, T, D, ΨS, and ΨI, respectively, at the location xi

*.  
 
To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq. 

(3.2.107) as 
 

( )ShhD S ∇⋅⋅∇= D  (3.2.109)
 

 
Applying the Galerkin finite element method to Eq. (3.2.109) at new time level (n+1), we obtain the 
following matrix equation for {D(n+1)} as 
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where the superscript (n+1) denotes the time level; N and N are the base functions of nodes at xi and 
xj, respectively. 
 
Lumping the matrix [a(n+1)], we can solve Eq. (3.2.110) for DI

(n+1) as follows 
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where aII
(n+1) is the lumped aii

(n+1).  Following the identical procedure that leads Eq. (3.2.109) to Eq. 
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(3.2.115), we have 
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where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)}, 
respectively. 
 
With {D(n)} calculated with Eq. (3.2.116), {D*} can be interpolated.  Substituting Eq. (3.2.115) into 
Eq. (3.2.108) and implementing boundary conditions given in Section 2.2.5, we obtain a system of N 
simultaneous algebraic equations N unknowns (Si

(n+1) for i = 1, 2, .., N.)  If the dispersion/diffusion 
term is not included, then Eq. (3.2.108) is reduced to a set of N decoupled equations as 
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Equation (3.2.117) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there two possibilities: Eq. (3.2.117) is replaced with a boundary equation when the 
flow is directed into the region or Eq. (3.2.117) is still valid when the flow is direct out of the region. 
 In other words, when the salt is transported out of the region at a boundary node (i.e., when N•V ≥ 
0), a boundary condition is not needed and Equation (3.2.117) is used to compute the Si

(n+1).  When 
the salt is transported into the region at a node (i.e., when N•V < 0), a boundary condition must be 
specified. 
 
Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the 
algebraic equation for the boundary node is obtained by applying the finite element method to the 
boundary node.  For this alternative approach, the implementation of boundary conditions at global 
boundary nodes is identical to that in the finite element approximation of solving the salt transport 
equation. 
 
 

3.3 Solving the Three-Dimensional Subsurface Flow Equations 
 
The Richards equation is discretized with the Galerkin finite element method in space and with the 
finite difference method in time.  In our model, the steady-state version of subsurface flow equations 
can be solved for determining the initial subsurface flow condition when boundary conditions are 
complicated and/or unsaturated zones are taken into account.  The details of solving the Richards 
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equation and the salt transport has been described in detail elsewhere (Yeh et al, 1994; Lin et al., 
1997).  The numerical solution of thermal transport equations follows similar to that for two-
dimensional thermal equation in overland flow.  These numerical solutions are summarized below 
for the completeness of this report. 
 
3.3.1 Finite Element Approximations of the Flow Equations 
 
Finite element disretization in space.  When using the finite element method, the referenced 
pressure head in Eq. (2.3.1) is approximated by: 
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where hj and Nj are the amplitude of h and the base function, respectively, at nodal point j and N is 
the total number of nodes.  After defining a residual and forcing the weighted residual to zero, the 
flow equation, Eq.(2.3.1), is approximated as: 
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In matrix form, Eq.(3.3.2) is written as: 
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where {dh/dt} and {h} are the column vectors containing the values of dh/dt and h, respectively, at 
all nodes; [M] is the mass matrix resulting from the storage term; [S] is the stiff matrix resulting 
from the action of conductivity; {Q}, {G}, and {B} are the load vectors from the internal 
source/sink, gravity force, and boundary conditions, respectively.  The mass matrix, [M], and stiff 
matrix, [S], are defined as: 
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where Re is the region of element e, Me is the set of elements that have a local side α-β coinciding 
with the global side i-j, and Nα

e is the α-th local base function of element e.  The three load vectors, 
{Q}, {G}, and {B}, are defined as: 
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where Nse is the set of boundary segments that have a local node α coinciding with the global node i, 
and Be is the length of boundary segment e. 
 
Finite element evaluation of Darcy velocity.  In most numerical models, Darcy velocity components 
are calculated numerically by taking the derivatives of the simulated h as  
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The above formulation results in velocity field which is not continuous at element boundaries and 
nodal points if the variation of h is other than linear or constants.  The alternative approach would be 
to apply the Galerkin finite element method to Eq. (2.3.3), thus one obtains 
 

[ ]{ } { } [ ]{ } { } [ ]{ } { }zzyyxx DVUDVUDVU === ;;  (3.3.8) 
 

where the matrix [U] and the load vectors {Dx}, {Dy}, and {Dz} are given by 
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where Vx, Vy, and Vz are the Darcy velocity components along the x-, y-, and z-directions, 
respectively and i, j, and k are the unit vector along the x-, y-, and z-coordinates, respectively. 
 
Finite difference discretization in time.  We derive a matrix equation by integrating Eq. (3.3.3).  An 
important advantage in finite element approximation over the finite difference approximation is the 
inherent ability to handle complex boundaries and obtain the normal derivatives therein.  In the time 
dimension, such advantages are not evident.  Thus, finite difference methods are typically used in 
the approximation of the time derivative.  Two time-marching methods are adopted in the present 
model. 
 
The first one is the time weighted method written as: 
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where [M], [S], {Q}, {G}, and {B} are evaluated at (t + ωΔt).  In the Crank-Nicolson centered-in-
time approach ω = 0.5, in the backward-difference (implicit difference) ω = 1.0, and in the forward-
difference (explicit scheme) ω = 0.0.  The central-Nicolson algorithm has a truncation error of 
O(Δt2), but its propagation-of-error characteristics frequently lead to oscillatory nonlinear instability. 
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 Both the backward-difference and forward-difference have a truncation error of O(Δt).  The 
backward-difference is quite resistant to oscillatory nonlinear instability.  On the other hand, the 
forward difference is only conditionally stable even for linear problems, not to mention nonlinear 
problems. 
 
In the second method, the values of unknown variables are assumed to vary linearly with time during 
the time interval, Δt.  In this mid-difference method, the recurrence formula is written as: 
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{ } { } { } ,2 2/ ttttt hhh −= Δ+Δ+  (3.3.13)

 

where [M], [S], {Q}, and {B} are evaluated at (t+Δt/2). 
 
Equations (3.3.11) and (3.3.12) can be written as a matrix equation 
 

[ ]{ } { } { },BLhA +=  (3.3.14)
 

where [A] is the assembled coefficient matrix, {h} is the unknown vector to be found and represents 
the values of discretized pressure field at new time, {L} is the load vector due to initial conditions 
and all types of sources/sinks, and {B} is the load vector due to boundary conditions including the 
global boundary and media-interface boundaries.  Take for example, Eq. (3.3.11) with ω = 1.0, [C] 
and {L} represent the following: 
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where {h}t is the vector of the discretized pressure field at previous time. 
 
Mass lumping.  Referring to the mass matrix, [M], one may recall that this is a unit matrix if the 
finite difference formulation is used in spatial discretization.  Hence, by proper scaling, the mass 
matrix can be reduced to the finite-difference equivalent by lumping (Clough 1971).  In many cases, 
the lumped mass matrix would result in better solution, in particular, if it is used in conjunction with 
the central or backward-difference time marching (Yeh and Ward 1980).  Under such circumstances, 
it is preferred to the consistent mass matrix (mass matrix without lumping).  Therefore, options are 
provided for the lumping of the matrix [M].  More explicitly, [M] will be lumped according to: 
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Implementation of global Boundary Conditions.  For any interior node I, its algebraic equation  is 
obtained by the I-th row of Eq. (3.3.14) as 
 

INNIIIII LhAhAhA =++++ ,,11, ……  (3.3.17)
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Note that BI is absent from Eq. (3.3.17) for all interior nodes.  For the purpose of discussion, one 
may consider Eq. (3.3.17) to correspond the unknown hI (one equation, one unknown).  For any 
boundary node I, the corresponding algebraic equation from Eq. (3.3.14) is  
 

IINNIIIII BLhAhAhA +=++++ ,,11, ……  (3.3.18)
 

 
In the above equation there are two unknowns hI and BI; either hI or BI, or the relationship between 
hI and BI must be specified.  Before the implementation of global boundary and media-interface 
boundary conditions, the coefficient matrix (AI,1, .., AI,I, .., AI,N) and the right hand load term (LI) 
must be stored in a temporary array.  Then Eq. (3.3.18) is modified with the implementation of 
boundary conditions.  After the implementation, the modified equations are solved for the primary 
unknown hI’s.  The final step is to back calculate BI’s using unmodified Eq. (3.3.18). 
 
The global and interface (river-subsurface media interface or overland-subsurface media interface) 
conditions must be used to provide {B} for all boundary nodes in Eq. (3.3.18).  The interface 
boundary condition will be addressed in Sub-sections 3.4.2 through 3.4.4.  The global boundary 
conditions are addressed below. 
 
Dirichlet boundary condition: prescribed pressure head 
 
For a Dirichlet node I, we simply rewrite Eq. (3.3.18) as 
 

dI hh =  (3.3.19)
 

which is obtained by modifying both the corresponding coefficient matrix and load vector as 
 

dIINIIIIIIII hBLandAAAAA =+===== ++− 0..,,0,1,0..,,0 ,1,1,1,1,  (3.3.20)
 
Thus, it is seen that for a Dirichlet node, both the matrix coefficient and the load vector are modified. 
 
Cauchy boundary condition: prescribed total flux 
 
For the Cauchy boundary condition given by Eq.(2.3.7), we simply substitute Eq.(2.3.7) into 
Eq.(3.3.6) to yield the value of BI for the Cauchy node I: 
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Thus, the modification of Eq. (3.3.18) is to simply add BI to LI. 
 
Neumann boundary condition: prescribed gradient flux 
 
For the Neumann boundary condition given by Eq.(2.3.6), we substitute Eq.(2.3.6) into Eq.(3.3.6) to 
yield the value of BI for the Neumann node I: 
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If the hydraulic conductivity is evaluated using the value of pressure head from previous iteration, 
then this boundary condition only contribute to the modification of the load vector in Eq. (3.3.18).  
Therefore, the modification of Eq. (3.3.18) is to simply add BI to LI. 
 
Variable boundary condition: Dirichlet or Cauchy boundary condition 
 
The implementation of variable-type boundary condition is more involved.  During the iteration of 
boundary conditions on the variable boundary, one of Eqs.(2.3.9) through (2.3.12) is used at a node. 
 If either Eq.(2.3.10) or (2.3.13) is used, we substitute it into Eq.(3.3.6) to yield the value of BI for 
the variable node I: 
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which is independent of the pressure head h.  Thus, if Eq. (2.3.10) or (2.3.13) is chosen during the 
iterative process, the implementation of the boundary condition is to simply add BI to LI in Eq. 
(3.3.8) which is the corresponding algebraic equation for boundary node I.  On the other hand, if Eq. 
(2.3.9), (2.3.11), or (2.3.12) is chosen, we override Eq. (3.3.8) with an identity equation as in the 
implementation of Dirichlet boundary conditions: 
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River boundary condition: 
 
For the the river boundary condition given by Eq.(2.3.8), we simply substitute Eq.(2.3.8) into 
Eq.(3.3.6) to yield the following integrals: 
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The integrals BI and  BI,J , respectively, are added to LI and subtracted from AI,J, respectively, in Eq. 
(3.3.18) to complete the modification of this algebraic equation for the node I. 
 
After the incorporation of boundary conditions, we obtain the following matrix equation 
 

[ ]{ } { } [ ] [ ] [ ] { } { } { }[ ]BLRandBACwhereRhC +=+==  (3.3.26)
 

where [C] is the final coefficient matrix; {R} is the final right-hand side vector; and [B] and {B} the 
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coefficient matrix and load vector contributed from boundary conditions.  For  saturated-unsaturated 
flow simulations, [C] and {R} are highly nonlinear functions of the pressure head {h}. 
 
Solution of the matrix equation.  Equation (3.3.26) is in general a banded sparse matrix equation.  It 
may be solved numerically by either direct method or iteration methods.  In direct methods, a 
sequence of operation is performed only once.  This would result in an exact solution except for 
round-off error.  In this method, one is concerned with the efficiency and magnitude of round-off 
error associated with the sequence of operations.  On the other hand, in an iterative method, one 
attempts to the solution by a process of successive approximations.  This involves in making an 
initial guess, then improving the guess by some iterative process until an error criterion is obtained.  
Therefore, in this technique, one must be concerned with convergence, and the rate of convergence.  
The round-off errors tend to be self-corrected. 
 
For practical purposes, the most advantages of direct method are: (1) the efficient computation when 
the bandwidth of the matrix [C] is small, and (2) the fact that no problem of convergency is 
encountered when the matrix equation is linear or less severity in convergence than iterative 
methods even when the matrix equation is nonlinear.  The most disadvantages of direct methods are 
the excessive requirements on CPU storage and CPU time when a large number of nodes is needed 
for discretization.  On the other hand, the most advantages of iterative methods are the efficiencies in 
terms of CPU storage and CPU time when large problems are encountered.  Their most 
disadvantages are the requirements that the matrix [C] must be well conditioned to guarantee a 
convergent solution.  For three dimensional problems, the bandwidth of the matrix is usually large, 
thus the direction solution method is not practical.  Only the iterative methods are implemented in 
the three-dimensional flow module of WASH123D.  Four iteration methods are used in solving the 
linearized matrix equation:  (1) block iteration, (2) successive point iteration, (3) incomplete 
Cholesky preconditioned conjugate gradient method, and (4) algebraic multigrid method. 
 
The matrix equation, Eq. (3.326), is nonlinear because both the hydraulic conductivity and the water 
capacity are functions of the pressure head h.  To solve the nonlinear matrix equation, two 
approaches can be taken: (1) the Picard method and (2) the Newton-Ralphson method.  The Newton-
Ralphson method has a second order of convergent rate and is very robust.  However, the Newton-
Ralphson method would destroy the symmetrical property of the coefficient matrix resulting from 
the finite element approximation.  As a result the solution of the linearized matrix equation requires 
extra care.  Many of the iterative methods will not warrant a convergent solution for the non-
symmetric linearized matrix equation.  Thus, the Picard method is used in this report to solve the 
nonlinear problems. 
 
In the Picard method, an initial estimate is made of the unknown {h}.  Using this estimate, we then 
compute the coefficient matrix [C] and solve the linearized matrix equation by the method of linear 
algebra.  The new estimate is now obtained by the weighted average of the new solution and the 
previous estimate: 
 

{ } { } ( ){ }kk hhh ωω −+=+ 11(  (3.3.27)
 

where {h(k+1)} is the new estimate, {hk} is the previous estimate, {h} is the new solution, and ω is the 
iteration parameter.  The procedure is repeated until the new solution {h} is within a tolerance error. 
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 If ω is greater than or equal to 0 but is less than 1, the iteration is under-relaxation.  If ω  = 1, the 
method is the exact relaxation.  If ω is greater than 1 but less than or equal to 2, the iteration is 
termed over-relaxation.  The under-relaxation should be used to overcome cases when 
nonconvergency or the slow convergent rate is due to fluctuation rather than due to "blowup" 
computations.  Over-relaxation should be used to speed up convergent rate when it decreases 
monotonically. 
 
In summary, there are 16 optional numerical schemes here to deal with as wide a range of problems 
as possible.  These are the combinations of: (1) two ways of treating the mass matrix (lumping and 
no-lumping); (2) two ways of approximating the time derivatives (time-weighting and mid-
difference), and (3) four ways of solving the linearized matrix equation. 
 
3.3.2 Numerical Approximations of Thermal Transport Equations 
 
Two options are provided in this report to solve the thermal transport equation.  One is the finite 
element method and the other is the particle tracking method. 
 
3.3.2.1 Finite Element Method.  Recall the thermal transport equation is governed by Eq. (2.3.14) 
that is rewritten in a slightly different form as 
 

( ) ( )

( ) ( ) Ca
WW

mbWW
mbWW

HHThTC

T
t

CC
t
TCC

+=∇⋅⋅∇−⋅∇+
∂

+∂
+

∂
∂

+

HDVρ

ρθρρθρ
 (3.3.28)

 
Applying the finite element method to Eq. (3.3.28), we obtain the following matrix equation 
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where Wi is the weighting function of node xi; Ni and Nj are the base functions of nodes xi and xj, 
respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the stiff 
matrix due to dispersion/diffusion/conduction; {T} is the solution vector of temperature; {ΦB} is the 
vector due to boundary conditions, which can contribute to load vector and/or coefficient matrix; 
{Φa} is the load vector due to artificial energy source; {Φr} is the load vector due to energy  
contained  in rainfall; and {Φc} is the vector due to chemical reaction, which is not considered in this 
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version, but can be added easily. 
 
Approximating the time derivative term in Eq. (3.3.29) with a time-weighted finite difference, we 
reduce the advective-diffusive equation and its boundary conditions to the following matrix equation 
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where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial 
sink/sources, rainfall, and net radiation; Δt is the time step size; θ is the time weighting factor for the 
dispersion and linear terms; θv is the time weighting factor for the velocity term; and {T(n)} is the 
value of {T} at old time level n.  The global boundary conditions must be used to provide {ΦB} in 
Eq. (3.3.32). 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.3.32) is  
 

B
IINNIIIII LTCTCTC Φ−=++++ ,,11 ....  (3.3.34)

 
In the above equations there are two unknowns TI and ΦI

B; either TI or ΦI
B, or the relationship 

between TI and ΦI
B must be specified.  The numerical implementation of these boundary 

conditions is described as follows. 
 
Direchlet boundary condition: prescribed temperature 
 
If TI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1, .., CI,I, .., 
CI,N) and the right-hand side term (LI) obtained before the implementation of boundary conditions 
for this equation are stored in a temporary array, then an identity equation is created as 
 

DIdbI NITT ∈= ,  (3.3.35)
 

where TIdb is the prescribed temperature on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving these unknowns, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Ti’s.  After Ti’s for all nodes are solved from the 
matrix equation, Eq. (3.3.34) is then used to back calculate ND ΦI

B’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Ti’s 
accurately except for roundoff errors.  However, if an iterative solver is used, a stopping criterion 
must be strict enough so that the converged solution of N Ti’s are accurate enough to the exact 
solution.  With such accurate Ti’s, then can be sure that the back-calculated ND ΦI

B’s are accurate.  
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Cauchy boundary condition: prescribed heat flux 
 
If ΦBI is given (Cauchy flux boundary condition), all coefficients (CI,1, .., CI,I, .., CI,N) and  right-hand 
side term (LI) obtained before the implementation of boundary conditions for this equation are stored 
in a temporary array, then Eq. (3.3.34) is modified to incorporate the boundary conditions and used 
to solve for TI.  The modification of Eq. (3.3.34) is straightforward. Because ΦI

B is a known 
quantity, it contributes to the load on the right hand side.  This type of boundary conditions is very 
easy to implement.  After Ti�s are obtained, the original Eq. (3.3.34), which is stored in a temporary 
array, is used to back calculate NC ΦI

B’s on flux boundaries (where NC is the number of flux 
boundary nodes). These back-calculated ΦI

B’s should be theoretically identical to the input ΦI
B’s.  

However, because of round-off errors (in the case of direct solvers) or because of stopping criteria 
(in the case of iterative solvers), the back-calculated ΦI

B’s will be slightly different from the input 
ΦI

B’s.  If the differences between the two are significant, it is an indication that the solvers have not 
yielded accurate solutions. 
 
Neumann boundary condition: prescribed gradient of temperature 
 
At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature 
gradient is given.  For this case, all coefficients (CI,1, .., CI,I, .., CI,N) and  right-hand side term 
(LI) obtained before the implementation of boundary conditions for this equation are stored in a 
temporary array, then Eq. (3.3.34) is modified to incorporate the boundary conditions and used 
to solve for TI.  For the Neumann boundary condition, ΦI

B contributes to both the matrix 
coefficient and load vector, thus both the coefficient matrix [C] and the load vector {L} must be 
modified.  Recall  
 

( )∫ ∇−⋅=Φ
B

WWi
B
i dBTNTCW HDVn ρ  (3.3.36)

 
Substituting Eq. (2.3.19) into Eq. (3.3.36), we have 
 

{ } [ ]{ } { }
( )∫ ∫−=⋅−=

+≡Φ

B B
nbiijWWiij

B

dBtNLBanddBNCWCBwhichin

LBTCB

ϕρ Vn  (3.3.37)

 

where [CB] and {LB} are the coefficient matrix and load vector due to Neumann boundary.  Adding 
the I-th equation in Eq. (3.3.37) to Eq. (3.3.34), we obtained a modified equation, which can be 
solved for solve TI.  After TI is solved, the original Eq. (3.3.34) (recall the original Eq. (3.3.34) must 
be and has been stored in a temporary array) is used to back-calculate ΦI

B. 
 
Variable boundary condition: 
 
At the variable boundary condition Node I, the implementation of boundary conditions can be made 
identical to that for a Cauchy boundary condition node if the flow is directed into the region.  If the 
flow is going out of the region, the boundary condition is implemented similar to the implementation 
of Neuman boundary condition with LBI = 0.  The assumption of zero Neumann flux implies that a 
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Neuman node must be far away from the source/sink. 
 
Atmosphere-subsurface media interface boundary condition: 
 
At the atmosphere-media interface, the heat flux is a nonlinear function of the temperature since the 
back radiation and the heat flux due to evaporation and sensible heat are both function of 
temperature.  To implement this boundary condition, we first expand Eq. (2.3.20) in Taylor series as 
follows: 
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where T(k) is the value of T at previous iteration.  Substituting Eq. (3.3.38) into Eq. (3.3.36), we 
have 
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where [CB] and {LB} are the coefficient matrix and load vector due to the atmosphere-media 
boundary condition.  Adding the I-th equation in Eq. (3.3.39) to Eq. (3.3.34), we obtained a modified 
equation, which can be solved for solve TI.  After TI is solved, the original Eq. (3.3.34) is used to 
back-calculate ΦI

B. 
 
Subsurface-river interface boundary condition: 
 
This type of boundary condition will be addressed in Sub-Sections 3.4.3 and 3.4.4. 
 
Subsurface-overland interface boundary condition: 
 
This type of boundary condition will be addressed in Sub-Section 3.4.2. 
 
3.3.2.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the thermal transport equation, we expand Eq. 
(3.2.70) to yield following advection-dispersion equation in the Lagrangian form 
 

( )mbWW

rWS

CC
CwhereDKT

Dt
TD

ρθρ
ρ

+
=Φ+=+

VUU  (3.3.40)

in which 

( )
( )

( ) ( )

( ) ( ) ( )mbWW

ra
S

mbWW

WW
mbWW

mbWW

mbWW

CC
HHandT

CC
D

C
CCt

CC
CC

K

ρθρρθρ

ρ
ρθρ

ρθρ
ρθρ

+
+

=Φ∇⋅⋅∇
+

=

⋅∇
+

+
∂

+∂
+

=

HD

V

1

,11

 (3.3.41)

 



 3-72

To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq. 
(3.3.40) along its characteristic line from xi at new time level to xi

* at old time level or on the 
boundary, we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), and Φi
S(n+1), respectively, are the values of K, T, D, and 

ΦS, respectively, at xi at new time level t = (n+1)Δt; and Ki
*, Ti

*, Di
*, and Φi

S*, respectively, are the 
values of K, T, D, and ΦS, respectively, at the location xi

*.  
 
To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq. 

(3.3.41) as 
 

( ) ( )TDCC mbWW ∇⋅⋅∇=+ HDρθρ  (3.3.43)
 
Applying the Galerkin finite element method to Eq. (3.3.43) at new time level (n+1), we obtain the 
following matrix equation for {D(n+1)} as 
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where the superscript (n+1) denotes the time level; N and N are the base functions of nodes at xi and 
xj, respectively. 
 
Lumping the matrix [a(n+1)], we can solve Eq. (3.3.44) for DI

(n+1) as follows 
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where aII
(n+1) is the lumped aii

(n+1).  Following the identical procedure that leads Eq. (3.3.43) to Eq. 
(3.3.49), we have 
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where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)}, 
respectively. 
 
With {D(n)} calculated with Eq. (3.3.50), {D*} can be interpolated.  Substituting Eq. (3.3.49) into Eq. 
(3.3.42) and implementing boundary conditions given in Section 2.3.2, we obtain a system of N 
simultaneous algebraic equations N unknowns (Ti

(n+1) for i = 1, 2, .., N.)  If the dispersion/diffusion 
term is not included, then Eq. (3.3.42) is reduced to a set of N decoupled equations as 
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Equations (3.3.51) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there are two possibilities: Eq. (3.3.51) is replaced with a boundary equation when 
the flow is directed into the region or Eq. (3.3.51) is still valid when the flow is direct out of the 
region.  In other words, when the thermal energy is transported out of the region at a boundary node 
(i.e., when N•V ≥ 0), a boundary condition is not needed and Equation (3.3.51) is used to compute 
the Ti

(n+1).  When the thermal energy is transported into the region at a node (i.e., when N•V < 0), a 
boundary condition must be specified. 
 
Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the 
algebraic equation for the boundary node is obtained by applying the finite element method to the 
boundary node.    For this alternative approach, the implementation of boundary conditions at global 
boundary nodes is identical to that in the finite element approximation of solving the thermal 
transport equation. 
 
3.3.3 Numerical Approximations of Salinity Transport 
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Two options are provided in this report to solve the salinity transport equation.  One is the finite 
element method and the other is the particle tracking method. 
 
3.3.3.1 Finite Element Method.  Recall the salinity transport equation is governed by Eq. (2.3.23) 
which is rewritten in a slightly different form as 
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Applying the finite element method to Eq. (3.3.53), we obtain the following matrix equation 
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where Wi is the weighting function of node xi; Ni and Nj are the base functions of nodes xi and xj, 
respectively; [M] is the mass matrix, [V] is the stiff matrix due to advective transport; [D] is the stiff 
matrix due to dispersion/diffusion/conduction; [K] is the stiff matrix due to the linear term; {S} is 
the solution vector of salinity; {ΨB} is the vector due to boundary conditions, which can contribute 
to load vector and/or coefficient matrix; and {Ψa} is the load vector due to artificial salt source. 
 
Approximating the time derivative term in Eq. (3.3.54) with a time-weighted finite difference, we 
reduce the advective-diffusive equation and its boundary conditions to the following matrix 
equation. 
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where [C] is the coefficient matrix, {L} is the load vector from initial condition, artificial 
sink/sources and rainfall; Δt is the time step size; θ is the time weighting factor for the dispersion 
and linear terms; θv is the time weighting factor for the velocity term; and {S(n)} is the value of {S} 
at old time level n.  The global boundary conditions must be used to provide {ΨB} in Eq. (3.3.57). 
 
For a global boundary node I, the corresponding algebraic equation from Eq. (3.3.57) is  
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B
IINNIIIII LSCSCSC Ψ−=++++ ,,11, ....  (3.3.59)

 
In the above equations there are two unknowns TI and ΨI

B; either TI or ΨI
B, or the relationship 

between TI and ΨI
B must be specified.  The numerical implementation of these boundary conditions 

are described as follows. 
 
Dirichlet boundary condition: prescribed salinity 
 
If SI is given on the boundary node I (Dirichlet boundary condition), all coefficients (CI,1, .., CI,I, .., 
CI,N) and the right-hand side term (LI) obtained before the implementation of boundary conditions 
for this equation are stored in a temporary array, then an identity equation is created as 
 

DIdI NI,SS ∈=  (3.3.60)
 

where SId is the prescribed salinity on the Dirichlet node I and ND is the number of Dirichlet 
boundary nodes.  This process is repeated for every Dirichlet nodes.  Note it is unnecessary to 
modify other equations that involving this unknowns, which was done in the previous version.  By 
not modifying other equations, the symmetrical property of the matrix is preserved, which makes the 
iterative solvers more robust.  The final set of equations will consist of ND identity equations and (N 
- ND) finite element equations for N unknowns Si’s.  After Si’s for all nodes are solved from the 
matrix equation, Eq. (3.3.59) is then used to back calculate ND ΨI

B’s. 
 
If a direct solver is used to solve the matrix equation, the above procedure will solve N Si’s 
accurately except for roundoff errors.  However, if an iterative solver is used, a stopping criterion 
must be strict enough so that the converged solution of N Si’s are accurate enough to the exact 
solution.  With such accurate Si’s, then can we be sure that the back-calculated ND ΨBI’s are 
accurate.  
 
Cauchy boundary condition: prescribed salt flux 
 
If ΨI

B is given (Cauchy flux boundary condition), all coefficients (CI,1, ..,  CI,I, .., CI,N) and  the right-
hand side term (LI) obtained before the implementation of boundary conditions for this equation are 
stored in a temporary array, then Eq. (3.3.59) is modified to incorporate the boundary conditions and 
used to solve for SI.  The modification of Eq. (3.3.59) is straightforward.  Because ΨI

B is a known 
quantity, it contributes to the load on the right hand side.  This type of boundary conditions is very 
easy to implement.  After Si’s are obtained, the original Eq. (3.3.59), which is stored in a temporary 
array, is used to back calculate NC ΨI

B’s on flux boundaries (where NC is the number of flux 
boundary nodes).  These back-calculated ΨI

B’s should be theoretically identical to the input ΨI
B’s.  

However, because of round-off errors (in the case of direct solvers) or because of stopping criteria 
(in the case of iterative solvers), the back-calculated ΨI

B’s will be slightly different from the input 
ΨI

B’s.  If the differences between the two are significant, it is an indication that the solvers have not 
yielded accurate solutions.   
 
Neumann boundary condition: prescribed gradient of salinity 
 
At Neumann boundaries, the temperature gradient is prescribed, thus, the flux due to temperature 
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gradient is given.  For this case, all coefficients (CI,, .., CI,I, .., CI,N) and the right-hand side term 
(LI) obtained before the implementation of boundary conditions for this equation are stored in a 
temporary array, then Eq. (3.3.59) is modified to incorporate the boundary conditions and used 
to solve for SI.  For the Neumann boundary condition, ΨI

B contributes to both the matrix 
coefficient and load vector, thus both the coefficient matrix [C] and the load vector {L} must be 
modified.   Recall  
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Substituting Eq. (2.3.28) into Eq. (3.3.61), we have 
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where [CB] and {LB} are the coefficient matrix and load vector due to Neumann boundary.  Adding 
the I-th equation in Eq. (3.3.62) to Eq. (3.3.59), we obtained a modified equation, which can be 
solved for solve SI.  After SI is solved, the original Eq. (3.3.59) is used to back-calculate ΨI

B. 
 
Variable boundary condition:  
 
At the variable boundary condition Node I, the implementation of boundary conditions can be made 
identical to that for a Cauchy boundary condition node if the flow is directed into the 
river/stream/canal reach.  If the flow is going out of the reach, the boundary condition is 
implemented similar to the implementation of Neuman boundary condition with ΨI

nb = 0.  The 
assumption of zero Neumann flux implies that a Neuman node must be far away from the 
source/sink. 
 
Subsurface-river interface boundary condition: 
 
This type of boundary condition will be addressed in Sub-Sections 3.4.3 and 3.4.4. 
 
Subsurface-overland interface boundary condition: 
 
This type of boundary condition will be addressed in Sub-Section 3.4.2. 
 
3.3.3.2 The Hybrid Lagrangian-Eulerian Finite Element Method. When the hybrid Lagrangian-
Eulerian finite element method is used to solve the salt transport equation, we expand Eq. (3.3.53) to 
yield following advection-dispersion equation in the Lagrangian form 
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To use the semi-Lagrangian method to solve the thermal transport equation, we integrate Eq. 
(3.3.63) along its characteristic line from xi at new time level to xi

* at old time level or on the 
boundary, we obtain 
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where Δτ is the tracking time, it is equal to Δt when the backward tracking is carried out all the way 
to the root of the characteristic and it is less than Δt when the backward tracking hits the boundary 
before Δt is consumed; Ki

(n+1), Ti
(n+1), Di

(n+1), and Ψi
S(n+1), respectively, are the values of K, T, D, and 

ΨS, respectively, at xi at new time level t = (n+1)Δt; and Ki
*, Ti

*, Di
*, and Ψi

S*, respectively, are the 
values of K, T, D, and ΨS, respectively, at the location xi

*.  
 
To compute the dispersion/diffusion terms Di

(n+1) and Di
*, we rewrite the second equation in Eq. 

(3.3.64) as 
 

( )SD ∇⋅⋅∇= Dθθ  (3.3.66)
 
Applying the Galerkin finite element method to Eq. (3.3.66) at new time level (n+1), we obtain the 
following matrix equation for {D(n+1)} as 
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where the superscript (n+1) denotes the time level; N and N are the base functions of nodes at xi and 
xj, respectively. 
 
Lumping the matrix [a(n+1)], we can solve Eq. (3.2.110) for DI

(n+1) as follows 
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where aII
(n+1) is the lumped aii

(n+1).  Following the identical procedure that leads Eq. (3.3.66) to Eq. 
(3.3.72), we have 
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where {B(n)}, {a(n)} and {b(n)}, respectively, are defined similar to {B(n+1)}, {a(n+1)} and {b(n+1)}, 
respectively. 
 
With {D(n)} calculated with Eq. (3.3.73), {D*} can be interpolated.  Substituting Eq. (3.3.72) into Eq. 
(3.3.65) and implementing boundary conditions given in Section 2.3.3, we obtain a system of N 
simultaneous algebraic equations N unknowns (Si

(n+1) for i = 1, 2, .., N.)  If the dispersion/diffusion 
term is not included, then Eq. (3.3.65) is reduced to a set of N decoupled equations as 
 

NibSa i
n

iii ∈=+ ,)1(  (3.3.74)
where 
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⎝ ⎠ ⎝ ⎠
 (3.3.75)

 
Equations (3.3.75) is applied to all interior nodes without having to make any modification.  On a 
boundary point, there two possibilities: Eq. (3.3.75) is replaced with a boundary equation when the 
flow is directed into the region or Eq. (3.3.75) is still valid when the flow is direct out of the region.  
In other words, when the salt is transported out of the region at a boundary node (i.e., when N•V ≥ 
0), a boundary condition is not needed and Equation (3.3.75) is used to compute the Si

(n+1).  When 
the salt is transported into the region at a node (i.e., when N•V < 0), a boundary condition must be 
specified. 
 
Alternatively, to facilitate the implementation of boundary condition at incoming flow node, the 
algebraic equation for the boundary node is obtained by applying the finite element method to the 
boundary node.    For this alternative approach, the implementation of boundary conditions at global 
boundary nodes is identical to that in the finite element approximation of solving the salt transport 
equation. 
 
 

3.4 Numerical Implementation of Flow Coupling among Various Media 
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This section addresses numerical implement of coupling flow simulations among various media 
including (1) between 1D river and 2D overland flows, (2) between 2D overland and 3D subsurface 
flows, (3) between 3D subsurface and 1D overland flows, and (4) among 1D river, 2D overland, and 
3D subsurface flows.   Without loss of generality, numerical implementations of coupling for water 
flow equations are heuristically given for finite element approximations of diffusive wave models.  
For Largrangian-Eulerian approximations of diffusive wave models, semi-Largrangian 
approximations of kinematic wave models, or particle tracking approximations of fully dynamic 
wave models in surface waters, the implementations of numerical coupling among various media 
remain valid. 
 
3.4.1 Coupling between 1-D River Networks and 2-D Overland Flows 
 
The interaction between one-dimensional river and two-dimensional overland flows involves two 
cases: one is between overland and river nodes (left frame in Fig. 3.4-1) and the other is between 
overland and junction nodes (right frame in Fig. 3.4-1).  For every river node (Node I in the left 
frame of Fig. 3.4-1), there will be associated with two overland nodes (Nodes J and K in the left 
frame of Fig. 3.4-1).  For every junction node (Node L in the right frame of Fig. 3.4-1), there will be 
associated with a number of overland nodes such as Nodes J, K, O, etc (right frame of Fig. 3.4-1).  It 
should be noted that nodes, such as Nodes J and K in the right frame of Figure 3.4-1, contribute flow 
to both the river as source/sink of Node I and the Junction as source/sink of Node L. 
 

IJ K

J
I

K

L

O

 
Fig. 3.4-1.  Depiction of Interacting River Nodes and Overland Nodes (left) and Junction  

Nodes and Overland Nodes (Right) 
 
 
3.4.1.1 Couple Flow Rates between the River Network and the Overland Regime.   
 
Numerical approximations of the diffusive water flow equation for one-dimensional river with finite 
element methods yield the following matrix 
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where the superscript c denotes the canal (channel, river, or stream); AIJ is the I-th row, J-th column 
of the coefficient matrix [A]; HI denotes the water surface at Node I; RI is I-th entry of the load 
vector {R}; N is the number of nodes in the canal; QI is the rates of water source/sink from/to the 
overland flow to/from canal  node I; and the superscripts, o1 and o2, respectively, denote canal bank 
1 and 2, respectively.   Every canal node I involves 3 unknowns, HI

c, QI
o1, and QI

o2.   However, Eq. 
(3.4.1) gives just one algebraic equation for every canal node I.  Clearly, two additional algebraic 
equations are need for every canal node I. 
 
Applications of finite element methods to two-dimensional diffusive wave flow equations yield the 
following matrix   
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where the superscript o denotes the overland; AIJ is the I-th row, J-th column of the coefficient 
matrix [A]; HI denotes the water surface at Node I; RI is I-th entry of the load vector {R}; M is the 
number of nodes in the overland ; and QJ and QK are the rates of water sink/source from/to the 
overland to/from the canal via nodes J and K, respectively.   Equation (3.4.2) indicates that there is 
one unknown corresponding to one algebraic equation for every interior node.  However, for every 
algebraic equation corresponding an overland-canal interface node, there are two unknowns, the 
water surface and the flow rate.  Therefore, for every overland-river interface node, one additional 
equation is needed.  Since for every canal node, there are associated two overland-interface nodes, 
four additional equations are needed for every canal node I for the four additional unknowns QI

o, 
QK

o, QI
o1, and QI

o2. 
 
The additional equations are obtained by two interface boundary conditions.  The first one is the 
continuity of flux.  The second one is the imposition of continuity of water surfaces between canal 
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and overland nodes or the formulation of flow rates.  Two of the additional equations are obtained 
from the interface condition between the canal node I and the overland node J as 
 

( )1 1
1; ,o o o c o o c

J I J I I J IQ Q H H or Q f h h= = =  (3.4.3) 
 

where f1 is a prescribed function of water depths hJ
o and hI

c at the overland node J and the canal node 
I.  The other two additional equations are obtained from the interface condition between the canal 
node I and the overland node K 
 

( )2 2
2; ,o o o c o o c

K I K I I K IQ Q H H or Q f h h= = =  (3.4.4) 
 

where f2 is a prescribed function of water depths hK
o and hI

c at the overland node K and the canal 
node I. 
 
When the direct contribution of flow from the overland regime to a junction node L (Fig. 3.4-1) is 
significant, Equations (3.1.77) or (3.1.78) must be modified  
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+ = + =∑ ∑ ∑ ∑  (3.4.6) 

 

where Lh and V L are the water depth and volume at the junction node L, i
iLQ  is the flux contributed 

from the node iL of the reach i, o
OQ is the flux contributed from the overland node O to the junction 

and NO is the number of overland nodes interfacing with the junction L.  Additional NO unknowns 
have been introduced in Equation (3.4.5) or (3.4.6).  For each overland-junction interface node, say 
O (the right frame in Fig. 3.4-1), the finite element equation written out of Eq. (3.4.2) is 
 

1 1 2 2 .. ..o o o o o o o o o o
O O OO O OM M O OA H A H A H A H R Q+ + + + + = −  (3.4.7) 

 
It is seen that Equation (3.4.7) involves two unknowns, o

OH and o
OQ .  One equation must be 

supplemented to the finite element equation to close the system.  This equation is obtained by either 
imposing the continuity of water surfaces between nodes O and L or formulating flux as 
 

( )L
o

Oo
o

OL
o

O hhfQorHH ,==  (3.4.8) 
 

where fo is a prescribed function of water depths at nodes O and L. 
 
Finally, for each reach-junction interface node, say node I (the right frame in Fig. 3.4-1) which we 
shall say Node 1L of the first reach connecting to Junction L, the formulation of 1

1LQ  (or 1
IQ )  is 

similar to that of Equation (3.4.9) as 
 

( )1 1 1
1 ,I L I I LH H or Q f h h= =  (3.4.9) 
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where the superscript 1 denotes reach number and the subscript I denote node number. 
 
3.4.1.1 Couple thermal or Salt Rate between the River Network and the Overland Regime. 
 
Numerical approximations of thermal or salt transport equation for one-dimensional river with finite 
element methods yield the following matrix 
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where the superscript c denotes the canal (channel, river, or stream); CIJ is the I-th row, J-th column 
of the coefficient matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the 
load vector {R}; N is the number of nodes in the canal; MI is the rate of energy or salt source/sink 
from/to the overland flow to/from canal  node I; and the superscripts, o1 and o2, respectively, denote 
canal bank 1 and 2, respectively.  Every canal node I involves 3 unknowns, c

IE , 1o
IM , and 2o

IM .  
However, Eq. (3.4.10) gives just one algebraic equation for every canal node I.  Clearly, two 
additional algebraic equations are need for every canal node I. 
 
Applications of finite element methods to two-dimensional thermal or salt transport equation yield 
the following matrix 
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where the superscript o denotes the overland; CIJ is the I-th row, J-th column of the coefficient 
matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the load vector {R}; M 
is the number of nodes in the overland; and MJ and MK are the rates of thermal or salt sink/source 
from/to the overland to/from the canal via nodes J and K, respectively.   Equation (3.4.11) indicates 
that there is one unknown corresponding to one algebraic equation for every interior node.  
However, for every algebraic equation corresponding to an overland-canal interface node, there are 
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two unknowns, the temperature or salinity and the thermal or salt flux.  Therefore, for every 
overland-river interface node, one additional equation is needed.  Since for every canal node, there 
are associated two overland-interface nodes, four additional equations are needed for every canal 
node I for the four additional unknowns MI

o, MK
o, MI

o1, and MI
o2. 

 
The additional equations are obtained by two interface boundary conditions.  The first one is the 
continuity of flux.  The second one is the assumption that the thermal or salinity rates through the 
interface node are due mainly to water flow (i.e., advection).  Two of the additional equations are 
obtained from the interface condition between the canal node I and the overland node J as 
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 (3.4.12) 

 

for thermal transport or 
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 (3.4.13) 

 

for salt transport.  It should be noted that in Equations (3.4.12) and (3.4.13) 1o
IQ  = o

JQ , thus the 
continuity 1o

IM  = o
JM  is preserved. 

 
The other two additional equations are obtained from the interface condition between the canal node 
I and the overland node K as follows. 
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for thermal transport or 
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 (3.4.15) 

 

for salt transport.  It should be noted that in Equations (3.4.12) and (3.4.13) 2o
IQ  = o

KQ , thus the 
continuity 2o

IM  = o
IM  is preserved. 

 
When the direct contribution of energy or salt from the overland regime to a junction node L (Fig. 
3.4-1) is significant, Equations (3.1.121) and (3.1.122) or Equations (3.1.156) and (3.1.157) must be 
modified  
 



 3-84

W Wd C Vρ 0
O O

L i o i oL
iL O iL O

i O N i O N

E M or M
dt ∈ ∈

= Φ + Φ + =∑ ∑ ∑ ∑  (3.4.16) 

 

with LE  denoting LT  (where LT  is the temperature at the junction L) for thermal transport or 
 

d V 0
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L i o i oL
iL O iL O

i O N i O N

S M or M
dt ∈ ∈

= Ψ + Ψ + =∑ ∑ ∑ ∑  (3.4.17) 

 

with LE  denoting LS  (where LS  is the salinity at the junction L) for salt transport.  Additional NO 
unknowns have been introduced in Equation (3.4.16) or (3.4.17).  For each overland-junction 
interface node, say O (the right frame in Fig. 3.4-1), the finite element equation written out of Eq. 
(3.4.11) is 
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It is seen that Equation (3.4.18) involves two unknowns, EO

o and MO
o.  One equation must be 

supplemented to the finite element equation to close the system.  This equation is obtained by 
formulating energy or salt rates 
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OWW
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O EQsignEQsignQCM −++= 11
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1ρ  (3.4.19) 

 

for thermal transport or 
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O
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O EQsignEQsignQM −++= 11
2
1

 (3.4.20) 

 

for salt transport.  Finally, the formulation of i
iLΦ  or i

iLΨ  is identical to that of o
OM  in Equation 

(3.4.19) or (3.4.20).  
 
3.4.2 Coupling between 2-D Overland and 3-D Subsurface Flows 
 
The interaction between two-dimensional overland and three-dimensional subsurface flows is rather 
simple.   For every subsurface node (Node J in Fig. 3.4-2), there will be associated an overland 
nodes (Node I in Fig. 3.4-2).   
 
3.4.2.1 Couple Flow Rates between the Overland Regime and Subsurface Media.   
 
Numerical approximations of the diffusive water flow equation for two-dimensional overland with 
finite element methods yield the following matrix 
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where the superscript o denotes the overland; AIJ is the I-th row, J-th column of the coefficient 
matrix [A]; HI denotes the water surface at Node I; RI is I-th entry of the load vector {R}; N is the 
number of nodes in the overland; and QI is the rates of water sink/source from/to the overland node I 
to/from the corresponding subsurface node (e.g., Node J in Fig. 3.4-2) due to infiltration (the 
superscripts, io, denotes the infiltration from overland).   Every overland node I involves two 
unknowns, HI

o and and QI
io.   However, Eq. (3.4.21) gives just one algebraic equation for every 

canal node I.  Clearly, one additional algebraic equation is needed every overland node I. 
 

I
J

 
Fig. 3.4-2.  Depiction of Interacting Subsurface Nodes and Overland Nodes 

 
Applications of finite element methods to the three-dimensional subsurface flow equation yield the 
following matrix   
 

11 12 1 1 1

21 2 2 2

1 2

1 2

s s s s s
M

s s s s
M

s s s s s
J J JJ IM J

o o o s
M M MM M

A A A H R

A A H R

A A A A H R

A A A H

⎡ ⎤ ⎧ ⎫− − − − − − − −
⎢ ⎥ ⎪ ⎪

− − − − − − − − − −⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪− − − − − − − − − − − − − − − − − −⎢ ⎥ ⎪ ⎪⎪ ⎪⎢ ⎥− − − − − − =⎨ ⎬
⎢ ⎥ ⎪ ⎪− − − − − − − − − − − − − − − −⎢ ⎥ ⎪ ⎪
⎢ ⎥ ⎪ ⎪− − − − − − − − − − − − − − − −
⎢ ⎥ ⎪ ⎪

− − − − − − − −⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

s s
J J

s
M

Q

R

⎧ ⎫ − −⎧ ⎫
⎪ ⎪ ⎪ ⎪− −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪− −⎪ ⎪ ⎪ ⎪⎪ ⎪ −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪− − − −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪− − − −
⎪ ⎪ ⎪ ⎪− −⎩ ⎭⎪ ⎪⎩ ⎭

 (3.4.22) 

 

where the superscript so denotes the subsurface media; AIJ is the I-th row, J-th column of the 
coefficient matrix [A]; HJ denotes the total head at Node J; RJ is J-th entry of the load vector {R}; M 
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is the number of nodes in the subsurface media; and QJ is the rates of water source/sink from/to the 
overland to/from the subsurface media at node J.  Equation (3.4.22) indicates that there is one 
unknown corresponding to one algebraic equation for every interior node.  However, for every 
algebraic equation corresponding to a subsurface-overland interface node, there are two unknowns, 
the total head and the flow rate.  Therefore, for every subsurface media node interfacing with an 
overland node, one additional equation is needed.  Since for every overland node, there is associated 
one subsurface-interface node, two additional equations are needed for every overland node I for the 
two additional unknowns QI

io and QJ
s. 

 
The additional equations are obtained by the interface boundary condition between the overland 
node I and the subsurface media node J as 
 

( );s io s o io s o
J I J I I J IQ Q H H or Q K H H= = = −  (3.4.23) 

 

where K is the exchange coefficient representing the property of the medium separating the overland 
and subsurface media, but not being included as part of the media. 
 
3.4.2.2 Couple thermal or Salt Rate between the Overland Regime and Subsurface Media.   
 
Numerical approximations of thermal or salt transport equation for two-dimensional overland regime 
with finite element methods yield the following matrix 
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where the superscript o denotes the overland; CIJ is the I-th row, J-th column of the coefficient 
matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the load vector {R}; N 
is the number of nodes in the overland; and MI is the rate of energy or salt source/sink from/to the 
subsurface  to/from the overland  node I (the superscript, io, denotes the infiltration from overland).  
Every overland node I involves two unknowns, EI

o, and MI
io.   However, Eq. (3.4.24) gives just one 

algebraic equation for every canal node I.  Clearly, one additional algebraic equation is need for 
every overland node I. 
 
Applications of finite element methods to three-dimensional thermal or salt transport equations for 
subsurface media yield the following matrix  
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where the superscript s denotes the subsurface media; CIJ is the I-th row, J-th column of the 
coefficient matrix [C]; EJ denotes the temperature or salinity at Node J; RJ is J-th entry of the load 
vector {R}; M is the number of nodes in the overland ; and MJ is the rate of thermal or salt 
sink/source from/to the subsurface node J to/from the corresponding overland node I.   Equation 
(3.4.25) indicates that there is one unknown corresponding to one algebraic equation for every 
interior node.  However, for every algebraic equation corresponding an subsurface-overland 
interface node, there are two unknowns, the temperature or salinity and the thermal or salt flux.  
Therefore, for every subsurface-overland interface node, one additional equation is needed.  Since 
for every overland node, there is associated one subsurface-interface nodes, two additional equations 
are needed for every overland node I and its corresponding subsurface node J for the two additional 
unknowns MI

io and MJ
s. 

 
The additional equations are obtained from the interface condition between the overland I and the 
subsurface J as 
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 (3.4.26) 

 

for thermal transport or 
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 (3.4.27) 

 

for salt transport.  It should be noted that in Equations (3.4.26) or (3.4.27) io
IQ  = s

JQ , thus the 
continuity io

IM  = s
JM  is preserved. 

 
3.4.3 Coupling between 3-D Subsurface and 1-D Surface Flows 
 
The interaction between three-dimensional subsurface and one-dimensional river flows involves 
three options: (1) river is discretized as finite-width and finite-depth on the three-dimensional 
subsurface media (Fig. 3.4-3), (2) river is discretized as finite-width and zero-depth on the three-
dimensional subsurface media (Fig. 3.4-4), and (3) river is discretized as zero-width and zero-depth 
on the three-dimensional subsurface media (Fig. 3.4-5).  Option 1 is the most realistic one.  
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However, because of the computational demands, it is normally used in small scale studies involving 
the investigations of infiltration and discharge between river and subsurface media on a local scale.  
Option 2 is normally used in medium scale studies while Option 3 is normally employed in large 
scale investigations.  In Option 1, for every river node there are associated with a number of 
subsurface interfacing nodes such as K, .., J, .., and L(Fig. 3.4-3).  In Option 2, for every river node 
there are associated with three subsurface interfacing nodes K, J, and L (Fig. 3.4-4).  In Option 3, for 
every river node there is associated with one subsurface interfacing node J (Fig. 3.4-5). 
 
3.4.3.1 Couple Flow Rates between the River Network and the Subsurface Media.   
 
Numerical approximations of the diffusive water flow equation for one-dimensional river with finite 
element methods yield the following matrix 
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Fig. 3.4-3.  Rivers Are Discretized as Finite-Width and  

Finite-Depth on the Subsurface Media 
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Fig. 3.4-4.  Rivers Are Discretized as Finite-Width and 

Zero-Depth on the Subsurface Media 
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Fig. 3.4-5.  Rivers Are Discretized as Zero-Width and  

Zero-Depth on the Subsurface Media 
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where the superscript c denotes the canal (channel, river, or stream); AIJ is the I-th row, J-th column 
of the coefficient matrix [A]; HI denotes the water surface at Node I; RI is I-th entry of the load 
vector {R}; N is the number of nodes in the canal; QI is the rates of water sink/source from/to the 
river node I to/from the subsurface media.  Every canal node I involves two unknowns, HI

c and QI
ic.  

 However, Eq. (3.4.28) gives just one algebraic equation for every canal node I.  Clearly, one 
additional algebraic equation is need for every canal node I. 
 
For example, taking Option 2 where there are three nodes associated with one canal node, the 
applications of finite element methods to three-dimensional subsurface flow equations yield   
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where the superscript s denotes the subsurface meida; AIJ is the I-th row, J-th column of the 
coefficient matrix [A]; HJ denotes the total head at Node J; RJ is J-th entry of the load vector {R}; M 
is the number of nodes in the subsurface media; and QJ is the rate of water source/sink from/to the 
canal to/from the subsurface via node J.   Equation (3.4.29) indicates that there is one unknown 
corresponding to one algebraic equation for every interior node.  However, for every algebraic 
equation corresponding to a subsurface-canal interface node, there are two unknowns, the total head 
and the flow rate.  Therefore, for every subsurface-river interface node, one additional equation is 
needed.  Since for every canal node, there are associated three subsurface-interface nodes, four 
additional equations are needed for every canal node I for the four additional unknowns QI

ic, QK
s, 

QJ
s, and QL

s. 
 
The additional equations are obtained the interface condition between the canal node I and the 
subsurface nodes K, J, and L as 
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+ + = + + = = −
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 (3.4.30) 

 

where QK
rain and QL

rain are the rainfall fluxes through nodes K and L, respectively; HK
ponding and 

HL
ponding are the allowable ponding depth at nodes K and L, respectively; and Ke is the exchange 

coefficient representing the material property of a layer separating the river and subsurface media 
but the layer is not included in the geometrical discretization. 
 
In Option 1, for every canal node I, there are associated a number of subsurface-interface nodes, say 
NS, (NS + 1) additional equations are needed for every canal node I for the additional unknowns QI

ic, 
QK

s, .., QJ
s, .., and QL

s.  These equations are listed below: 
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∑
 (3.4.31) 

 
 
In Option 3, for every canal node I, there are associated three subsurface-interface nodes K, J, and L 
as in Option 2.  However, while in Option 2, nodes K and J are located at the interactions of river 
banks and subsurface media, in Option 3, nodes K and L can be located far way from the river banks 
and node J interacts directly with the canal node I.  The four interaction equations are modified 
according to the continuity of fluxes as 
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 (3.4.32) 

 

where P is the wet perimeter of the canal and EK and EL are the element length of KJ and JL, 
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respectively.  
 
3.4.3.2 Couple thermal or Salt Rate between the River Network and the Subsurface.   
 
Numerical approximations of thermal or salt transport equation for one-dimensional river with finite 
element methods yield the following matrix 
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where the superscript c denotes the canal (channel, river, or stream); CIJ is the I-th row, J-th column 
of the coefficient matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the 
load vector {R}; N is the number of nodes in the canal; and MI

ic is the rate of energy or salt 
source/sink from/to the subsurface to/from canal  node I due to infiltration/exfiltration. Every canal 
node I involves two unknowns, EI

c and MI
ic.   However, Eq. (3.4.33) gives just one algebraic 

equation for every canal node I.  Clearly, one additional algebraic equation is need for every canal 
node I. 
 
For example, taking Option 2 where there are three nodes associated with one canal node, the 
applications of finite element methods to three-dimensional thermal or salt transport equation in the 
subsurface media yields  
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 (3.4.34) 

 

where the superscript s denotes the subsurface media; CIJ is the I-th row, J-th column of the 
coefficient matrix [C]; EJ denotes the temperature or salinity at Node J; RJ is J-th entry of the load 
vector {R}; M is the number of nodes in the overland ; and MK, MJ and ML are the rates of thermal or 
salt sink/source from/to the subsurface water to/from the canal via nodes K, J and L, respectively.  
Equation (3.4.34) indicates that there is one unknown corresponding to one algebraic equation for 
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every interior node.  However, for every algebraic equation corresponding an subsurface-canal 
interface node, there are two unknowns, the temperature or salinity and the thermal or salt flux.  
Therefore, for every subsurface-river interface node, one additional equation is needed.  Since for 
every canal node, there are associated three subsurface-interface nodes, four additional equations are 
needed for every canal node I for the four additional unknowns MI

ic, MK
s, MJ

s, and ML
s. 

 
These four additional equations are obtained by the interface condition between the canal node I and 
the subsurface nodes K, J, and L as 
 

( ) ( )
( )

1 ( ) 1 ( )
2 2

ic ic ic c icW W W W
I I I I I

s s s s s s rains rain rains rain
K K J J L L K K L L

C CM Q sign Q E sign Q
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ρ ρ
= − + + ×

+ + − −
 (3.4.35) 

and 
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for thermal transport or 
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and 
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for salt transport.  For Option 1 and Option 3, the coupling can be done similarly. 
 
3.4.4 Coupling Among River, Overland, and Subsurface Flows 
 
The interaction among one-dimensional river, two-dimensional overland, and three-dimensional 
subsurface flows involves three options: (1) river is discretized as finite-width and finite-depth on 
the three-dimensional subsurface media (Fig. 3.4-6), (2) river is discretized as finite-width and zero-
depth on the three-dimensional subsurface media (Fig. 3.4-7), and (3) river is discretized as zero-
width and zero-depth on the three-dimensional subsurface media (Fig. 3.4-8).  Option 1 is the most 
realistic one.  However, because of the computational demands, it is normally used in small scale 
studies involving the investigations of infiltration and discharge between river and subsurface media 
on a local scale.  Option 2 is normally used in medium scale studies while Option 3 is normally 
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employed in large scale investigations.  In Option 1, for every river node there are associated with 
two overland nodes M and N and a number of subsurface interfacing nodes such as K. , J, .., and L 
(Fig. 3.4-6).  In Option 2,  for every river node I, there are associated with two overland nodes M and 
N and three subsurface interfacing nodes  K, J, and L (Fig. 3.4-7).  In Option 3, for every river node 
I, there is associated with two overland nodes M and N one subsurface node J (Fig. 3.4-8). 
 
 

I

J’s
K L

K
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I
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M N

M N

 
Fig. 3.4-6.  Interfacing Nodes for Every River Node when Rivers  

Are Discretized as Finite-Width and Finite-Depth 
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Fig. 3.4-7.  Interfacing Nodes for Every River Node when Rivers  

Are Discretized as Finite-Width and Zero-Depth 
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Fig. 3.4-8. Interfacing Nodes for Every River Node when Rivers  

Are Discretized as Zero-Width and Zero-Depth 
 
3.4.4.1 Couple Flow Rates among River, Overland, and Subsurface Media.   
 
Numerical approximations of flow equations in river, overland, and subsurface would result in a 
system of algebraic equations.  For every river node I (Fig. 3.4-7), one or two algebraic equations 
(for diffusive wave or fully dynamic wave approaches) are obtained governing the water surface 
(diffusive wave approach) or the water surface and discharge (dynamic wave approach) for the node. 
 The algebraic equation(s) also includes three additional unknowns: two are flow rates from overland 
to the river via two river banks (QI

o1 and QI
o2)and the other is the flow rate from the subsurface 

media to river via infiltration/exfiltration (QI
ic.)  In the meantime, for the overland node M that 

interfaces with the river node I and other subsurface nodes (Fig. 3.4-7), there are two additional 
unknowns besides the state variables: one is the boundary flux from the overland to the river (QM

o) 
and the other is the infiltration and/or exfiltration flux from overland to the subsurface (QM

io).  
Similarly for the overland node N that interfaces with the river node I and other subsurface nodes 
(Fig. 3.4-7), there are two additional unknowns besides the state variables: one is the boundary flux 
from the overland to the river (QN

o) and the other is the infiltration and/or exfiltration flux from 
overland to the subsurface (QN

io).  For the subsurface node K that interfaces with the river node I and 
overland node M (Fig. 3.4-7), there is one additional unknown (QK

s) beside the state variable.  
Similarly, for the subsurface nodes L that interfaces with the river node I and overland node N, there 
is one additional unknown (QL

s).  Finally for the subsurface node J that interfaces with the river node 
I, there is one additional unknown (QJ

s) beside the state variable (the pressure head or total head at 
node J).  Thus, in Option 2, one needs to set up 10 equations that describe the interactions among 
flows in river, overland, and subsurface.  These ten equations can be derived based on the continuity 
of fluxes and state variables and formulation of each flux at each individual node as follows. 
 
Interaction between Overland Node M and Canal Node I.  Two equations are obtained based on 
the continuity of flux and state variable or formulation of flux as 
 

( )1 1
1; ,o o o c o o c

M I M I I M IQ Q H H or Q f H H= = =  (3.4.39) 
 
 
Interaction between Overland Node N and Canal Node I.  Two equations are obtained based on 
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the continuity of flux and state variable or formulation of flux as 
 

( )2 2
2; ,o o o c o o c

N I N I I N IQ Q H H or Q f H H= = =  (3.4.40) 

 
Interaction between Overland Node M, Subsurface Node K, and Canal Node I.  Two equations 
are obtained based on the continuity of flux and state variable or formulation of flux as 
 

( )1 ;
4

s io ic s o io s o
K M I K M M e K MQ Q Q H H or Q K H H= + = = −  (3.4.41) 

 
Interaction between River Bank Node N, Subsurface Node L, and Canal Node I.  Two equations 
are obtained based on the continuity of flux and state variable or formulation of flux as 
 

( )1 ;
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s io ic s o io s o
L N I L N N e L NQ Q Q H H or Q K H H= + = = −  (3.4.42) 

 
Interaction between Subsurface Node J and Canal Node I.  Two equations are obtained based on 
the continuity of flux and state variable or formulation of flux as 
 

( )1 ;
2

s ic s c s s c
J I J I J e J IQ Q H H or Q K H H= = = −  (3.4.43) 

 

 
3.4.4.2 Couple thermal or Salt Rate among River, Overland, and Subsurface Media.   
 
Similar to the coupling of flows among river, overland, and subsurface media, the coupling of 
thermal or salinity transport are achieved by imposing the continuity of energy/salt fluxes and 
formulation of individual node fluxes. 
 
Interaction between Overland Node M and Canal Node I.  Two equations are obtained based on 
the continuity of fluxes and the formulation of fluxes as 
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for thermal transport or 
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for salt transport. 
 
Interaction between Overland Node N and Canal Node I.  Two equations are obtained based on 
the continuity of fluxes and the formulation of fluxes as 
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for thermal transport or 
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Interaction between Overland Node M, Subsurface Node K, and Canal Node I.  Two equations 
are obtained based on the continuity of fluxes and the formulation of fluxes as 
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for thermal transport and 
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for salt transport. 
 
Interaction between River Bank Node N, Subsurface Node L, and Canal Node I.  Two equations 
are obtained based on the continuity of fluxes and the formulation of flux as 
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for thermal transport and 
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for salt transport. 
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Interaction between Subsurface Node J and Canal Node I.  Two equations are obtained based on 
the continuity of fluxes and the formulation of fluxes as 
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for thermal transport and 
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for salt transport. 
 
 

3.5 Solving One-Dimensional River/Stream/Canal Network Water Quality Transport 
Equations 

 
In this section, we present the numerical approaches employed to solve the governing equations of 
reactive chemical transport in 1-D river/stream/canal networks. Ideally, one would like to use a 
numerical approach that is accurate, efficient, and robust. Depending on the specific problem at 
hand, different numerical approaches may be more suitable. For research applications, accuracy is a 
primary requirement, because one does not want to distort physics due to numerical errors. On the 
other hand, for large field-scale problems, efficiency and robustness are primary concerns as long as 
accuracy remains within the bounds of uncertainty associated with model parameters. Thus, to 
provide accuracy for research applications and efficiency and robustness for practical applications, 
three coupling strategies were investigated to deal with reactive chemistry. They are: (1) a fully-
implicit scheme, (2) a mixed predictor-corrector/operator-splitting method, and (3) an operator-
splitting method. For each time-step, we first solve the advective-dispersive transport equation with 
or without reaction terms, kinetic-variable by kinetic-variable. We then solve the reactive chemical 
system node-by-node to yield concentrations of all species.  
 
Five numerical options are provided to solve the advective-dispersive transport equations: Option 1- 
application of the Finite Element Method (FEM) to the conservative form of the transport equations, 
Option 2 - application of the FEM to the advective form of the transport equations, Option 3 - 
application of the modified Lagrangian-Eulerian (LE) approach to the Largrangian form of the 
transport equations, Option 4 - LE approach for all interior nodes and downstream boundary nodes 
with the FEM applied to the conservative form of the transport equations for the upstream flux 
boundaries, and Option 5 - LE approach for all interior and downstream boundary nodes with the 
FEM applied to the advective form of the transport equations for upstream flux boundaries. 
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3.5.1 One-Dimensional Bed Sediment Balance Equation 
 
At n+1-th time step, the continuity equation for 1-D bed sediment transport, equation (2.5.1), is 
approximated as follows. 
 

( ) ( )
1 1

1 1 1
1 2

n n n n
n n n n n nn n

n n n n
P M P M W P D R W P D R

t

+ +
+ + +−

= − + −
Δ

 (3.5.1.1)  

 
where W1 and W2 are time weighting factors satisfying 
 

1 2 1 21,   0 1,     0 1W W W and W+ = < < < <  (3.5.1.2)  
 
 So that 
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 (3.5.1.3)  
 
 
If the calculated Mn

n+1 < 0, assign Mn
n+1

 =0, so that solve equation (3.5.1.3) and get 
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1 2 1

n n n n n n n n n
n n n n nR P M W P D W P D R t W P t+ + + +⎡ ⎤= + + − Δ Δ⎣ ⎦

 (3.5.1.4)  

 
3.5.2 Application of the Finite Element Method to the Conservative Form of the Sediment 

Transport Equations to Solve 1-D Suspended Sediment Transport 
 
Recall governing equation for 1-D suspended sediment transport, equation (2.5.10), as following. 
 

1 2
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Assign  
 

( )        0HS n n HSR R D P and L= − =  (3.5.2.2)  
 

where the right hand side term RHS and left hand side term LHS should be continuously calculated as 
follows. 
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Then equation (3.5.2.1) is simplified as 
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( ) ( ) *n n n
x HS n HS

AS QS SK A L S R
t x x x

∂ ∂ ∂ ∂⎛ ⎞+ − + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (3.5.2.6)  

 
Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. For 
Galerkin method, choose weighting function identical to base functions. For Petrov-Galerkin 
method, apply weighting function one-order higher than the base function to advection term. 
Integrate Equation (3.5.2.6) in the spatial dimensions over the entire region as follows. 
 

( )
1 1 1

( ) *
N N Nx x x

nn n
i x HS n i i HS

x x x

QSAS SN K A L S dx W dx N R dx
t x x x

∂∂ ∂ ∂⎡ ⎤⎛ ⎞− + + =⎜ ⎟⎢ ⎥∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦∫ ∫ ∫  (3.5.2.7)  

 

Integrating by parts, we obtain 
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(3.5.2.8)  

 
Approximate solution Sn by a linear combination of the base functions as shown by Equation 
(3.5.2.9). 
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Substituting Equation (3.5.2.9) into Equation (3.5.2.8), we obtain  
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(3.5.2.10)

 
Equation (3.5.2.10) can be written in matrix form as  
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The matrices [L1], [L2], [L3], [M] and load vectors {SS}, {B} are given by 
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where all the terms listed above are calculated with the corresponding time weighting value.  
 
At n+1-th time step, equation (3.5.2.11) is transformed as 
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p

p n n
n n

S SL W S W S M SS B where L L L L
t

⎧ ⎫−
+ + = + = + +⎨ ⎬Δ⎩ ⎭

 (3.5.2.18)

 

So that 
 

{ } { }1[ } n
nCMATRX S RLD+ =  (3.5.2.19)

 

where 
 

1
[ ][ ] [ ]MCMATRX W L

t
= +

Δ
 (3.5.2.20)

 

{ } { } { } { }2
[ ] [ ] n

n
MRLD W L S SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.2.21)

 
The above equations are used to solve the suspended sediment concentration at interior nodes where 
boundary term {B} is zero. 
 
The equation employed to determine the suspended sediment at junctions can be derived based on 
the conservation law of material mass and written as follows. 
 

1

( )
( ) ( ) [( ) ( ) ]

jNJRTH
j n j s os

n j n j n j n j JTj k
k

dV S
M M R D A Flux

dt =

= + + − + ∑  (3.5.2.22)

 

where jV is the junction volume, (Sn)j is the suspended sediment concentration at the junction, (Mn
s)j 

is artificial source at the junction, (Mn
os)j is overland source at the junction, (Rn)j is erosion rate at the 

junction, (Dn)j is deposition rate at the junction, JTjA is the bed area of the junction j, NJTRHj is the 
number of river/stream reaches connected to the junction, and Fluxk is the material flux contributed 
from k-th reach to the junction.  
 

Flux nk k= −
⎛
⎝
⎜

⎞
⎠
⎟Q S K A

S
x

k
n

k
x

n
k∂

∂
 (3.5.2.23)

 
To solve equation (3.5.2.22) at n+1-th time step, assign 
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1n
j

HS j

V
L

t

+

=
Δ

 (3.5.2.24)

 

1 1 1
2 1

( )
[( ) ( ) ]

n n
j n j n n n n

HS j HS j n j n j JT j

V S
R W R W R D A

t
+ + += + + −

Δ
 (3.5.2.25)

 

where 
 

( ) ( ) [( ) - ( ) ]n s n os n n n n
HS j n j n j n j n j JT jR M M R D A= + +  (3.5.2.26)

 
Continue the calculation as follows 
 

1

1

( ) ,    ( ) 0      ( )
( )

( ) *( ) ,    ( ) 0      ( )

s s
n j s j HS j HS j n js

n j
s j n j s j HS j HS j s j

M if S R R W M
M

S S if S L L W S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.2.27)

 

1

1

( ) ,    ( ) 0      ( )
( )

( ) * ( ) ,    ( ) 0      ( )

os os
n j os j HS j HS j n jos

n j
os j n j os j HS j HS j os j

M if S R R W M
M

S S if S L L W S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.2.28)

 
Finally, the ordinary differential equation, Eq. (3.5.2.22), is reduced the algebraic equation as 
follows 
 

1

( )
jNJRTH

HS j n j k HS j
k

L S Flux R
=

− =∑  (3.5.2.29)

 

So that at junction j 
 

1
1 2

1 1

( )
j jNJRTH NJRTH

n n
HS j n j k HS j k

k k

L S W Flux R W Flux+

= =

− = +∑ ∑  (3.5.2.30)

 

 
For a reach node neighboring the junctions, assign 
 

{ } { } { }2
[ ] [ ] p

n
MRLDW W L S SS

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.5.2.31)

 
Equation (3.5.2.19) is written as  
 

{ } { } { }[ ] nCMATRX S Flux RLDW+ =  (3.5.2.32)
 
If nQ > 0, flow is going from reach to the junction 
 

k k
k nFlux nQ S=  (3.5.2.33)

 
If nQ < 0, flow is going from junction to the reach,  
 

( )k
k n jFlux nQ S=  (3.5.2.34)

 
So that equations (3.5.2.30) and (3.5.2.32) become a set of equation of (Sn)j and (Sn)k.  
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For boundary node i = b, the boundary term {B} should be calculated as follows. 
 

n n
i i n i x n x

b b

S SB n WQS N K A n QS K A
x x

∂ ∂⎛ ⎞ ⎛ ⎞= − − = − −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5.2.35)

 
Dirichlet boundary condition 
 

( , ) n n bS S x t=  (3.5.2.36)
 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0) 
 

 ( , )      ( , )n
n x n b i n b

Sn QS AK nQS x t B nQS x t
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.2.37)

 
When Flow is going out from inside (nQ > 0) 
 

0      n
x i n

SnAK B nQS
x

∂
− = ⇒ = −

∂
 (3.5.2.38)

 
which must be assembled into the matrix for the boundary point. 
 
Cauchy boundary condition 
 

( , )      ( , ) 
n

n
n x S n b i S b

Sn QS AK Q x t B Q x t
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.2.39)

 
Neumann boundary condition 
 

( , )      ( , )
n

n
x S n b i n S b

SnAK Q x t B nQS Q x t
x

∂
− = ⇒ = − −

∂
 (3.5.2.40)

 
 
3.5.3 Application of the Finite Element Method to the Advective Form of the Transport 

Equations to Solve 1-D Suspended Sediment Transport 
 
Recall governing equation for 1-D suspended sediment transport, equation (2.5.10), as following. 
 

1 2( ) ( ) ( ) ,     [1, ]
n n n

as os osn n n
x S S S n n s

AS QS SK A M M M R D P n N
t x x x

∂ ∂ ∂ ∂⎛ ⎞+ − = + + + − ∈⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (3.5.3.1)  

 
Conversion to advection form of equation (3.5.3.1) is expressed as 
 

1 2 ( )
n n n

as os osn n n
x n S S S n n

S S S A QA Q K A S M M M R D P
t x x x t x

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞+ − + + = + + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.5.3.2)  

 
According to governing equation for 1-D flow, equation (2.1.1), assign 
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1 2( )        HS n n HS S R E IR R D P and L S S S S S S= − = + − + + +  (3.5.3.3)  
 

where the right hand side term RHS and left hand side term LHS should be continuously calculated 
in the same way as that in section 3.5.2.  Then equation (3.5.3.2) is simplified as 
 

n n n
x HS n HS

S S SA Q K A L *S R
t x x x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎛ ⎞+ − + =⎜ ⎟
⎝ ⎠

 (3.5.3.4)  

 
Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate 
Equation (3.5.3.4) in the spatial dimensions over the entire region as follows. 
 

1 1 1

*
N N Nx x x

n n n
i x HS n i i HS

x x x

S S SN A K A L S dx W Q dx N R dx
t x x x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

⎡ ⎤⎛ ⎞− + + =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
∫ ∫ ∫  (3.5.3.5)  

 
Integrating by parts for the dispersion/diffusion term, we obtain 
 

1 1 1 1

11

*

                             

N N N N

NN

x x x x
n n i n

i i x i HS n
x x x x

xx
n

i HS i x
xx

S S dN SN A dx W Q dx K A dx N L S dx
t x dx x

SN R dx N K A
x

∂ ∂ ∂
∂ ∂ ∂

∂
∂

+ + +

= +

∫ ∫ ∫ ∫

∫

 
(3.5.3.6)  

 
Approximate solution Sn by a linear combination of the base functions as shown by Equation 
(3.5.3.7). 
 

1

( ) ( )
N

n n nj j
j

S S S t N x
=

≈ = ∑
�  (3.5.3.7)  

 
Substituting Equation (3.5.3.7) into Equation (3.5.3.6), we obtain  
 

1 1 1

1 1

1

1

 ( )

( )

N N N

N N

x x xN
j ji

i HS j i x nj
j x x x

x xN
nj n

i j i HS i x
j bx x

dN dNdNN L N dx W Q dx K A dx S t
dx dx dx

S t SN AN dx N R dx n N K A
t x

=

=

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ∂ ∂⎛ ⎞+ = +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∑∫ ∫

 
(3.5.3.8)  

 
Equation (3.5.3.8) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ ] n
n

SL L L S M SS B
t

∂⎧ ⎫+ + + = +⎨ ⎬∂⎩ ⎭
 (3.5.3.9)  

 
The matrices [L1], [L2], [L3], [M] and load vectors {SS}, {B} are given by 
 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.3.10)

 

1

1
Nx

ij i HS j
x

L N L N dx= ∫  (3.5.3.11)
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1

2
Nx

j
ij i

x

dN
L W Q dx

dx
= ∫  (3.5.3.12)

 

1

3
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫  (3.5.3.13)

 

1

Nx

i i HS
x

SS N R dx= ∫  (3.5.3.14)

 

n
i i x

b

SB n N K A
x

∂⎛ ⎞= − −⎜ ⎟∂⎝ ⎠
 (3.5.3.15)

 

where all the terms listed above are calculated with the corresponding time weighting value.  
 
At n+1-th time step, equation (3.5.3.9) is approximated as 
 

{ } { } { }
1

1
1 2[ ] [ ]   [ ] [ 1] [ 2] [ 3]

n n
n n n n

n n
S SL W S W S M SS B where L L L L

t

+
+ ⎧ ⎫−

+ + = + = + +⎨ ⎬Δ⎩ ⎭
 (3.5.3.16)

So that 
{ } { }1[ } n

nCMATRX S RLD+ =  (3.5.3.17)
 

where 
 

1
[ ][ ] [ ]MCMATRX W L

t
= +

Δ
 (3.5.3.18)

 

{ } { } { } { }2
[ ] [ ] n

n
MRLD W L S SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.3.19)

 
The above equations are used to solve the suspended sediment concentration at interior nodes where 
boundary term {B} is zero. 
 
At internal boundary points neighboring the junctions, assign 
 

{ } { } { }2
[ ] [ ] { }p

n n
MRLDW W L S SS nQS

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.3.20)

 
Equation (3.5.3.17) is modified as  
 

{ } { } { }[ ] nCMATRX S Flux RLDW+ =  (3.5.3.21)
 

So that junction concentration can be solved by equations (3.5.2.30) and (3.5.3.21).  
 
For a global boundary node i = b, the boundary term {B} should be calculated as follows. 
 

n n
i i x x

b b

S SB n N K A n K A
x x

∂ ∂⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5.3.22)

 
Dirichlet boundary condition 
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( , ) n n bS S x t=  (3.5.3.23)

 
Variable boundary condition 
 
When flow is coming in from outside (nQ  <  0) 
 

 ( , )      ( , )n
n x n b i n n b

Sn QS AK nQS x t B nQS nQS x t
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.3.24)

 
When Flow is going out from inside (nQ > 0) 
 

0      0n
x i

SnAK B
x

∂
− = ⇒ =

∂
 (3.5.3.25)

 
Cauchy boundary condition 
 

n

n
n x Sn b i n S b

Sn QS AK Q (x ,t) B nQS Q (x ,t)
x

∂
∂

⎛ ⎞− = ⇒ = −⎜ ⎟
⎝ ⎠

 (3.5.3.26)

 
Neumann boundary condition 
 

( )       ( ) 
n

n
x Sn i S

SnAK Q t B Q t
x

∂
− = ⇒ = −

∂
 (3.5.3.27)

 
 
3.5.4 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form 

of the Transport Equations to Solve 1-D Suspended Sediment Transport 
 
Recall governing equation for 1-D suspended sediment transport in advection form, equation 
(3.5.3.2), as follows   
 

1 2 ( )
n n n

as os osn n n
x n s s s n n

S S S A QA Q K A S M M M R D P
t x x x t x

∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞+ − + + = + + + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (3.5.4.1)  

 
Assign and calculate RHS and LHS the same as that in section (3.5.3). Then equation (3.5.4.1) is 
simplified as 
 

*n n n
x HS n HS

S S SA Q K A L S R
t x x x

∂ ∂ ∂ ∂⎛ ⎞+ − + =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (3.5.4.2)  

 
Equation (3.5.4.2) in the Lagrangian and Eulerian form is written as follows.   In the Lagrangian step 
 

=0     =0 n n n n ndS S S S SA A Q V
d t x t x

∂ ∂ ∂ ∂
τ ∂ ∂ ∂ ∂

= + ⇒ +  (3.5.4.3)  
 

where τ is the tracking time, and particle-tracking velocity V is the flow velocity.  In the Eulerian 
step 
 

*n n
x HS n HS

dS SA K A L S R
d x x

∂ ∂
τ ∂ ∂

⎛ ⎞− + =⎜ ⎟
⎝ ⎠

 (3.5.4.4)  
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Equation (3.5.4.4) written in a slightly different form is shown as follows. 
 

*n
n L

dS D K S R
dτ

− + =  (3.5.4.5)  

where 
n

x
SAD K A

x x
∂ ∂

∂ ∂
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (3.5.4.6)  

 

HSLK
A

=  (3.5.4.7)  
 

HS
L

RR
A

=  (3.5.4.8)  
 

 
Integrating Eq. (3.5.4.5) along a characteristic line to yield the following matrix equation as 
 

{ } { } { }

{ } { } ( ){ } { } { }

1 1 1 1
1 1

** * 1 *
2 2 1 2

[ ]          

[ ]

n n n n
n n

n
n n L L

S W D W S

S W D W KS W R W R

τ

τ

+ + + +

+

⎡ ⎤− + =⎣ ⎦Δ

+ − + +
Δ

U K

U
 

(3.5.4.9)  

 

where * corresponds to the previous time step value at the location where node i is backwardly 
tracked in the Lagrangian step, [U] is the unit matrix, and [Kn+1] is a diagonal matrix with K 
calculated at the (n+1)-th time step as its diagonal components..  
 
The diffusion term D expressed in term of Sn is solved by the following procedure.  Approximate D 
by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

D D D t N x
=

≈ = ∑  (3.5.4.10)

 
Applying the Galerkin finite element method to Eq. (3.5.4.6), we obtain 
 

1 1 1
1

( ) ( )
N N Nx x xN

n
i i j j i x

jx x x

SN ADdx N A D t N x dx N K A dx
x x=

∂ ∂⎛ ⎞= = ⎜ ⎟∂ ∂⎝ ⎠
∑∫ ∫ ∫  (3.5.4.11)

 
Integrating by parts, we obtain 
 

11 1
1

*
NN N Xx xN

i n n
i j j x i x

j Xx x

dN S SN AN dx D K A dx N K A
dx x x=

⎡ ⎤⎛ ⎞ ∂ ∂
= − +⎢ ⎥⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫  (3.5.4.12)

 
Approximate Sn by a linear combination of the base functions as follows. 
 

S S S t N xn n nj j
j

N

≈ =
=

∑
�

( ) ( )
1

 (3.5.4.13)

 
Substituting Eq. (3.5.4.13) into Eq. (3.5.4.12), we have 
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11 1
1 1

* *( )
NN N Xx xN N

ji n
i j j x n j i x

j j Xx x

dNdN SN AN dx D K A dx S N K A
dx x x= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ∂
= − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫  (3.5.4.14)

 
Assign matrices [QA], [QD] and load vector {B} as following. 
 

1

Nx

ij i j
x

QA N AN dx= ∫  (3.5.4.15)

 

1

Nx
ji

ij x
x

dNdNQD K A dx
dx dx

= ∫  (3.5.4.16)

 
n

i i x
b

SB nN K A
x

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (3.5.4.17)

 
Equation (3.5.4.14) is expressed as 
 

{ } { } { }[ ] [ ] nQA D QD S QB= − +  (3.5.4.18)
 
Lump matrix [QA] into diagonal matrix and update   
 

/ij ij iiQD QD QA=  (3.5.4.19)
 

/i i iiB QB QA=  (3.5.4.20)
 
Then 
 

{ } { } { }[ ] nD QD S B= − +  (3.5.4.21)
 
where {B} is calculated as follows 
 
Dirichlet boundary condition 
 

( ) ( , )
( , )    n j n b

n n b i i x ii

S S x t
S S x t B nN K A QA

x
−

= ⇒ =
Δ

 (3.5.4.22)

 
where j is the interior node connected to the boundary node. 
 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0) 
 

[ ]( , )    ( , )n
n x n b i n n b ii

Sn QS AK nQS x t B nQS nQS x t QA
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.4.23)

 
When Flow is going out from inside (nQ > 0) 
 

0    0n
x i

SnAK B
x

∂
− = ⇒ =

∂
 (3.5.4.24)
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Cauchy boundary condition 
 

[ ]( , )    ( , )n
n x Sn b i n Sn b ii

Sn QS AK Q x t B nQS Q x t QA
x

∂⎛ ⎞− = ⇒ = −⎜ ⎟∂⎝ ⎠
 (3.5.4.25)

 
Neumann boundary condition 
 

( , )     ( , )n
x Sn b i Sn b ii

SnAK Q x t B Q x t QA
x

∂
− = ⇒ = −

∂
 (3.5.4.26)

 
 
According to equation (3.5.4.21), Equation (3.5.4.9) can be modified as follows 
 

{ } { }1[ } n
nCMATRX S RLD+ =  (3.5.4.27)

 

where 
1 1

1 1
[ ][ ] [ ]n nUCMATRX W QD W K

τ
+ +⎡ ⎤= + + ⎣ ⎦Δ

 (3.5.4.28)

 

{ } { } { } ( ){ } { } { }** * 1 * 1
2 2 1 2 1

[ ] { }n n
n n L L

URLD S W D W KS W R W R W B
τ

+ += + − + + +
Δ

 (3.5.4.29)

 
The above equations are used to solve the suspended sediment concentration at interior nodes where 
boundary term {Bn+1} is zero. 
 

 
At the junctions, if nQ > 0, flow is going from the reach to the junction, assign 
 

{ } { } { } { }1 1
1 2 [ ]{ }n n n n

n ii n iiRLDW RLD nQS QA W B W QB S QA+ += + − −  (3.5.4.30)
 
Equation (3.5.4.30) is written as  
 

{ } { } { }1 1[ ] /n n
n iiCMATRX S Flux QA RLDW+ ++ =  (3.5.4.31)

 
If nQ < 0, flow in going from junction to the reach, apply equation (3.5.2.23)  
 

( ) ( )
( ) n j n i

i n i x

S S
Flux n Q S K A

x
−⎡ ⎤

= −⎢ ⎥Δ⎣ ⎦
 (3.5.4.32)

 

where j is the interior node connected to the junction node i. 
 
Junction concentration can be solved with equations (3.5.2.30), (3.5.4.31) and (3.5.4.32).  
 
For boundary node i = b, the boundary term {Bn+1} in equation (3.5.4.29) should be calculated as 
follows. 
 
Dirichlet boundary condition 
 

( , )n n bS S x t=  (3.5.4.33)
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The above equation is used for Dirichlet boundary node rather than equation (3.5.4.29). 
 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0), equation (3.5.4.29) cannot be applied because ∆τ 
equations zero. Applying boundary condition, we have 
 

( ) ( )
( ) ( , )n j n i

n i x n b

S S
n Q S AK nQS x t

x
−⎡ ⎤

− =⎢ ⎥Δ⎣ ⎦
 (3.5.4.34)

 

where j is the interior node connected to the boundary node i. 
 
When Flow is going out from inside (nQ > 0), the boundary term {Bn+1} in equation (3.5.4.29) 
should be calculated as follows. 
 

0    0n
x i

SnAK B
x

∂
− = ⇒ =

∂
 (3.5.4.35)

 
Cauchy boundary condition 
 
Equation (3.5.4.29) cannot be applied because ∆τ equations zero. Applying boundary condition, we 
have 
 

( ) ( )
( ) ( , )n j n i

n i x Sn b

S S
n Q S AK Q x t

x
−⎡ ⎤

− =⎢ ⎥Δ⎣ ⎦
 (3.5.4.36)

 
Neumann boundary condition 
 
The boundary term {Bn+1} in equation (3.5.4.29) should be calculated as follows. 
 

n
x Sn b

SAK Q (x ,t)     ( , )
x i Sn b iin B Q x t QA∂

∂
− = ⇒ = −  (3.5.4.37)

 
 
3.5.5 Aplication of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Conservative Form of the Transport Equations for the Upstream Flux Boundaries to 
Solve 1-D Suspended Sediment Transport 

 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.5.4, and the matrix equation for junction and 
upstream boundary nodes is obtained through the same procedure as that in section 3.5.2.  
 
 
3.5.6 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve 
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1-D Suspended Sediment Transport 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.5.4, and the matrix equation for junction and upstream 
boundary nodes is obtained through the same procedure as that in section 3.5.3. 
 
 
3.5.7 Finite Application of the Finite Element Method to the Conservative Form of the 

Transport Equations to Solve 1-D Kinetic Variable Transport 
 
3.5.7.1 Fully implicit scheme 
 
Recall the continuity equation for kinetic-variables, equation (2.5.44), can be written in slightly 
different form by expanding the time derivative term as 
 

1 2( )
n n n n n n

m m
as rs is os osn n n

n x E E E E E E
E QE EAA E K A M M M M M AR
t t x x x

⎛ ⎞∂ ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.1.1)

 

where nE  is the concentration of the n-th kinetic variable, m
nE  is the mobile concentration of the n-

th kinetic variable, 
n

as
EM  is the rate of artificial source of the n-th kinetic variable nE , 

n

rs
EM  is the 

rate of rainfall source/evaporation sink of the n-th kinetic variable nE , , 1
n

os
EM  is the rate of 

overland source from Bank 1 of the n-th kinetic variable nE , 2
n

os
EM  is the rate of overland source 

from Bank 2 of the n-th kinetic variable nE , 
n

is
EM  is the rate of exfiltration source of the n-th kinetic 

variable nE , and 
nER  and is the rate of reaction of the n-th kinetic variable nE . 

 
At (n+1)-th time step, equation (3.5.7.1.1) is approximated by 
 

1
1 2( ) ( ) ( )

n n n n n n

n n m m
as rs is os osn n n n

n x E E E E E E
E E QE EAA E K A M M M M M AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.1.2)

 

where the superscripts n and n+1 represent the time step number. Terms without superscript should be 
the corresponding average values calculated with time weighting factors W1 and W2. 
 
According to the fully-implicit scheme, equation (3.5.7.1.2) can be separated into two equations as 
follows 
 

1/ 2
1 2( ) ( ) ( )

n n n n n n

n n m m
as rs is os osn n n n

n x E E E E E E
E E QE EAA E K A M M M M M AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.1.3)

 
1 1/ 2( ) ( ) 0

n n
n nE E

t

+ +−
=

Δ
 (3.5.7.1.4)

 

First, we express En
m in terms of (En

m/En)·En to make En’s as primary dependent variables, so that 
En

n+1/2 can be solved from Eq. (3.5.7.1.3). Second, we solve equation (3.5.7.1.4) together with 
algebraic equations for equilibrium reactions using BIOGEOCHEM to obtain all individual species 
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concentrations. Iteration between these two steps is needed because the new reaction terms Rn
n+1 and 

the equation coefficients in equation (3.5.7.1.3) need to be updated with the calculation results of 
(3.5.7.1.4). To improve the standard SIA method, the nonlinear reaction terms are approximated by 
the Newton-Raphson linearization. 
 
To solve equation (3.5.7.1.3), assign 
 

0          0HS n HS nR and L= =  (3.5.7.1.5)
 
Then the right hand side RHSn and left hand side LHSn should be continuously calculated as following 
 

* ,    0    

* ,    0    

rs n

n

rs
R n R HS n HS n Ers

E m
R n R HS n HS n R

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.6)

 
* ,    0    ,

* ,    0    

as n

n

as
S n S HS n HS n Eas

E m
S n S HS n HS n S

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.7)

 

1
1

1 11

1 1 1

* ,    0    

* ,    0    

os n

n

m os
n HS n HS n Eos

E m
n HS n HS n

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.8)

 

2
2

2 22

2 2 2

* ,    0    

* ,    0    

os n

n

m os
n HS n HS n Eos

E m
n HS n HS n

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.9)

 
* ,    0    

* ,    0    

is n

n

m is
I n I HS n HS n Eis

E m
I n I HS n HS n I

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.10)

 

where rsnE  is the concentration of En in the rainfall source, esnE  is the concentration of En in the 
evaporation source, asnE  is the concentration of En in the artificial source, 1osnE  is the concentration 
of En in the overland source from bank 1, 2osnE  is the concentration of En in the overland source 
from bank 2, and isnE  is the concentration of En in the exfiltration source from subsurface media. 
 
Equation (3.5.7.1.3) is then simplified as 
 

1/ 2( ) ( ) ( ) *
n

n n m m
mn n n n

n x HS n n HS n E
E E QE EAA E K A L E R AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − + = +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.1.11)

 

Express En
m in terms of (En

m /En)En to make En’s as primary dependent variables, 
 

( )
n

m m m m
n n n n n n n

n n x x n HS n HS n E
n n n

E E E E E E EAA E Q E K A K A E L R AR
t t x E x E x x x E

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂ ∂
+ + − − + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.5.7.1.12)

 

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate 
Equation (3.5.7.1.12) in the spatial dimensions over the entire region as follows. 
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1 1

1 1

( )

( )

N N

N N

n

x xm m m
n n n n n n

i x i n x n
n nx x

x xm
n

i HS n n i HS n E
nx x

E E E E E EN A K A dx W Q E K A E dx
t x E x x E x x

E AN L E dx N R AR dx
E t

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂
− + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎛ ⎞∂
+ + = +⎜ ⎟∂⎝ ⎠

∫ ∫

∫ ∫

 
(3.5.7.1.13)

 

Integrating by parts, we obtain 
 

( )
1 1 1 1

1 1

2
2

1
1

( )

(

N N N N

N N

n

x x x xm m m
n i n n i n i n n

i x n x n
n nx x x x

Bx xm m Bmn n n n
i HS n n i HS n E i x i n i xB

n nx x B

E dN E E dW E dW E EN A dx K A dx Q E dx K A E dx
t dx E x dx E dx x

E E E EAN L E dx N R AR dx N K A W QE W K A
E t E x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂
+ − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

⎛ ⎞ ∂ ∂∂
+ + = + + − +⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫
2

1

)
Bm

n
n

B

E E
x∂

 
(3.5.7.1.14)

 

Approximate solution En by a linear combination of the base functions as follows 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N x
=

≈ = ∑  (3.5.7.1.15)

 

Substituting Equation (3.5.7.1.15) into Equation (3.5.7.1.14), we obtain 
 

1 1

1

1 1

1

( )
( )

( )

N N

N

N N

x xm m
i n i n n

j x j xN nx x nj
nj i jx xm mj xji n n

x i HS n j
n nx x

dW E dW E EQ N dx K A N dx
dx E dx x E t

E t N AN dx
tdNdN E E AK A dx N L N dx

dx E dx E t
=

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂
− +⎪ ⎪⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎡ ⎤∂ ⎛ ⎞ ∂⎪ ⎪⎝ ⎠⎝ ⎠⎢ ⎥

⎢+ ⎜ ⎟⎨ ⎬⎢ ⎥ ⎜ ⎟ ∂⎢⎛ ⎞ ⎛ ⎞∂⎪ ⎪ ⎝ ⎠⎢ ⎥ ⎣ ⎦+ + +⎜ ⎟ ⎜ ⎟⎪ ⎪⎢ ⎥∂⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

∫ ∫
∑ ∫

∫ ∫

( )
1

1

( )N

n

N

j

x m m
mn n n n

i HS E x i n x n
nx ii b

E E E EN R AR dx n N K A W QE W K A E
E x x

=

⎥ =
⎥

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
+ − − + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

∑

∑∫

 
(3.5.7.1.16)

 

Equation (3.5.7.1.16) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ 4] [ ] n
n

EL L L L E M S B
t

∂⎧ ⎫+ + + + = +⎨ ⎬∂⎩ ⎭
 (3.5.7.1.17)

 

The matrices [L1], [L2], [L3], [L4], [M] and load vectors {S}, {B} are given by 
 

1

1
Nx m

i n
ij j

nx

dW EL Q N dx
dx E

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
∫  (3.5.7.1.18)

 

1

( / )2
Nx m

i n n
ij x j

x

dW E EL K A N dx
dx x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

∫  (3.5.7.1.19)

 

1

3
Nx m

ji n
ij x

nx

dNdN EL K A dx
dx E dx

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫  (3.5.7.1.20)

 

1

4
Nx m

n
ij i HS n j

nx

E AL N L N dx
E t

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

∫  (3.5.7.1.21)

 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.7.1.22)
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( )
1

N

n

x

i i HS n E
x

S N R AR dx= +∫  (3.5.7.1.23)

 

( )m m
m n n n n

i i n i x n i x
n b

E E E EB n WQE W K A E N K A
x E x

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂
= − − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.5.7.1.24)

 

To calculate [L2] through equation (3.5.7.1.19), assign 
 

( / )m
n nE EPPX

x
∂

=
∂

 (3.5.7.1.25)

 

Then 
 

1 1

( / )N Nx x m
n n

i i
x x

E EN PPXdx N dx
x

∂
=

∂∫ ∫  (3.5.7.1.26)

 

1 11 1

N Nx x mN N
j n

i j j i
j j nx x j

dN EN N dx PPX N dx
dx E= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫  (3.5.7.1.27)

 

So that 
 

{ }[ 1] [ 2]
m

n

n

EQP PPX QP
E

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (3.5.7.1.28)

 

Lump [QP1] into diagonal matrix and assign 
 

2 1ij ij iiQP QP QP=  (3.5.7.1.29)
 

Then 
 

{ } [ ]
m

n

n

EPPX QP
E

⎧ ⎫
= ⎨ ⎬

⎩ ⎭
 (3.5.7.1.30)

 

Equation (3.5.7.1.17) can be simplified as 
 

{ } { } { }[ ] [ ] ,   [ ] [ 1] [ 2] [ 3] [ 4]n
n

EL E M S B where L L L L L
t

∂⎧ ⎫+ = + = + + +⎨ ⎬∂⎩ ⎭
 (3.5.7.1.31)

 

Further,  
 

{ } { } { } { }1/ 2 1/ 2
1 2

[ ][ ]  n n n n
n n n n

ML W E W E E E S B
t

+ ++ + − = +
Δ

 (3.5.7.1.32)
 

So that   
 

{ }1/ 2[ ] { }  n
nCMATRX E RLD+ =  (3.5.7.1.33)

 

where 
 

1
[ ][ ] *[ ] MCMATRX W L

t
= +

Δ
 (3.5.7.1.34)
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{ } { } { }2
[ ]{ } [ ]  n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.7.1.35)

 

The above equations are used to solve for the kinetic variable concentration at interior nodes, where 
the boundary term {B} is zero.  
 
The equation employed to determine the kinetic variable at junctions can be derived based on the 
conservation law of material mass and written as follows. 
 

1

( )
( ) ( ) ( ) ( ) ( ) ( )

j

n n n n n

NJRTH
n j j as rs os is

j n j E j E j E j E j j E j k
k

d E dV
V E M M M M V R Flux

dt dt =

+ = + + + + + ∑  (3.5.7.1.36)

 

where jV is the junction volume, (En)j is the concentration of the n-th kinetic variable at Junction j, 

( )
n

as
E jM is the rate of artificial source of En at Junction j, ( )

n

rs
E jM is the rate of rainfall source at 

Junction j, ( )
n

os
E jM is the rate of overland source at Junction j, ( )

n

is
E jM is exfiltration source at the 

junction,  ( )
nE jR is the rate kinetic variable concentration change due to reactions at the junction, 

NJTRHj is the number of river/stream reaches connected to the junction, and Fluxk is the material 
flux of the kinetic variable contributed from the k-th reach to the junction.   
 

( )( )
m k

k m k n
k n x

EFlux n Q E K A
x

⎡ ⎤∂
= −⎢ ⎥∂⎣ ⎦

 (3.5.7.1.37)

 

At n+1-th time step, equation (3.5.7.1.36) is approximated by 
 

1

1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

j

n n n n n

n n NJRTH
n j n j j as rs os is

j n j E j E j E j E j j E j k
k

E E dV
V E M M M M V R Flux

t dt

+

=

−
+ = + + + + +

Δ ∑  (3.5.7.1.38)

 

which can be separated into two equations, according to Fully-implicit scheme, as follows 
 

1/ 2

1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

j

n n n n n

n n NJRTH
n j n j j as rs os is

j n j E j E j E j E j j E j k
k

E E dV
V E M M M M V R Flux

t dt

+

=

−
+ = + + + + +

Δ ∑  (3.5.7.1.39)

 
1 1/ 2( ) ( )

0
n n

n j n jE E
t

+ +−
=

Δ
 (3.5.7.1.40)

 

First, solve equation (3.5.7.1.39) and get (En)j
n+1/2. Second, solve equation (3.5.7.1.40) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to get the individual 
species concentration.  
 
To solve equation (3.5.7.1.39), assign 
 

( ) j
HS n j

V VL
t t

∂
= +

Δ ∂
 (3.5.7.1.41)

 

2

( )
( ) ( ) ( )

n

n n
j n j n

HS n j HS n j j E j

V E
R W R V R

t
= + +

Δ
 (3.5.7.1.42)

 
1

1 2
n n

k k kFlux W Flux W Flux+= ⋅ + ⋅  (3.5.7.1.43)
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Continue the calculation as follows 
 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) * /

as as

n

n

S j j S j HS n j HS n j S j jn nas
E j m m

S j n j S j HS j HS n j S j n n

S E if S R R W S E
M

S E if S L L W S E E

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

  (3.5.7.1.44)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) * /

os os

n

os j j os j HS n j HS n j os j jn nos
E j m m

os j n j os j HS n j HS n j os j n n

S E if S R R W S E
M

S E if S L L W S E E

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.45)

 

where ( )os jS  is the flow rate of overland source to Junction j and ( )osn jE  is the concentration of En 
in the overland source into Junction j.  
  

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) * /

rs

n

R j j R j HS n j HS n j R j n jnrs
E j m m

R j n j R j HS n j HS n j R j n n

S E if S R R W S R
M

S E if S L L W S E E

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.1.46)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) * /
is is

n

I j j I j HS n j HS n j I j jis n n
m mE j

I j n j I j HS n j HS n j I j n n

S E if S R R W S E
M

S E if S L L W S E E
> ⇒ = +⎧

= ⎨ ≤ ⇒ = −⎩
 (3.5.7.1.47)

 

 
Then equation (3.5.7.1.39) is approximated by 
 

1

( ) ( ) - ( )
jNJRTH

HS n j n j k HS n j
k

L E Flux R
=

=∑  (3.5.7.1.48)

 

Assign  
 

{ } { }2
[ ]{ } *[ ]  n

n
MRLDW W L E S

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.5.7.1.49)

 

Equation (3.5.7.1.33) is modified as  
 

{ }1/ 2[ ] { } { }  n
nCMATRX E Flux RLDW+ + =  (3.5.7.1.50)

 

The flux term in both equations (3.5.7.1.48) and (3.5.7.1.50) is specified as follows. 
 
If nQ > 0, flow is going from reach to the junction 
 

1/ 2
1 1/ 2

1 21/ 2

[( ) ]( ) ( ) [( ) ] ( ) [( ) ]
[( ) ]

m k n
k m k k n k n k n m k nn

k n n nk n
n

EFlux Q E W Q E W Q E
E

+
+ +

+= = +  (3.5.7.1.51)

 

where the superscript n  denotes the old time step, the superscript 1 / 2n +  denotes the intermediate 
time step,  kFlux  is the flux of the n-th kinetic variable from the k-th reach to Junction j, kQ  is the 
flow rate from the k-th reach to Junction j, ( )k

nE  is the concentration of the n-th kinetic variable of 
the k-th reach, and ( )m k

nE  is the mobile concentration of the n-th kinetic variable of the k-th reach. 
 
If nQ < 0, flow is going from junction to the reach,  
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1/ 2
1 1/ 2

1 21/ 2

[( ) ]
( ) ( ) [( ) ] ( ) [( ) ]

[( ) ]

m n
n jk m k n n k n m n

k n j n j n jn
n j

E
Flux Q E W Q E W Q E

E

+
+ +

+= − = − −  (3.5.7.1.52)

 

So that equations (3.5.7.1.48) and (3.5.7.1.50) become a set of equation of ( )n jE  and ( )k
nE .  

 
For boundary node i = b (use B as the input boundary value), the boundary term {B} should be 
continuously calculated as follows. 
 

( )          

( )

m m
m n n n n

i i n i x i x n
n b

m m m
m mn n n n n

n x x n n x
n bb

E E E EB n W QE N K A W K A E
E x x

E E E E En QE K A K A E n QE K A
E x x x

⎡ ⎤∂ ∂
= − − −⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤ ⎛ ⎞∂ ∂ ∂
= − − − = − −⎜ ⎟⎢ ⎥∂ ∂ ∂⎝ ⎠⎣ ⎦

 
(3.5.7.1.53)

 
Dirichlet boundary condition 
 

( , )m m
n n bE E x t=  (3.5.7.1.54)

 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0) 
 

( , )    ( , )
m

m m mn
n x n b i n b

En QE AK nQE x t B nQE x t
x

⎛ ⎞∂
− = ⇒ = −⎜ ⎟∂⎝ ⎠

 (3.5.7.1.55)

 

When Flow is going out from inside (nQ > 0) 
 

0    
m

mn
x i n

EnAK B nQE
x

∂
− = ⇒ = −

∂
 (3.5.7.1.56)

 
Cauchy boundary condition 
 

( , )    ( , )
m

m n
n x En b i En b

En QE AK Q x t B Q x t
x

⎛ ⎞∂
− = ⇒ = −⎜ ⎟∂⎝ ⎠

 (3.5.7.1.57)

 
Neumann boundary condition  
 

( , )    ( , )
m

mn
x En b i n En b

EnAK Q x t B nQE Q x t
x

∂
− = ⇒ = − −

∂
 (3.5.7.1.58)

 
 
3.5.7.2 Mixed Predictor-corrector/Operator-Splitting Scheme 
 
Recall the continuity equation for kinetic-variables, equation (3.5.7.1.1), as follows. 
 

1 2( )
n n n n n n

m m
as rs is os osn n n

n x E E E E E E
E QE EAA E K A M M M M M AR
t t x x x

⎛ ⎞∂ ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.2.1)

 

At (n+1)-th time step, equation (3.5.7.2.1) is approximated by 
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1

1 2( ) ( ) ( )
n n n n n n

n n m m
as rs is os osn n n n

n x E E E E E E
E E QE EAA E K A M M M M M AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.2.2)

 

According to Mixed Predictor-corrector/Operator-Splitting Scheme, equation (3.5.7.2.2) can be 
separated into two equations as follows 
 

1/ 2
1 2( ) ( ) ( )

( ) ( )

n n n n n

n

m n m n m m
m as rs os os isn n n n
n x E E E E E

n im n
E n

E E QE EAA E K A M M M M M
t t x x x

nAAR A E
t

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

∂
+ −

∂
A

 
(3.5.7.2.3)

 
1 1/ 2

1 1[( ) ( ) ] ( ) ( )( ) ( )
n n

n m n im n
n n im n im nn n n

E E n n
E E E nA nAR R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A  (3.5.7.2.4)

 

First, solve equation (3.5.7.2.3) and obtain 1/ 2( )m n
nE + . Second, solve equation (3.5.7.2.4) together 

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain (En)n+1 
and the individual species concentration.  
 
To solve equation (3.5.7.2.3), assign and calculate RHSn and LHSn same as that in section (3.5.7.1). 
Then equation (3.5.7.2.3) is simplified as 
 

1/ 2( ) ( ) ( ) ( )
n

m n m n m m
m m n im nn n n n
n x HS n n HS n E n

E E QE EA AA E K A L E R AR E
t t x x x t

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂
+ + − + = + −⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.2.5)

 

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate 
Equation (3.5.7.2.5) in the spatial dimensions over the entire region as follows. 
 

( )
1 1 1

1

( )

N N N

N

n

mx x xm m
n mn n

i x i i HS n n
x x x

x
n im n

i HS n E n
x

QEE E AN A K A dx W dx N L E dx
t x x x t

AN R AR E dx
t

∂⎡ ⎤⎛ ⎞∂ ∂∂ ∂⎛ ⎞− + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦

∂⎛ ⎞+ −⎜ ⎟∂⎝ ⎠

∫ ∫ ∫

∫

 
(3.5.7.2.6)

 

Integrating by parts, we obtain 
 

1 1 1 1

1

2
2

1
1

              ( )

N N N N

N

n

x x x xm m
m mn i n i

i x n i HS n n
x x x x

Bx mBn im n m n
i HS n E n i n i xB

x B

E dN E dW AN A dx K A dx QE dx N L E dx
t dx x dx t

EAN R AR E dx W QE N K A
t x

∂ ∂ ∂⎛ ⎞+ − + +⎜ ⎟∂ ∂ ∂⎝ ⎠

∂∂⎛ ⎞= + − − +⎜ ⎟∂ ∂⎝ ⎠

∫ ∫ ∫ ∫

∫

 
(3.5.7.2.7)

 

Approximate solution En
m by a linear combination of the base functions as follows 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j

E E E t N x
=

≈ = ∑  (3.5.7.2.8)

 

Substituting Equation (3.5.7.2.8) into Equation (3.5.7.2.7), we obtain 
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1 1 1

1 1

1

1

                   ( )

( )
( )

N N N

N N

n

x x xN
j mi i

j x i HS n j nj
j x x x

x xmN
nj n im n

i j i HS n E n i n
j x x

dNdW dN AQN dx K A dx N L N dx E t
dx dx dx t

E t AN AN dx N R AR E dx n W QE
t t

=

=

⎡ ⎤⎛ ⎞∂⎛ ⎞⎢ ⎥− + + +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ∂ ∂⎛ ⎞⎢ ⎥+ = + − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫
m

m n
i x

b

EN K A
x

⎡ ⎤∂
−⎢ ⎥∂⎣ ⎦

∑

 
(3.5.7.2.9)

 

Equation (3.5.7.2.9) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ ]
m

m n
n

EL L L E M S B
t

⎧ ⎫∂
+ + + = +⎨ ⎬∂⎩ ⎭

 (3.5.7.2.10)

 

The matrices [L1], [L2], [L3], [M] and load vectors {S}, {B} are given by 
 

1

1
Nx

i
ij j

x

dWL QN dx
dx

= − ∫  (3.5.7.2.11)

 

1

2
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫  (3.5.7.2.12)

 

1

3
Nx

ij i HS n j
x

AL N L N dx
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫  (3.5.7.2.13)

 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.7.2.14)

 

1

( )
N

n

x
n im n

i i HS n E n
x

AS N R AR E dx
t

∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫  (3.5.7.2.15)

 
m

m n
i i n i x

b

EB n W QE N K A
x

⎛ ⎞∂
= − −⎜ ⎟∂⎝ ⎠

 (3.5.7.2.16)

 

where all the terms listed above are calculated with the corresponding time weighting values. 
Equation (3.5.7.2.10) is then simplified as 
 

{ } { } { }[ ] [ ] ,   [ ] [ 1] [ 2] [ 3]
m

m n
n

EL E M S B where L L L L
t

⎧ ⎫∂
+ = + = + +⎨ ⎬∂⎩ ⎭

 (3.5.7.2.17)

 

Further,  
 

{ } { } { }
1/ 2

1/ 2
1 2

( ) ( )[ ] *( ) *( ) [ ]  
m n m n

m n m n n n
n n

E EL W E W E M S B
t

+
+ ⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.5.7.2.18)

 

So that 
{ }1/ 2[ ] ( ) { } m n

nCMATRX E RLD+ =  (3.5.7.2.19)

where 
 

1
[ ][ ] *[ ]MCMATRX W L

t
= +

Δ
 (3.5.7.2.20)

 



 3-119

{ } { } { }2
[ ]{ } *[ ] ( )  m n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.7.2.21)

 

The above equations are used to solve for the kinetic variable concentration at interior nodes, where 
the boundary term {B} is zero.  
 
For junction nodes, recall equation (3.5.7.1.38) as follows. 
 

1

1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

j

n n n n n

n n NJRTH
n j n j j as rs os is

j n j E j E j E j E j j E j k
k

E E dV
V E M M M M V R Flux

t dt

+

=

−
+ = + + + + +

Δ ∑  (3.5.7.2.22)

 

which can be separated into two equations, according to mixed Predictor-corrector/operator-splitting 
scheme, as follows 
 

1/ 2

1

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( )

n n n n

j

n

m n m n
n j n j j m as rs os is

j n j E j E j E j E j

NJRTH
jn im n

j E j n j k
k

E E dV
V E M M M M

t dt
dV

V R E Flux
dt

+

=

−
+ = + + + +

Δ

− + ∑

 
(3.5.7.2.23)

 
1 1/ 2

1 1( ) [( ) ( ) ] ( ) ( )
( ) ( ) ( ) ( )

n n

n m n im n
n j n j n j j jn n im n im n

j E j j E j n j n j

E E E nV nV
V R V R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A  (3.5.7.2.24)

 

First, solve equation (3.5.7.2.23) and get 1/ 2( )m n
n jE + . Second, solve equation (3.5.7.2.24) together 

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the 
individual species concentration. 
 
To solve equation (3.5.7.2.23), assign 
 

( )
n

j j
HS n j

V dV
L

t dt
= +

Δ
 (3.5.7.2.25)

 

2

( )
( )  ( ) ( ) ( )

n

n m n
j n j jn n im n

HS n j HS n j j E j n j

V E dV
R W R V R E

t dt
= + + −

Δ
 (3.5.7.2.26)

 
1

1 2
n n

k k kFlux W Flux W Flux+= ⋅ + ⋅  (3.5.7.2.27)
 

Continue the calculation as follows 
 

1

1

( ) * ( ) ,    ( ) 0    ( ) ( ) ( ) * ( )
( )

( ) * ( ) ,    ( ) 0    ( ) ( ) ( )

as as

n

S j j S j HS n j HS n j S j jn nas
E j m

S j n j S j HS n j HS n j S j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.2.28)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

os os

n

os j j os j HS n j HS n j os j jn nos
E j m

os j n j os j HS n j HS n j j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.2.29)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

rs rs

n

R j j R j HS n j HS n j R j jn nrs
E j m

R j n j R j HS n j HS n j R j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.2.30)
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1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

is is

n

I j j I j HS n j HS n j I j jn nis
E j m

I j n j I j HS n j HS n j I j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.2.31)

 

Then equation (3.5.7.2.23) is approximated by 
 

1

( ) ( ) ( )
jNJRTH

m
HS n j n j k HS n j

k

L E Flux R
=

− =∑  (3.5.7.2.32)

 

Assign 
 

{ } { }2
[ ]{ } *[ ] ( )m n

n
MRLDW W L E S

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.5.7.2.33)

 

Equation (3.5.7.2.19) is modified as  
 

{ }1/ 2[ ] ( ) { } { } m n
nCMATRX E Flux RLDW+ + =  (3.5.7.2.34)

 

The flux term in both equations (3.5.7.2.32) and (3.5.7.2.34) is specified as follows. 
 
If  nQ >0, flow is going from reach to the junction 
 

1 1/ 2
1 2( ) ( ) [( ) ] ( ) [( ) ]k m k k n m k n k n m k n

k n n nFlux Q E W Q E W Q E+ += = +  (3.5.7.2.35)
 

If nQ < 0, flow is going from junction to the reach,  
 

1 1/ 2
1 2( ) ( ) [( ) ] ( ) [( ) ]k m k n m n k n m n

k n j n j n jFlux Q E W Q E W Q E+ += − = − −  (3.5.7.2.36)
 

So that equations (3.5.7.2.32) and (3.5.7.2.34) become a set of equations of ( )m
n jE  and ( )m k

nE .  
 
For boundary node i = b, the boundary term {B} should be continuously calculated same as that 
using Fully-implicit scheme in section 3.5.5.1. 
 
 
3.5.7.3 Operator-splitting 
 
Recall the continuity equation for kinetic-variables, equation (3.5.7.1.1), as follows. 
 

1 2( )
n n n n n n

m m
as rs is os osn n n

n x E E E E E E
E QE EAA E K A M M M M M AR
t t x x x

⎛ ⎞∂ ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.3.1)

 

At (n+1)-th time step, equation (3.5.7.3.1) is approximated by 
 

1
1 2( ) ( ) ( )

n n n n n n

n n m m
as rs is os osn n n n

n x E E E E E E
E E QE EAA E K A M M M M M AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.3.2)

 

According to Operator-splitting scheme, equation (3.5.7.3.2) can be separated into two equations as 
follows 
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1/ 2
1 2( ) ( ) ( )

n n n n n

m n m n m m
m as rs os os isn n n n
n x E E E E E

E E QE EAA E K A M M M M M
t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − = + + + +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.7.3.3)

 
1 1/ 2

1 1[( ) ( ) ] ( ) ( )
n

n m n im n
n im nn n n

E n
E E E nAR E

t t

+ +
+ +− + ∂

= −
Δ ∂

A  (3.5.7.3.4)

 

First, solve equation (3.5.7.3.3) and get 1/ 2( )m n
nE + . Second, solve equation (3.5.7.3.4) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain 1( )n
nE +  and 

the individual species concentration. 
 
To solve equation (3.5.7.3.3), assign and calculate RHSn and LHSn same as that in section (3.5.7.1). 
Then equation (3.5.7.3.3) is simplified as 
 

1/ 2( ) ( ) ( )m n m n m m
m mn n n n
n x HS n n HS n

E E QE EA AA E K A L E R
t t x x x t

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎛ ⎞+ + − + + =⎜ ⎟ ⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.7.3.5)

 

 
Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate 
Equation (3.5.7.3.5) in the spatial dimensions over the entire region as follows. 
 

( )
1 1 1 1

N N N Nmx x x xm m
n mn n

i x i i HS n n i HS n
x x x x

QEE E AN A K A dx W dx N L E dx N R dx
t x x x t

∂⎡ ⎤⎛ ⎞∂ ∂∂ ∂⎛ ⎞− + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫ ∫ ∫  (3.5.7.3.6)

 

Integrating by parts, we obtain 
 

1 1 1 1

1

2
2

1
1

                        

N N N N

N

x x x xm m
m mn i n i

i x n i HS n n
x x x x

Bx mBm n
i HS n i n i xB

x B

E dN E dW AN A dx K A dx QE dx N L E dx
t dx x dx t

EN R dx W QE N K A
x

∂ ∂ ∂⎛ ⎞+ − + +⎜ ⎟∂ ∂ ∂⎝ ⎠

∂
= − +

∂

∫ ∫ ∫ ∫

∫

 
(3.5.7.3.7)

 

Approximate solution m
nE  by a linear combination of the base functions as follows 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j

E E E t N x
=

≈ = ∑  (3.5.7.3.8)

 

Substituting Equation (3.5.7.3.8) into Equation (3.5.7.3.7), we obtain 
 

1 1 1

1 1

1

1

         ( )

( )

N N N

N N

x x xN
j mi i

j x i HS n j nj
j x x x

x xm mN
nj m n

i j i HS n i n i x
j x x b

dNdW dN AQN dx K A dx N L N dx E t
dx dx dx t

dE t EN AN dx N R dx n W QE N K A
dt x

=

=

⎡ ⎤⎛ ⎞∂⎛ ⎞⎢ ⎥− + + +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ⎡ ⎤∂
⎢ ⎥+ = − −⎜ ⎟ ⎢ ⎥⎜ ⎟ ∂⎢ ⎥ ⎣ ⎦⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∑∫ ∫

 
(3.5.7.3.9)

 

Equation (3.5.8.2.19) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ ]
m

m n
n

dEL L L E M S B
dt

⎧ ⎫
+ + + = +⎨ ⎬

⎩ ⎭
 (3.5.7.3.10)
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The matrices [L1], [L2], [L3], [M] and load vectors {S}, {B} are given by 
 

1

1
Nx

i
ij j

x

dWL QN dx
dx

= − ∫  (3.5.7.3.11)

 

1

2
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫  (3.5.7.3.12)

 

1

3
Nx

ij i HS n j
x

AL N L N dx
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫    (3.5.7.3.13)

 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.7.3.14)

 

1

Nx

i i HS n
x

S N R dx= ∫  (3.5.7.3.15)

 
m

m n
i i n i x

b

EB n W QE N K A
x

⎛ ⎞∂
= − −⎜ ⎟∂⎝ ⎠

 (3.5.7.3.16)

 

where all the terms listed above are calculated with the corresponding time weighting values.  
 
Equation (3.5.7.2.10) is simplified as 
 

{ } { } { }[ ] [ ] ,   [ ] [ 1] [ 2] [ 3]
m

m n
n

dEL E M S B where L L L L
dt

⎧ ⎫
+ = + = + +⎨ ⎬

⎩ ⎭
 (3.5.7.3.17)

 

Further, 
 

{ } { } { }
1/ 2

1/ 2
1 2

( ) ( )[ ] *( ) *( ) [ ]  
m n m n

m n m n n n
n n

E EL W E W E M S B
t

+
+ ⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.5.7.3.18)

So that 
{ }1/ 2[ ] ( ) { } m n

nCMATRX E RLD+ =  (3.5.7.3.19)
 

1
[ ][ ] *[ ]MCMATRX W L

t
= +

Δ
 (3.5.7.3.20)

   

{ } { } { }2
[ ]{ } *[ ] ( )  m n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.7.3.21)

 

The above equations are used to solve for the kinetic variable concentration at interior nodes, where 
the boundary term {B} is zero.  
 
For junction nodes, recall equation (3.5.7.2.22) as follows. 
 

1

1

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

j

n n n n n

n n NJRTH
n j n j j as rs os is

j n j E j E j E j E j j E j k
k

E E dV
V E M M M M V R Flux

t dt

+

=

−
+ = + + + + +

Δ ∑  (3.5.7.3.22)

 

which can be separated into two equations, according to Operator-splitting scheme, as follows 
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1/ 2

1

( ) ( )
( ) ( ) ( ) ( ) ( )

j

n n n n

m n m n NJRTH
n j n j j m as rs os is

j n j E j E j E j E j k
k

E E dV
V E M M M M Flux

t dt

+

=

−
+ = + + + +

Δ ∑  (3.5.7.3.23)

 
1 1/ 2

1 1( ) [( ) ( ) ] ( )
( ) ( )

n

n m n im n
n j n j n j jn im n

j E j n j

E E E nV
V R E

t t

+ +
+ +− + ∂

= −
Δ ∂

A  (3.5.7.3.24)

 

First, solve equation (3.5.7.3.23) and get 1/ 2( )m n
n jE + . Second, solve equation (3.5.7.3.24) together 

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the 
individual species concentration and 1( ) n

n jE + . 
 
To solve equation (3.5.7.3.23), assign 
 

( )
n

j j
HS n j

V dV
L

t dt
= +

Δ
 (3.5.7.3.25)

 

2

( )
( )  ( )

n m n
j n j n

HS n j HS n j

V E
R W R

t
= +

Δ
 (3.5.7.3.26)

 
n 1 n

k 1 k 2 kFlux W Flux W Flux+= ⋅ + ⋅  (3.5.7.3.27)
 

Continue the calculation as follows 
 

1

1

( ) * ( ) ,    ( ) 0    ( ) ( ) ( ) * ( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

as as

n

S j j S j HS n j HS n j S j jn nas
E j m

S j n j S j HS n j HS n j S j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.3.28)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

os os

n

os j j os j HS n j HS n j os j jn nos
E j m

os j n j os j HS n j HS n j j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.3.29)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

rs rs

n

R j j R j HS n j HS n j R j jn nrs
E j m

R j n j R j HS n j HS n j R j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.3.30)

 

1

1

( ) *( ) ,    ( ) 0    ( ) ( ) ( ) *( )
( )

( ) *( ) ,    ( ) 0    ( ) ( ) ( )

is is

n

I j j I j HS n j HS n j I j jn nis
E j m

I j n j I j HS n j HS n j I j

S E if S R R W S E
M

S E if S L L W S

> ⇒ = +⎧⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.7.3.31)

 

Then equation (3.5.7.3.23) is approximated by 
 

1
( ) ( ) ( )

jNJRTH
m

HS n j n j k HS n j
k

L E Flux R
=

− =∑  (3.5.7.3.32)

Assign 

{ } { }2
[ ]{ } *[ ] ( )m n

n
MRLDW W L E S

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.5.7.3.33)

 

Equation (3.5.7.3.19) is modified as  
 

{ }1/ 2[ ] ( ) { } { } m n
nCMATRX E Flux RLDW+ + =  (3.5.7.3.34)

 

The flux term in both equation (3.5.7.3.32) and (3.5.7.3.34) is specified as follows. 
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If nQ > 0, flow is going from reach to the junction 
 

1 1/ 2
1 2( ) ( ) [( ) ] ( ) [( ) ]k m k k n m k n k n m k n

k n n nFlux Q E W Q E W Q E+ += = +  (3.5.7.3.35)
 

If nQ < 0, flow is going from junction to the reach,  
 

1 1/ 2
1 2( ) ( ) [( ) ] ( ) [( ) ]k m k n m n k n m n

k n j n j n jFlux Q E W Q E W Q E+ += − = − −  (3.5.7.3.36)
 

Equations (3.5.7.3.32) and (3.5.7.3.34) become a set of equation of ( )m
n jE  and ( )m k

nE .  
 
For boundary node i = b, the boundary term {B} should be continuously calculated same as that 
using Fully-implicit scheme in section 3.5.5.1. 
 
 
3.5.8 Finite Application of the Finite Element Method to the Advective Form of the 

Transport Equations to Solve 1-D Kinetic Variable 
 
3.5.8.1 Fully-implicit scheme 
 
Recall the continuity equation for kinetic-variables, equation (2.5.44), as follows. 
 

1 2( )
n n n n n n

m m
as rs is os osn n n

n x E E E E E E
E QE EAA E K A M M M M M AR
t t x x x

⎛ ⎞∂ ∂ ∂∂ ∂
+ + − = + + + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.8.1.1)

 

According to the governing equation of water flow in 1-D river/stream  
 

1 2S R I
A Q S S S S S
t x

∂ ∂
+ = + + + +

∂ ∂
 (3.5.8.1.2)

 

Equation (3.5.8.1.1) can be modified as follows. 
 

1 2

1 2

( )

                   
n n n n n n

m m
mn n n

n x S R I n

as rs is os os
E E E E E E

E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.8.1.3)

 

At n+1-th time step, equation (3.5.8.1.3) is approximated by 
 

1

1 2

1 2

( ) ( ) ( )

                            
n n n n n

n n m m
mn n n n

n x R R I n

as rs is os os
E E E E E n

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.8.1.4)

 

According to Fully-implicit scheme, equation (3.5.8.1.4) can be separated into two equations as 
follows 
 

1/ 2

1 2

1 2

( ) ( ) ( )

                              
n n n n n n

n n m m
mn n n n

n x S R I n

as rs is os os
E E E E E E

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + + =⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
+ + + + +

 
(3.5.8.1.5)
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1 1/ 2( ) ( ) 0
n n

n nE E
t

+ +−
=

Δ
 (3.5.8.1.6)

 

First, solve equation (3.5.8.1.5) and get (En)n+1/2. Second, solve equation (3.5.8.1.6) together with 
algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual 
species concentration. Iteration between these two steps is needed because reaction term in equation 
(3.5.8.1.5) needs to be updated by the results of (3.5.8.1.6). 
 
To solve equation (3.5.8.1.5), assign 
 

1 20          ( )HS n HS n S R I
AR and L S S S S S
t

∂
= = + + + + −

∂
 (3.5.8.1.7)

 

Then the right hand side RHSn and left hand side LHSn should be continuously calculated same as 
that in section (3.5.7.1).  Equation (3.5.8.1.5) is then simplified as 
 

1/ 2( ) ( )
n

n n m m
mn n n n

n x HS n n HS n E
E E E EAA E Q K A L E R AR

t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − + = +⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.8.1.8)

 

Express En
m in terms of (En

m /En) En
m to make En’s as primary dependent variables, 

 

( )
n

m m m m
n n n n n n n

n n x x n HS n n HS n E
n n n

E E E E E E EAA E Q E K A K A E L E R AR
t t x E x E x x x E

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂ ∂
+ + − − + = +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

 (3.5.8.1.9)

 

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. Integrate 
Equation (3.5.8.1.9) in the spatial dimensions over the entire region as follows. 
 

( )

1 1

1 1

( )N N

N N

x xm m m
n n n n n n

i x i n x n
n nx x

x xm
n

i HS n n i HS n n
nx x

E E E E E EN A K A dx W Q E K A E dx
t x E x x E x x

E AN L E dx N R AR dx
E t

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂ ∂
− + −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎛ ⎞∂
+ + = +⎜ ⎟∂⎝ ⎠

∫ ∫

∫ ∫

 
(3.5.8.1.10)

 

Integrating by parts, we obtain 
 

( )

1 1 1 1

1 1

1

( )

( )                      

        

N N N N

N N

N

n

x x x xm m m
n n n n n i n n

i i i n x
n nx x x x

x xm m
i n n n

x n i HS n n
nx x

x

i HS n E i x
x

E E E E E dN E EN A dx W Q dx W Q E dx K A dx
t E x x dx E x

dW E E E AK A E dx N L E dx
dx x E t

N R AR dx N K A

∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂

⎛ ⎞∂ ∂
+ + +⎜ ⎟∂ ∂⎝ ⎠

= + +

∫ ∫ ∫ ∫

∫ ∫

∫
2 2

11

( )
B Bm m

n n n n
i x n

n BB

E E E EW K A E
E x x

∂ ∂
+

∂ ∂

 
(3.5.8.1.11)

 

Approximate solution En by a linear combination of the base functions as follows 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N x
=

≈ = ∑  (3.5.8.1.12)

 

Substituting Equation (3.5.8.1.12) into Equation (3.5.8.1.11), we obtain 
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1 1 1

1 1

1

1

( ) ( )

( )

( )

N N N

N N

N

x x xm m m
jn n n i n n

i i j x j
N nx x x

njx xm mj ji n n
x i HS n j

n nx x

x
nj

i j
x

dNE E E dW E EW Q dx W Q N dx K A N dx
E dx x dx x

E t
dNdN E E AK A dx N L N dx

dx E dx E t

E t
N AN dx

t

=

⎧ ⎫⎡ ⎤∂ ∂
+ +⎪ ⎪⎢ ⎥

∂ ∂⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥

⎛ ⎞∂⎪ ⎪⎢ ⎥+ + +⎜ ⎟⎪ ⎪⎢ ⎥∂⎝ ⎠⎣ ⎦⎩ ⎭
⎡⎛ ⎞ ∂

+ ⎜ ⎟⎜ ⎟ ∂⎝ ⎠⎣

∫ ∫ ∫
∑

∫ ∫

∫ ( )
1

1

( )N

n

x m mN
n n n n

i HS n E i x i x n
j nx b

E E E EN R AR dx n N K A W K A E
E x x=

⎤ ⎡ ⎤∂ ∂
⎢ ⎥ = + + +⎢ ⎥∂ ∂⎢ ⎥ ⎣ ⎦⎦

∑ ∑∫

 
(3.5.8.1.13)

 

Equation (3.5.8.1.13) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ 4] [ 5] [ ] n
n

EL L L L L E M S B
t

∂⎧ ⎫+ + + + + = +⎨ ⎬∂⎩ ⎭
 (3.5.8.1.14)

 

The matrices [L1], [L2], [L3], [L4], [L5], [M] and load vectors {S}, {B} are given by 
 

1

1
Nx m

jn
ij i

nx

dNEL W Q dx
E dx

= ∫  (3.5.8.1.15)

 

1

( )2
Nx m

n n
ij i j

x

E EL W Q N dx
x

∂
=

∂∫  (3.5.8.1.16)

 

1

( / )3
Nx m

i n n
ij x j

x

dW E EL K A N dx
dx x

∂
=

∂∫  (3.5.8.1.17)

 

1

4
Nx m

ji n
ij x

nx

dNdN EL K A dx
dx E dx

= ∫  (3.5.8.1.18)

 

1

5
Nx m

n
ij i HS n j

nx

E AL N L N dx
E t

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

∫  (3.5.8.1.19)

 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.8.1.20)

 

( )
1

N

n

x

i i HS n E
x

S N R AR dx= +∫  (3.5.8.1.21)

 

( )m m
n n n n

i i x i x n
n b

E E E EB n N K A W K A E
E x x

⎡ ⎤∂ ∂
= +⎢ ⎥∂ ∂⎣ ⎦

 (3.5.8.1.22)

 

Equation (3.5.8.1.14) is then simplified as 
 

{ } { } { }[ ] [ ] ,   [ ] [ 1] [ 2] [ 3] [ 4] [ 5]n
n

EL E M S B where L L L L L L
t

∂⎧ ⎫+ = + = + + + +⎨ ⎬∂⎩ ⎭
 (3.5.8.1.23)

 

Further,  
 

{ } { } { } { }1/ 2 1/ 2
1 2

[ ][ ] * *  n n n n
n n n n

ML W E W E E E S B
t

+ ++ + − = +
Δ

 (3.5.8.1.24)

So that 
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{ }1/ 2[ ] { }n
nCMATRX E RLD+ =  (3.5.8.1.25)

where 

1
[ ][ ] *[ ]MCMATRX W L

t
= +

Δ
 (3.5.8.1.26)

 

{ } { } { }2
[ ] { } *[ ] n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.8.1.27)

 

The above equations are used to solve for the kinetic variable concentration at interior nodes, where 
the boundary term {B} is zero.  
 
At the junction nodes, assign  
 

{ } { }2
[ ] { } *[ ] { } n m

n n
MRLDW W L E S nQE

t
= − + +

Δ
 (3.5.8.1.28)

 

Equation (3.5.8.1.25) is modified as  
 

{ }1/ 2[ ] { }n
nCMATRX E Flux RLDW+ + =  (3.5.8.1.29)

 

Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.1.48), 
and (3.5.8.1.29). 
 
For boundary node i = b, the boundary term {B} should be continuously calculated as follows. 
 

( ) ( )m m m m m
n n n n n n n n n

i i x i x n x x n x
n n bb b

E E E E E E E E EB N K A W K A E n K A K A E n K A
E x x E x x x

⎡ ⎤ ⎡ ⎤ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= + = + = ⎜ ⎟⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎝ ⎠⎣ ⎦ ⎣ ⎦

 (3.5.8.1.30)

 
Dirichlet boundary condition 
 

( , )m m
n n bE E x t=  (3.5.8.1.31)

 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0) 
 

( , )    ( , )
m

m m m mn
n x n b i n n b

En QE AK nQE x t B nQE nQE x t
x

⎛ ⎞∂
− = ⇒ = −⎜ ⎟∂⎝ ⎠

 (3.5.8.1.32)

 

When Flow is going out from inside (nQ > 0) 
 

m
n

x i
EnAK 0 B 0

x
∂

∂
− = ⇒ =  (3.5.8.1.33)

 
Cauchy boundary condition 
 

( , )    ( , )
m

m mn
n x En b i n En b

En QE AK Q x t B nQE Q x t
x

⎛ ⎞∂
− = ⇒ = −⎜ ⎟∂⎝ ⎠

 (3.5.8.1.34)
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Neumann boundary condition 
 

( , )     ( , ) 
m

n
x En b i En b

EnAK Q x t B Q x t
x

∂
− = ⇒ = −

∂
 (3.5.8.1.35)

 
3.5.8.2 Mixed Predictor-corrector/Operator-Splitting Scheme 
 
Recall the continuity equation for kinetic-variables, equation (3.5.8.1.3), as follows. 
 

1 2

1 2

( )

n n n n n n

m m
mn n n

n x S R I n

as rs is os os
E E E E E E

E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + + =⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
+ + + + +

 
(3.5.8.2.1)

 

At n+1-th time step, equation (3.5.8.2.1) is approximated by 
 

1

1 2

1 2

( ) ( ) ( )

                            
n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.8.2.2)

 

According to mixed predictor corrector/operator-splitting scheme, equation (3.5.8.2.2) can be 
separated into two equations as follows 
 

1

1 2

1 2

( ) ( ) ( )

                            ( )
n n n n n n

m n m n m m
m mn n n n
n x S R I n

as rs os os is n im n
E E E E E E n

E E E EA AA E Q K A S S S S S E
t t x x x t

AM M M M M AR E
t

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
∂

= + + + + + −
∂

 
(3.5.8.2.3)

 
1 1/ 2

1 1[( ) ( ) ] ( ) ( )( ) ( )
n n

n m n im n
n n im n im nn n n

E E n n
E E E nA nAR R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A  (3.5.8.2.4)

 

First, solve equation (3.5.8.2.3) and get 1/ 2( )m n
nE + . Second, solve equation (3.5.8.2.4) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain 1n
nE +  and the 

individual species concentration. 
 
To solve equation (3.5.8.2.3), assign and calculate RHSn and LHSn in the same way as that in Section 
(3.5.7.2).  Equation (3.5.8.2.3) is then simplified as 
 

1/ 2( ) ( ) ( )
n n n

m n m n m m
m m n im nn n n n
n x HS n HS E n

E E E EA AA E Q K A L E R AR E
t t x x x t

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂
+ + − + = + −⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.8.2.5)

 

Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. For 
Galerkin method, choose weighting function identical to base functions. Integrate Equation 
(3.5.8.2.5) in the spatial dimensions over the entire region as follows. 
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1 1 1

1

( ) ( )

N N N

n

N

n n

x x xm m m
mn n n

i x i i HS n
x x x

x
n im n

i HS E n
x

E E E AN A K A dx W Q dx N L E dx
t x x x t

AN R A R E dx
t

⎡ ⎤⎛ ⎞∂ ∂ ∂∂ ∂⎛ ⎞− + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦

∂⎡ ⎤+ −⎢ ⎥∂⎣ ⎦

∫ ∫ ∫

∫

 
(3.5.8.2.6)

 

Integrating by parts, we obtain 
 

1 1 1 1

1

2

1

                        ( ) ( )

N N N N

n

N

n n

x x x xm m m
mn i n n

i x i i HS n
x x x x

Bx m
n im n n

i HS E n i x
x B

E dN E E AN A dx K A dx W Q dx N L E dx
t dx x x t

EAN R A R E dx N K A
t x

∂ ∂ ∂ ∂⎛ ⎞+ + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂∂⎡ ⎤= + − +⎢ ⎥∂ ∂⎣ ⎦

∫ ∫ ∫ ∫

∫

 
(3.5.8.2.7)

 

Approximate solution En
m by a linear combination of the base functions as follows 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j

E E E t N x
=

≈ = ∑  (3.5.8.2.8)

 

Substituting Equation (3.5.8.2.8) into Equation (3.5.8.2.7), we obtain 
 

1 1 1

1 1

1

1

           ( )

( )
( ) ( )

N N N

n

N N

n n

x x xN
j j mi

i x i HS j nj
j x x x

x xm mN
nj n im n n

i j i HS E n i x
j x x

dN dNdN AW Q dx K A dx N L N dx E t
dx dx dx t

E t EAN AN dx N R A R E dx n N K A
t t x

=

=

⎡ ⎤⎛ ⎞∂⎛ ⎞⎢ ⎥+ + +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ∂ ⎛ ∂∂⎡ ⎤⎢ ⎥+ = + − +⎜ ⎟ ⎢ ⎥⎜ ⎟ ∂ ∂ ∂⎣ ⎦⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫
b

⎞
⎜ ⎟
⎝ ⎠

∑

 
(3.5.8.2.9)

 

Equation (3.5.8.2.9) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ ]
m

m n
n

EL L L E M S B
t

⎧ ⎫∂
+ + + = +⎨ ⎬

∂⎩ ⎭
 (3.5.8.2.10)

 

The matrices [L1], [L2], [L3], [M] and load vectors {S}, {B} are given by 
 

1

1
Nx

j
ij i

x

dN
L W Q dx

dx
= ∫  (3.5.8.2.11)

 

1

2
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫  (3.5.8.2.12)

 

1

3
N

n

x

ij i HS j
x

AL N L N dx
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫  (3.5.8.2.13)

 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.8.2.14)

 

1

( ) ( )
N

n n

x
n im n

i i HS E n
x

AS N R A R E dx
t

∂⎡ ⎤= + −⎢ ⎥∂⎣ ⎦∫  (3.5.8.2.15)
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m
n

i i x
b

EB n N K A
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (3.5.8.2.16)

 

where all the terms listed above are calculated with the corresponding time weighting values. 
Equation (3.5.8.2.10) is then simplified as 
 

{ } { } { }[ ] [ ] ,   [ ] [ 1] [ 2] [ 3]
m

m n
n

EL E M S B where L L L L
t

⎧ ⎫∂
+ = + = + +⎨ ⎬∂⎩ ⎭

 (3.5.8.2.17)

 

Further,  
 

{ } { } { }
1/ 2

1/ 2
1 2

( ) ( )[ ] *( ) *( ) [ ]  
m n m n

m n m n n n
n n

E EL W E W E M S B
t

+
+ ⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.5.8.2.18)

So that 
{ }1/ 2[ ] ( ) { } m n

nCMATRX E RLD+ =  (3.5.8.2.19)

where 

1
[ ][ ] [ ]  MCMATRX W L

t
= +

Δ
 (3.5.8.2.20)

 

{ } { } { }2
[ ] { } [ ] ( )m n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.8.2.21)

 

The above equations are used to solve for the kinetic variable concentration at interior nodes where 
boundary term {B} is zero. 
 
For junction nodes, assign  
 

{ } { }2
[ ] { } [ ] ( ) { }m n m

n n
MRLDW W L E S nQE

t
= − + +

Δ
 (3.5.8.2.22)

 

Equation (3.5.8.2.18) is modified as 
 

{ }1/ 2[ ] ( ) { }m n
nCMATRX E Flux RLDW+ + =  (3.5.8.2.23)

 

Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.2.32) 
and (3.5.8.2.23). 
 
For boundary node i = b, the boundary term {B} should be continuously calculated same as that 
using Fully-implicit scheme in section (3.5.8.1). 
 
3.5.8.3 Operator-splitting 
 
Recall the continuity equation for kinetic-variables, equation (3.5.8.1.3), as follows. 
 

1 2

1 2

( )

n n n n n n

m m
mn n n

n x S R I n

as rs is os os
E E E E E E

E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + + =⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
+ + + + +

 
(3.5.8.3.1)

 

At n+1-th time step, equation (3.5.8.3.1) is approximated by 
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1

1 2

1 2

( ) ( ) ( )

                            
n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.8.3.2)

 

According to Operator-splitting scheme, equation (3.5.8.3.2) can be separated into two equations as 
follows 
 

1

1 2

1 2

( ) ( ) ( )

                            
n n n n n

m n m n m m
m mn n n n
n x S R I n

as rs os os is
E E E E E

E E E EA AA E Q K A S S S S S E
t t x x x t

M M M M M

+ ⎛ ⎞− ∂ ∂∂ ∂ ∂⎡ ⎤+ + − − − + + + +⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + +

 
(3.5.8.3.3)

 
1 1/ 2

1 1[( ) ( ) ] ( ) ( )
n

n m n im n
n im nn n n

E n
E E E nAR E

t t

+ +
+ +− + ∂

= −
Δ ∂

A  (3.5.8.3.4)

 

First, solve equation (3.5.8.3.3) and get 1/ 2( )m n
nE + . Second, solve equation (3.5.8.3.4) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain 1( )n
nE +  and 

the individual species concentration. 
 
To solve equation (3.5.8.3.3), assign and calculate RHSn and LHSn same as that in section (3.5.8.1). 
Equation (3.5.8.3.3) is then simplified as 
 

1/ 2( ) ( )
n n

m n m n m m
m mn n n n
n x HS n HS

E E E EAA E Q K A L E R
t t x x x

+ ⎛ ⎞− ∂ ∂∂ ∂
+ + − + =⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.8.3.5)

 
Use Galerkin or Petrov-Galerkin FEM for the spatial discretization of transport equations. For 
Galerkin method, choose weighting function identical to base functions. Integrate Equation 
(3.5.8.3.5) in the spatial dimensions over the entire region as follows. 
 

1 1 1 1

N N N N

n n

x x x xm m m
mn n n

i x i i HS n i HS
x x x x

E E E AN A K A dx W Q dx N L E dx N R dx
t x x x t

⎡ ⎤⎛ ⎞∂ ∂ ∂∂ ∂⎛ ⎞− + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
∫ ∫ ∫ ∫  (3.5.8.3.6)

 

Integrating by parts, we obtain 
 

1 1 1 1

1

2

1

                               

N N N N

n

N

n

x x x xm m m
mn i n n

i x i i HS n
x x x x

Bx m
n

i HS i x
x B

E dN E E AN A dx K A dx W Q dx N L E dx
t dx x x t

EN R dx N K A
x

∂ ∂ ∂ ∂⎛ ⎞+ + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∂
= +

∂

∫ ∫ ∫ ∫

∫

 
(3.5.8.3.7)

 

Approximate solution En
m by a linear combination of the base functions as follows 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j

E E E t N x
=

≈ = ∑  (3.5.8.3.8)

 

Substituting Equation (3.5.8.3.8) into Equation (3.5.8.3.7), we obtain 
 



 3-132

1 1 1

1 1

1

1

( )

( )

N N N

n

N N

n

x x xN
j j mi

i x i HS j nj
j x x x

x xm mN
nj n

i j i HS i x
j x x b

dN dNdN AW Q dx K A dx N L N dx E t
dx dx dx t

E t EN AN dx N R dx n N K A
t x

=

=

⎡ ⎤⎛ ⎞∂⎛ ⎞⎢ ⎥+ + +⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞ ∂ ⎛ ⎞∂
⎢ ⎥+ = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∑∫ ∫

 
(3.5.8.3.9)

 

Equation (3.5.8.3.9) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 2] [ 3] [ ]
m

m n
n

EL L L E M S B
t

⎧ ⎫∂
+ + + = +⎨ ⎬∂⎩ ⎭

 (3.5.8.3.10)

 

The matrices [L1], [L2], [L3], [M] and load vectors {S}, {B} are given by 
 

1

1
Nx

j
ij i

x

dN
L W Q dx

dx
= ∫  (3.5.8.3.11)

 

1

2
Nx

ji
ij x

x

dNdNL K A dx
dx dx

= ∫  (3.5.8.3.12)

 

1

3
N

n

x

ij i HS j
x

AL N L N dx
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫  (3.5.8.3.13)

 

1

Nx

ij i j
x

M N AN dx= ∫  (3.5.8.3.14)

 

1

N

n

x

i i HS
x

S N R dx= ∫  (3.5.8.3.15)

 
m

n
i i x

b

EB n N K A
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (3.5.8.3.16)

 

where all the terms listed above are calculated with the corresponding time weighting values. 
Equation (3.5.8.3.10) is then simplified as 
 

{ } { } { }[ ] [ ] ,   [ ] [ 1] [ 2] [ 3]
m

m n
n

EL E M S B where L L L L
t

⎧ ⎫∂
+ = + = + +⎨ ⎬∂⎩ ⎭

 (3.5.8.3.17)

 

Further, 
 

{ } { } { }
1/ 2

1/ 2
1 2

( ) ( )[ ] *( ) *( ) [ ]
m n m n

m n m n n n
n n

E EL W E W E M S B
t

+
+ ⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.5.8.3.18)

So that 
{ }1/ 2

n[ ] (E ) { }m nCMATRX RLD+ =  (3.5.8.3.19)

where 

1
[ ][ ] [ ]MCMATRX W L

t
= +

Δ
 (3.5.8.3.20)

 

{ } { } { }2
[ ] { } [ ] ( )m n

n
MRLD W L E S B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.5.8.3.21)
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The above equations are used to solve for the kinetic variable concentration at interior nodes where 
boundary term {B} is zero. 
 
For junction nodes, assign  
 

{ } { }2
[ ] { } [ ] ( ) { }m n m

n n
MRLDW W L E S nQE

t
= − + +

Δ
 (3.5.8.3.22)

 

Equation (3.5.8.3.18) is modified as 
 

{ }1/ 2[ ] ( ) { }m n
nCMATRX E Flux RLDW+ + =  (3.5.8.3.23)

 

Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.3.33) 
and (3.5.8.3.23). 
 
For boundary node i = b, the boundary term {B} should be continuously calculated same as that 
using Fully-implicit scheme in section (3.5.8.1). 
 
 
3.5.9 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form 

of the Transport Equations 
 
3.5.9.1 Fully-implicit scheme 
 
The continuity equation for kinetic-variables in advective form at (n+1)-th time step, is shown as 
follows. 
 

1

1 2

1 2

( ) ( ) ( )

                            
n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.9.1.1)

 
 

 [Option 1] 
 
Express En

m in terms of En
m /En*En to make En’s as primary dependent variables, equation 

(3.5.9.1.1) is modified as 
 

1

1 2
1 2

( ) ( )

( )
n n n n n n

m m
n n

n nn n
n n n n

n x

m
as rs os os isn

S R I n E E E E E E
n

E EE E
E E A E EA E Q K A

t t x x x

A ES S S S S E M M M M M AR
t E

+

⎛ ⎞
∂ ∂⎜ ⎟− ∂ ∂ ⎜ ⎟+ + − +

Δ ∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟
⎝ ⎠

∂⎡ ⎤+ + + + − = + + + + +⎢ ⎥∂⎣ ⎦

 
(3.5.9.1.2)

 

According to Fully-implicit scheme, equation (3.5.9.1.2) can be separated into two equations as 
follows 
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1/ 2

1 2
1 2

( ) ( )

( )
n n n n n n

m m
n n

n nn n
n n n n

n x

m
as rs os os isn

S R I n E E E E E E
n

E EE E
E E A E EA E Q K A

t t x x x

A ES S S S S E M M M M M AR
t E

+

⎛ ⎞
∂ ∂⎜ ⎟− ∂ ∂ ⎜ ⎟+ + − +

Δ ∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟
⎝ ⎠

∂⎡ ⎤+ + + + − = + + + + +⎢ ⎥∂⎣ ⎦

 
(3.5.9.1.3)

 
1 1/ 2( ) ( ) 0

n n
n nE E

t

+ +−
=

Δ
 (3.5.9.1.4)

 

First, solve equation (3.5.9.1.3) and get (En)n+1/2. Second, solve equation (3.5.9.1.4) together with 
algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual 
species concentration. Iteration between these two steps is needed because reaction term in equation 
(3.5.9.1.3) needs to be updated by the results of (3.5.9.1.4). 
 
To solve equation (3.5.9.1.3), assign 
 

1 20          ( )
n n

m
n

HS HS S R I
n

A ER and L S S S S S
t E

∂⎡ ⎤= = + + + + −⎢ ⎥∂⎣ ⎦
 (3.5.9.1.5)

 
Then the right hand side RHSn and left hand side LHSn should be continuously calculated as following. 
 

* ,    0    

* ,    0    

rs n

n

rs
R n R HS n HS n Ers

E m
R n R HS n HS n R

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.6)

 
* ,    0    ,

* ,    0    

as n

n

as
S n S HS n HS n Eas

E m
S n S HS n HS n S

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.7)

 

1
1

1 11

1 1 1

* ,    0    

* ,    0    

os n

n

m os
n HS n HS n Eos

E m
n HS n HS n

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.8)

 

2
2

2 22

2 2 2

* ,    0    

* ,    0    

os n

n

m os
n HS n HS n Eos

E m
n HS n HS n

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.9)

 
* ,    0    

* ,    0    

is n

n

m is
I n I HS n HS n Eis

E m
I n I HS n HS n I

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.10)

 

Equation (3.5.9.1.3) is then simplified as 
 

1/ 2( ) ( )

n n n

m
n

n n m m
n n n n n nn

n x x
n n

m m
n n

n n
x HS n HS E

E
E E A E E E EEA E Q K A K A

t t E x x x E x

E E
E EQ K A L E R AR
x x x

+

⎛ ⎞
∂⎜ ⎟ ⎛ ⎞− ∂ ∂ ∂ ∂⎜ ⎟+ + − − +⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎜ ⎟ ⎝ ⎠

⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞
∂ ∂⎢ ⎥⎜ ⎟∂⎢ ⎥⎜ ⎟− + = +

∂ ∂ ∂⎢ ⎥⎜ ⎟
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 
(3.5.9.1.11)
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Assign the true transport velocity Vtrue as follows. 
 

m m
n n

true x
n n

E EAV Q K A
E x E

⎛ ⎞∂
= − ⎜ ⎟∂ ⎝ ⎠

 (3.5.9.1.12)

 
m

n
true x

n

EK K
E

=  (3.5.9.1.13)

 

n

m m
n n

x HS
n n

E EL Q K A L
x E x x E

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂
= − +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

 (3.5.9.1.14)

 

Then equation (3.5.9.1.11) is simplified as 
 

1/ 2( ) ( )
n n

n n
n n n n

true true n HS E
E E E E AA AV K A L E R AR

t x x x t

+ − ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − + + = +⎜ ⎟ ⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5.9.1.15)

 

Equation (13.5.7.1.15) in the Lagrangian and Eulerian form is as follows. 
 

1/ 2( ) ( ) 0
n n

n n n n
true

dE E E EV
d t xτ

+ − ∂
= + =

Δ ∂
 (3.5.9.1.16)

 

n n

n n
true n HS E

dE E AA K A L E R AR
d x x tτ

∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + + = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (3.5.9.1.17)

 

First, solve equation (3.5.9.1.16) to obtain the Lagrangian values by particle tracking. Then, deal 
with Eulerian equation (3.5.9.1.17) by finite element method. 
 
Equation (3.5.9.1.17) written in a slightly different form is shown as follows. 
 

n
n L

dE D KE R
dτ

− + =  (3.5.9.1.18)

where 
1 n

true
ED K A

A x x
∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠

 (3.5.9.1.19)

 
A L
tK
A

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠=  (3.5.9.1.20)

 

n nHS E
L

R AR
R

A
+

=  (3.5.9.1.21)

 

Equation (3.5.9.1.18) written in matrix form is then expressed as 
 

{ } { } { } { } { } ( ){ } { } { }*1/ 2 1 1 1/ 2 * * 1 *
1 1 2 2 1 2

[ ] [ ]n n n n n
n n n n L L

U UE W D W K E E W D W KE W R W R
τ τ

+ + + + +⎡ ⎤− + = + − + +⎣ ⎦Δ Δ
 (3.5.9.1.22)

 

where [Kn+1] is the diagonal matrix with K calculated at the (n+1)-th time step as its components, the 
diffusion term D expressed in term of En is solved by the following procedure. 
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Approximate D by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

D D D t N x
=

≈ = ∑  (3.5.9.1.23)
 

According to equation (3.5.9.1.19), the integration of equation (3.5.9.1.22) can be written as 
 

1 1 1
1

( ) ( )
N N Nx x xN

n
i i j j i true

jx x x

EN ADdx N A D t N x dx N K A dx
x x=

∂ ∂⎛ ⎞= = ⎜ ⎟∂ ∂⎝ ⎠
∑∫ ∫ ∫  (3.5.9.1.24)

 

Integrating by parts, we obtain 
 

1 1

2

1 1

( )
N N Bx xN

i n n
i j j true i true

j Bx x

dN E EN AN dx D K A dx N K A
dx x x=

⎡ ⎤⎛ ⎞ ∂ ∂
= − +⎢ ⎥⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫  (3.5.9.1.25)

 

Approximate En by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N x
=

≈ = ∑  (3.5.9.1.26)
 

Equation (3.5.9.1.25) is further expressed as                                
 

1 1

2

1 1 1

( ) ( )
N N Bx xN N

ji n
i j j true n j i true

j j Bx x

dNdN EN AN dx D K A dx E N K A
dx x x= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ∂
= − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫  (3.5.9.1.27)

 

Assign matrices [A1] and [A2] and load vector {B1} as following 
 

1

1
Nx

ij i j
x

A N AN dx= ∫  (3.5.9.1.28)

 

1

2 ( )
Nx

ji
ij true

x

dNdNA K A dx
dx dx

= ∫  (3.5.9.1.29)

 

1 n
i i true

b

EB nN K A
x

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (3.5.9.1.30)

 

Equation (3.5.9.1.27) is expressed as 
 

{ } { } { }[ 1] [ 2] 1nA D A E B= − +  (3.5.9.1.31)
 

Lump matrix [A1] into diagonal matrix and assign   
 

2 / 1ij ij iiQE A A=  (3.5.9.1.32)
 

1 / 1i i iiB B A=  (3.5.9.1.33)
Then 

{ } { } { }[ ] nD QE E B= − +  (3.5.9.1.34)
 

where boundary term {B} is calculated as follows 
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1 1
m m

n n
i i x ii i x n ii

nb b

E EB nN K A A nN K A E A
x x E

⎡ ⎤⎛ ⎞⎛ ⎞∂ ∂= − ⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
 (3.5.9.1.35)

 

Dirichlet boundary condition 
 

( )

( , )   

( ) ( , ) ( ) ( )
1 1

m m
n n b

m m m m
n j n b n n j n n i

i i x ii i x n iii

E E x t

E E x t E E E E
B nN K A A nN K A E A

x x

= ⇒

− −
= −

Δ Δ

 (3.5.9.1.36)

 

where j is the interior node connected to the boundary node. 
 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0) 
 

( )

( , )    

( ) ( )
( , ) 1 1

m
m mn

n x n b

m m
n n j n n im m

i n n b ii i x n iii

En QE AK nQE x t
x

E E E E
B nQE nQE x t A nN K A E A

x

⎛ ⎞∂
− = ⇒⎜ ⎟∂⎝ ⎠

−
⎡ ⎤= − −⎣ ⎦ Δ

 
(3.5.9.1.37)

 

where j is the interior node connected to the boundary node. 
 
When Flow is going out from inside (nQ > 0) 
 

( )
( ) ( )

0    1
m mm

n n j n n in
x i i x n iii

E E E EEnAK B nN K A E A
xx

−∂
− = ⇒ = −

Δ∂
 (3.5.9.1.38)

 

where j is the interior node connected to the boundary node. 
 
Cauchy boundary condition 
 

( )

( , )  

( ) ( )
  ( , ) 1 1

m
m n

n x En b

m m
n n j n n im

i n En b ii i x n iii

En QE AK Q x t
x

E E E E
B nQE Q x t A nN K A E A

x

⎛ ⎞∂
− = ⇒⎜ ⎟∂⎝ ⎠

−
⎡ ⎤= − −⎣ ⎦ Δ

 
(3.5.9.1.39)

 

where j is the interior node connected to the boundary node. 
 
Neumann boundary condition 
 

( )
( ) ( )

( , )     ( , ) 1
m mm

n n j n n in
x En b i En b i x n iii

E E E EEnAK Q x t B Q x t nN K A E A
xx

−∂
− = ⇒ = − −

Δ∂
 (3.5.9.1.40)

 

where j is the interior node connected to the boundary node. 
 
Equation (3.5.9.1.22) can be written as matrix equation as following 
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{ } { } { }

{ } ( ){ } { } { } { } { }

1/ 2 1 1/ 2 1 1/ 2
1 1

** * 1 * 1
2 2 1 2 1

[ ] [ ]

[ ]

n n n n n
n n n

n n
n n L L

U E W QE E W K E

U E W KE W D W R W R W B

τ

τ

+ + + + +

+ +

⎡ ⎤+ + ⎣ ⎦Δ

= − + + + +
Δ

 
(3.5.9.1.41)

 
 

 [Option 2] 
 
Express En

m in terms of En-En
m and En

m/En*En to make En’s as primary dependent variables, equation 
(3.5.9.1.1) is modified as 
 

1

1 2

1 2

( ) ( ) ( )

n n n n n n

n n m
n n n n n

n x S R I n
n

im im
as rs os os isn n

x E E E E E E

E E A E E A EA E Q K A S S S S S E
t t x x x t E

E EQ K A M M M M M AR
x x x

+ − ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂ ∂
= − + + + + + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

 
(3.5.9.1.42)

 

According to Fully-implicit scheme, equation (3.5.9.1.42) can be separated into two equations as 
follows 
 

1/ 2

1 2

1 2

( ) ( ) ( )

n n n n n n

n n m
n n n n n

n x S R I n
n

im im
as rs os os isn n

x E E E E E E

E E A E E A EA E Q K A S S S S S E
t t x x x t E

E EQ K A M M M M M AR
x x x

+ − ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎣ ⎦

⎡ ⎤⎛ ⎞∂ ∂ ∂
= − + + + + + +⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

 
(3.5.9.1.43)

 
1 1/ 2( ) ( ) 0

n n
n nE E

t

+ +−
=

Δ
 (3.5.9.1.44)

 

First, solve equation (3.5.9.1.43) and get 1/ 2n
nE + . Second, solve equation (3.5.9.1.44) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual 
species concentration and 1( )n

nE + . Iteration between these two steps is needed because reaction term 
in equation (3.5.9.1.43) needs to be updated by the results of (3.5.9.1.44). 
 
To solve equation (3.5.9.1.43), assign 
 

1 20          ( )
n n

m
n

HS HS S R I
n

A ER and L S S S S S
t E

∂⎡ ⎤= = + + + + −⎢ ⎥∂⎣ ⎦
 (3.5.9.1.45)

 
Then the right hand side RHSn and left hand side LHSn should be continuously calculated as following. 
 

* ,    0    

* ,    0    *

rs n n n

n

n n

rs
R R HS HS Enrs

E m m
R n R HS HS R n n

S E if S R R M
M

S E if S L L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.46)

 

* ,    0    ,

* ,    0    *

as n n n

n

n

as
S S HS HS Enas

E m m
S n S n HS S n n

S E if S R R M
M

S E if S LHS L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.47)

 

1
1

1 11

1 1 1

* ,    0    

* ,    0    *

os n n n

n

n n

m os
n HS HS Eos

E m m
n HS HS n n

S E if S R R M
M

S E if S L L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.48)
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2
2

2 22

2 2 2

* ,    0    

* ,    0    *

os n n n

n

n n

m os
n HS HS Eos

E m m
n HS HS n n

S E if S R R M
M

S E if S L L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.49)

 
* ,    0    

* ,    0    *

is n n n

n

n n

m is
I n I HS HS Eis

E m m
I n I HS HS I n n

S E if S R R M
M

S E if S L L S E E

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.5.9.1.50)

 

Equation (3.5.9.1.43) is then simplified as 
 

1/ 2( ) ( )
n n n

n n im im
n n n n n n

n x HS n x HS E
E E A E E E EA E Q K A L E Q K A R AR

t t x x x x x x

+ ⎡ ⎤⎛ ⎞− ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + − + = − + +⎢ ⎥⎜ ⎟ ⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦
 (3.5.9.1.51)

 

Assign the true transport velocity Vtrue as follows. 
 

trueAV Q=  (3.5.9.1.52)
 

Then equation (3.5.9.1.51) is simplified as 
 

1/ 2( ) ( )
n n n

n n im im
nn n n n n n

true x HS n x HS E
E E E E A E EA A V K A L E Q K A R AR

t x x x t x x x

+ ⎡ ⎤⎛ ⎞− ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ − + + = − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 (3.5.9.1.53)

 

Equation (13.5.9.1.53) in the Lagrangian and Eulerian form is as follows. 
 

1/ 2( ) ( ) 0
n n

n n n n
true

dE E E EV
d t xτ

+ − ∂
= + =

Δ ∂
 (3.5.9.1.54)

 

n n

im im
n n n n

x HS n x HS n E
dE E A E EA K A L E Q K A R AR
d x x t x x xτ

⎡ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− + + = − + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
 (3.5.9.1.55)

 

First, solve equation (3.5.9.1.54) to obtain the Lagrangian values by particle tracking. Then, deal 
with Eulerian equation (3.5.9.1.55) by finite element method. 
 
Equation (3.5.9.1.55) written in a slightly different form is shown as follows. 
 

*n
n L

dE D K E T R
dτ

− + = +  (3.5.9.1.56)

where 
1 n

x
ED K A

A x x
∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂⎝ ⎠

 (3.5.9.1.57)

 

nHS
AL
tK

A

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠=  (3.5.9.1.58)

 

n nHS E
L

R AR
R

A
+

=  (3.5.9.1.59)

 

1 im im
n n

x
E ET Q K A

A x x x
⎡ ⎤⎛ ⎞∂ ∂ ∂

= −⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦
 (3.5.9.1.60)
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Equation (3.5.9.1.56) written in matrix form is then expressed as 
 

{ } { } { }

{ } { } ( ){ } { } { } { } { }

1/ 2 1 1 1/ 2
1 1

** * 1 * 1 *
2 2 1 2 1 2

[ ]                      

[ ]

n n n n
n n

n n
n n L L

U E W D W K E

U E W D W KE W T W T W R W R

τ

τ

+ + + +

+ +

⎡ ⎤− + =⎣ ⎦Δ

+ − + + + +
Δ

 
(3.5.9.1.61)

 

where [Kn+1] is the diagonal matrix with K calculated at (n+1)-th time step as its components, the 
diffusion term D  expressed in term of nE  and term T  expressed in term of im

nE  is solved by the 
following procedure. 
 
Approximate D  by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

D D D t N x
=

≈ = ∑  (3.5.9.1.62)

 

According to equation (3.5.9.1.57), the integration of equation (3.5.9.1.62) can be written as 
 

1 1 1
1

( ) ( )
N N Nx x xN

n
i i j j i x

jx x x

EN ADdx N A D t N x dx N K A dx
x x=

∂ ∂⎛ ⎞= = ⎜ ⎟∂ ∂⎝ ⎠
∑∫ ∫ ∫  (3.5.9.1.63)

 

Integrating by parts, we obtain 
 

1 1

2

1 1

( )
N N Bx xN

i n n
i j j x i x

j Bx x

dN E EN AN dx D K A dx N K A
dx x x=

⎡ ⎤⎛ ⎞ ∂ ∂
= − +⎢ ⎥⎜ ⎟⎜ ⎟ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫  (3.5.9.1.64)

 

Approximate nE  by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N x
=

≈ = ∑  (3.5.9.1.65)

 

Equation (3.5.9.1.64) is further expressed as                                
 

1 1

2

1 1 1

( ) ( )
N N Bx xN N

ji n
i j j x n j i x

j j Bx x

dNdN EN AN dx D K A dx E N K A
dx x x= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ∂
= − +⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

∑ ∑∫ ∫  (3.5.9.1.66)

 

Assign matrices [ 1A ] and [ 2A ] and load vector { 1B } as following 
 

1

1
Nx

ij i j
x

A N AN dx= ∫  (3.5.9.1.67)

 

1

2 ( )
Nx

ji
ij x

x

dNdNA K A dx
dx dx

= ∫  (3.5.9.1.68)

 

1 n
i i x

b

EB nN K A
x

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
 (3.5.9.1.69)

 

Equation (3.5.9.1.66) is expressed as 
 

{ } { } { }[ 1] [ 2] 1nA D A E B= − +  (3.5.9.1.70)
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Lump matrix [A1] into diagonal matrix and assign   
 

2 / 1ij ij iiQE A A=  (3.5.9.1.71)
 

1 1 / 1i i iiQB B A=  (3.5.9.1.72)
Then 

{ } { } { }[ ] 1nD QE E QB= − +  (3.5.9.1.73)
 

Approximate T by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

T T T t N x
=

≈ = ∑  (3.5.9.1.74)

 

According to equation (3.5.9.1.60), the integration of equation (3.5.9.1.74) can be written as 
 

1 1 1
1

( ) ( )
N N Nx x x im imN

n n
i i j j i x

jx x x

E EN ATdx N A T t N x dx N Q K A dx
x x x=

⎡ ⎤⎛ ⎞∂ ∂ ∂
= = −⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎣ ⎦

∑∫ ∫ ∫  (3.5.9.1.75)

 

Integrating by parts, we obtain 
 

1 1 1

2

1 1

N N N
Bx x xim im imN

n i n n
i j j i x i x

j x x x B

E dN E EN AN dx T N Q dx K A dx N K A
x dx x x=

⎡ ⎤⎛ ⎞ ∂ ∂ ∂
= + +⎢ ⎥⎜ ⎟⎜ ⎟ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫  (3.5.9.1.76)

 
Approximate En

im by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

im im im
n n nj j

j

E E E t N x
=

≈ = ∑  (3.5.9.1.77)

 

Equation (3.5.9.1.76) is further expressed as                                
 

N N

1 1

N

1

x xN N
j im

i j j i n j
j 1 j 1x x

B2x imN
j imi n

x n j i x
j 1 x B1

dN
N AN dx T N Q dx (E )

dx

dNdN EK A dx (E ) N K A
dx dx x

∂
∂

= =

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
=⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤⎛ ⎞
+ +⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑∫ ∫

∑ ∫

 
(3.5.9.1.78)

 

Assign matrices [A3], and load vector {B2} as following 
 

1

3
Nx

j
ij i

x

dN
A N Q dx

dx
= ∫  (3.5.9.1.79)

 

2 -
im

n
i i x

b

EB nN K A
x

⎛ ⎞∂
= ⎜ ⎟∂⎝ ⎠

 (3.5.9.1.80)

Assign   
( 2 3 ) / 1ij ij ij iiQT A A A= +  (3.5.9.1.81)

 
2 2 / 1i i iiQB B A=  (3.5.9.1.82)

 

Equation (3.5.9.1.78) is expressed as 



 3-142

 

{ } { } { }[ ] 2im
nT QT E QB= +  (3.5.9.1.83)

So that  
{ } { } { } { } { }[ ] [ ] im

n nD T QE E QT E B+ = − + +  (3.5.9.1.84)
 

where boundary term {B} is calculated as follows 
 

1 2 1
m

n
i i i x ii

b

EB QB QB nK A A
x

⎛ ⎞∂
= + = ⎜ ⎟∂⎝ ⎠

 (3.5.9.1.85)

 
Dirichlet boundary condition 
 

( ) ( , )
( , )    1

m m
n j n bm m

n n b i i x ii

E E x t
E E x t B nN K A A

x
−

= ⇒ =
Δ

 (3.5.9.1.86)

 

where j is the interior node connected to the boundary node. 
 
Variable boundary condition 
 
When flow is coming in from outside (nQ < 0) 
 

( , )    ( , ) 1
m

m m m mn
n x n b i n n b ii

En QE AK nQE x t B nQE nQE x t A
x

⎛ ⎞∂ ⎡ ⎤− = ⇒ = −⎜ ⎟ ⎣ ⎦∂⎝ ⎠
 (3.5.9.1.87)

 

When Flow is going out from inside (nQ > 0) 
 

0    0
m

n
x i

EnAK B
x

∂
− = ⇒ =

∂
 (3.5.9.1.88)

 
Cauchy boundary condition 
 

( , )    ( , ) 1
m

m mn
n x En b i n En b ii

En QE AK Q x t B nQE Q x t A
x

⎛ ⎞∂ ⎡ ⎤− = ⇒ = −⎜ ⎟ ⎣ ⎦∂⎝ ⎠
 (3.5.9.1.89)

 
Neumann boundary condition 
 

( , )     ( , ) 
m

n
x En b i En b

EnAK Q x t B Q x t
x

∂
− = ⇒ = −

∂
 (3.5.9.1.90)

 

Equation (3.5.9.1.61) can be written as matrix equation as following 
 

{ } { } { } ( ){ }
{ } ( ){ } { } { }( ) { } { } { }

1/ 21/ 2 1 1/ 2 1 1/ 2 1
1 1 1

** * * 1 * 1
2 2 1 2 1

[ ] [ ] [ ]

[ ]

nn n n n n n im
n n n n

n n
n n L L

U E W QE E W K E W QT E

U E W KE W D T W R W R W B

τ

τ

++ + + + + +

+ +

⎡ ⎤+ + −⎣ ⎦Δ

= − + + + + +
Δ

 
(3.5.9.1.91)

So that 
{ }1/ 2[ ] { }n

nCMATRX E RLD+ =  (3.5.9.1.92)

where 
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1 1 1
1 1 1

[ ][ ] [ ] [ ]
im

n n n n

n

EUCMATRX W QE W K W QT
Eτ

+ + +⎡ ⎤= + + −⎣ ⎦Δ
 (3.5.9.1.93)

 

{ } ( ){ } { } { }( ) { } { } { }** * * 1 * 1
2 2 1 2 1

[ ]{ } n n
n n L L

URLD E W KE W D T W R W R W B
τ

+ += − + + + + +
Δ

 (3.5.9.1.94)
 

 
At junctions, if nQ > 0, flow is going from reach to the junction. Assign 
 

{ } { } { } { }1 1 1
1 21 1

nm
m n n nn

n ii x ii
ERLDW RLD nQE A W B W nK A A

x
+ + +

⎧ ⎫⎛ ⎞∂⎪ ⎪= + − − ⎨ ⎬⎜ ⎟∂⎝ ⎠⎪ ⎪⎩ ⎭

 (3.5.9.1.95)

 

Equation (3.5.9.1.89) is modified as  
 

{ }1/ 2
n[ ] E / 1 { }n

iiCMATRX Flux A RLDW+ + =  (3.5.9.1.96)
 
 

If nQ < 0, flow is going from junction to the reach, apply equation (3.5.7.1.57),  
 

( ) ( )
( )

m m
n j n im

i n i x

E E
Flux n Q E K A

x
⎡ ⎤−

= −⎢ ⎥
Δ⎢ ⎥⎣ ⎦

 (3.5.9.1.97)

 

So that junction concentration and flux can be solved by the matrix equation assembled with 
equation (3.5.7.1.48), (3.5.9.1.96) and (3.5.9.1.97). 
 
3.5.9.2 Mixed Predictor-corrector/Operator-Splitting Scheme 
 
The continuity equation for kinetic-variables in advective form is shown as follows. 
 

1 2

1 2

( )

                   
n n n n n n

m m
mn n n

n x S R I n

as rs os os is
E E E E E E

E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.9.2.1)

 

At (n+1)-th time step, equation (3.5.9.2.1) is approximated by 
 

1

1 2

1 2

( ) ( ) ( )

                            
n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.9.2.2)

 

According to Mixed Predictor-corrector/Operator-Splitting Scheme, equation (3.5.9.2.2) can be 
separated into two equations as follows 
 

1/ 2

1 2

1 2

( ) ( ) ( )

                              ( )
n n n n n n

m n m n m m
m mn n n n
n x S R I n

as rs os os is n im n
E E E E E E n

E E A E E AA E Q K A S S S S S E
t t x x x t

AM M M M M AR E
t

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
∂

= + + + + + −
∂

 
(3.5.9.2.3)

 
1 1/ 2

1 1[( ) ( ) ] ( ) ( )( ) ( )
n n

n m n im n
n n im n im nn n n

E E n n
E E E nA nAR R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A  (3.5.9.2.4)
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First, solve equation (3.5.9.2.3) and get 1/ 2( )m n
nE + . Second, solve equation (3.5.9.2.4) together 

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the 
individual species concentration.  
 
To solve equation (3.5.9.2.3), assign and calculate RHSn and LHSn the same as that in section (3.5.7.2). 
 Equation (3.5.9.2.3) is then simplified as 
 

1/ 2( ) ( ) ( )
n n

m n m n m m
m m n im nn n n n
n x HS n HS n n

E E A E E AA E Q K A L E R AR E
t t x x x t

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂
+ + − + = + −⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.9.2.5)

 

Assign the true transport velocity Vtrue as follows. 
 

trueAV Q=  (3.5.9.2.6)
 

Then equation (3.5.9.2.5) is simplified as 
 

1/ 2( ) ( ) ( )
n n n

m n m n m m
m n im nn n n n

true x HS n HS E n
E E E E A AA AV K A L E R AR E

t x x x t t

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎛ ⎞+ − + + = + −⎜ ⎟⎜ ⎟Δ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.9.2.7)

 

Equation (3.5.9.2.7) in the Lagrangian and Eulerian form is as follows. 
 

1/ 2( ) ( ) 0
m m n m n m

n n n n
true

dE E E EV
d t xτ

+ − ∂
= + =

Δ ∂
 (3.5.9.2.8)

 

( )
n n n

m m
m n im nn n

x HS n HS E n
dE E A AA K A L E R AR E
d x x t tτ

⎛ ⎞∂ ∂ ∂ ∂⎛ ⎞− + + = + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.9.2.9)

 

First, solve equation (3.5.9.2.8) to obtain the Lagrangian values by particle tracking. Then, deal with 
Eulerian equation (3.5.9.2.9) by finite element method. 
 
Equation (3.5.9.2.9) written in a slightly different form is shown as follows. 
 

*
m

mn
n L

dE D K E R
dτ

− + =  (3.5.9.2.10)

where 
1 m

n
x

ED K A
A x x

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

 (3.5.9.2.11)

 

nHS
AL
tK

A

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠=  (3.5.9.2.12)

 

( )
n n

n im n
HS E n

L

AR AR E
tR

A

∂
+ −

∂=  (3.5.9.2.13)

 

Equation (3.5.9.2.10) written in matrix form is then expressed as 
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( ){ } { } ( ){ }
( ){ } { } ( ){ } { } { }

1/ 2 1/ 21 1
1 1

* ** 1 *
2 2 1 2

[ ]  

[ ]

n nm n n m
n n

m m n
n n L L

U E W D W K E

U E W D W KE W R W R

τ

τ

+ ++ +

+

⎡ ⎤− + =⎣ ⎦Δ

+ − + +
Δ

 
(3.5.9.2.14)

 

According to section 3.5.9.1,  
 

{ } { } { }[ ] m
nD QE E B= − +  (3.5.9.2.15)

 

where [QE] and {B} are the same as those in section 3.5.9.1. 
 
Equation (3.5.9.2.14) can be written as matrix equation as following 
 

( ){ } ( ){ } ( ){ }
( ){ } ( ){ } { } { } { } { }

1/ 2 1/ 2 1/ 21 1
1 1

* * * 1 * 1
2 2 1 2 1

[ ]          [ ]

[ ]

n n nm n m n m
n n n

m m n n
n n L L

U E W QE E W K E

U E W KE W D W R W R W B

τ

τ

+ + ++ +

+ +

⎡ ⎤+ + ⎣ ⎦Δ

= − + + + +
Δ

 
(3.5.9.2.16)

So that 
( ){ }1/ 2

[ ] { }
nm

nCMATRX E RLD
+

=  (3.5.9.2.17)

where 
1 1

1 1
[ ][ ] [ ]n nUCMATRX W QE W K

τ
+ +⎡ ⎤= + + ⎣ ⎦Δ

 (3.5.9.2.18)
 

( ){ } ( ){ } { } { } { } { }* * * 1 * 1
2 2 1 2 1

[ ]{ } m m n n
n n L L

URLD E W KE W D W R W R W B
τ

+ += − + + + +
Δ

 (3.5.9.2.19)
 

 
At junctions, if nQ > 0, flow is going from reach to the junction. Assign 
 

{ } { } { } { }1 1 1
1 21 1

nm
m n n nn

n ii x ii
ERLDW RLD nQE A W B W nK A A

x
+ + +

⎧ ⎫⎛ ⎞∂⎪ ⎪= + − − ⎨ ⎬⎜ ⎟∂⎝ ⎠⎪ ⎪⎩ ⎭

 (3.5.9.2.20)

 

Equation (3.5.9.1.17) is modified as  
 

{ }1/ 2[ ] ( ) 1 { }m n
n iiCMATRX E Flux A RLDW+ + =  (3.5.9.2.21)

 

If nQ < 0, flow is going from junction to the reach, apply equation (3.5.7.1.37),  
 

( ) ( )
( )

m m
n j n im

i n i x

E E
Flux n Q E K A

x
⎡ ⎤−

= −⎢ ⎥
Δ⎢ ⎥⎣ ⎦

 (3.5.9.2.22)

 

Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.2.32), 
(3.5.9.2.21) and (3.5.9.2.22). 
 
 
3.5.9.3 Operator-Splitting 
 
The continuity equation for kinetic-variables in advective form is shown as follows. 
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1 2

1 2

( )

                   
n n n n n n

m m
mn n n

n x S R I n

as rs os os is
E E E E E E

E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥∂ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.9.3.1)

 

At n+1-th time step, equation (3.5.9.3.1) is approximated by 
 

1

1 2

1 2

( ) ( ) ( )

                            
n n n n n n

n n m m
mn n n n

n x S R I n

as rs os os is
E E E E E E

E E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M AR

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + + +

 
(3.5.9.3.2)

 

According to Operator-splitting scheme, equation (3.5.9.3.2) can be separated into two equations as 
follows 
 

1/ 2

1 2

1 2

( ) ( ) ( )

                              
n n n n n

m n m n m m
m mn n n n
n x S R I n

as rs os os is
E E E E E

E E A E E AA E Q K A S S S S S E
t t x x x t

M M M M M

+ ⎛ ⎞− ∂ ∂ ∂ ∂ ∂⎡ ⎤+ + − + + + + + −⎜ ⎟ ⎢ ⎥Δ ∂ ∂ ∂ ∂ ∂⎣ ⎦⎝ ⎠
= + + + +

 
(3.5.9.3.3)

 
1 1/ 2

1 1( ) [( ) ( ) ] ( ) ( )
n

n m n im n
n im nn n n

E n
E E E nAAR E

t t

+ +
+ +− + ∂

= −
Δ ∂

A  (3.5.9.3.4)

 

First, solve equation (3.5.9.3.3) and get 1/ 2( )m n
nE + . Second, solve equation (3.5.9.3.4) together 

with algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the 
individual species concentration.  
 
To solve equation (3.5.9.3.3), assign and calculate RHSn and LHSn the same as that in section (3.5.8.1). 
Equation (3.5.9.3.3) is then simplified as 
 

1/ 2( ) ( )
n n

m n m n m m
m mn n n n
n x HS n HS

E E A E EA E Q K A L E R
t t x x x

+ ⎛ ⎞− ∂ ∂ ∂ ∂
+ + − + =⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠

 (3.5.9.3.5)

 

Assign the true transport velocity Vtrue as follows. 
 

trueAV Q=  (3.5.9.3.6)
 

Then equation (3.5.9.3.5) is simplified as 
 

1/ 2( ) ( )
n n

m n m n m m
mn n n n

true x HS n HS
E E E E AA AV K A L E R

t x x x t

+ ⎛ ⎞− ∂ ∂ ∂ ∂⎛ ⎞+ − + + =⎜ ⎟⎜ ⎟Δ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.9.3.7)

 

Equation (3.5.9.3.7) in the Lagrangian and Eulerian form is as follows. 
 

1/ 2( ) ( ) 0
m m n m n m

n n n n
true

dE E E EV
d t xτ

+ − ∂
= + =

Δ ∂
 (3.5.9.3.8)

 

n n

m m
mn n

x HS n HS
dE E AA K A L E R
d x x tτ

⎛ ⎞∂ ∂ ∂⎛ ⎞− + + =⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠
 (3.5.9.3.9)

 

First, solve equation (3.5.9.3.8) to obtain the lagrangian values by particle tracking. Then, deal with 
Eulerian equation (3.5.9.3.9) by finite element method. 
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Equation (3.5.9.3.9) written in a slightly different form is shown as follows. 
 

*
m

mn
n L

dE D K E R
dτ

− + =  (3.5.9.3.10)

where 
1 m

n
x

ED K A
A x x

⎛ ⎞∂ ∂
= ⎜ ⎟∂ ∂⎝ ⎠

 (3.5.9.3.11)

 

nHS
AL
tK

A

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠=  (3.5.9.3.12)

 

nHS
L

R
R

A
=  (3.5.9.3.13)

 

Equation (3.5.9.3.10) written in matrix form is then expressed as 
 

( ){ } { } ( ){ }
[ ] ( ){ } { } ( ){ } { } { }

1/ 2 1/ 21 1
1 1

* ** 1 *
2 2 1 2

[ ]       
n nm n n m

n n

m m n
n n L L

U E W D W K E

U
E W D W KE W R W R

τ

τ

+ ++ +

+

⎡ ⎤− + =⎣ ⎦Δ

+ − + +
Δ

 
(3.5.9.3.14)

 

According to section 3.5.9.1,  
 

{ } { } { }[ ] m
nD QE E B= − +  (3.5.9.3.15)

 

where [QE] and {B} are the same as those in section 3.5.9.1. 
 
Equation (3.5.9.3.14) can be written as matrix equation as following 
 

( ){ } ( ){ } ( ){ }
[ ] ( ){ } ( ){ } { } { } { } { }

1/ 2 1/ 2 1/ 21 1
1 1

* * * 1 * 1
2 2 1 2 1

[ ]        [ ]
n n nm n m n m

n n n

m m n n
n n L L

U E W QE E W K E

U
E W KE W D W R W R W B

τ

τ

+ + ++ +

+ +

⎡ ⎤+ + ⎣ ⎦Δ

= − + + + +
Δ

 
(3.5.9.3.16)

So that 
( ){ }1/ 2

[ ] { }
nm

nCMATRX E RLD
+

=  (3.5.9.3.17)

where 
n+1 1

1 1
[ ][ ] [QE ] nUCMATRX W W K

τ
+⎡ ⎤= + + ⎣ ⎦Δ

 (3.5.9.3.18)
 

[ ] ( ){ } ( ){ } { } { } { } { }* * * 1 * n+1
2 2 1 2 1{ } Bm m n

n n L L

U
RLD E W KE W D W R W R W

τ
+= − + + + +

Δ
 (3.5.9.3.19)

 

At junctions, if nQ > 0, flow is going from reach to the junction. Assign 
 

{ } { } { } { }1 1 1
1 21 1

nm
m n n nn

n ii x ii
ERLDW RLD nQE A W B W nK A A

x
+ + +

⎧ ⎫⎛ ⎞∂⎪ ⎪= + − − ⎨ ⎬⎜ ⎟∂⎝ ⎠⎪ ⎪⎩ ⎭

 (3.5.9.3.20)

 

Equation (3.5.9.1.19) is modified as  
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{ }1/ 2[ ] ( ) 1 { }m n
n iiCMATRX E Flux A RLDW+ + =  (3.5.9.3.21)

 

If nQ < 0, flow is going from junction to the reach, apply equation (3.5.7.1.37),  
 

( ) ( )
( )

m m
n j n im

i n i x

E E
Flux n Q E K A

x
⎡ ⎤−

= −⎢ ⎥
Δ⎢ ⎥⎣ ⎦

 (3.5.9.3.22)

 

 
Junction concentration can be solved by the matrix equation assembled with equation (3.5.7.3.32), 
(3.5.9.3.21) and (3.5.9.3.22). 
 
 
3.5.10 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Conservative Form of the Transport Equations for the Upstream Flux Boundaries to 
Solve 1-D Kinetic Variable Transport 

 
3.5.10.1 Fully-Implicit Scheme 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.5.9.1, and the matrix equation for junction and 
upstream boundary nodes is obtained through the same procedure as that in section 3.5.7.1.  
 
3.5.10.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.5.9.2, and the matrix equation for junction and 
upstream boundary nodes is obtained through the same procedure as that in section 3.5.7.2.  
 
3.5.10.3 Operator-Splitting Approach 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.5.9.3, and the matrix equation for junction and 
upstream boundary nodes is obtained through the same procedure as that in section 3.5.7.3.  
 
 
3.5.11 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve 
1-D Kinetic Variable Transport 

 
3.5.11.1 Fully-Implicit Scheme 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.5.9.1, and the matrix equation for junction and 
upstream boundary nodes is obtained through the same procedure as that in section 3.5.8.1.  
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3.5.11.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.5.9.2, and the matrix equation for junction and 
upstream boundary nodes is obtained through the same procedure as that in section 3.5.8.2.  
 
3.5.11.3 Operator-Splitting Approach 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.5.9.3, and the matrix equation for junction and upstream 
boundary nodes is obtained through the same procedure as that in section 3.5.8.3 
 
 

3.6 Solving Two-Dimensional Overland Water Quality Transport Equations 
 
In this section, we present the numerical approaches employed to solve the governing equations of 
reactive chemical transport. Ideally, one would like to use a numerical approach that is accurate, 
efficient, and robust. Depending on the specific problem at hand, different numerical approaches 
may be more suitable. For research applications, accuracy is a primary requirement, because one 
does not want to distort physics due to numerical errors. On the other hand, for large field-scale 
problems, efficiency and robustness are primary concerns as long as accuracy remains within the 
bounds of uncertainty associated with model parameters. Thus, to provide accuracy for research 
applications and efficiency and robustness for practical applications, three coupling strategies were 
investigated to deal with reactive chemistry. They are: (1) a fully-implicit scheme, (2) a mixed 
predictor-corrector/operator-splitting method, and (3) an operator-splitting method. For each time-
tep, we first solve the advective-dispersive transport equation with or without reaction terms, 
kinetic-variable by kinetic-variable. We then solve the reactive chemical system node-by-node to 
yield concentrations of all species.  
 
Five numerical options are provided to solve the advective-dispersive transport equations: Option 1- 
application of the Finite Element Method (FEM) to the conservative form of the transport equations, 
Option 2 - application of the FEM to the advective form of the transport equations, Option 3 - 
application of the modified Lagrangian-Eulerian (LE) approach to the Largrangian form of the 
transport equations, Option 4 - LE approach for all interior nodes and downstream boundary nodes 
with the FEM applied to the conservative form of the transport equations for the upstream flux 
boundaries, and Option 5 - LE approach for all interior and downstream boundary nodes with the 
FEM applied to the advective form of the transport equations for upstream flux boundaries. 
 
 
3.6.1 Two-Dimensional Bed Sediment Balance Equation 
 
At n+1-th time step, the continuity equation for 2-D bed sediment transport, equation (3.2.1), is 
approximated as 
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1
1 1

1 2( ) ( )
n n

n n n nn n
n n n n

M M W D R W D R
t

+
+ +−

≈ − + −
Δ

 (3.6.1.1)  
 

So that 
( ) ( )1 1 1

1 2
n n n n n n

n n n n n nM M W D R t W D R t+ + += + − Δ + − Δ  (3.6.1.2)  
 

If the calculated 1n
nM +  < 0, assign 1n

nM +  = 0, so that  
 

( ) ( ) ( )1 1 1
1 2 1/ /n n n n n n

n n n n n nR M M W t W D R W D+ + +≈ − Δ + − +  (3.6.1.3)  
 
 
3.6.2 Application of the Finite Element Method to the Conservative Form of the Transport 

Equations to Solve 2-D Suspended Sediment Transport 
 
Recall the governing equation for 2-D suspended sediment transport, equation (2.6.10), as follows 
 

( ) ( ) ( ) ,  [1, ]as rs
n n

n
n n n n sS S

hS S h S M M R D n N
t

∂
∂

+ ∇ ⋅ − ∇ ⋅ ⋅∇ = + + − ∈q K  (3.6.2.1)  
 

Assign and calculate the right hand side term RHS and left hand side term LHS as follows. 
 

  0      

(1) :    0,   ,      *  

(2) :    0,   ,      *

HS HS n n

as
S HS HS S HS HS S n

rs
R HS HS R HS HS R n

Assign L and R R D then continuously calculate

If S L L S ELSE R R S S

If S L L S ELSE R R S S

= = −

≤ = − = +

≤ = − = +

 (3.6.2.2)  

 

where  as
nS is the concentration of the n-th fraction suspended sediment in the artificial source and 

 rs
nS is the concentration of the n-th fraction suspended sediment in the rainfall source.  Then 

equation (3.6.2.1) is modified as 
 

( ) ( ) ( ) *n
n n HS n HS

hS S h S L S R
t

∂
+ ∇ ⋅ − ∇⋅ ⋅∇ + =

∂
q K  (3.6.2.3)  

 

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport 
equation: choose weighting function identical to base function. For Petriov-Galerkin method, apply 
weighting function one-order higher than the base function to advection term. Integrate equation 
(3.6.2.3) in the spatial dimensions over the entire region as follows. 
 

( ) ( ) *  ( )  n
i n HS n i n i HS

R R R

hSN h S L S dR W S dR N R dR
t

∂⎡ ⎤− ∇⋅ ⋅∇ + + ∇⋅ =⎢ ⎥∂⎣ ⎦∫ ∫ ∫K q  (3.6.2.4)  

 

Further, we obtain 
 

( )   ( )  *

                   ( ) 

n
i i n i n i HS n

R R R R

i HS i n i n
R B B

hSN dR W S dR N h S dR N L S dR
t

N R dR W S dB N h S dB

∂
− ∇ ⋅ + ∇ ⋅ ⋅∇ +

∂

= − ⋅ + ⋅ ⋅∇

∫ ∫ ∫ ∫

∫ ∫ ∫

q K

n q n K

 
(3.6.2.5)  

 

Approximate solution Sn by a linear combination of the base functions as shown by equation 
(3.6.2.6). 
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1

ˆ ( ) ( )
N

n n nj j
j

S S S t N R
=

≈ = ∑  (3.6.2.6)  

 

Substituting equation (3.6.2.6) into equation (3.6.2.5), we obtain 
 

1

1

  ( )    ( )

( )
  ( )

N

i HS j i j i j nj
j R R R

N
nj

i j i HS i n i n
j R R B

hN L N dR W N dR N h N dR S t
t

dS t
N hN dR N R dR W S N h S dB

dt

=

=

⎧ ⎫⎡ ⎤∂⎪ ⎪+ − ∇ ⋅ + ∇ ⋅ ⋅∇⎨ ⎬⎢ ⎥∂⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤⎛ ⎞

+ = − ⋅ − ⋅∇⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫ ∫

q K

n q K

 
(3.6.2.7)  

 

Equation (3.6.2.7) can be written in matrix form as  
 

[ 1] ([ 1] [ 2] [ 3]){ } { } { }n
n

dSCMATRX Q Q Q S SS B
dt

⎧ ⎫ + + + = +⎨ ⎬
⎩ ⎭

 (3.6.2.8)  

 

where the matrices [CMATRX1], [Q1], [Q2], [Q3] and load vectors {RLD}, and {B} are given by  
 

1ij i j
R

CMATRX N hN dR= ∫  
(3.6.2.9)  

 

1 ( )ij i HS j
R

hQ N L N dR
t

∂
= +

∂∫  (3.6.2.10)

 

2ij i j
R

Q W N dR= − ∇ ⋅∫ q  
(3.6.2.11)

 

3ij i j
R

Q N h N dR= − ∇ ⋅ ⋅ ∇∫ K  
(3.6.2.12)

 

ij i HS
R

SS N R dR= ∫  
(3.6.2.13)

 

( )i i n i n
B

B n W S N h S dB= − ⋅ − ⋅ ∇∫ q K  
(3.6.2.14)

 

where all the integrations are evaluated with the corresponding time weighting values. 
 
At n+1-th time step, equation (3.6.2.8) is approximated as  
 

1
1

1 2[ 1] [ 2]{ } { } { }
n n

n nn n
n n

S SCMATRX CMATRX W S W S SS B
t

+
+⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.6.2.15)

where 
[ 2] [ 1] [ 2] [ 3]CMATRX Q Q Q= + +  (3.6.2.16)

So that  
1[ ]{ } { } { }n

nCMATRX S RLD QB+ = +  (3.6.2.17)
where 
 

1
[ 1][ ] [ 2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.2.18)
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2
[ 1]{ } [ 2] { } { }n

n
CMATRXRLD W CMATRX S SS

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.6.2.19)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
 
Dirichlet boundary condition 
 

( , , )n n b bS S x y t=  (3.6.2.20)
 
Variable boundary condition 
 
< Case 1 > Flow is going in from outside (n·q < 0). 
 

( )
B

( , , )    ( , , )n n n b b i i n b bS h S S x y t B W S x y t dB⋅ − ⋅∇ = ⋅ ⇒ = − ⋅∫n q K n q n q  
(3.6.2.21)

 

< Case 2 > Flow is going out from inside (n·q > 0). 
 

( )
B

0    n i i nh S B W S dB− ⋅ ⋅∇ = ⇒ = − ⋅∫n K n q  
(3.6.2.22)

 
Cauchy boundary condition 
 

( )
B

( , , )    ( , , )n n S n b b i i S n b bS h S Q x y t B WQ x y t dB⋅ − ⋅∇ = ⇒ = −∫n q K  
(3.6.2.23)

 
Neumann boundary condition 
 

( )
B B

( , , )    ( , , )n S n b b i i n i S n b bh S Q x y t B W S dB N Q x y t dB− ⋅ ⋅ ∇ = ⇒ = − ⋅ +∫ ∫n K n q  
(3.6.2.24)

 
River/stream-overland interface boundary condition  
 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

1

1

B

1 1 1 ( , , )  
2

1  1 1 ( , , )
2

D
n n n n b b

D
i i n n b b

S h S sign S sign S x y t

B W sign S sign S x y t dB

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⇒ = − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫

n q K n q n q n q

n q n q n q

 
(3.6.2.25)

 
 
3.6.3 Application of the Finite Element Method to the Advective Form of the Transport 

Equations to Solve 2-D Suspended Sediment Transport 
 
Conversion of the governing equation for 2-D suspended sediment transport, equation (2.6.10), to 
advection form is expressed as 
 

( ) as rs
n n

n
n n n n nS S

S hh S h S S M M R D
t t

∂ ∂⎛ ⎞+ ⋅∇ − ∇ ⋅ ⋅∇ + + ∇ ⋅ = + + −⎜ ⎟∂ ∂⎝ ⎠
q K q  (3.6.3.1)  

 
 

According to governing equation for 2-D water flow, equation (2.2.1), assign and calculate the right-
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hand side term RHS and left hand side term LHS as follows. 
 

Assign  -   and  then continuously calculate

(1) :    0,   ,      *  

(2) :    0,   ,      *

HS S R E I HS n n
as

S HS HS S HS HS S n

rs
R HS HS R HS HS R n

L S S S S R R D

If S L L S ELSE R R S S

If S L L S ELSE R R S S

= + + = −

≤ = − = +

≤ = − = +

 (3.6.3.2)  

 

Then equation (3.6.3.1) is modified as 
 

( ) *n
n n HS n HS

Sh S h S L S R
t

∂
+ ⋅∇ − ∇ ⋅ ⋅∇ + =

∂
q K  (3.6.3.3)  

 

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport 
equation. Integrate equation (3.6.3.3) in the spatial dimensions over the entire region as follows. 
 

( ) *n
i n HS n i n i HS

R R R

SN h h S L S dR W S dR N R dR
t

∂⎡ ⎤− ∇⋅ ⋅∇ + + ⋅∇ =⎢ ⎥∂⎣ ⎦∫ ∫ ∫K q  (3.6.3.4)  

 

Further, we obtain 
 

( )  *

                       ( ) 

n
i i n i n i HS n

R R R R

i HS i n
R B

SN h dR W S dR N h S dR N L S dR
t

N R dR N h S dB

∂
+ ⋅∇ + ∇ ⋅ ⋅∇ +

∂

= + ⋅ ⋅∇

∫ ∫ ∫ ∫

∫ ∫

q K

n K

 
(3.6.3.5)  

 

Approximate solution Sn by a linear combination of the base functions as shown by equation 
(3.6.3.6). 
 

1

ˆ ( ) ( )
N

n n nj j
j

S S S t N R
=

≈ = ∑  (3.6.3.6)  

 

Substituting equation (3.6.3.6) into equation (3.6.3.5), we obtain 
 

( )
1

1

( )

( )
 ( )

N

i HS j i j i j nj
j R R R

N
nj

i j i HS i n
j R R B

N L N dR W N dR N h N dR S t

dS t
N hN dR N R dR N h S dB

dt

=

=

⎧ ⎫⎡ ⎤⎪ ⎪+ ⋅∇ + ∇ ⋅ ⋅∇⎨ ⎬⎢ ⎥
⎪ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤⎛ ⎞
+ = + ⋅ ⋅∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫ ∫

q K

n K

 
(3.6.3.7)  

 

Equation (3.6.3.7) can be written in matrix form as  
 

[ 1] ([ 1] [ 2] [ 3]){ } { } { }n
n

dSCMATRX Q Q Q S SS B
dt

⎧ ⎫ + + + = +⎨ ⎬
⎩ ⎭

 (3.6.3.8)  

 

where the matrices [CMATRX1], [Q1], [Q2], [Q3] and load vectors {RLD}, and {B} are given by  
 

1ij i j
R

CMATRX N hN dR= ∫  
(3.6.3.9)  

 

1ij i HS j
R

Q N L N dR= ∫  
(3.6.3.10)

 

2ij i j
R

Q W N dR= ⋅ ∇∫ q  
(3.6.3.11)
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3ij i j
R

Q N h N dR= − ∇ ⋅ ⋅ ∇∫ K  
(3.6.3.12)

 

ij i HS
R

SS N R dR= ∫  
(3.6.3.13)

 

( )i i n
B

B N h S dB= ⋅ ⋅ ∇∫ n K  
(3.6.3.14)

 

where all the integrations are evaluated with the corresponding time weighting values. 
 
At n+1-th time step, equation (3.6.3.8) is approximated as  
 

1
1

1 2[ 1] [ 2]{ } { } { }
n n

n nn n
n n

S SCMATRX CMATRX W S W S SS B
t

+
+⎧ ⎫−

+ + = +⎨ ⎬Δ⎩ ⎭
 (3.6.3.15)

 

where 
 

[ 2] [ 1] [ 2] [ 3]CMATRX Q Q Q= + +  (3.6.3.16)
 

So that  
 

1[ ]{ } { } { }n
nCMATRX S RLD QB+ = +  (3.6.3.17)

 

where 
 

1
[ 1][ ] [ 2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.3.18)

 

2
[ 1]{ } [ 2] { } { }n

n
CMATRXRLD W CMATRX S SS

t
⎛ ⎞= − +⎜ ⎟Δ⎝ ⎠

 (3.6.3.19)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
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Dirichlet boundary condition 
 

( , , )n n b bS S x y t=  (3.6.3.20)
 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·q < 0) 
 

( ) ( , , )    ( , , )n n n b b i i n i n b b
B B

S h S S x y t B N S dB N S x y t dB⋅ − ⋅∇ = ⋅ ⇒ = ⋅ − ⋅∫ ∫n q K n q n q n q  
(3.6.3.21)

 

< Case 2 > Flow is going out from inside (n·q > 0): 
 

( ) 0    0n ih S B− ⋅ ⋅∇ = ⇒ =n K  (3.6.3.22)
 
Cauchy boundary condition 
 

( ) ( , , )    ( , , )n n S n b b i i n i S n b b
B B

qS h S Q x y t B N S dB N Q x y t dB⋅ − ⋅∇ = ⇒ = ⋅ −∫ ∫n K n q  
(3.6.3.23)

 
Neumann boundary condition 
 

( ) ( , , )    ( , , )n S n b b i i S n b b
B

h S Q x y t B N Q x y t dB− ⋅ ⋅ ∇ = ⇒ = −∫n K  
(3.6.3.24)

 
River/stream-overland interface boundary condition  
 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

1

1

1        1 1 ( , , )  
2

1  1 1 ( , , )
2

D
n n n n b b

D
i i n i n n b b

B B

S h S sign S sign S x y t

B N S dB N sign S sign S x y t dB

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⇒ = ⋅ − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫

n q K n q n q n q

n q n q n q n q

 
(3.6.3.25)

 
 
3.6.4 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form 

of the Transport Equations to Solve 2-D Suspended Sediment Transport 
 
Recall governing equation for 2-D suspended sediment transport in advection form, equation 
(3.6.3.1), as follows   
 

n n nS (h S ) S asn
n n n

S hh M R D
t t

∂ ∂
∂ ∂

⎛ ⎞+ ⋅∇ − ∇ ⋅ ⋅∇ + + ∇ ⋅ = + −⎜ ⎟
⎝ ⎠

q K q  (3.6.4.1)  

 

Assign and calculate RHS and LHS in the same way as that in section 3.6.3. Then equation (3.6.4.1) is 
simplified as 
 

n n nS (h S ) *Sn
HS HS

Sh L R
t

∂
∂

+ ⋅∇ − ∇ ⋅ ⋅∇ + =q K  (3.6.4.2)  
 

Equation (3.6.4.2) in the Lagrangian and Eulerian form is written as follows.  
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In lagrangian step, 
 

0    0n n n
n n

dS S Sh h S S
d t tτ

∂ ∂
= + ⋅∇ = ⇒ + ⋅∇ =

∂ ∂
q v  (3.6.4.3)  

 

where particle-tracking velocity v is the flow velocity.  
 
In Eulerian step,  
 

n n(h S ) *Sn
HS HS

dSh L R
dτ

− ∇⋅ ⋅∇ + =K  (3.6.4.4)  
 

where Δτ is the tracking time, * corresponds to the previous time step value at the location where 
node i is tracked through particle tracking in Lagrangian step. 
 
Equation (3.6.4.4) written in a slightly different form is shown as  
 

n*SndS D K RL
dτ

− + =  (3.6.4.5)  

where 
1 ( )nD h S
h

= ∇⋅ ⋅∇K  (3.6.4.6)  
 

HSLK
h

=  (3.6.4.7)  
 

HSRRL
h

=  (3.6.4.8)  
 

Equation (3.6.4.5) written in matrix form is then expressed as 
 

{ } { } { }

{ } { } ( ){ } { } { }

1 1 1 1
1 1

** * 1 *
2 2 1 2

[ ]          

[ ]

n n n n
n n

n
n n

U S W D W K S

U S W D W KS W RL W RL

τ

τ

+ + + +

+

⎡ ⎤− + =⎣ ⎦Δ

+ − + +
Δ

 
(3.6.4.9)  

 

where [Kn+1] is a diagonal matrix with K calculated at n+1-th time step as its diagonal components..  
 
The diffusion term D expressed in term of Sn is solved by the following procedure. 
 
Approximate D by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

D D D t N R
=

≈ = ∑  (3.6.4.10)

 

where N is the number of nodes. According to equation (3.6.4.6), the integration of equation 
(3.6.4.10) can be written as 
 

1

( ) ( ) ( )
N

i i j j i n
jR R R

N hDdR N h D t N R dR N h S dR
=

= = ∇ ⋅ ⋅ ∇∑∫ ∫ ∫ K  (3.6.4.11)
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Further, we obtain 
 

1

* ( ) ( )
N

i j j i n i n
j R R B

N hN dR D N h S dR N h S dB
=

⎡ ⎤⎛ ⎞
= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∫ ∫ ∫K n K  (3.6.4.12)

 

Approximate Sn by a linear combination of the base functions as follows. 
 

1

( ) ( )
N

n n nj j
j

S S S t N R
=

≈ = ∑
�  (3.6.4.13)

 

Equation (3.6.4.12) is further expressed as 
 

1 1

* ( ) *( ) ( )
N N

i j j i j n j i n
j jR R B

N hN dR D N h N dR S N h S dB
= =

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= − ∇ ⋅ ⋅ ∇ + ⋅ ⋅∇⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
∑ ∑∫ ∫ ∫K n K  (3.6.4.14)

 

Assign matrices [QA] and [QD] and load vector {QB} as following. 
 

ij i j
R

QA N hN dR= ∫  
(3.6.4.15)

 

( )ij i j
R

QD N h N dR= ∇ ⋅ ⋅∇∫ K  
(3.6.4.16)

 

( )i i n
B

QB N h S dB= ⋅ ⋅∇∫n K  
(3.6.4.17)

 

Equation (3.6.4.14) is expressed as 
 

{ } { } { }[ ] [ ] nQA D QD S QB= − +  (3.6.4.18)
 

Lump matrix [QA] into diagonal matrix and update   
 

/ij ij iiQD QD QA=  (3.6.4.19)
 

/i i iiB QB QA=  (3.6.4.20)
 

Then 
 

{ } { } { }[ ] nD QD S B= − +  (3.6.4.21)
 

According to equation (3.6.4.21), Equation (3.6.4.9) can be modified as following 
 

{ } { }1[ } n
nCMATRX S RLD+ =  (3.6.4.22)

 

where 
 

1 1
1 1

[ ][ ] [ ]n nUCMATRX W QD W K
τ

+ +⎡ ⎤= + + ⎣ ⎦Δ
 (3.6.4.23)

 

{ } { } { } ( ){ } { } { }** * 1 * 1
2 2 1 2 1

[ ] { }n n
n n

URLD S W D W KS W RL W RL W B
τ

+ += + − + + +
Δ

 (3.6.4.24)
 

For interior nodes, the boundary term {B} is zero. For boundary node i = b, {B} should be 
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calculated as follows. 
 
Dirichlet boundary condition 
 

( , , )    ( )n n b b i i n ii
B

S S x y t B N h S dB QA= ⇒ = ⋅ ⋅∇∫n K  
(3.6.4.25)

 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·q < 0) 
 

( )                 ( , , )

  ( , , )
n n n b b

i i n ii i n b b ii
B B

S h S S x y t

B N S dB QA N S x y t dB QA

⋅ − ⋅∇ = ⋅

⇒ = ⋅ − ⋅∫ ∫
n q K n q

n q n q
 (3.6.4.26)

 

< Case 2 > Flow is going out from inside (n·q > 0): 
 

( ) 0    0n ih S B− ⋅ ⋅∇ = ⇒ =n K  (3.6.4.27)
 
Cauchy boundary condition 
 

( )                ( , , )

  ( , , )
n n S n b b

i i n ii i S n b b ii
B B

S h S Q x y t

B N S dB QA N Q x y t dB QA

⋅ − ⋅∇ =

⇒ = ⋅ −∫ ∫
n q K

n q
 (3.6.4.28)

 
Neumann boundary condition 
 

( ) ( , , )    ( , , )n S n b b i i S n b b ii
B

h S Q x y t B N Q x y t dB QA− ⋅ ⋅ ∇ = ⇒ = −∫n K  
(3.6.4.29)

 
River/stream-overland interface boundary condition  
 

( ) ( ) ( ) ( ){ }

( ) ( ) ( ){ }

1

1

1                  1 1 ( , , )  
2

1  1 1 ( , , )
2

D
n n n n b b

D
i i n ii i n n b b ii

B B

S h S sign S sign S x y t

B N S dB QA N sign S sign S x y t dB QA

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⇒ = ⋅ − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫

n q K n q n q n q

n q n q n q n q

 
(3.6.4.30)

 

 
At upstream flux boundary nodes, equation (3.6.4.9) cannot be applied because Δτ equals zero. 
Thus, we propose a modified LE approach in which the matrix equation for upstream boundary 
nodes is obtained by explicitly applying the finite element method to the boundary conditions. 
Applying FEM at the upstream variable boundary side, we get  
 

( ) ( , , )i n n i n b b
B B

N S h S dB N S x y t dB⋅ − ⋅∇ = ⋅∫ ∫n q K n q  (3.6.4.31)

 

So that the following matrix equation can be assembled at the upstream variable boundary node 
 

[ ]{ } [ ]{ }nQF S QB B=  (3.6.4.32)
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in which 

( )ij i j i j
B

QF N N N h N dB= ⋅ − ⋅ ⋅∇∫ n q n K  (3.6.4.33)

 

ij i j
B

QB N N dB= ⋅∫ n q  (3.6.4.34)

 

( , , ) i n b bB S x y t=  (3.6.4.35)
 

Similarly, equation (3.6.2.32) can be applied to Cauchy boundary with [QB] and {B} defined 
differently as  
 

ij i j
B

QB N N dB= ∫  (3.6.4.36)

 

( , , ) 
ni S b bB Q x y t=  (3.6.4.37)

 
At upstream river/stream-overland interface boundary, [QB] is calculated by equation (3.6.2.34), and 
{B} is defined as  
 

1 ( , , ) D
i n b bB S x y t=  (3.6.4.38)

 
 
3.6.5 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Conservative Form of the Transport Equations for the Upstream Flux Boundaries to 
Solve 2-D Suspended Sediment Transport 

 
For this option, the matrix equation for interior and downstream boundary nodes is obtained 
through the same procedure as that in section 3.6.4, and the matrix equation for upstream 
boundary nodes is obtained through the same procedure as that in section 3.6.2.  
 
 
3.6.6 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve 
2-D Suspended Sediment Transport 

 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.6.4, and the matrix equation for upstream boundary nodes is 
obtained through the same procedure as that in section 3.6.3. 
 
 
3.6.7 Application of the Finite Element Method to the Conservative Form of the Transport 

Equations to Solve 2-D Kinetic Variable Transport 
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3.6.7.1 Fully-implicit scheme 
 
Recall the governing equation for 2-D kinetic variable transport, equation (2.6.46), as follows 
 

( ) ( ) ,  [1,  ]  as rs is nn n n

m mn
n n n E EE E E

E hh E E h E M M M hR n M N
t t

∂ ∂
∂ ∂

+ + ∇⋅ − ∇⋅ ⋅∇ = + + + ∈ −q K  (3.6.7.1.1)

 

At n+1-th time step, equation (3.6.7.1.1) is approximated by 
 

1( ) ( ) ( ) ( ) as rs is nn n n

n n
m mn n

n n n EE E E

E E hh E qE hK E M M M hR
t t

∂
∂

+ −
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + + +

Δ
 (3.6.7.1.2)

 

where the superscripts n and n+1 represent the time step number. Terms without superscript should 
be the corresponding average values calculated with time weighting factors W1 and W2.  
 
According to Fully-implicit scheme, equation (3.6.7.1.2) can be separated into two equations as 
follows 
 

1/ 2( ) ( ) ( ) ( ) as rs is nn n n

n n
m mn n

n n n EE E E

E E hh E E h E M M M hR
t t

∂
∂

+ −
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + + +

Δ
q K  (3.6.7.1.3)

 
1 1/ 2( ) ( ) 0

n n
n nE E

t

+ +−
=

Δ
 (3.6.7.1.4)

 

First, we express En
m in terms of (En

m/En)·En to make En’s as primary dependent variables, so that 
En

n+1/2 can be solved through equation (3.6.7.1.3). Second, we solve equation (3.6.7.1.4) together 
with algebraic equations for equilibrium reactions using BIOGEOCHEM to obtain all individual 
species concentrations. Iteration between these two steps is needed because the new reaction terms 
RAn

n+1 and the equation coefficients in equation (3.6.7.1.3) need to be updated by the calculation 
results of (3.6.7.1.4). To improve the standard SIA method, the nonlinear reaction terms are 
approximated by the Newton-Raphson linearization. 
 
To solve equation (3.6.7.1.3), assign 
 

0          0HS HSR and L= =  (3.6.7.1.5)
 

Then the right hand side RHS and left hand side LHS should be continuously calculated as following. 
 

* ,    0    

* ,    0    

rs n

n

rs
R n R HS n HS n Ers

E m
R n R HS n HS n R

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.7.1.6)

 
* ,    0    ,

* ,    0    

as n

n

as
S n S HS n HS n Eas

E m
S n S HS n HS n S

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.7.1.7)

 
* ,    0    

* ,    0    

is n

n

m is
I n I HS n HS n Eis

E m
I n I HS n HS n I

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.7.1.8)

 

Equation (3.6.7.1.3) is then simplified as: 
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1/ 2( ) ( ) ( ) ( )
n

n n
m m mn n

n n n HS n HS E
E E hh E E h E L E R hR

t t
∂
∂

+ −
+ + ∇ ⋅ − ∇ ⋅ ⋅∇ + = +

Δ
q K  (3.6.7.1.9)

 

Express En
m in terms of (En

m /En) En
m to make En’s as primary dependent variables, 

 
1/ 2( ) ( )

 
n

n n m m
n n n n

n n
n n

m m
n n

n HS n HS E
n n

E E E Eh E h E
t E E

E E hh E L E R hR
E E t

∂
∂

+ ⎛ ⎞ ⎛ ⎞−
+ ∇ ⋅ − ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟Δ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞
− ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

q K

K

 
(3.6.7.1.10)

 

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport 
equation. Integrate equation (3.6.7.1.10) in the spatial dimensions over the entire region as follows. 
 

                                   ( )
n

m m m
n n n n

i n i n n
n n nR R

m
n

HS n i HS E
nR Ri

E E E EN h h E dR W E h E dR
t E E E

E hN L E dR N R hR dR
E t

∂
∂

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ⎪ ⎪− ∇ ⋅ ⋅ ∇ + ∇ ⋅ − ∇ ⋅ ⋅ ∇⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
⎛ ⎞

+ + = +⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫

K q K
 

(3.6.7.1.11)

 

Further, we obtain 
 

                                        ( )

           

n

m m m
n n n n

i i n i n i n
n n nR R R R

m
n

HS n i HS E
nR Ri

m
n

i n
nB

E E E EN h dR W E dR N h E dR W h E dR
t E E E

E hN L E dR N R hR dR
E t

EW E dB
E

∂
∂

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
− ∇ ⋅ + ∇ ⋅ ⋅ ∇ + ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
+ + = +⎜ ⎟

⎝ ⎠

− ⋅

∫ ∫ ∫ ∫

∫ ∫

∫

q K K

n q
m m

n n
i n i n

n nB B

E EN h E dB W h E dB
E E

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫n K n K

 
(3.6.7.1.12)

 

Approximate solution En by a linear combination of the base functions as follows 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N R
=

≈ = ∑  (3.6.7.1.13)

 

Substituting Equation (3.6.7.1.13) into Equation (3.6.7.1.12), we obtain 
 

1

         ( )

( )
                  

m m
n n

i j i jN
n nR R

njm mj n n
i j HS j

n nR R i

nj
i j

R

E EW N dR W h N dR
E E

E t
E E hN h N dR N L N dR
E E t

E t
N hN dR

t

∂
∂

=

⎧ ⎫⎡ ⎤⎡ ⎤⎛ ⎞
− ∇ ⋅ + ∇ ⋅ ⋅ ∇⎪ ⎪⎢ ⎥⎢ ⎥⎜ ⎟

⎪ ⎪⎝ ⎠⎢ ⎥⎣ ⎦
⎨ ⎬⎢ ⎥⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥+ ∇ ⋅ ⋅ ∇ + +⎜ ⎟ ⎜ ⎟⎪ ⎪⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

⎡ ⎤∂⎛ ⎞
+ ⎢⎜ ⎟ ∂⎢⎝ ⎠⎣ ⎦

∫ ∫
∑

∫ ∫

∫

q K

K

( )
1

n

N

i HS E
j R

m m m
n n n

i n i n i n
n n nB B B

N R hR dR

E E EW E dB N h E dB W h E dB
E E E

=

= +⎥
⎥

⎡ ⎤⎛ ⎞ ⎛ ⎞
− ⋅ + ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∫

∫ ∫ ∫n q n K n K

 (3.6.7.1.14)

 

Equation (3.6.7.1.14) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 1] [ 2] [ 3] [ 4]n
n

ECMATRX Q Q Q Q E SS B
t

∂⎧ ⎫ + + + + = +⎨ ⎬∂⎩ ⎭
 (3.6.7.1.15)
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The matrices [CMATRX1],  [Q1], [Q2], [Q3], [Q4], and load vectors {SS}, {B} are given by 
 

1ij i j
R

CMATRX N hN dR= ∫  
(3.6.7.1.16)

 

1
m

n
ij i j

nR

EQ W N dR
E

= − ∇ ⋅∫ q  (3.6.7.1.17)

 

2
m

n
ij i j

nR

EQ W h N dR
E

⎡ ⎤⎛ ⎞
= ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫ K  (3.6.7.1.18)

 

3
m

n
ij i j

nR

EQ N h N dR
E

⎛ ⎞
= ∇ ⋅ ⋅ ∇⎜ ⎟

⎝ ⎠
∫ K  (3.6.7.1.19)

 

4
m

n
ij HS j

nR i

E hQ N L N dR
E t

∂
∂

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
∫  (3.6.7.1.20)

 

( )ni i HS E
R

SS N R hR dR= +∫  
(3.6.7.1.21)

 
m m m

n n n
i i n i n i n

n n nB B B

E E EB W E dB N h E dB W h E dB
E E E

⎡ ⎤⎛ ⎞ ⎛ ⎞
= − ⋅ + ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫ ∫n q n K n K  (3.6.7.1.22)

 

Equation (3.6.7.1.15) is then simplified as 
 

{ } { } { }[ 1] [ 2]n
n

ECMATRX CMATRX E SS B
t

∂⎧ ⎫ + = +⎨ ⎬∂⎩ ⎭
 (3.6.7.1.23)

where 
[ 2] [ 1] [ 2] [ 3] [ 4]CMATRX Q Q Q Q= + + +  (3.6.7.1.24)

 

Further,                                        
 

( ) ( ) { } { }
1/ 2

1/ 2
1 2

{ } { }
[ 1] [ 2] { } { }  

n n
n n n n

n n

E E
CMATRX CMATRX W E W E SS B

t

+
+

−
+ + = +

Δ
 (3.6.7.1.25)

So that   
{ }1/ 2[ ] { }  n

nCMATRX E RLD+ =  (3.6.7.1.26)

where 

1
[ 1][ ] *[ 2] CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.7.1.27)

 

{ } { } { }2
[ 1]{ } *[ 2]  n

n
CMATRXRLD W CMATRX E SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.6.7.1.28)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
 

( )m m
i i n i n

B B

B W E dB N h E dB= − ⋅ + ⋅ ⋅∇∫ ∫n q n K  
(3.6.7.1.29)

 
Dirichlet boundary condition 
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( , , )m m

n n b bE E x y t=  (3.6.7.1.30)
 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·q <0) 
 

( ) ( , , )     ( , , )m m m m
n n n b b i i n b b

B

E h E E x y t B W E x y t dB⋅ − ⋅∇ = ⋅ ⇒ = − ⋅∫n q K n q n q  
(3.6.7.1.31)

 

< Case 2 > Flow is going out from inside (n·q > 0): 
 

( ) 0    m m
n i i n

B

h E B W E dB− ⋅ ⋅∇ = ⇒ = − ⋅∫n K n q  
(3.6.7.1.32)

 
Cauchy boundary condition 
 

( ) ( , , )    ( , , )m m m m
n n En b b i i En b b

B

E h E Q x y t B W Q x y t dB⋅ − ⋅∇ = ⇒ = −∫q Kn  
(3.6.7.1.33)

 
Neumann boundary condition 
 

( ) ( , , )     ( , , )m m m
n En b b i i n i En b b

B B

h E Q x y t B W E dB N Q x y t dB− ⋅ ⋅ ∇ = ⇒ = − ⋅ −∫ ∫n K n q  
(3.6.7.1.34)

 
River/stream-overland interface boundary condition  
 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

1

1

1 1 1 ( , , )
2

1      1 1 ( , , )
2

mm m m D
n n n n b b

mm D
i i n n b b

B

E h E sign E sign E x y t

B W sign E sign E x y t dB

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

⇒ = − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫

n q K n q n q n q

n q n q n q

 
(3.6.7.1.35)

 

Note: In the equation (3.6.7.1.18), assign  
 
 
3.6.7.2 Mixed Predictor-corrector/Operator-splitting scheme 
 
Recall the governing equation for 2-D kinetic variable transport at n+1-th time step, equation 
(3.6.7.1.2), as follows 
 

1( ) ( ) ( ) ( ) as rs is nn n n

n n
m mn n

n n n EE E E

E E hh E E h E M M M hR
t t

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + + +

Δ ∂
q K  (3.6.7.2.1)

 

According to mixed Predictor-corrector/Operator-splitting scheme, equation (3.6.7.2.1) can be 
separated into two equations as follows 
 

( )

1/ 2( ) ( ) ( ) ( )

( )as rs is nn n n

m n m n
m m mn n
n n n

n im n
E nE E E

E E hh E E h E
t t

hM M M h R E
t

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ =

Δ ∂
∂

+ + + −
∂

q K  
(3.6.7.2.2)
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1 1/ 2
1 1[( ) ( ) ] ( ) ( )( ) ( ) ( )

n n

n m n im n
n n im n im nn n n

E E n n
E E E n h n hhR h R E E

t t t

+ +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A  (3.6.7.2.3)

 

First, solve equation (3.6.7.2.2) and get (En
m)n+1/2. Second, solve equation (3.6.7.2.3) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual 
species concentration.  
 
Assign and calculate the right hand side RHS and left hand side LHS the same as that in section 
3.6.7.1, equation (3.6.7.2.2) is then simplified as: 
 

( )
1/ 2( ) ( ) ( ) ( ) ( )

n

m n m n nm m m im nn n
n n HS n HS E n

E E h hh E h E L E R h R E
t t t

+ − ∂ ∂⎛ ⎞+ ∇ ⋅ − ∇ ⋅ ⋅∇ + + = + −⎜ ⎟Δ ∂ ∂⎝ ⎠
q K  (3.6.7.2.4)

 

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport 
equation. Integrate equation (3.6.7.2.4) in the spatial dimensions over the entire region as follows 
 

( ) ( )

          ( )
n

m
n m mn

i n i n
R R

m n im n
i HS n i HS E n

R R

EN h h E dR W E dR
t

h hN L E dR N R hR E dR
t t

⎡ ⎤∂
− ∇ ⋅ ⋅ ∇ + ∇ ⋅⎢ ⎥∂⎣ ⎦

∂ ∂⎛ ⎞ ⎛ ⎞+ + = + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

K q
 

(3.6.7.2.5)

 

Further, we obtain 
 

( )

( )        ( )
n

m
m m mn

i i n i n i HS n
R R R R

n im n m m
i HS E n i n i n

R B B

E hN h dR W E dR N h E dR N L E dR
t t

hN R hR E dR W E dB N h E dB
t

∂ ∂⎛ ⎞− ∇ ⋅ + ∇ ⋅ ⋅∇ + +⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞= + − − ⋅ + ⋅ ⋅∇⎜ ⎟∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫ ∫

q K

n q n K

 
(3.6.7.2.6)

 

Approximate solution En
m by a linear combination of the base functions as follows 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j

E E E t N R
=

≈ = ∑  (3.6.7.2.7)

 

Substituting Equation (3.6.7.2.7) into Equation (3.6.7.2.6), we obtain 
 

( )
1

1

( )

( )
            ( )

                         

n

N
m

i j i j i HS j nj
j R R R

mN
njn n im n

i j i HS E n
j R R

m
i n

hW N dR N h N dR N L N dR E t
t

E t hN h N dR N R hR E dR
t t

W E dB

=

=

⎧ ⎫⎡ ⎤∂⎪ ⎪⎛ ⎞− ∇ ⋅ + ∇ ⋅ ⋅∇ + +⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤∂⎛ ⎞ ∂⎛ ⎞+ = + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

− ⋅

∑ ∫ ∫ ∫

∑ ∫ ∫

q K

n q ( )m
i n

B B

N h E dB+ ⋅ ⋅∇∫ ∫n K

 
(3.6.7.2.8)

 

Equation (3.6.7.2.8) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 1] [ 3] [ 4]
m

mn
n

ECMATRX Q Q Q E SS B
t

⎧ ⎫∂
+ + + = +⎨ ⎬∂⎩ ⎭

 (3.6.7.2.9)

 

The matrices [CMATRX1],  [Q1], [Q3], [Q4], and load vectors {SS}, {B} are given by 
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1ij i j
R

CMATRX N hN dR= ∫  
(3.6.7.2.10)

 

1ij i j
R

Q W N dR= − ∇ ⋅∫ q  
(3.6.7.2.11)

 

( )3ij i j
R

Q N h N dR= ∇ ⋅ ⋅ ∇∫ K  
(3.6.7.2.12)

 

4ij HS j
iR

hQ N L N dR
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫  (3.6.7.2.13)

 

( )
n

n im n
i i HS E n

R

hSS N R hR E dR
t

∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫  (3.6.7.2.14)

 

( )m m
i i n i n

B B

B W E dB N h E dB= − ⋅ + ⋅ ⋅∇∫ ∫n q n K  
(3.6.7.2.15)

 

Equation (3.6.7.2.9) is then simplified as 
 

{ } { } { }[ 1] [ 2]n
n

ECMATRX CMATRX E SS B
t

∂⎧ ⎫ + = +⎨ ⎬∂⎩ ⎭
 (3.6.7.2.16)

where 
[ 2] [ 1] [ 3] [ 4]CMATRX Q Q Q= + +  (3.6.7.2.17)

 

Further,  
 

{ } { }

1/ 2

1/ 2
1 2

{( ) } {( ) }
             [ 1]

[ 2] {( ) } {( ) }  

m n m n
n n

m n m n
n n

E E
CMATRX

t
CMATRX W E W E SS B

+

+

⎡ ⎤−⎣ ⎦
Δ

⎡ ⎤+ + = +⎣ ⎦

 
(3.6.7.2.18)

So that 
{ }1/ 2[ ] ( ) { }m n

nCMATRX E RLD+ =  (3.6.7.2.19)

where 

1
[ 1][ ] *[ 2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.7.2.20)

 

{ } { } { }2
[ 1]{ } *[ 2] ( )m n

n
CMATRXRLD W CMATRX E SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.6.7.2.21)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is the same as that in section 3.6.7.1. 
 
3.6.7.3 Operator-splitting scheme 
 
Recall the governing equation for 2-D kinetic variable transport at n+1-th time step, equation 
(3.6.7.1.2), as follows 
 

1( ) ( ) ( ) ( ) as rs is nn n n

n n
m mn n

n n n EE E E

E E hh E E h E M M M hR
t t

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + + +

Δ ∂
q K  (3.6.7.3.1)

 

According to Operator-splitting scheme, equation (3.6.7.3.1) can be separated into two equations as 
follows 
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1/ 2( ) ( ) ( ) ( ) as rs is

n n n

m n m n
m m mn n
n n n E E E

E E hh E E h E M M M
t t

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅ ∇ = + +

Δ ∂
q K  (3.6.7.3.2)

 
1 1/ 2

1 1( ) [( ) ( ) ] ( )
n

n m n im n
n im nn n n

E n
E E E nhhR E

t t

+ +
+ +− + ∂

= −
Δ ∂

A  (3.6.7.3.3)

 

First, solve equation (3.6.7.3.2) and get (En
m)n+1/2. Second, solve equation (3.6.7.3.3) together with 

algebraic equations for equilibrium reactions using BIOGEOCHEM scheme to obtain the individual 
species concentration.  
 
Equation (3.6.7.3.2) can be solved through the same procedure as that in section 3.6.7.2, except for 
the load vectors {SS}, which is calculated by the following equation. 
 

1

e

e

M
e

i i HS
e R

SS N R dR
=

= ∑ ∫  (3.6.7.3.4)

 
 
3.6.8 Application of the Finite Element Method to the Advective Form of the Transport 

Equations to Solve 2-D Kinetic Variable Transport 
 
3.6.8.1 Fully-implicit scheme 
 
Conversion of the equation for 2-D kinetic variable transport Fully-implicit scheme transport step, 
equation (3.6.7.1.3), to advection form is expressed as 
 

( )
1/ 2( ) ( ) ( )

as rs is nn n n

n n
m m mn n

n n n n

EE E E

E E hh E E h E E
t t

M M M hR

+ − ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅ ∇ + ∇ ⋅ =

Δ ∂
+ + +

q K q  (3.6.8.1.1)

 

where S R Ih t S S S∂ ∂ + ∇⋅ = + +q  according to governing equation for 2-D flow. 
 
To solve equation (3.6.8.1.1), assign 
 

0          HS HS S R IR and L S S S h t= = + + − ∂ ∂  (3.6.8.1.2)
 

Then the right hand side RHS and left hand side LHS should be continuously calculated the same as 
that in section 3.6.7.1. Equation (3.6.8.1.1) is then simplified as: 
 

( )
n

m m mn
n n n HS n HS E

E hh E E h E L E R hR
t t

∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + = +

∂ ∂
q K  (3.6.8.1.3)

 

Express En
m in terms of (En

m /En) En
m to make En’s as primary dependent variables, 

 

        

n

m m
n n n

n n
n n

m m
n n

n HS n H E
n n

E E Eh E h E
t E E

E E hh E L E R S hR
E E t

⎛ ⎞ ⎛ ⎞∂
+ ⋅ ∇ − ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
−∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

q K

K

 
(3.6.8.1.4)
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Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport 
equation. Integrate equation (3.6.8.1.4) in the spatial dimensions over the entire region as follows. 
 

                                    ( )  
n

m m m
n n n n

i n i n n
n n nR R

m
n

i HS n i HS E
nR R

E E E EN h h E dR W E h E dR
t E E E

E hN L E dR N R hR dR
E t

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ⎪ ⎪− ∇ ⋅ ⋅ ∇ + ⋅ ∇ − ∇ ⋅ ⋅ ∇⎨ ⎬⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭
⎛ ⎞∂

+ + = +⎜ ⎟∂⎝ ⎠

∫ ∫

∫ ∫

K q K
 

(3.6.8.1.5)

 

Further, we obtain 
 

              

                      

( )
n

m m
n n n

i i n i n
n nR R R

m m
n n

i n i HS n
n nR R

m
n

i HS E i n i
nR B

E E EN h dR W E dR N h E dR
t E E

E E hW h E dR N L E dR
E E t

EN R hR dR n N hK E dB n W h
E

⎛ ⎞∂
− ⋅∇ + ∇ ⋅ ⋅ ∇⎜ ⎟∂ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
+ ∇ ⋅ ⋅ ∇ + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
= + + ⋅ ⋅ ∇ + ⋅⎜ ⎟

⎝ ⎠

∫ ∫ ∫

∫ ∫

∫ ∫

q K

K

m
n

n
nB

EK E dB
E

⎡ ⎤⎛ ⎞
⋅ ∇⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫

 
(3.6.8.1.6)

 

Approximate solution En by a linear combination of the base functions as follows 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N R
=

≈ = ∑  (3.6.8.1.7)

 

Substituting Equation (3.6.8.1.7) into Equation (3.6.8.1.6), we obtain 
 

1

( )

                             

m m m
n n n

i j i j i jN
n n nR R R

njm mj n n
i j i HS j

n nR R

i j

E E EW N dR W N dR W h N dR
E E E

E t
E E hN h N dR N L N dR
E E t

N hN d

=

⎧ ⎫⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞
⋅ ∇ + ⋅ ∇ + ∇ ⋅ ⋅ ∇⎪ ⎪⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟

⎪ ⎪⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
⎨ ⎬⎢ ⎥⎛ ⎞ ⎛ ⎞∂⎪ ⎪⎢ ⎥+ ∇ ⋅ ⋅ ∇ + +⎜ ⎟ ⎜ ⎟⎪ ⎪⎢ ⎥∂⎝ ⎠ ⎝ ⎠⎣ ⎦⎩ ⎭

+

∫ ∫ ∫
∑

∫ ∫

q q K

K

( )
1

( )

                          

n

N
nj

i HS E
j R R

m m
n n

i n i n
n nB B

E t
R N R hR dR

t

E En N h E dB n W h E dB
E E

=

⎡ ⎤∂⎛ ⎞
= +⎢ ⎥⎜ ⎟ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
+ ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦

∑ ∫ ∫

∫ ∫K K

 (3.6.8.1.8)

 

Equation (3.6.8.1.8) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 1] [ 2] [ 3] [ 4] [ 5]n
n

ECMATRX Q Q Q Q Q E SS B
t

∂⎧ ⎫ + + + + + = +⎨ ⎬∂⎩ ⎭
 (3.6.8.1.9)

 

The matrices [CMATRX1],  [Q1], [Q2], [Q3], [Q4], [Q5], and load vectors {SS}, {B} are given by 
 

1ij i j
R

CMATRX N hN dR= ∫  
(3.6.8.1.10)

 

1
m

n
ij i j

nR

EQ W N dR
E

= ⋅ ∇∫ q  (3.6.8.1.11)
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2
m

n
ij i j

nR

EQ W N dR
E

⎛ ⎞
= ⋅ ∇⎜ ⎟

⎝ ⎠
∫ q  (3.6.8.1.12)

 

3
m

n
ij i j

nR

EQ W h N dR
E

⎡ ⎤⎛ ⎞
= ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫ K  (3.6.8.1.13)

 

4
m

n
ij i j

nR

EQ N h N dR
E

⎛ ⎞
= ∇ ⋅ ⋅ ∇⎜ ⎟

⎝ ⎠
∫ K  (3.6.8.1.14)

 

5
m

n
ij i HS j

nR

E hQ N L N dR
E t

⎛ ⎞∂
= +⎜ ⎟∂⎝ ⎠

∫  (3.6.8.1.15)

 

( )ni i HS E
R

SS N R hR dR= +∫  
(3.6.8.1.16)

 
m m

n n
i i n i n

n nB B

E EB N h E dB W h E dB
E E

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎣ ⎦
∫ ∫n K n K  (3.6.8.1.17)

 

Equation (3.6.8.1.9) is then simplified as 
 

{ } { } { }[ 1] [ 2]n
n

ECMATRX CMATRX E SS B
t

∂⎧ ⎫ + = +⎨ ⎬∂⎩ ⎭
 (3.6.8.1.18)

where 
[ 2] [ 1] [ 2] [ 3] [ 4] [ 5]CMATRX Q Q Q Q Q= + + + +  (3.6.8.1.19)

 

Further,  
 

( ) ( ) { } { }
1/ 2

1/ 2
1 2

{ } { }
[ 1] [ 2] { } { }

n n
n n n n

n n

E E
CMATRX CMATRX W E W E SS B

t

+
+

−
+ + = +

Δ
 (3.6.8.1.20)

So that 
{ }1/ 2[ ] { }n

nCMATRX E RLD+ =  (3.6.8.1.21)

where 

1
[ 1][ ] *[ 2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.8.1.22)

 

{ } { } { }n
2 n

[CMATRX1]{RLD} W *[CMATRX2] E SS B  
t

⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠
 (3.6.8.1.23)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
 

( )m
i i n

B

B N h E dB= ⋅ ⋅∇∫ n K  
(3.6.8.1.24)

 
Dirichlet boundary condition 
 

( , , )m m
n n b bE E x y t=  (3.6.8.1.25)

 
Variable boundary condition 
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< Case 1 > when flow is going in from outside (n·q < 0) 
 

( ) ( , , )    ( , , )m m m m m
n n n b b i i n i n b b

B B

E h E E x y t B N E dB N E x y t dB⋅ − ⋅∇ = ⋅ ⇒ = ⋅ − ⋅∫ ∫n q K n q n q n q  
(3.6.8.1.26)

 

< Case 2 > Flow is going out from inside (n·q > 0): 
 

( ) 0    0m
n ih E B− ⋅ ⋅∇ = ⇒ =n K  (3.6.8.1.27)

 
Cauchy boundary condition 
 

( ) ( , , )    ( , , )m m m m m
n n En b b i i n i En b b

B B

E h E Q x y t B N E dB N Q x y t dB⋅ − ⋅∇ = ⇒ = ⋅ −∫ ∫n q K n q  
(3.6.8.1.28)

 
Neumann boundary condition 
 

( ) ( , , )    ( , , )m m m
n En b b i i En b b

B

h E Q x y t B N Q x y t dB− ⋅ ⋅∇ = ⇒ = −∫n K  
(3.6.8.1.29)

 
River/stream-overland interface boundary condition  
 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

1

1

1 1 1 ( , , )   
2
1 1 1 ( , , )
2

mm m m D
n n n n b b

mm m D
i i n i n n b b

B B

E h E sign E sign E x y t

B N E dB N sign E sign E x y t dB

⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅ ⇒⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

= ⋅ − ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦∫ ∫

n q K n q n q n q

n q n q n q n q

 
(3.6.8.1.30)

 
 
3.6.8.2 Mixed Predictor-corrector/Operator-splitting scheme 
 
Conversion of the equation for 2-D kinetic variable transport mixed Predictor-corrector/Operator-
splitting scheme transport step, equation (3.6.7.2.3), to advection form is expressed as 
 

( )
1/ 2( ) ( ) ( )

( )as rs is nn n n

m n m n
m m m mn n
n n n n

n im n
E nE E E

E E hh E E h E E
t t

hM M M hR E
t

+ − ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅∇ + ∇ ⋅ =

Δ ∂
∂

+ + + −
∂

q K q  
(3.6.8.2.1)

 

where S R Ih t S S S∂ ∂ + ∇⋅ = + +q  according to governing equation for 2-D flow. 
 
To solve equation (3.6.8.2.1), assign the right hand side RHS and left hand side LHS the same as that 
in section 3.6.8.1. Equation (3.6.8.2.1) is then simplified as: 
 

( ) ( )
n

m
m m m m n im nn
n n n HS n HS E n

E h hh E E h E L E R hR E
t t t

∂ ∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + = + −

∂ ∂ ∂
q K  (3.6.8.2.2)

 

Use Galerkin or Petrov-Galerkin finite-element method for the spatial descretization of transport 
equation. Integrate equation (3.6.8.2.4) in the spatial dimensions over the entire region as follows. 
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( )

      ( )  
n

m
m mn

i n i n
R R

m n im n
i HS n i HS E n

R R

EN h h E dR W E dR
t

h hN L E dR N R hR E dR
t t

⎡ ⎤∂
− ∇ ⋅ ⋅ ∇ + ⋅ ∇⎢ ⎥∂⎣ ⎦

∂ ∂⎛ ⎞ ⎛ ⎞+ + = + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

K q
 

(3.6.8.2.3)

 

Further, we obtain 
 

( )

( )                        ( )
n

m
m m mn

i i n i n i HS n
R R R R

n im n m
i HS E n i n

R B

E hN h dR W E dR N h E dR N L E dR
t t

hN R hR E dR n N hK E dB
t

∂ ∂⎛ ⎞− ⋅∇ + ∇ ⋅ ⋅∇ + +⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞= + − + ⋅ ⋅∇⎜ ⎟∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫

q K
 

(3.6.8.2.4)

 

Approximate solution En
m by a linear combination of the base functions as follows 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j

E E E t N R
=

≈ = ∑  (3.6.8.2.5)

 

Substituting Equation (3.6.8.2.5) into Equation (3.6.8.2.4), we obtain 
 

( )

( )

1

1

        ( )

( )
( )

n

N
m

i j i j i HS j nj
j R R R

mN
nj n im n m

i j i HS E n i n
j R R B

hW N dR N h N dR N L N dR E t
t

E t hN hN dR N R hR E dR N h E dB
t t

=

=

⎧ ⎫⎡ ⎤∂⎪ ⎪⎛ ⎞⋅∇ + ∇ ⋅ ⋅∇ + +⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
⎡ ⎤∂⎛ ⎞ ∂⎛ ⎞+ = + − + ⋅ ⋅∇⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫ ∫ ∫

∑ ∫ ∫ ∫

q K

n K

 
(3.6.8.2.6)

 

Equation (3.6.8.2.6) can be written in matrix form as  
 

( ){ } { } { }[ 1] [ 1] [ 4] [ 5]n
n

ECMATRX Q Q Q E SS B
t

∂⎧ ⎫ + + + = +⎨ ⎬∂⎩ ⎭
 (3.6.8.2.7)

 

The matrices [CMATRX1],  [Q1], [Q4], [Q5], and load vectors {SS}, {B} are given by 
 

1ij i j
R

CMATRX N hN dR= ∫  
(3.6.8.2.8)

 

1ij i j
R

Q W N dR= ⋅∇∫ q  
(3.6.8.2.9)

 

( )4ij i j
R

Q N h N dR= ∇ ⋅ ⋅ ∇∫ K  
(3.6.8.2.10)

 

5ij i HS j
R

hQ N L N dR
t

∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠∫  (3.6.8.2.11)

 

( )
n

n im n
i i HS E n

R

hSS N R hR E dR
t

∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫  (3.6.8.2.12)

 

( )i i n
B

B N h E dB= ⋅ ⋅∇∫ n K  
(3.6.8.2.13)

 

Equation (3.6.8.2.7) is then simplified as 
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{ } { } { }[ 1] [ 2]n
n

ECMATRX CMATRX E SS B
t

∂⎧ ⎫ + = +⎨ ⎬∂⎩ ⎭
 (3.6.8.2.14)

where 
[ 2] [ 1] [ 4] [ 5]CMATRX Q Q Q= + +  (3.6.8.2.15)

 

Further,  
 

( ) ( ) { } { }
1/ 2

1/ 2
1 2

{ } { }
[ 1] [ 2] { } { }

n n
n n n n

n n

E E
CMATRX CMATRX W E W E SS B

t

+
+

−
+ + = +

Δ
 (3.6.8.2.16)

So that 
{ }1/ 2[ ] { }n

nCMATRX E RLD+ =  (3.6.8.2.17)

where 

1
[ 1][ ] *[ 2]CMATRXCMATRX W CMATRX

t
= +

Δ
 (3.6.8.2.18)

 

{ } { } { }2
[ 1]{ } *[ 2] n

n
CMATRXRLD W CMATRX E SS B

t
⎛ ⎞= − + +⎜ ⎟Δ⎝ ⎠

 (3.6.8.2.19)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition calculated the same as that in section 3.6.8.1. 
 
3.6.8.3 Operator-splitting scheme 
 
Conversion of the equation for 2-D kinetic variable transport operator spitting scheme transport step, 
equation (3.6.7.3.3), to advection form is expressed as 
 

( )
1/ 2( ) ( ) ( ) as rs is

n n n

m n m n
m m m mn n
n n n n E E E

E E hh E E h E E M M M
t t

+ − ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅ ∇ + ∇ ⋅ = + +

Δ ∂
q K q  (3.6.8.3.1)

 

where S R Ih t q S S S∂ ∂ + ∇⋅ = + +  according to governing equation for 2-D flow. 
 
Equation (3.6.8.3.1) can be solved through the same procedure as that in section 3.6.8.2, except for 
the load vectors {SS}, which is calculated by the following equation. 
 

1

e

e

M
e

i i HS
e R

SS N R dR
=

= ∑ ∫  (3.6.8.3.2)

 
 
3.6.9 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form 

of the Transport Equations to Solve 2-D Kinetic Variable Transport 
 
3.6.9.1 Fully-implicit scheme 
 
Recall the equation for 2-D kinetic variable transport Fully-implicit scheme transport step in 
advection form, equation (3.6.8.1.1), as follows   
 

( )
1/ 2( ) ( ) ( ) as rs is nn n n

n n
m m mn n

n n n n EE E E

E E hh E E h E E M M M hR
t t

+ − ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅ ∇ + ∇ ⋅ = + + +

Δ ∂
q K q  (3.6.9.1.1)
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Express En
m in terms of (En

m/En)En or En-En
im to make En’s as primary dependent variables, equation 

(3.6.9.1.1) is modified as  
 

( ) ( )

( )

        

as rs is nn n n

m
n n

n n n n
n

im im
n n EE E E

E h Eh E E h E E
t t E

E h E M M M hR

∂ ∂
+ + ⋅ ∇ − ∇ ⋅ ⋅ ∇ + ∇ ⋅

∂ ∂

= ⋅ ∇ − ∇ ⋅ ⋅ ∇ + + +

q K q

q K

 
(3.6.9.1.2)

 

To solve equation (3.6.9.1.2), assign 
 

( )0          m
HS HS S R I n nR and L S S S h t E E= = + + − ∂ ∂  (3.6.9.1.3)

 

Then the right hand side RHS and left hand side LHS should be continuously calculated as following. 
 

* ,    0    

* ,    0    

rs n

n

rs
R n R HS n HS n Ers

E m
R n R HS n HS n R

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.9.1.4)

 
* ,    0    ,

* ,    0    

as n

n

as
S n S HS n HS n Eas

E m
S n S HS n HS n S

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.9.1.5)

 
* ,    0    

* ,    0    

is n

n

m is
I n I HS n HS n Eis

E m
I n I HS n HS n I

S E if S R R M
M

S E if S L L S

⎧ > ⇒ = +⎪= ⎨
≤ ⇒ = −⎪⎩

 (3.6.9.1.6)

 

Equation (3.6.8.1.1) is then simplified as: 
 

( )( )
n

im imn
n n n HS n n n HS E

E hh E E h E L E E h E R hR
t t

∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + = ⋅∇ − ∇ ⋅ ⋅∇ + +

∂ ∂
q K q K  (3.6.9.1.7)

 

Assign the true transport velocity vtrue as follows 
 

trueh =v q  (3.6.9.1.8)
 

Equation (3.6.9.1.7) in the Lagrangian and Eulerian form is written as follows. In Lagrangian step, 
 

true0    0n n n n
n n

dE E dE Eh h E E
d t d tτ τ

∂ ∂
= + ⋅∇ = ⇒ = + ⋅∇ =

∂ ∂
q v  (3.6.9.1.9)

 

In Eulerian step, 
 

( )( )
n

im imn
n HS n n n HS E

dE hh h E L E E h E R hR
d tτ

∂⎛ ⎞− ∇⋅ ⋅∇ + + = ⋅∇ − ∇⋅ ⋅∇ + +⎜ ⎟∂⎝ ⎠
K q K  (3.6.9.1.10)

 

Equation (3.6.9.1.10) written in a slightly different form is shown as  
 

n
n L

dE D KE T R
dτ

− + = +  (3.6.9.1.11)

where 
1 ( )nD h E
h

= ∇⋅ ⋅∇K  (3.6.9.1.12)
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HS
hL
tK

h

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠=  (3.6.9.1.13)

 

nHS E
L

R hR
R

h
+

=  (3.6.9.1.14)

 

( )1 im im
n nT E h E

h
⎡ ⎤= ⋅∇ − ∇⋅ ⋅∇⎣ ⎦q K  (3.6.9.1.15)

 

According to section 3.6.4,  
 

{ } { } { }[ 1] [ 2] 1nA D A E B= − +  (3.6.9.1.16)
where 

1ij i j
R

A N hN dR= ∫  
(3.6.9.1.17)

 

2 ( )ij i j
R

A N h N dR= ∇ ⋅ ⋅∇∫ K  
(3.6.9.1.18)

 

1 ( )i i n
B

B N h E dB= ⋅ ⋅∇∫n K  
(3.6.9.1.19)

 
Lump matrix [A1] into diagonal matrix and assign   
 

2 / 1ij ij iiQE A A=  (3.6.9.1.20)
 

1 1 / 1i i iiQB B A=  (3.6.9.1.21)
Then 

{ } { }{ 1} 1D D QB= +  (3.6.9.1.22)
where 

{ }{ 1} [ ] nD QE E= −  (3.6.9.1.23)
 

Approximate T by a linear combination of the base functions as follows: 
 

1

ˆ ( ) ( )
N

j j
j

T T T t N R
=

≈ = ∑  (3.6.9.1.24)

 

According to equation (3.6.9.1.24), the integration of equation (3.6.9.1.15) can be written as 
 

( )
1

( ) ( )
N

im im
i i j j i n n

jR R R

N hTdR N h T t N R dR N E h E dR
=

⎡ ⎤= = ⋅∇ − ∇ ⋅ ⋅ ∇⎣ ⎦∑∫ ∫ ∫ q K  (3.6.9.1.25)

 

Further, we obtain 
 

( ) ( )
1

N
im im im

i j j i n i n i n
j R R R B

N hN dR T N E dR N h E dR N h E dB
=

⎡ ⎤⎛ ⎞
= ⋅ ∇ + ∇ ⋅ ⋅ ∇ − ⋅ ⋅∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∫ ∫ ∫ ∫q K n K  (3.6.9.1.26)

 

Approximate En
im by a linear combination of the base functions as follows: 
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1

ˆ ( ) ( )
N

im im im
n n nj j

j

E E E t N R
=

≈ = ∑  (3.6.9.1.27)

 

Equation (3.6.9.1.26) is further expressed as                                
 

( ) ( )

1 1

1

      ( )

( )

N N
im

i j j i j n j
j jR R

N
im im

i j n j i n
j R B

N hN dR T N N dR E

N h N dR E N h E dB

= =

=

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅∇⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞

+ ∇ ⋅ ⋅ ∇ − ⋅ ⋅∇⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∑∫ ∫

∑ ∫ ∫

q

K n K

 
(3.6.9.1.28)

 

Assign matrices [A3], and load vector {B2} as following 
 

3ij i j
R

A N N dR= ⋅ ∇∫ q  
(3.6.9.1.29)

 

( )2 im
i i n

B

B N h E dB= − ⋅ ⋅∇∫n K  
(3.6.9.1.30)

 

Assign   
 

( 2 3 ) / 1ij ij ij iiQT A A A= +  (3.6.9.1.31)
 

2 2 / 1i i iiQB B A=  (3.6.9.1.32)
 

Equation (3.6.9.1.28) is expressed as 
 

{ } { }{ 1} 2T T QB= +  (3.6.9.1.33)
where 

{ }{ 1} [ ] im
nT QT E=  (3.6.9.1.34)

 

So that equation (3.6.9.1.11) is then expressed as 
 

1 1n
n L

dE D KE T R B
dτ

− + = + +  (3.6.9.1.35)
 

where B=B1+B2. For boundary node i = b, the boundary term {B} should be calculated as follows. 
 
For Dirichlet boundary condition 
 

( )( , , )    1m m m
n n b b i i n ii

B

E E x y t B N h E dB A= ⇒ = ⋅ ⋅ ∇∫ n K  
(3.6.9.1.36)

 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·q < 0) 
 

( )         ( , , )  

1 ( , , ) 1

m m m
n n n b b

m m
i i n ii i n b b ii

B B

E h E E x y t

B N E dB A N E x y t dB A

⋅ − ⋅∇ = ⋅ ⇒

= ⋅ − ⋅∫ ∫

n q K n q

n q n q
 (3.6.9.1.37)

 

< Case 2 > Flow is going out from inside (n·q > 0): 
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( , , ) 0    0m

n b b ih E x y t B⎡ ⎤− ⋅ ⋅∇ = ⇒ =⎣ ⎦n K  (3.6.9.1.38)

 
Cauchy boundary condition 
 

1

         ( , , ) ( , , ) ( )

        ( , , ) ( )

( )

m m
n b b n b b b

m
i i n b b b ii

B

N
m

i j nj ii i ii
j B B

E x y t h E x y t q t

B N E x y t q t dB QA

N N dB E t QA N dB B QA
=

⎡ ⎤⋅ − ⋅∇ =⎣ ⎦

⎡ ⎤⇒ = ⋅ −⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅ −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∑ ∫ ∫

n q K

n q

n q

 

(3.6.9.1.39)

 
Neumann boundary condition 
 

( , , ) ( )    ( )m
n b b b i i b ii i ii

B B

h E x y t q t B N q t dB QA N dB B QA
⎛ ⎞

⎡ ⎤− ⋅ ⋅ ∇ = ⇒ = − = − ⎜ ⎟⎣ ⎦
⎝ ⎠

∫ ∫n K  (3.6.9.1.40)

 
River/stream-overland interface boundary condition  
 

1

  ( , , ) ( , , ) ( ( ))  

   ( , , ) ( ( ))

( )

m m
n b b n b b b b

m
i i n b b b b ii

B

N
m

i j nj ii i ii
j B B

E x y t h E x y t q h t

B N E x y t q h t dB QA

N N dB E t QA N dB B QA
=

⎡ ⎤⋅ − ⋅∇ = ⇒⎣ ⎦

⎡ ⎤= ⋅ −⎣ ⎦

⎡ ⎤⎛ ⎞ ⎛ ⎞
= ⋅ −⎢ ⎥⎜ ⎟ ⎜ ⎟

⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

∫

∑ ∫ ∫

n q K

n q

n q

 

(3.6.9.1.41)

 

Equation (3.6.9.1.35) written in matrix form is then expressed as 
 

( ) { } { }
{ } { } { } { } { } { }

* * * *
1 2 1 2

* * *
1 2 1 2 1 2

[ ] { } { } { 1} { 1 } [ ]{ } [ ]{ }

            1 1

TT
n n n n

U E E W D W D W K U E W K U E

W T W T W RL W RL W B W B
τ

− − − + +
Δ

= + + + + +

 (3.6.9.1.42)

 

At upstream flux boundary nodes, equation (3.6.9.1.42) cannot be applied because Δτ equals zero. 
Thus, we propose a modified LE approach in which the matrix equation for upstream boundary 
nodes is obtained by explicitly applying the finite element method to the boundary conditions. For 
example, at the upstream variable boundary 
 

( ) ( , , )m m m
i n n i n b b

B B

N n qE hK E dB N n qE x y t dB⋅ − ⋅∇ = ⋅∫ ∫  (3.6.9.1.43)

 

So that the following matrix equation can be assembled at the boundary nodes 
 

[ ]{ } [ ]{ }m
nQF E QB B=  (3.6.9.1.44)

in which 

( )ij i j i j
B

QF N N N h N dB= ⋅ − ⋅ ⋅∇∫ n q n K  (3.6.9.1.45)
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ij i j
B

QB N N dB= ⋅∫ n q  (3.6.9.1.46)

 

( , , ) m
i n b bB E x y t=  (3.6.9.1.47)

 
3.6.9.2 Mixed Predictor-corrector/Operator-splitting scheme 
 
Recall the simplified equation for 2-D kinetic variable transport mixed Predictor-corrector/Operator-
splitting scheme transport step in advection form, equation (3.6.8.2.2), as follows   
 

( ) ( )
n

m
m m m n im nn

n n HS n HS E n
E h hh E h E L E R hR E

t t t
∂ ∂ ∂⎛ ⎞+ ⋅∇ − ∇ ⋅ ⋅∇ + + = + −⎜ ⎟∂ ∂ ∂⎝ ⎠

q K  (3.6.9.2.1)

 

Assign the true transport velocity vtrue as follows 
 

1
1 2

n n
trueh W W+= = +v q q q  (3.6.9.2.2)

 

Equation (3.6.9.2.1) in the Lagrangian and Eulerian form is written as follows. In lagrangian step, 
 

0    0
m m m

m mn n n
n true n

dE E Eh h E E
d t tτ

∂ ∂
= + ⋅∇ = ⇒ + ⋅∇ =

∂ ∂
q v  (3.6.9.2.3)

 

In Eulerian step, 
 

( ) ( )
n

m
m m n im nn

n HS n HS E n
dE h hh h E L E R hR E
d t tτ

∂ ∂⎛ ⎞− ∇⋅ ⋅∇ + + = + −⎜ ⎟∂ ∂⎝ ⎠
K  (3.6.9.2.4)

 

Equation (3.6.9.3.4) written in a slightly different form is shown as  
 

*
m

mn
n L

dE D K E R
dτ

− + =  (3.6.9.2.5)

where 
1 ( )m

nD h E
h

= ∇⋅ ⋅∇K  (3.6.9.2.6)
 

HS
hL
tK

h

∂⎛ ⎞+⎜ ⎟∂⎝ ⎠=  (3.6.9.2.7)

 

( )
n

n im n
HS E n

L

hR hR E
tR

h

∂+ −
∂=  (3.6.9.2.8)

 

Equation (3.6.9.2.5) written in matrix form is then expressed as 
 

( ) { } { }
{ } ( ){ }

TTm m* * m * m*
n n 1 2 1 n 2 n

*
1 L 2 L

[U] {E } {E } W {D} W {D } W K [U]{E } W K [U]{E }

                                      W R W R
τ

− − − + +
Δ

= +

 (3.6.9.2.9)

 

Same as that in section 3.6.9.1,  
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{ } { } { }[ ] m
nD QD E QB= − +  (3.6.9.2.10)

 

At upstream flux boundary nodes, equation (3.6.9.2.9) cannot be applied because Δτ equals zero. 
Thus, we propose a modified LE approach in which the matrix equation for upstream boundary 
nodes is obtained by explicitly applying the finite element method to the boundary conditions. 
 
3.6.9.3 Operator-splitting scheme 
 
Equation (3.6.8.3.2) can be solved through the same procedure as that in section 3.6.9.2, except that 
 

HS
L

RR
h

=  (3.6.9.3.1)

 
 
3.6.10 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Conservative Form of the Transport Equations for the Upstream Flux Boundaries to 
Solve 2-D Kinetic Variable Transport 

 
3.6.10.1 Fully-Implicit Scheme 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.6.9.1, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.6.7.1.  
 
3.6.10.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.6.9.2, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.6.7.2.  
 
3.6.10.3 Operator-Splitting Approach 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.6.9.3, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.6.7.3.  
 
 
3.6.11 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Advective Form of the Transport Equations for the Upstream Flux Boundaries to Solve 
2-D Kinetic Variable Transport 

 
3.6.11.1 Fully-Implicit Scheme 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
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the same procedure as that in section 3.6.9.1, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.6.8.1.  
 
3.6.11.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.6.9.2, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.6.8.2.  
 
3.6.11.3 Operator-Splitting Approach 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.6.9.3, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.6.8.3. 
 
 

3.7 Solving Three-Dimensional Subsurface Water Quality Transport Equations 
 
In this section, we present the numerical approaches employed to solve the governing equations of 
reactive chemical transport. Ideally, one would like to use a numerical approach that is accurate, 
efficient, and robust. Depending on the specific problem at hand, different numerical approaches 
may be more suitable. For research applications, accuracy is a primary requirement, because one 
does not want to distort physics due to numerical errors. On the other hand, for large field-scale 
problems, efficiency and robustness are primary concerns as long as accuracy remains within the 
bounds of uncertainty associated with model parameters. Thus, to provide accuracy for research 
applications and efficiency and robustness for practical applications, three coupling strategies were 
investigated to deal with reactive chemistry. They are: (1) a fully-implicit scheme, (2) a mixed 
predictor-corrector/operator-splitting method, and (3) an operator-splitting method. For each time-
step, we first solve the advective-dispersive transport equation with or without reaction terms, 
kinetic-variable by kinetic-variable. We then solve the reactive chemical system node-by-node to 
yield concentrations of all species.  
 
Five numerical options are provided to solve the advective-dispersive transport equations: Option 1- 
application of the Finite Element Method (FEM) to the conservative form of the transport equations, 
Option 2 - application of the FEM to the advective form of the transport equations, Option 3 - 
application of the modified Lagrangian-Eulerian (LE) approach to the Largrangian form of the 
transport equations, Option 4 - LE approach for all interior nodes and downstream boundary nodes 
with the FEM applied to the conservative form of the transport equations for the upstream flux 
boundaries, and Option 5 - LE approach for all interior and downstream boundary nodes with the 
FEM applied to the advective form of the transport equations for upstream flux boundaries. 
 
 
3.7.1 Application of the Finite Element Method to the Conservative Form of the Reactive 

Chemical Transport Equations 
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3.7.1.1 Fully-Implicit Scheme 
 
Assign the right-hand side term RHS and left hand side term LHS as follows. 
 

 0,    ,    ,    0

 0,    ,    0,    
n

asn n

as m
E n HS HS

as as
E HS HS En

If q M qE L q R

Else q M qE L R M

≤ = = − =

> = = =
 (3.7.1.1.1)

 
Then equation (2.7.22) is modified as 
 

( ) ( )
n

m m mn
n n n HS n HS E

E E E E L E R R
t t

θθ θ θ∂ ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅∇ + = +

∂ ∂
V D  (3.7.1.1.2)

 

According to the fully-implicit scheme, equation (3.7.1.1.2) can be separated into two equations as 
follows. 
 

1/ 2

( ) ( )
n

n n
m m mn n

n n n HS n HS E
E E E E E L E R R

t t
θθ θ θ

+ − ∂
+ + ∇ ⋅ − ∇ ⋅ ⋅∇ + = +

Δ ∂
V D  (3.7.1.1.3)

 
1 1/ 2

0
n n

n nE E
t

+ +−
=

Δ
 (3.7.1.1.4)

 

First, we express En
m in terms of (En

m/En)·En or (En–En
im) to make En’s as primary dependent 

variables, so that En
n+1/2 can be solved through equation (3.7.1.1.3). It is noted that the approach of 

expressing En
m in terms of (En

m/En)·En improves model accuracy but is less robust than the approach 
of expressing En

m in terms of (En–En
im) taken in Yeh et al. [2004]. Second, we solve equation 

(3.7.1.1.4) together with algebraic equations for equilibrium reactions using BIOGEOCHEM [Fang 
et al., 2003] to obtain all individual species concentrations. Iteration between these two steps is 
needed because the new reaction terms RAn

n+1 and the equation coefficients in equation (3.7.1.1.3) 
need to be updated by the calculation results of (3.7.1.1.4). To improve the standard SIA method, the 
nonlinear reaction terms are approximated by the Newton-Raphson linearization. 
 
Option 1: Express En

m in terms of (En
m /En) En

m  
 

     

 
n

m m
n n n

n n
n n

m m
n n

n HS n HS E
n n

E E EE E
t E E

E EE L E R R
E E t

θ θ

θθ θ

⎛ ⎞ ⎛ ⎞∂
+ ∇ ⋅ − ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
− ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

V D

D
 (3.7.1.1.5)

 

Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport 
equation: choose weighting function identical to base function. For Petriov-Galerkin method, apply 
weighting function one-order higher than the base function to advection term. Integrate equation 
(3.7.1.1.5) in the spatial dimensions over the entire region as follows. 
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( )     
n

m m
n n n

i n HS n
n nR

m m
n n

i n n i HS E
n nR R

E E EN E L E dR
t E E t

E EW E E dR N R R dR
E E

θθ θ

θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
− ∇ ⋅ ⋅ ∇ + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪+ ∇ ⋅ − ∇ ⋅ ⋅ ∇ = +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∫

∫ ∫

D

V D

 (3.7.1.1.6)

 

Further, we obtain 
 

          

( )

 

n

m m
n n n

i i n i n
n nR R R

m m
n n

i n i HS n i HS E
n nR R R

m m m
n n n

i n i n i
n n nB B

E E EN dR W E dR N E dR
t E E

E EW E dR N L E dR N R R dR
E E t

E E EW E dB N E dB W
E E E

θ θ

θθ θ

θ θ

⎛ ⎞∂
− ∇ ⋅ + ∇ ⋅ ⋅ ∇⎜ ⎟∂ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
+ ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞
− ⋅ + ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎜ ⎟

⎝ ⎠

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

V D

D

n V n D n D n
B

E dB
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∫

 (3.7.1.1.7)

 

Approximate solution En by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N R
=

≈ = ∑  (3.7.1.1.8)

 

Substituting equation (3.7.1.1.8) into equation (3.7.1.1.7), we obtain 
 

1

1

( )
                                   

( )  

    

N
nj

i j
j R

m mN
n n

i j i j nj
j n nR R

m m
n n

i j i HS
n nR R

E t
N N dR

t

E EW N dR W N dR E t
E E

E EN N dR N L
E E

θ

θ

θθ

=

=

⎡ ⎤∂⎛ ⎞
⎢ ⎥⎜ ⎟ ∂⎢ ⎥⎝ ⎠⎣ ⎦

⎧ ⎫⎧ ⎫⎡ ⎤⎛ ⎞⎪⎪ ⎪ ⎪+ − ∇ ⋅ + ∇ ⋅ ⋅ ∇⎨⎨ ⎬ ⎬⎢ ⎥⎜ ⎟
⎝ ⎠⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭⎩ ⎭

⎛ ⎞ ∂
+ ∇ ⋅ ⋅ ∇ + +⎜ ⎟

⎝ ⎠

∑ ∫

∑ ∫ ∫

∫ ∫

V D

D

( )
1

( )  

 ( )     
n

N

j nj
j

m m
i HS E i n i n

R B B

N dR E t
t

N R R dR W E dB N E dBθ θ

=

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪
⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

= + − ⋅ + ⋅ ⋅∇

∑

∫ ∫ ∫n V n D

 (3.7.1.1.9)

 

Equation (3.7.1.1.9) can be written in matrix form as  
 

{ } { }[ 1] [ 2] [ 3] { } { }n
n n

EQ Q E Q E RLS B
t

∂⎧ ⎫ + + = +⎨ ⎬∂⎩ ⎭
 (3.7.1.1.10)

 

where the matrices [Q1], [Q2], [Q3] and load vectors {RLS}, and {B} are given by  
 

1ij i j
R

Q N N dRθ= ∫  (3.7.1.1.11)
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2
m m

n n
ij i j i j

n nR R

E EQ W N dR W N dR
E E

θ
⎡ ⎤⎛ ⎞

= − ∇ ⋅ + ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫ ∫V D  (3.7.1.1.12)

 

3
m m

n n
ij i j i HS j

n nR R

E EQ N N dR N L N dR
E E t

θθ
⎛ ⎞ ⎛ ⎞∂

= ∇ ⋅ ⋅ ∇ + +⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
∫ ∫D  (3.7.1.1.13)

 

( )
ni i HS E

R

RLS N R R dRθ= +∫  (3.7.1.1.14)

 

( )  m m
i i n i n

B B

B W E dB N E dBθ= − ⋅ + ⋅ ⋅∇∫ ∫n V n D  (3.7.1.1.15)

 

At n+1-th time step, equation (3.7.1.1.10) is approximated as  
 

{ } { } { } { }
{ } { }

1/ 2
1 1/ 2

1 2

1 1/ 2
1 2

1 1
1 2 1 2

  
[ 1] [ 2 ]   [ 2 ]  

                    [ 3 ]   [ 3 ]  

              { } { } { } { }

n n
n n n n n n

V n V n

n n n n
n n

n n n n

E E
Q W Q E W Q E

t
W Q E W Q E

W RLS W RLS W B W B

+
+ +

+ +

+ +

−
+ +

Δ
+ +

= + + +

 
(3.7.1.1.16)

 

where WV1, WV2, W1 and W2 are time weighting factors, matrices and vectors with superscripts n+1 
and n are evaluated over the region at the new time step n+1 and at the old time step n, respectively. 
 
So that  

{ }

{ }

1 1 1/ 2
1 1

1 1
2 2 1 2 1 2

[ 1] [ 2 ] [ 3 ]  

[ 1] [ 2 ] [ 3 ]  { } { } { } { }

n n n
V n

n n n n n n n
V n

Q W Q W Q E
t
Q W Q W Q E W SS W SS W B W B

t

+ + +

+ +

⎛ ⎞+ +⎜ ⎟Δ⎝ ⎠
⎛ ⎞= − − + + + +⎜ ⎟Δ⎝ ⎠

 (3.7.1.1.17)

 

 
Option 2: Express En

m in terms of En-En
im  

 
Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport 
equation. Integrate equation (3.7.1.1.3) in the spatial dimensions over the entire region as follows. 
 

( ) ( ) 

                                   ( )     
n

m m mn
i n n HS n i n

R R

i HS E
R

EN E E L E dR W E dR
t t

N R R dR

θθ θ

θ

∂ ∂⎡ ⎤ ⎡ ⎤+ − ∇ ⋅ ⋅ + + ∇ ⋅⎢ ⎥ ⎣ ⎦∂ ∂⎣ ⎦

= +

∫ ∫

∫

D V
 (3.7.1.1.18)

 

Further, we obtain 
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( )

( )

 

      ( )  
n

m m mn
i n i n i n i HS n

R R R R

m m
i HS E i n i n

R B B

EN E dR W E dR N E dR N L E dR
t t

N R R dR W E dB N E dB

θθ θ

θ θ

∂ ∂⎛ ⎞+ − ∇ ⋅ + ∇ ⋅ ⋅∇ +⎜ ⎟∂ ∂⎝ ⎠

= + − ⋅ + ⋅ ⋅∇

∫ ∫ ∫ ∫

∫ ∫ ∫

V D

n V n D
 (3.7.1.1.19)

 

Approximate solution En by a linear combination of the base functions as equation (3.7.1.1.8).  
Substituting equation (3.7.1.1.8) into equation (3.7.1.1.19), we obtain 
 

( )

1 1

1 1

( )
    ( )  +

( ) ( )  

( )  
n

N N
njn m

i j i j nj
j jR R

N N
m

i j nj i j i HS j nj
j jR R R

i HS E i
R

E t
N N dR W N dR E t

t

N N dR E t N N dR N L N dR E t
t

N R R dR W

θ

θ θ

θ

= =

= =

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞
+ − ∇ ⋅⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎡ ⎤∂ ⎪ ⎪+ ∇ ⋅ ⋅ ∇ +⎢ ⎥ ⎨ ⎬⎜ ⎟ ⎢ ⎥∂⎢ ⎥ ⎪ ⎪⎝ ⎠ ⎣ ⎦⎩ ⎭⎣ ⎦

= + − ⋅

∑ ∑∫ ∫

∑ ∑∫ ∫ ∫

∫

V

D

n V ( )  m m
n i n

B B

E dB N E dBθ+ ⋅ ⋅∇∫ ∫ n D

 (3.7.1.1.20)

 

Equation (3.7.1.1.20) can be written in matrix form as  
 

{ } { } { }[ 1] [ 4] [ 2] [ 3] { } { }m mn
n n n

EQ Q E Q E Q E RLS B
t

∂⎧ ⎫ + + + = +⎨ ⎬∂⎩ ⎭
 (3.7.1.1.21)

 

where the matrices [Q1], [Q4], [Q2], [Q3] and load vectors {RLS}, and {B} are given by  
 

1 , 4ij i j ij i j
R R

Q N N dR Q N N dR
t
θθ ∂

= =
∂∫ ∫  (3.7.1.1.22)

 

2ij i j
R

Q W N dR= − ∇ ⋅∫ V  (3.7.1.1.23)

 

( )3ij i j i HS j
R R

Q N N dR N L N dRθ= ∇ ⋅ ⋅∇ +∫ ∫D  (3.7.1.1.24)

 

( )
ni i HS E

R

RLS N R R dRθ= +∫  (3.7.1.1.25)

 

( ) m m
i i n i n

B B

B W E dB N E dBθ= − ⋅ + ⋅ ⋅∇∫ ∫n V n D  (3.7.1.1.26)

 

Express En
m in terms of En-En

im, equation (3.7.1.1.21) is modified as 
 

{ } { } { } { } { }[ 1] [ 4] [ 2] [ 3] [ 2] [ 3]

{ } { }

im imn
n n n n n

EQ Q E Q E Q E Q E Q E
t

RLS B

∂⎧ ⎫ + + + = +⎨ ⎬∂⎩ ⎭
+ +

 (3.7.1.1.27)

 

At n+1-th time step, equation (3.7.1.1.27) is approximated as  
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{ } { } { } { } { }

{ } { } ( ){ }
( ){ } ( ){ } ( ){ }

1/ 2
1/ 2 1 1/ 2

1 2

1/ 21 1/ 2 1
1 2 1

1/ 21
2 1 2

1 1
1 2 1 2

  
[ 1] [ 4]  [ 2 ]   [ 2 ]  

[ 3 ]   [ 3 ]  [ 2 ]   

[ 2 ]  [ 3 ]   [ 3 ]  

{ } { } { }

n n
n n n n n n n

n V n V n

nn n n n n im
n n V n

n n nn im n im n im
V n n n

n n n

E E
Q Q E W Q E W Q E

t

W Q E W Q E W Q E

W Q E W Q E W Q E

W RLS W RLS W B W

+
+ + +

++ + +

++

+ +

−
+ + +

Δ

+ + =

+ + +

+ + + + { }nB

 (3.7.1.1.28)

 

So that  
 

{ } { }

( ) ( ){ } ( ) ( ){ }

1 1 1/ 2
1 1

1/ 21 1
2 2 1 1

1 1
1 2 1 2

[ 1] [ 1][ 4] [ 2 ] [ 3 ]   

[ 2 ] [ 3 ] *  [ 2 ] [ 3 ]  

{ } { } { } { }

n n n n
V n n

n nn n m n n im
V n V n

n n n n

Q QQ W Q W Q E E
t t

W Q W Q E W Q W Q E

W SS W SS W B W B

+ + +

++ +

+ +

⎛ ⎞+ + + = −⎜ ⎟Δ Δ⎝ ⎠

+ + + +

+ + +

 
(3.7.1.1.29)

 
 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
 
Dirichlet boundary condition 
 

( , , , )m m
n n b b bE E x y z t=  (3.7.1.1.30)

 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·V <0) 
 

( ) ( , , , )    ( , , , )m m m m
n n n b b b i i n b b bE E E x y z t B N E x y z t dBθ⋅ − ⋅∇ = ⋅ ⇒ = − ⋅∫

B

n V D n V n V  (3.7.1.1.31)

 

< Case 2 > Flow is going out from inside (n·V > 0): 
 

( ) 0    m m
n i i n

B

E B N E dBθ− ⋅ ⋅∇ = ⇒ = − ⋅∫n D n V  (3.7.1.1.32)

 
Cauchy boundary condition 
 

( ) ( , , , )     ( , , , )m m
n n

m m
n n b b b i i b b bE E

B

E E Q x y z t B N Q x y z t dBθ⋅ − ⋅∇ = ⇒ = −∫n V D  (3.7.1.1.33)

 
Neumann boundary condition 
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            ( ) ( , , , )

  ( , , , )

m
n

m
n

m
n b b bE

m
i i n i b b bE

B B

E Q x y z t

B N E dB N Q x y z t dB

θ− ⋅ ⋅∇ =

⇒ = − ⋅ −∫ ∫

n D

n V
 (3.7.1.1.34)

 
River/stream-subsurface interface boundary condition  
 

( ){ }
( ){ }

1

1

                               ( )

       [1 ( )] [1 ( )]   
2

 [1 ( )] [1 ( )]
2

m m
n n

Dm m
n n

Dm m
i i n n

B

E E

sign E sign E

B N sign E sign E dB

θ⋅ − ⋅∇
⋅

= + ⋅ + − ⋅ ⇒

⋅
= − + ⋅ + − ⋅∫

n V D
n V n V n V

n V n V n V

 
(3.7.1.1.35)

 
Overland-subsurface interface boundary condition  
 

( ){ }
( ){ }

2

2

                               ( )

       [1 ( )] [1 ( )]    
2

 [1 ( )] [1 ( )]
2

m m
n n

Dm m
n n

Dm m
i i n n

B

E E

sign E sign E

B N sign E sign E dB

θ⋅ − ⋅∇
⋅

= + ⋅ + − ⋅ ⇒

⋅
= − + ⋅ + − ⋅∫

n V D
n V n V n V

n V n V n V

 
(3.7.1.1.36)

 
3.7.1.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
According to the mixed predictor-corrector (on reaction rates) and operator-splitting (on immobile 
part of the kinetic variable) method, equation (3.7.1.1.2) can be separated into two equations as 
follows. 
 

( ) ( )1/ 2

( ) ( ) 

                    ( )
n

n nm m
n n m m m

n n n

m n im n
HS n HS E n

E E
E E E

t t

L E R R E
t

θθ θ

θθ

+
− ∂

+ + ∇ ⋅ − ∇ ⋅ ⋅∇
Δ ∂

∂
+ = + −

∂

V D
 (3.7.1.2.1)

 
1 1/ 2 1/ 2

1 1[( ) ( ) ] ( ) ( )
n n

n m n im n
n n im n im nn n n

E E n n
E E E n nR R E E

t t t
θ θθ θ

+ + +
+ +− + ∂ ∂

= − − +
Δ ∂ ∂

A A
 (3.7.1.2.2)

 
First, solve equation (3.7.1.2.1) and get (En

m)n+1/2. Second, solve equation (3.7.1.2.2) together with 
algebraic equations representing equilibrium reactions using BIOGEOCHM scheme to obtain the 
individual species concentration.  
 
Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport 
equation. Integrate equation (3.7.1.2.1) in the spatial dimensions over the entire region as follows. 
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( )

   ( )
n

m
m mn

i n HS n
R

m n im n
i n i HS E n

R R

EN E L E dR
t t

W E dR N R R E dR
t

θθ θ

θθ

⎡ ⎤∂ ∂⎛ ⎞− ∇ ⋅ ⋅ ∇ + +⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
∂⎛ ⎞+ ∇ ⋅ = + −⎜ ⎟∂⎝ ⎠

∫

∫ ∫

D

V
 (3.7.1.2.3)

 

Further, we obtain 
 

( )

         ( ) ( )
n

m
m m mn

i i n i n i HS n
R R R R

n im n m m
i HS E n i n i n

R B B

EN dR W E dR N E dR N L E dR
t t

N R R E dR W E dB N E dB
t

θθ θ

θθ θ

∂ ∂⎛ ⎞− ∇ ⋅ + ∇ ⋅ ⋅∇ + +⎜ ⎟∂ ∂⎝ ⎠
∂⎛ ⎞= + − − ⋅ + ⋅ ⋅∇⎜ ⎟∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫ ∫

V D

n V n D
 (3.7.1.2.4)

 

Approximate solution En
m by a linear combination of the base functions as follows. 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j
E E E t N R

=

≈ = ∑  (3.7.1.2.5)

 

Substituting equation (3.7.1.2.5) into equation (3.7.1.2.4), we obtain 
 

1 1

1

( )
         ( )

            ( ) ( )

( )
n

mN N
nj m

i j i j nj
j jR R

N
m

i j i HS j nj
j R R

n im n
i HS E n

R

E t
N N dR W N dR E t

t

N N dR N L N dR E t
t

N R R E dR
t

θ

θθ

θθ

= =

=

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞
− ∇ ⋅⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤∂⎪ ⎪⎛ ⎞+ ∇ ⋅ ⋅∇ + +⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∂⎛ ⎞= + − −⎜ ⎟∂⎝ ⎠

∑ ∑∫ ∫

∑ ∫ ∫

∫

V

D

( )m m
i n i n

B B

W E dB N E dBθ⋅ + ⋅ ⋅∇∫ ∫n V n D

 (3.7.1.2.6)

 

Equation (3.7.1.2.6) can be written in matrix form as  
 

{ } { }[ 1] [ 2]  [ 3]  { } { }
m

m mn
n n

dEQ Q E Q E RLS B
dt

⎧ ⎫
+ + = +⎨ ⎬

⎩ ⎭
 (3.7.1.2.7)

 

where the matrices [Q1], [Q2], and [Q3],  and load vectors {RLS} and {B} are given by  
 

1ij i j
R

Q N N dRθ= ∫  (3.7.1.2.8)

 

2ij i j
R

Q W N dR= − ∇ ⋅∫ V  (3.7.1.2.9)

 

( )3ij i j i HS j
R R

Q N N dR N L N dR
t
θθ ∂⎛ ⎞= ∇ ⋅ ⋅∇ + +⎜ ⎟∂⎝ ⎠∫ ∫D  (3.7.1.2.10)
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( )
n

n im n
i i HS E n

R

RLS N R R E dR
t
θθ ∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫  (3.7.1.2.11)

 

( )m m
i i n i n

B

B W E dB N E dBθ= − ⋅ + ⋅ ⋅∇∫ ∫
B

n V n D  (3.7.1.2.12)

 

At n+1-th time step, equation (3.7.1.2.7) is approximated as  
 

( ){ } ( ){ } ( ){ } ( ){ }
( ){ } ( ){ }

 1/ 2  

 1/ 2  1
1 2

 1/ 2  1 1 1
1 2 1 2 1 2

  
        [ 1] [ 2 ]  [ 2 ]  

[ 3 ]  [ 3 ]  { } { } { } { }

n nm m
n n n nn m n m

V n V n

n nn m n m n n n n
n n

E E
Q W Q E W Q E

t

W Q E W Q E W RLS W RLS W B W B

+

++

++ + +

−
+ +

Δ

+ + = + + +

 (3.7.1.2.13)

 

So that  
 

( ){ }
( ){ }

 1/ 21 1
1 1 2 2

 1 1
1 2 1 2

[ 1] [ 1][ 2 ] [ 3 ]  [ 2 ] [ 3 ] *

 { } { } { } { }

nn n m n n
V n V

nm n n n n
n

Q QW Q W Q E W Q W Q
t t

E W RLS W RLS W B W B

++ +

+ +

⎛ ⎞ ⎛ ⎞+ + = − −⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

+ + + +
 (3.7.1.2.14)

 

The boundary term {B} is calculated according to the specified boundary conditions the same as that 
in section 3.7.1.1. 
 
3.7.1.3 Operator-Splitting Approach 
 
According to the operator-splitting approach, equation (3.7.1.1.2) can be separated into two 
equations as follows. 
 

( ) ( )1/ 2

( ) ( )
n nm m

n n m m m
n n HS n HS

E E
E E L E R

t t
θθ θ

+
− ∂⎛ ⎞+ ∇ ⋅ − ∇⋅ ⋅∇ + + =⎜ ⎟Δ ∂⎝ ⎠

V D  (3.7.1.3.1)

 
1 1/ 2

1 1[( ) ( ) ] ( )
n

n m n im n
n im nn n n

E n
E E E nR E

t t
θθ

+ +
+ +− + ∂

= −
Δ ∂

A
 (3.7.1.3.2)

 

First, solve equation (3.7.1.3.1) and get (En
m)n+1/2. Second, solve equation (3.7.1.3.2) together with 

algebraic equations representing equilibrium reactions using BIOGEOCHM scheme to obtain the 
individual species concentration.  

Equation (3.7.1.3.1) can be solved through the same procedure as that in section 4.1.2, except for the 
load vectors {RLS}, which is calculated by the following equation. 
 

i i HS
R

RLS N R dR= ∫  (3.7.1.3.3)

 
 
3.7.2 Application of the Finite Element Method to the Advective Form of the Reactive 
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Transport Equations 
 
3.7.2.1 Fully-Implicit Scheme 
 
Conversion of equation (2.7.22) to advection form is expressed as 
 

( ) ( ) ,    [1, - ]as nn

m m mn
n n n n E EE

E E E E E M R n M N
t t

θθ θ θ∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + ∇ ⋅ = + ∈

∂ ∂
V D V  (3.7.2.1.1)

 

According to equation (2.3.1), the right-hand side term RHS and left hand side term LHS can be 
assigned as follows. 
 

 0,   ,    ,    0

 0,   ,  ,    

as
n

as as as
n n n

m
n HSE

o

HS HSE E E
o

hIf q M qE L n F RHS
t

hElse q M M L q n F R M
t

ρ
ρ

ρ
ρ

⎛ ⎞⎛ ⎞ ∂
≤ = = − − =⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

⎛ ⎞⎛ ⎞ ∂
> = = − − =⎜ ⎟⎜ ⎟⎜ ⎟∂⎝ ⎠⎝ ⎠

V

V

iA

iA

 (3.7.2.1.2)

 

Then equation (3.7.2.1.1) is modified as 
 

( )
n

m m mn
n n n HS n HS E

E E E E L E R R
t t

θθ θ θ∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ + = +

∂ ∂
V D  (3.7.2.1.3)

 

According to the fully-implicit scheme, equation (3.7.2.1.3) can be separated into two equations as 
follows. 
 

1/ 2

( ) *
n

n n
m m mn n

n n n HS n HS E
E E E E E L E R R

t t
θθ θ θ

+ − ∂
+ + ⋅∇ − ∇⋅ ⋅∇ + = +

Δ ∂
V D  (3.7.2.1.4)

 
1 1/ 2

0
n n

n nE E
t

+ +−
=

Δ
 (3.7.2.1.5)

 

First, solve equation (3.7.2.1.4) and get (En)n+1/2. Second, solve equation (3.7.2.1.5) together with 
algebraic equations representing equilibrium reactions using BIOGEOCHEM scheme to obtain the 
individual species concentration. Iteration is needed because reaction term in equation (3.7.2.1.4) 
needs to be updated by the results of (3.7.2.1.5). 
 
Option 1: Express En

m in terms of (En
m/En) En 

 

       

 
n

m m
n n n

n n
n n

m m
n n

n HS n HS E
n n

E E EE E
t E E

E EE L E R R
E E t

θ θ

θθ θ

⎛ ⎞ ⎛ ⎞∂
+ ⋅∇ − ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
− ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

V D

D
 (3.7.2.1.6)

 

Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport 
equation. Integrate equation (3.7.2.1.6) in the spatial dimensions over the entire region as follows. 
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( )
n

m m
n n n

i n HS n
n nR

m m
n n

i n n i HS E
n nR R

E E EN E L E dR
t E E t

E EW E E dR N R R dR
E E

θθ θ

θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
− ∇ ⋅ ⋅ ∇ + +⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪+ ⋅∇ − ∇ ⋅ ⋅ ∇ = +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∫

∫ ∫

D

V D

 (3.7.2.1.7)

                   

Further, we obtain 
 

        

( )

            

n

m m
n n n

i n i n
n nR R R

m m
n n

i n i HS n i HS E
n nR R R

m m
n n

i n i
n nB

E E EN dR W E dR N E dR
t E E

E EW E dR N L E dR N R R dR
E E t

E EN E dB W
E E

θ θ

θθ θ

θ θ

⎛ ⎞ ⎛ ⎞∂
+ ⋅∇ + ∇ ⋅ ⋅ ∇⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

⎡ ⎤⎛ ⎞ ⎛ ⎞∂
+ ∇ ⋅ ⋅ ∇ + + = +⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛
+ ⋅ ⋅ ∇ + ⋅ ⋅ ∇⎜ ⎟

⎝ ⎠ ⎝

∫ ∫ ∫

∫ ∫ ∫

∫

iV D

D

n D n D n
B

E dB
⎡ ⎤⎞
⎢ ⎥⎜ ⎟

⎠⎣ ⎦
∫

 (3.7.2.1.8)

 

Approximate solution En by a linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N R
=

≈ = ∑  (3.7.2.1.9)

 

Substituting equation (3.7.2.1.9) into equation (3.7.2.1.8), we obtain 
 

1 1

1

( )
                 ( )  

 ( ) ( )

mN N
nj n

i j i j nj
j j nR R

m mN
n n

i j nj i j nj
j n nR R

E t EN N dR W N dR E t
t E

E EW N dR E t W N dR E t
E E

θ

θ

= =

=

⎧ ⎫⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞⎪ ⎪+ ⋅ ∇⎢ ⎥ ⎨ ⎬⎜ ⎟ ⎢ ⎥⎜ ⎟∂⎢ ⎥ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎩ ⎭
⎧⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪⎪ ⎪+ ⋅ ∇ + ∇ ⋅ ⋅ ∇⎢ ⎥ ⎨⎨ ⎬⎜ ⎟ ⎢ ⎥⎜ ⎟

⎢ ⎥ ⎝ ⎠⎪ ⎪⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎩ ⎭⎩

∑ ∑∫ ∫

∑ ∫ ∫

V

V D

( )

1

1

               ( )  

                           ( )   
n

N

j

m mN
n n

i j i HS j nj
j n nR R

m
i HS E i n

R B

E EN N dR N L N dR E t
E E t

N R R dR N E dB

θθ

θ θ

=

=

⎫⎪
⎬

⎪ ⎪⎭
⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞∂⎪ ⎪+ ∇ ⋅ ⋅ ∇ + +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

= + + ⋅ ⋅∇

∑

∑ ∫ ∫

∫ ∫

D

n D

 (3.7.2.1.10)

 

Equation (3.7.2.1.10) can be written in matrix form as  
 

{ } { }[ 1] [ 2] [ 3] { } { }n
n n

EQ Q E Q E RLS B
t

∂⎧ ⎫ + + = +⎨ ⎬∂⎩ ⎭
 (3.7.2.1.11)

 

where the matrices [Q1], [Q2], [Q3] and load vectors {SS}, and {B} are given by  
 

1 n
ij i j

R

Q N N dRθ= ∫  (3.7.2.1.12)
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                2
m

n
ij i j

nR

m m
n n

i j i j
n nR R

EQ W N dR
E

E EW N dR W N dR
E E

θ

⎛ ⎞
= ⋅ ∇⎜ ⎟

⎝ ⎠
⎡ ⎤⎛ ⎞

+ ⋅ ∇ + ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

∫

∫ ∫

V

V D
 (3.7.2.1.13)

 

3
m m

n n
ij i j i HS j

n nR R

E EQ N N dR N L N dR
E E t

θθ
⎛ ⎞ ⎛ ⎞∂

= ∇ ⋅ ⋅ ∇ + +⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠
∫ ∫D  (3.7.2.1.14)

 

( )
ni i HS E

R

RLS N R R dRθ= +∫  (3.7.2.1.15)

 

( )m
i i n

B

B N E dBθ= ⋅ ⋅∇∫n D  (3.7.2.1.16)

 

At n+1-th time step, equation (3.7.2.1.11) is approximated as  
 

{ } { } { } { } { }
{ }

1/ 2
1 1/ 2 1 1/ 2

1 2 1

1 1
2 1 2 1 2

  
[ 1] [ 2 ]  [ 2 ]  [ 3 ]   

[ 3 ]  { } { } { } { }

n n
n n n n n n n n

V n V n n

n n n n n n
n

E E
Q W Q E W Q E W Q E

t
W Q E W RLS W RLS W B W B

+
+ + + +

+ +

−
+ + +

Δ
+ = + + +

 (3.7.2.1.17)

 

So that  
 

{ } { }1 1 1/ 2
1 1 2 2

1 1
1 2 1 2

[ 1] [ 1][ 2 ] [ 3 ]  [ 2 ] [ 3 ]  

{ } { } { } { }

n n n n n n
V n V n

n n n n

Q QW Q W Q E W Q W Q E
t t

W RLS W RLS W B W B

+ + +

+ +

⎛ ⎞ ⎛ ⎞+ + = − −⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠
+ + + +

 (3.7.2.1.18)

 

 
Option 2: Express En

m in terms of En-En
im  

 
Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport 
equation. Integrate equation (3.7.2.1.6) in the spatial dimensions over the entire region as follows. 
 

( )

( )
n

m m mn
i n n HS n i n

R R

i HS E
R

EN E E L E dR W E dR
t t

N R R dR

θθ θ

θ

∂ ∂⎡ ⎤+ − ∇ ⋅ ⋅ ∇ + ⋅ + ⋅∇ =⎢ ⎥∂ ∂⎣ ⎦

+

∫ ∫

∫

D V
 (3.7.2.1.19)

 

Further, we obtain 
 

( )

( )

 

( )
n

m mn
i i n i n i n

R R R R

m m
i HS n i HS E i n

R R B

EN dR N E dR W E dR N E dR
t t

N L E dR N R R dR N E dB

θθ θ

θ θ

∂ ∂
+ + ⋅∇ + ∇ ⋅ ⋅∇ +

∂ ∂

⋅ = + + ⋅ ⋅∇

∫ ∫ ∫ ∫

∫ ∫ ∫

V D

n D
 (3.7.2.1.20)
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Approximate solution En by a linear combination of the base functions as equation (3.7.2.1.9). 
Substituting equation (3.7.2.1.9) into equation (3.7.2.1.20), we obtain 
 

( )

1 1

1 1

( )
 + ( )

( )  + ( )  

     ( )  
n

N N
nj

i j i j nj
j jR R

N N
m m

i j nj i j i HS j nj
j jR R R

i HS E
R

E t
N N dR N N E t dR

t t

W N dR E t N N dR N L N dR E t

N R R dR N

θθ

θ

θ

= =

= =

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞∂
+⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪⋅∇ ∇ ⋅ ⋅∇ +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
⎪ ⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

= + + ⋅

∑ ∑∫ ∫

∑ ∑∫ ∫ ∫

∫

V D

n ( )  m
i n

B

E dBθ ⋅∇∫ D

 (3.7.2.1.21)

 

Equation (3.7.2.1.21) can be written in matrix form as  
 

{ } { } { }[ 1] [ 4] [ 2] [ 3] { } { }m mn
n n n

EQ Q E Q E Q E RLS B
t

∂⎧ ⎫ + + + = +⎨ ⎬∂⎩ ⎭
 (3.7.2.1.22)

 

where the matrices [Q1], [Q2], [Q3] and load vectors {SS}, and {B} are given by  
 

1 , 4ij i j ij i j
R R

Q N N dR Q N N dR
t
θθ ∂

= =
∂∫ ∫  (3.7.2.1.23)

 

2ij i j
R

Q W N dR= ⋅∇∫ V  (3.7.2.1.24)

 

( )3ij i j i HS j
R R

Q N N dR N L N dRθ= ∇ ⋅ ⋅∇ +∫ ∫D  (3.7.2.1.25)

 

( )
ni i HS E

R

RLS N R R dRθ= +∫  (3.7.2.1.26)

 

( )m
i i n

B

B N E dBθ= ⋅ ⋅∇∫ n D  (3.7.2.1.27)

 

Express En
m in terms of En-En

im, equation (3.7.2.1.22) is modified as 
 

{ } { } { }

{ } { }

[ 1] [ 4] [ 2] [ 3]

[ 2] [ 3] { } { }

n
n n n

im im
n n

EQ Q E Q E Q E
t

Q E Q E RLS B

∂⎧ ⎫ + + + =⎨ ⎬∂⎩ ⎭

+ + +
 (3.7.2.1.28)

 

At n+1-th time step, equation (3.7.2.1.28) is approximated as  
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{ } { } { } { } { }

{ } { } ( ){ }
( ){ } ( ){ } ( ){ }

1/ 2
1/ 2 1 1/ 2

1 2

1/ 21 1/ 2 1
1 2 1

1/ 21
2 1 2

1 1
1 2 1 2

  
[ 1] [ 4]  [ 2 ]   [ 2 ]  

[ 3 ]   [ 3 ]  [ 2 ]   

[ 2 ]  [ 3 ]   [ 3 ]  

{ } { } { }

n n
n n n n n n n

n V n V n

nn n n n n im
n n V n

n n nn im n im n im
V n n n

n n n

E E
Q Q E W Q E W Q E

t

W Q E W Q E W Q E

W Q E W Q E W Q E

W RLS W RLS W B W

+
+ + +

++ + +

++

+ +

−
+ + +

Δ

+ + =

+ + +

+ + + + { }nB

 (3.7.2.1.29)

 

So that  
 

{ } { }

( ) ( ){ } ( ) ( ){ }

1 1 1/ 2
1 1

1/ 2

2 2 1 1

1 1
1 2 1 2

[ 1] [ 1][ 4] [ 2 ] [ 3 ]   

[ 2 ] [ 3 ]  [ 2 ] [ 3 ]  

{ } { } { } { }

n n n n
V n n

n nn n m n n im
V n V n

n n n n

Q QQ W Q W Q E E
t t

W Q W Q E W Q W Q E

W RLS W RLS W B W B

+ + +

+

+ +

⎛ ⎞+ + + =⎜ ⎟Δ Δ⎝ ⎠

− + + + +

+ + +

 
(3.7.2.1.30)

 

For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
 
Dirichlet boundary condition 
 

( , , , )m m
n n b b bE E x y z t=  (3.7.2.1.31)

 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·V < 0) 
 

     ( ) ( , , , )

  ( , , , )

m m m
n n n b b b

m m
i i n i n b b b

E E E x y z t

B N E dB N E x y z t dB

θ⋅ − ⋅∇ = ⋅

⇒ = ⋅ − ⋅∫ ∫
B B

n V D n V

n V n V  (3.7.2.1.32)

 

< Case 2 > Flow is going out from inside (n·V > 0): 
 

( ) 0    0m
n iE Bθ− ⋅ ⋅∇ = ⇒ =n D  (3.7.2.1.33)

 
Cauchy boundary condition 
 

     ( ) ( , , , )

   ( , , , )

m
n

m
n

m m
n n b b bE

m
i i n i b b bE

B

n E E Q x y z t

B N E dB N Q x y z t dB

θ⋅ − ⋅∇ =

⇒ = ⋅ −∫ ∫
B

V D

n V
 (3.7.2.1.34)

 
Neumann boundary condition 
 

( ) ( , , , )     ( , , , )m m
n n

m
n b b b i i b b bE E

B

E Q x y z t B N Q x y z t dBθ− ⋅ ⋅∇ = ⇒ = −∫n D  (3.7.2.1.35)
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River/stream-subsurface interface boundary condition  
 

( ){ }
( ){ }

1

1

( )  [1 ( )] [1 ( )]   
2

 [1 ( )] [1 ( )]
2

Dm m m m
n n n n

Dm m m
i i n i n n

B B

E E sign E sign E

B N E dB N sign E sign E dB

θ ⋅
⋅ − ⋅∇ = + ⋅ + − ⋅ ⇒

⋅
= ⋅ − + ⋅ + − ⋅∫ ∫

n Vn V D n V n V

n Vn V n V n V
 (3.7.2.1.36)

 
Overland-subsurface interface boundary condition  
 

( ){ }
( ){ }

2

2

( )  [1 ( )] [1 ( )]   
2

 [1 ( )] [1 ( )]
2

Dm m m m
n n n n

Dm m m
i i n i n n

B

E E sign E sign E

B N E dB N sign E sign E dB

θ ⋅
⋅ − ⋅∇ = + ⋅ + − ⇒

⋅
= ⋅ − + ⋅ + − ⋅∫ ∫

B

n Vn V D n V n × V

n Vn V n V n V
 (3.7.2.1.37)

 
3.7.2.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
According to the mixed predictor-corrector (on reaction rates) and operator-splitting (on immobile 
part of the kinetic variable) method, equation (3.7.2.1.3) can be separated into two equations as 
follows. 
 

( ) ( )1/ 2

( )

( )
n

n nm m
n n m m m m

n n n HS n

n im n
HS E n

E E
E E E L E

t t

R R E
t

θθ θ

θθ

+
− ∂

+ + ⋅∇ − ∇ ⋅ ⋅∇ + =
Δ ∂

∂
+ −

∂

V D
 (3.7.2.2.1)

 
1 1/ 2

1 1[( ) ( ) ] ( ) ( )
n n

n m n im n
n n im n im nn n n

E E n n
E E E n nR R E E

t t t
θ θ+ +

+ +− + ∂ ∂
= − − +

Δ ∂ ∂
A A

 (3.7.2.2.2)

 

First, solve equation (3.7.2.2.1) and get (En
m)n+1/2. Second, solve equation (3.7.2.2.2) together with 

algebraic equations representing equilibrium reactions using BIOGEOCHM scheme to obtain the 
individual species concentration.  
 
Use Galerkin or Petrov-Galerkin Finite-Element Method for the spatial descretization of transport 
equation. Integrate equation (3.7.2.2.1) in the spatial dimensions over the entire region as follows. 
 

( )

( )
n

m
m m mn

i n HS n i n
R R

n im n
i HS E n

R

EN E L E dR W E dR
t t

N R R E dR
t

θθ θ

θθ

⎡ ⎤∂ ∂⎛ ⎞− ∇ ⋅ ⋅ ∇ + + + ⋅∇ =⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎦
∂⎛ ⎞+ −⎜ ⎟∂⎝ ⎠

∫ ∫

∫

D V
 (3.7.2.2.3)

 

Further, we obtain 
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( )

                     ( ) ( )
n

m
m m mn

i i n i n i HS n
R R R R

n im n m
i HS E n i n

R B

EN dR W E dR N E dR N L E dR
t t

N R R E dR N E dB
t

θθ θ

θθ θ

∂ ∂⎛ ⎞+ ⋅∇ + ∇ ⋅ ⋅∇ + +⎜ ⎟∂ ∂⎝ ⎠

∂⎛ ⎞= + − + ⋅ ⋅∇⎜ ⎟∂⎝ ⎠

∫ ∫ ∫ ∫

∫ ∫

V D

n D
 (3.7.2.2.4)

 

Approximate solution En
m by a linear combination of the base functions as follows. 

 

1

ˆ ( ) ( )
N

m m m
n n nj j

j
E E E t N R

=

≈ = ∑  (3.7.2.2.5)

 

Substituting equation (3.7.2.2.5) into equation (3.7.2.2.4), we obtain 
 

1 1

1

( )
( )

    ( ) ( )

       ( ) (
n

mN N
njn m

i j i j nj
j jR R

N
m

i j i HS j nj
j R R

n im n
i HS E n i

R B

E t
N N dR W N dR E t

t

N N dR N L N dR E t
t

N R R E dR N
t

θ

θθ

θθ θ

= =

=

⎡ ⎤ ⎡ ⎤∂⎛ ⎞ ⎛ ⎞
+ ⋅ ∇⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟∂⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

⎧ ⎫⎡ ⎤∂⎪ ⎪⎛ ⎞+ ∇ ⋅ ⋅∇ + +⎨ ⎬⎢ ⎥⎜ ⎟∂⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∂⎛ ⎞= + − + ⋅⎜ ⎟∂⎝ ⎠

∑ ∑∫ ∫

∑ ∫ ∫

∫ ∫

V

D

n D )m
nE dB⋅ ∇

 (3.7.2.2.6)

 

Equation (3.7.2.2.6) can be written in matrix form as  
 

{ } { }[ 1] [ 2]  [ 3]  { } { }
m

m mn
n n

dEQ Q E Q E RLS B
dt

⎧ ⎫
+ + = +⎨ ⎬

⎩ ⎭
 (3.7.2.2.7)

 

where the matrices [Q1], [Q2], and [Q3],  and load vectors {RLS} and {B} are given by  
 

1ij i j
R

Q N N dRθ= ∫  (3.7.2.2.8)

 

2ij i j
R

Q W N dR= ⋅∇∫ V  (3.7.2.2.9)

 

( )3ij i j i HS j
R R

Q N N dR N L N dR
t
θθ ∂⎛ ⎞= ∇ ⋅ ⋅∇ + +⎜ ⎟∂⎝ ⎠∫ ∫D  (3.7.2.2.10)

 

( )
n

n im n
i i HS E n

R

RLS N R R E dR
t
θθ ∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠∫  (3.7.2.2.11)

 

( )m
i i n

B

B N E dBθ= ⋅ ⋅∇∫n D  (3.7.2.2.12)

 

At n+1-th time step, equation (3.7.2.2.7) is approximated as  
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( ){ } ( ){ } ( ){ }
( ){ } ( ){ } ( ){ }

 1/ 2  

 1/ 21
1

  1/ 2  1
2 1 2

1 1
1 2 1 2

  
       [ 1] [ 2 ]  

[ 2 ]  [ 3 ]  [ 3 ]  

              { } { } { } { }

n nm m
n n nn m

V n

n n nn m n m n m
V n n n

n n n n

E E
Q W Q E

t

W Q E W Q E W Q E

W RLS W RLS W B W B

+

++

++

+ +

−
+

Δ

+ + +

= + + +

 
(3.7.2.2.13)

 

So that  
 

( ){ }
( ){ }

 1/ 21 1
1 1 2 2

 1 1
1 2 1 2

[ 1 ] [ 1 ][ 2 ] [ 3 ]  [ 2 ] [ 3 ] *

 { } { } { } { }

n nnn n m n n
V n V

nm n n n n
n

Q QW Q W Q E W Q W Q
t t

E W RLS W RLS W B W B

++ +

+ +

⎛ ⎞ ⎛ ⎞
+ + = − −⎜ ⎟ ⎜ ⎟Δ Δ⎝ ⎠ ⎝ ⎠

+ + + +

 (3.7.2.2.14)

 

The boundary term {B} is calculated according the same as that in section 3.7.2.1. 
 
3.7.3 Operator-Splitting Approach 
 
According to the operator-splitting approach, equation (3.7.2.1.2) can be separated into two 
equations as follows. 
 

( ) ( )1/ 2

( )
n nm m

n n m m m
n n HS n HS

E E
E E L E R

t t
θθ θ

+
− ∂⎛ ⎞+ ⋅∇ − ∇ ⋅ ⋅∇ + + =⎜ ⎟Δ ∂⎝ ⎠

V D  (3.7.2.3.1)

 
1 1/ 2

1 1[( ) ( ) ] ( )
n

n m n im n
n im nn n n

E n
E E E nR E

t t
θ+ +

+ +− + ∂
= −

Δ ∂
A

 (3.7.2.3.2)

 

First, solve equation (3.7.2.3.1) and get (En
m)n+1/2. Second, solve equation (3.7.2.3.2) together with 

algebraic equations representing equilibrium reactions using BIOGEOCHM scheme to obtain the 
individual species concentration.  

Equation (3.7.2.3.1) can be solved through the same procedure as that in section 4.1.2, except for the 
load vectors {RLS}, which is calculated by the following equation. 
 

i i HS
R

RLS N R dR= ∫  (3.7.2.3.3)

 
 
3.7.4 Application of the Modified Lagrangian-Eulerian Approach to the Largrangian Form 

of the Reactive Transport Equations 
 
3.7.4.1 Fully-Implicit Scheme 
 
Option 1: Express En

m in terms of (En
m /En) En 

 
Express En

m in terms of (En
m/En) En to make En’s as primary dependent variables, equation 
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(3.7.2.1.4) is modified as 
 

( ) -

n

m m m
n n n n

n n n
n n n

m m m
n n n

HS n HS E
n n n

E E E EE E E
t t E E E

E E EL E R R
E E E

θθ θ θ

θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂
+ + ⋅ ∇ ⋅ ∇ − ∇ ⋅ ⋅ ∇⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⋅∇ − ∇ ⋅ ⋅ ∇ + = +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

V D D

V D

 (3.7.3.1.1)

 

Assign the particle tracking velocity Vtrack as follows 
 

1 -
m m

n n
track

n n

E E
E E

θ
θ

⎡ ⎤⎛ ⎞
= ⋅ ∇⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
V V D  (3.7.3.1.2)

 

Equation (3.7.3.1.1) in Lagrangian-Eulerian form is written as  
 
In Lagrangian step, 
 

0n n
track n

DE E E
D tτ

∂
= + ⋅∇ =

∂
V  (3.7.3.1.3)

 

In Eulerian step, 
 

n
n L

DE D KE R
Dτ

− + =  (3.7.3.1.4)

where 
m

n
n

n

ED E
E

θ θ
⎛ ⎞

= ∇ ⋅ ⋅∇⎜ ⎟
⎝ ⎠

D  (3.7.3.1.5)

 

1 m m m
n n n

HS
n n n

E E EK L
E E t E

θθ
θ

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂⎪ ⎪= ⋅ ∇ − ∇ ⋅ ⋅ ∇ + +⎨ ⎬⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
V D  (3.7.3.1.6)

 

( )1
nL HS ER R Rθ

θ
= +  (3.7.3.1.7)

 

The integration of equation (3.7.3.1.5) can be written as 
 

( ) ( )
m m

n n
i i n i n

n nR R B

E EN DdR N E dR N E dB
E E

θ θ θ= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇∫ ∫ ∫D n D  (3.7.3.1.8)

 

Approximate D and En by linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

D D D t N R
=

≈ = ∑  (3.7.3.1.9)
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1

ˆ ( ) ( )
N

n n nj j
j

E E E t N R
=

≈ = ∑  (3.7.3.1.10)

 

Put Equations (3.7.3.1.9) and (3.7.3.1.10) into Equation (3.7.3.1.8), we obtain 
 

1

1

                              

( ) ( )

N

i j j
j R

m mN
n n

i j nj i n
j n nR B

N N dR D

E EN N dR E N E dB
E E

θ

θ θ

=

=

⎡ ⎤⎛ ⎞
∗⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞

= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫

∑ ∫ ∫D n D

 (3.7.3.1.11)

 

Assign matrices [QA] and [QD] and load vector {B} as following. 
 

ij i j
R

QA N N dRθ= ∫  (3.7.3.1.12)

 

( )
m

n
ij i j

nR

EQD N N dR
E

θ= ∇ ⋅ ⋅∇∫ D  (3.7.3.1.13)

 

( )
m

n
i i n

nB

EB N E dB
E

θ= ⋅ ⋅∇∫n D  (3.7.3.1.14)

 

Equation (3.7.3.1.11) is expressed as 
 

[ ]{ } [ ]{ } { }nQA D QD E B= − +  (3.7.3.1.15)
 

Lump matrix [QA] into diagonal matrix and update   
 

ij ij iiQD QD QA=  (3.7.3.1.16)
 

( ) ( )
m

m n
i i n ii i n ii

nB B

EB N E dB QA N E dB QA
E

θ θ= ⋅ ⋅∇ − ⋅ ⋅∇∫ ∫n D n D  (3.7.3.1.17)

 

Then 
 

{ } [ ]{ } { }nD QD E B= − +  (3.7.3.1.18)
 

 
Equation (3.7.3.1.4) written in matrix form is then expressed as 
 

{ }

{ } [ ]{ }( ) { } { } { }

1 1 1/ 2
1 1

** * 1 * 1
2 2 1 2 1

[ ]                     [ ]  

[ ]    { }    

n n n
n

m n n
n n L L

U W QD W K E

U E W K E W D W R W R W B

τ

τ

+ + +

+ +

⎛ ⎞⎡ ⎤+ + =⎜ ⎟⎣ ⎦Δ⎝ ⎠

− + + + +
Δ

 (3.7.3.1.19)

 

where [U] is the unit matrix, Δτ is the tracking time, W1 and W2 are time weighting factors,  matrices 
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and vectors with n+1 and n+1/2 are evaluated over the region at the new time step n+1. Matrices and 
vectors with superscript * corresponds to the n-th time step values interpolated at the location where 
a node is tracked through particle tracking in Lagrangian step. 
 
For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
 
Dirichlet boundary condition 
 

( , , , )  

( ) ( )

m m
n n b b b

m
m n

i i n ii i n ii
nB B

E E x y z t

EB N E dB QA N E dB QA
E

θ θ

= ⇒

= ⋅ ⋅∇ − ⋅ ⋅∇∫ ∫n D n D
 (3.7.3.1.20)

 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·V < 0) 
 

( ) ( , , , )     

( , , , ) ( )

m m m m
n n n b b b i i n ii

m
m n

i n b b b ii i n ii
nB B

E E VE x y z t B N E dB QA

EN E x y z t dB QA N E dB QA
E

θ

θ

⋅ − ⋅∇ = ⋅ ⇒ = ⋅

− ⋅ − ⋅ ⋅∇

∫

∫ ∫

B

n V D n n V

n V n D
 (3.7.3.1.21)

 

< Case 2 > Flow is going out from inside (n·V > 0): 
 

   ( ) 0      ( )
m

m n
n i i n ii

nB

EE B N E dB QA
E

θ θ− ⋅ ⋅∇ = ⇒ = − ⋅ ⋅∇∫n D n D  (3.7.3.1.22)

 
Cauchy boundary condition 
 

( ) ( , , , )     

( , , , ) ( )

m
n

m
n

m m m
n n b b b i i n iiE

B
m

n
i b b b ii i n iiE

nB B

n VE D E Q x y z t B N E dB QA

EN Q x y z t dB QA N E dB QA
E

θ

θ

⋅ − ⋅∇ = ⇒ = ⋅

− − ⋅ ⋅∇

∫

∫ ∫

n V

n D
 (3.7.3.1.23)

 
Neumann boundary condition 
 

( ) ( , , , )    ( , , , )

( )

m m
n n

m
n b b b i i b b b iiE E

B
m

n
i n ii

nB

E Q x y z t B N Q x y z t dB QA

EN E dB QA
E

θ

θ

− ⋅ ⋅∇ = ⇒ = −

− ⋅ ⋅∇

∫

∫

n D

n D
 (3.7.3.1.24)

 
River/stream-subsurface interface boundary condition  
 



 3-198

( ){ }

( ){ }

1

1

( )  [1 ( )] [1 ( )]
2

   ( )

 [1 ( )] [1 ( )]
2

Dm m m m
n n n n

m
m n

i i n ii i n ii
nB B

Dm m
i n n ii

B

E E sign E sign E

EB N E dB QA N E dB QA
E

N sign E sign E dB QA

θ

θ

⋅
⋅ − ⋅∇ = + ⋅ + − ⋅

⇒ = ⋅ − ⋅ ⋅∇

⋅− + ⋅ + − ⋅

∫ ∫

∫

n Vn V D n V n V

n V n D

n V n V n V

 (3.7.3.1.25)

 
Overland-subsurface interface boundary condition  
 

( ){ }

( ){ }

2

2

( )  [1 ( )] [1 ( )]
2

   ( )

 [1 ( )] [1 ( )]
2

Dm m m m
n n n n

m
m n

i i n ii i n ii
nB B

Dm m
i n n ii

B

E E sign E sign E

EB N E dB QA N E dB QA
E

N sign E sign E dB QA

θ

θ

⋅
⋅ − ⋅∇ = + ⋅ + − ⋅

⇒ = ⋅ − ⋅ ⋅∇

⋅− + ⋅ + − ⋅

∫ ∫

∫

n Vn V D n V n V

n V n D

n V n V n V

 (3.7.3.1.26)

 

 
Option 2: Express En

m in terms of En-En
m  

 
Express En

m in terms of En-En
m to make En’s as primary dependent variables, equation (3.7.2.1.4) 

is modified as 
 

( )

( )
 

n

n
n n n HS n

im im im
n n HS n HS E

E E E E L E
t t

E E L E R R

θθ θ

θ θ

∂ ∂
+ + ⋅∇ − ∇ ⋅ ⋅∇ +

∂ ∂
= ⋅∇ − ∇ ⋅ ⋅∇ + + +

V D

V D
 (3.7.3.1.27)

 

Assign the particle tracking velocity Vtrack as follows 
 

1
track θ

=V V  (3.7.3.1.28)

 

 
Equation (3.7.3.1.27) in Lagrangian-Eulerian form is written as  
 
In Lagrangian step, 
 

0n n
track n

DE E E
D tτ

∂
= + ⋅∇ =

∂
V  (3.7.3.1.29)

 

In Eulerian step, 
 

n
n L

DE D KE T R
Dτ

− + = +  (3.7.3.1.30)

where 
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( )nD Eθ θ= ∇ ⋅ ⋅∇D  (3.7.3.1.31)
 

HSL
tK

θ

θ

∂+
∂=  

(3.7.3.1.32)

 

( )im im
n nT E Eθ θ= ⋅∇ − ∇ ⋅ ⋅∇V D  (3.7.3.1.33)

 

( )1
n

im
L HS n HS EnR L E R Rθ

θ
= + +  (3.7.3.1.34)

 

 
The integration of equation (3.7.3.1.31) can be written as 
 

( ) ( )i i n i n
R R B

N DdR N E dR N E dBθ θ θ= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇∫ ∫ ∫D n D  (3.7.3.1.35)

 

Approximate D and En by linear combination of the base functions as follows. 
 

1

ˆ ( ) ( )
N

j j
j

D D D t N R
=

≈ = ∑  (3.7.3.1.36)

 

1

ˆ ( ) ( )
N

n n nj j
j

E E E t N R
=

≈ = ∑  (3.7.3.1.37)

 

Put Equations (3.7.3.1.36) and (3.7.3.1.37) into Equation (3.7.3.1.35), we obtain 
 

1

1

                              

( ) ( )

N

i j j
j R

N

i j nj i n
j R B

N N dR D

N N dR E N E dB

θ

θ θ

=

=

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
= − ∇ ⋅ ⋅∇ + ⋅ ⋅∇⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦

∑ ∫

∑ ∫ ∫D n D

 (3.7.3.1.38)

 

Assign matrices [QA] and [QD] and load vector {B} as following. 
 

ij i j
R

QA N N dRθ= ∫  (3.7.3.1.39)

 

( )ij i j
R

QD N N dRθ= ∇ ⋅ ⋅∇∫ D  (3.7.3.1.40)

 

1 ( )i i n
B

B N E dBθ= ⋅ ⋅∇∫ n D  (3.7.3.1.41)

 
 

Equation (3.7.3.1.31) is expressed as 
 



 3-200

[ ]{ } [ ]{ } { 1}nQA D QD E B= − +  (3.7.3.1.42)
 

Similarly, 
 

[ ]{ } [ ]{ } { 2}im
nQA T QT E B= +  (3.7.3.1.43)

where 
( )ij i j i j

R R

QT N N dR N N dRθ= ⋅∇ − ∇ ⋅ ⋅∇∫ ∫V D  (3.7.3.1.44)

 

2 ( )im
i i n

B

B N E dBθ= − ⋅ ⋅∇∫ n D  (3.7.3.1.45)

 

Lump matrix [QA] into diagonal matrix and update   
 

ij ij iiQD QD QA=  (3.7.3.1.46)
 

1 1i i iiB B QA=  (3.7.3.1.47)
 

ij ij iiQT QT QA=  (3.7.3.1.48)
 

2 2i i iiB B QA=  (3.7.3.1.49)
 

Then 
 

{ } [ ]{ } { 1}nD QD E B= − +  (3.7.3.1.50)
 

{ } [ ]{ } { 2}im
nT QT E B= +  (3.7.3.1.51)

 

 
Assign  
 

1 2 ( )m
i i i i n ii

B

B B B N E dB QAθ= + = ⋅ ⋅∇∫ n D  (3.7.3.1.52)

So that  
{ } { } [ ]{ } [ ]{ } { }im

n nD T QD E QT E B+ = − + +  (3.7.3.1.53)
 

 
Equation (3.7.3.1.30) written in matrix form is then expressed as 
 

{ } { } [ ]{ }( )

( ){ } { } { } { }

1 1 1/ 2
1 1 2

 11 * 1 1
1 2 1 2 1

[ ] [ ]        [ ]      

[ ]  ({ } { })    

n n n
n n n

nn im n n
n L L

U UW QD W K E E W K E

W QT E W D T W R W R W B

τ τ
∗+ + + ∗

++ + ∗ +

⎛ ⎞⎡ ⎤+ + = −⎜ ⎟⎣ ⎦Δ Δ⎝ ⎠

+ + + + + +

 (3.7.3.1.54)

 

 
For interior nodes i, Bi is zero, for boundary nodes i = b, Bi is calculated according to the specified 
boundary condition and shown as follows. 
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Dirichlet boundary condition 
 

( , , , )    ( )m m m
n n b b b i i n ii

B

E E x y z t B N E dB QAθ= ⇒ = ⋅ ⋅∇∫ n D  (3.7.3.1.55)

 
Variable boundary condition 
 
< Case 1 > when flow is going in from outside (n·V < 0) 
 

               ( ) ( , , , )

  ( , , , )

m m m
n n n b b b

m m
i i n ii i n b b b ii

B

E E E x y z t

B N E dB QA N E x y z t dB QA

θ⋅ − ⋅∇ = ⋅

⇒ = ⋅ − ⋅∫ ∫
B

n V D n V

n V n V  (3.7.3.1.56)

 

< Case 2 > Flow is going out from inside (n·V > 0): 
 

   ( ) 0      0m
n in E Bθ− ⋅ ⋅∇ = ⇒ =D  (3.7.3.1.57)

 
Cauchy boundary condition 
 

               ( ) ( , , , )

   ( , , , )

m
n

m
n

m m
n n b b bE

m
i i n ii i b b b iiE

B B

E E Q x y z t

B N E dB QA N Q x y z t dB QA

θ⋅ − ⋅∇ =

⇒ = ⋅ −∫ ∫

n V D

n V
 (3.7.3.1.58)

 
Neumann boundary condition 
 

( ) ( , , , )    ( , , , )m m
n n

m
n b b b i i b b b iiE E

B

E Q x y z t B N Q x y z t dB QAθ− ⋅ ⋅∇ = ⇒ = −∫n D  (3.7.3.1.59)

 
River/stream-subsurface interface boundary condition  
 

( ){ }

( ){ }

1

1

( )  [1 ( )] [1 ( )]
2

                                     

       [1 ( )] [1 ( )]
2

Dm m m m
n n n n

m
i i n ii

B

Dm m
i n n ii

B

E E sign E sign E

B N E dB QA

N sign E sign E dB QA

θ ⋅
⋅ − ⋅ ∇ = + ⋅ + − ⋅

⇒ = ⋅

⋅− + ⋅ + − ⋅

∫

∫

n Vn V D n V n V

n V

n V n V n V

 (3.7.3.1.60)

 
Overland-subsurface interface boundary condition  
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( ){ }

( ){ }

2

2

( )  [1 ( )] [1 ( )]
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       [1 ( )] [1 ( )]
2

Dm m m m
n n n n

m
i i n ii

B

Dm m
i n n ii

B

E E sign E sign E

B N E dB QA

N sign E sign E dB QA

θ ⋅
⋅ − ⋅∇ = + ⋅ + − ⋅

⇒ = ⋅

⋅− + ⋅ + − ⋅

∫

∫

n Vn V D n V n V

n V

n V n V n V

 (3.7.3.1.61)

 

 
At upstream flux boundary nodes, equation (3.7.3.1.19) and (3.7.3.1.54) cannot be applied because 
Δτ equals zero. Thus, we propose a modified LE approach in which the matrix equation for upstream 
boundary nodes is obtained by explicitly applying the finite element method to the boundary 
conditions. For example, at the upstream variable boundary 
 

( ) ( , , , )m m m
i n n i n b b b

B B

N E E dB N E x y z t dBθ⋅ − ⋅∇ = ⋅∫ ∫n V D n V  (3.7.3.1.62)

 

So that the following matrix equation can be assembled at the boundary nodes 
 

[ ]{ } [ ]{ }m
nQF E QB B=  (3.7.3.1.63)

in which 
 

( )ij i j i j
B

QF N N N N dBθ= ⋅ − ⋅ ⋅∇∫ n V n D  (3.7.3.1.64)

 

ij i j
B

QB N N dB= ⋅∫ n V  (3.7.3.1.65)

 

( , , , )m
j n j b b bB E x y z t=  (3.7.3.1.66)

 

where ( , , , )m
n j b b bE x y z t   is the value of ( , , , )m

n b b bE x y z t  evaluated at point j. 
 
3.7.4.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
Equation (3.7.2.2.1) in Lagrangian-Eulerian form is written as follows. 
 
In Lagrangian step, 
 

0
m m

mn n
track n

DE E E
D tτ

∂
= + ⋅∇ =

∂
V  (3.7.3.2.1)

 

where particle tracking velocity is Vtrack is defined in Equation (3.7.3.1.28) . 
 
In Eulerian step, 
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m
mn

n L
DE D KE R
Dτ

− + =  (3.7.3.2.2)

where 
( )m

nD Eθ θ= ∇ ⋅ ⋅∇D  (3.7.3.2.3)
 

HSL
tK

θ

θ

∂+
∂=  

(3.7.3.2.4)

 

1 ( )
n

n im n
L HS E nR R R E

t
θθ

θ
∂⎛ ⎞= + −⎜ ⎟∂⎝ ⎠

 (3.7.3.2.5)

 

 
According to equation (3.7.3.1.50) 
 

[ ]{ } [ ]{ } { }m
nQA D QD E B= − +  (3.7.3.2.6)

 
n

ij i j
R

QA N N dRθ= ∫  (3.7.3.2.7)

 

( )ij i j
R

QD N N dRθ= ∇ ⋅ ⋅∇∫ D  (3.7.3.2.8)

 

( )m
i i n

B

B n N E dBθ= ⋅ ⋅∇∫ D  (3.7.3.2.9)

 

 
Lump matrix [QA] into diagonal matrix and update   
 

ij ij iiQD QD QA=  (3.7.3.2.10)
 

i i iiB B QA=  (3.7.3.2.11)
 

Then 
 

{ } [ ]{ } { }m
nD QD E B= − +  (3.7.3.2.12)

 

 
Equation (3.7.3.2.2) written in matrix form is then expressed as 
 

( ){ } ( ){ }
{ } [ ]{ }( ) { } { } { }

1/ 21 1
1 1

1 1
2 2 1 2 1

[ ] [ ]      [ ] [ ]   

     

nn n m m
n n

m n n
n

U UW QD W K E E

W D W K E W RL W RL W B

τ τ
+ ∗+ +

∗
∗ + ∗ +

⎛ ⎞+ + =⎜ ⎟Δ Δ⎝ ⎠

+ − + + +

 (3.7.3.2.13)

 

 
At upstream flux boundary nodes, equation (3.7.3.2.13) cannot be applied because Δτ equals zero. 
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Thus, we propose a modified LE approach in which the matrix equation for upstream boundary 
nodes is obtained by explicitly applying the finite element method to the boundary conditions as in 
Section 3.7.3.1. 
 
3.7.4.3 Operator-Splitting Approach 
 
Equation (3.7.2.3.1) can be solved through the same procedure as that in section 4.5.2, except that 
 

HS
n

RRL
θ

=  (3.7.3.3.1)

 
 
3.7.5 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Conservative Form of the Reactive Transport Equations for the Upstream Flux 
Boundaries 

 
3.7.5.1 Fully-Implicit Scheme 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.7.3.1, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.7.1.1.  
 
3.7.5.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.7.3.2, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.7.1.2.  
 
3.7.5.3 Operator-Splitting Approach 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.7.3.3, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.7.1.3.  
 
 
3.7.6 Application of the Lagrangian-Eulerian Approach for All Interior Nodes and 

Downstream Boundary Nodes with the Finite Element Method Applied to the 
Advective Form of the Reactive Transport Equations for the Upstream Flux 
Boundaries 

 
3.7.6.1 Fully-Implicit Scheme 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.7.3.1, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.7.2.1.  
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3.7.6.2 Mixed Predictor-Corrector and Operator-Splitting Method 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.7.3.2, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.7.2.2.  
 
3.7.6.3 Operator-Splitting Approach 
 
For this option, the matrix equation for interior and downstream boundary nodes is obtained through 
the same procedure as that in section 3.7.3.3, and the matrix equation for upstream boundary nodes 
is obtained through the same procedure as that in section 3.7.2.3. 
 
 

3.8 Numerical Implementation of Reactive Transport Coupling among Various Media 
 
This section addresses numerical implement of coupling reactive chemical transport simulations 
among various media including (1) between 1D river and 2D surface runoff, (2) between 2D surface 
runoff and 3D subsurface media, (3) between 3D subsurface media and 1D river networks, and (4) 
among 1D river networks, 2D surface runoff, and 3D subsurface media.   For sediment transport 
simulations, only the coupling between 1D river network and 2D surface runoff is needed, which is 
similar to the coupling of reactive chemical transport between the two media.  Without loss of 
generality, numerical implementations of coupling for scalar transport (including sediment and 
kinetic-variable transport) are heuristically given for finite element approximations of the 
conservative form of transport equations.  For Largrangian-Eulerian approximations or finite 
element approximation of the advective form of transport equations, the implementations of 
numerical coupling among various media remain valid except care must be taken that the fluxes 
denote the total fluxes of advective and dispersive/diffusive fluxes. 
 
 
3.8.1 Coupling between 1D-River and 2D-Overland Water Quality Transport 
 
The interaction between one-dimensional river and two-dimensional surface runoff involves two 
cases: one is between surface runoff and river nodes (left frame in Fig. 3.8-1) and the other is 
between surface runoff and junction nodes (right frame in Fig. 3.8-1).  For every river node (Node I 
in the left frame of Fig. 3.8-1), there will be associated with two overland nodes (Nodes J and K in 
the left frame of Fig. 3.8-1).  For every junction node (Node L in the right frame of Fig. 3.8-1), there 
will be associated with a number of overland nodes such as Nodes J, K, O, etc (right frame of Fig. 
3.8-1).  It should be noted that nodes, such as Nodes J and K in the right frame of Figure 3.8-1, 
contribute fluxes to both the river as source/sink of Node I and the Junction as source/sink of Node 
L. 
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IJ K

J
I

K

L

O

 
Fig. 3.8-1.  Depiction of Interacting River Nodes and Overland Nodes (left) and Junction  

Node and Overland Nodes (Right) 
 
Numerical approximations of suspended-sediment or kinetic-variable transport equations for one-
dimensional river with finite element methods yield the following matrix 
 

1 1

2 2

1 2 1

c c

c c

c c c c c c
I I I IN I I

c c
N N

E R

E R

C C C C E R

E R

⎧ ⎫ ⎧− − − − − − − − − − − − − −⎡ ⎤
⎪ ⎪ ⎪⎢ ⎥− − − − − − − − − − − − − − ⎪ ⎪ ⎪⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥− − − − − − − − − − − − − − − − − −
⎪ ⎪ ⎪⎢ ⎥ ⎪ ⎪ ⎪− − − − − − =⎨ ⎬ ⎨⎢ ⎥
⎪ ⎪ ⎪⎢ ⎥ − − − −− − − − − − − − − − − − − − ⎪ ⎪⎢ ⎥

− − − −− − − − − − − − − − − − − − ⎪ ⎪⎢ ⎥
⎪ ⎪⎢ ⎥− − − − − − − − − − − − − −⎣ ⎦ ⎪ ⎪⎩ ⎭ ⎩

1 2
1 1

1 2
2 2

1 2

01 2

o o

o o

o o
I I

o
N N

M M

M M

M M

M M

⎫ ⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪− − − −
⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪+ +⎬ ⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪ ⎪− − − −⎪ ⎪ ⎪ ⎪ ⎪ ⎪

− − − −⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎭ ⎩ ⎭ ⎩ ⎭

 (3.8.1) 

 
where the superscript c denotes the canal (channel, river, or stream); CIJ is the I-th row, J-th column 
of the coefficient matrix [C]; EI denotes the concentration of a suspended sediment or a kinetic 
variable at Node I; RI is I-th entry of the load vector {R}; N is the number of nodes in the canal; MI 
is the rate of suspended-sediment or kinetic-variable source/sink from (to) the overland flow to 
(from)canal  node I; and the superscripts, o1 and o2, respectively, denote canal bank 1 and 2, 
respectively.  Every canal node I involves 3 unknowns, EI

c, MI
o1, and MI

o2.  However, Eq. (3.8.1) 
gives just one algebraic equation for every canal node I.  Clearly, two additional algebraic equations 
are need for every canal node I.  It should be noted that MI

o1 and MI
o2denote the following 

integrations in transforming Eq. (2.5.10) and its initial and boundary conditions or Eq. (2.5.44) and 
its initial and boundary conditions to Eq. (3.8.1) 
 

1 1

1 1 2 2    
N N

n n

X X
o os o os

I I S I I S
X X

M N M dx and M N M dx= =∫ ∫  (3.8.2) 

 

for the transport of the n-th suspended-sediment fraction 
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1 1

1 1 2 2    
N N

i i

X X
o os o os

I I E I I E
X X

M N M dx and M N M dx= =∫ ∫  (3.8.3) 

 

for the transport of the i-th kinetic variable. 
 
Applications of finite element methods to two-dimensional suspended-sediment or kinetic-variable 
transport equation yield the following matrix   
 

⎪
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⎪
⎪
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⎪
⎪
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⎪
⎪
⎪
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⎪
⎪
⎪
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⎪
⎪
⎪
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where the superscript o denotes the overland; CIJ is the I-th row, J-th column of the coefficient 
matrix [C]; EI denotes the concentration of suspended sediment or kinetic variable at Node I; RI is I-
th entry of the load vector {R}; M is the number of nodes in the overland ; and MJ and MK are the 
fluxes [M/t] of suspended sediment or kinetic variable from (to) the overland to (from) the canal via 
nodes J and K, respectively.   Equation (3.8.4) indicates that there is one unknown corresponding to 
one algebraic equation for every interior node.  However, for every algebraic equation corresponding 
to an overland-canal interface node, there are two unknowns, the concentration of suspended 
sediment or kinetic variable and the sediment or chemical fluxes.  Therefore, for every overland-
river interface node, one additional equation is needed.  Since for every canal node, there are 
associated two overland-interface nodes, four additional equations are needed for every canal node I 
for the four additional unknowns MJ

o, MK
o, MI

o1, and MI
o2. 

 
Before we proceed further, let us refresh ourselves that MJ

o and MK
o denote the following integration 

in transforming Eq. (2.6.10) and its initial and boundary conditions or Eq. (2.6.46) and its initial and 
boundary conditions to Eq. (3.8.4) 
 

( ) ( )    o o
J J n J n K K n K n

B B

M W S N h S dB and M W S N h S dB= − ∇ = − ∇∫ ∫n q K n q Ki i i i  (3.8.5) 

 

for the transport of the n-th suspended-sediment fraction 
 

( ) ( )    o m m o m m
J J i J i K K i K i

B B

M W E N h E dB and M W E N h E dB= − ∇ = − ∇∫ ∫n q K n q Ki i i i  (3.8.6) 

 

for the transport of the i-th kinetic variable. 
 
The additional equations are obtained from two interface boundary conditions: one is the continuity 
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of flux and the other is the assumption that the flux of suspended sediments or kinetic variables 
through the interface node is due mainly to water flow (i.e., advection).  Two of the four additional 
equations are obtained from the interface condition between the canal node I and the overland node J 
as 
 

( )( ) ( )( )( )c
I

o
J

o
J

o
J

o
J

o
J

o
I

o
J EQsignEQsignQMandMM −++== 11

2
11  (3.8.7) 

 

For suspended sediment transport, o
JE and c

IE  denote 
 

o o c c
J n J I nIE S and E S= =  (3.8.8) 

 

where o
n JS  is the concentration of the suspended sediment of the n-th fraction at Node J in the 

overland domain and c
n IS  is the concentration of the suspended sediment of the n-th fraction at 

Node I in the canal domain.  For the transport of kinetic variables, o
JE and c

IE  denote 
 

o m o c m c
J i J I i IE E and E E= =  (3.8.9) 

 

where m o
i JE  is the concentration of the mobile portion of the i-th kinetic variable at Node J in the 

overland domain and m c
i IE  is the concentration of the mobile portion of the i-th kinetic variable at 

Node I in the canal domain. 
 
The other two additional equations are obtained from the interface condition between the canal Node 
I and the overland Node K as follows 
 

( )( ) ( )( )( )1 1 1 1
2

o o o o o o o c
K I K K K K K IM M and M Q sign Q E sign Q E= = + + −  (3.8.10) 

 

The definition of o
KE  is similar to that of o

JE . 
 
When the direct contribution of suspended sediment or chemicals from the overland regime to a 
junction node L (Fig. 3.8-1) is significant, the mass balance equation can be written as 
 

d V 0
O O

L i o i oL
iL O iL O

i O N i O N

E M or M
dt ∈ ∈

= Ψ + Ψ + =∑ ∑ ∑ ∑  (3.8.11) 

 

where V L  is the volume of the L-th junction, i
iLΨ  is the mass flux from the iL-th node of i-th reach 

to the L-th junction, and o
OM  is the mass flux from the O-th node of the overland regime (superscript 

o t represent overland regime).  Additional NO unknowns have been introduced in Equation (3.8.11). 
 For each overland-junction interface node, say O (the right frame in Fig. 3.8.1), the finite element 
equation written out of Eq. (3.8.4) is 
 

o
O

o
O

o
M

o
OM

o
O

o
OO

oo
O

oo
O MRECECECEC −=+++++ ....2211  (3.8.12) 
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It is seen that Equation (3.4.17) involves two unknowns, o
OE  and o

OM .  One equation must be 
supplemented to the finite element equation to close the system.  This equation is obtained by 
formulating fluxes as 
 

( )( ) ( )( )( )L
o

O
o

O
o

O
o

O
o

O EQsignEQsignQM −++= 11
2
1

 (3.8.13) 

 

Equations (3.8.11), (3.8.12), and (3.8.13) for a system of equations for the set of unknowns LE ,  
o

OE  and o
OM . 

 
 
3.8.2 Coupling between 2D-Overalnd  and 3D-Subsurface  Water Quality Transport 
 
The interaction between two-dimensional overland and three-dimensional subsurface water quality 
transport is not as straightforward as that between 1D-river and 2D-overland regime because the i-th 
kinetic variable in the 2D-voerland is not necessary to have the same set of species as the i-th kinetic 
variable in the 3D-subsurface media.   We will assume that there is no exchange of suspended 
sediment between 2D-overland and 3D-subsurface media.  Only exchanges of aqueous-phase species 
take place.  For every subsurface node (Node J in Fig. 3.8-2), there will be associated an overland 
nodes (Node I in Fig. 3.8-2).   
 

I
J

 
Fig. 3.8-2.  Depiction of Interacting Subsurface Nodes and Overland Nodes 

 
Numerical approximations of kinetic-variable transport equation for two-dimensional overland 
regime with finite element methods yield the following matrix 
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where the superscript o denotes the overland; CIJ is the I-th row, J-th column of the coefficient 
matrix [C]; EI denotes the concentration of a kinetic variable at Node I; RI is I-th entry of the load 
vector {R}; N is the number of nodes in the overland; and MI is the rate of the kinetic-variable 
source/sink from (to) the subsurface to (from) the overland  node I (the superscript, io, denotes the 
exfiltration from subsurface media to overland).  Every overland node I involves two unknowns, EI

o, 
and MI

io.   However, Eq. (3.8.14) gives just one algebraic equation for every canal node I.  Clearly, 
one additional algebraic equation is need for every overland node I.  To formulate this equation, it is 
noted that, for the i-th overland kinetic variable, io

IM  is the source/sink rate of the i-th kinetic 
variable at the I-th node due to infiltration (negative value) or exfitration (positive value).  This 
equation is obtained as follows 
 

( )( ) ( )( )1( ) 1 1
2

a a

io io io o s io o o
I I I ij jJ I ij jI

j M j M
M Q sign Q a C sign Q a C

∈ ∈

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠
∑ ∑  (3.8.15) 

 

where Ma is the set of aqueous species, o
ija  is the ij-th entry of the decomposed unit matrix via 

diagonalization of the reaction network in the overland domain, s
jJC  is the concentration of the j-th 

subsurface species at the J-th node of the subsurface domain, and o
jIC  is the concentration of the j-th 

overland species at the I-th node of the overland domain.  
 
Applications of finite element methods to three-dimensional kinetic-variable transport equations for 
subsurface media yield the following matrix  
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 (3.8.16) 

 

where the superscript s denotes the subsurface media; CIJ is the I-th row, J-th column of the 



 3-211

coefficient matrix [C]; EJ denotes the temperature or salinity at Node J; RJ is J-th entry of the load 
vector {R}; M is the number of nodes in the subsurface; and MJ is the rate of thermal or salt 
sink/source from/to the subsurface node J to/from the corresponding overland node I.   Equation 
(3.8.15) indicates that there is one unknown corresponding to one algebraic equation for every 
interior node.  However, for every algebraic equation corresponding to a subsurface-overland 
interface node, there are two unknowns, the concentration of the i-th subsurface kinetic variable at 
node J, s

JE , and its flux, s
JM .   Therefore, one additional equation is needed.  This equation is 

obtained from  
 

( )( ) ( )( )1( ) 1 1
2

a a

s s s s s s s o
J J J ij jJ J ij jI

j M j M
M Q sign Q a C sign Q a C

∈ ∈

⎛ ⎞
= + + −⎜ ⎟

⎝ ⎠
∑ ∑  (3.8.17) 

 

where s
ija  is the ij-th entry of the decomposed unit matrix via diagonalization of the reaction network 

in the subsurface media. 
 
 
3.8.3 Coupling between 3-D Subsurface and 1-D Surface Flows 
 
The interaction between three-dimensional subsurface and one-dimensional river water quality 
transport involves three options: (1) river is discretized as finite-width and finite-depth on the three-
dimensional subsurface media (Fig. 3.8-3), (2) river is discretized as finite-width and zero-depth on 
the three-dimensional subsurface media (Fig. 3.4-4), and (3) river is discretized as zero-width and 
zero-depth on the three-dimensional subsurface media (Fig. 3.4-5).  Option 1 is the most realistic 
one.  However, because of the computational demands, it is normally used in small scale studies 
involving the investigations of infiltration and discharge between river and subsurface media on a 
local scale.  Option 2 is normally used in medium scale studies while Option 3 is normally employed 
in large scale investigations.  In Option 1, for every river node there are associated with a number of 
subsurface interfacing nodes such as K, .., J, .., and L(Fig. 3.8-3).  In Option 2, for every river node 
there are associated with three subsurface interfacing nodes K, J, and L (Fig. 3.8-4).  In Option 3, for 
every river node there is associated with one subsurface interfacing node J (Fig. 3.8-5). 
 

I

J’s
K L

K J’s

I
L

 
Fig. 3.8-3.  Rivers Are Discretized as Finite-Width and 

Finite-Depth on the Subsurface Media 
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Fig. 3.8-4.  Rivers Are Discretized as Finite-Width and  

Zero-Depth on the Subsurface Media 
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Fig. 3.8-5.  Rivers Are Discretized as Zero-Width and  

Zero-Depth on the Subsurface Media 
 
 
Numerical approximations of i-th kinetic-variable transport equation for one-dimensional river with 
finite element methods yield the following matrix 
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where the superscript c denotes the canal (channel, river, or stream); CIJ is the I-th row, J-th column 
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of the coefficient matrix [C]; EI denotes the temperature or salinity at Node I; RI is I-th entry of the 
load vector {R}; N is the number of nodes in the canal; and MI

ic is the mass rate of the kinetic-
variable source/sink from (to) the subsurface to (from) canal  node I due to infiltration/exfiltration.  
Every canal node I involves two unknowns, EI

c and MI
ic.   However, Eq. (3.8.18) gives just one 

algebraic equation for every canal node I.  Clearly, one additional algebraic equation is need for 
every canal node I. 
 
For example, taking Option 2 where there are three nodes associated with one canal node, the 
applications of finite element methods to three-dimensional kinetic-variable transport equation in the 
subsurface media yields  
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where the superscript s denotes the subsurface media; CIJ is the I-th row, J-th column of the 
coefficient matrix [C]; EJ denotes the temperature or salinity at Node J; RJ is J-th entry of the load 
vector {R}; M is the number of nodes in the overland ; and MK, MJ and ML are the rates of thermal or 
salt sink/source from/to the subsurface water to/from the canal via nodes K, J and L, respectively.   
Equation (3.8.19) indicates that there is one unknown corresponding to one algebraic equation for 
every interior node.  However, for every algebraic equation corresponding a subsurface-canal 
interface node, there are two unknowns, concentration of the kinetic variable and its flux.  Therefore, 
for every subsurface-river interface node, one additional equation is needed.  Since for every canal 
node, there are associated three subsurface-interface nodes, four additional equations are needed for 
every canal node I for the four additional unknowns MI

ic, MK
s, MJ

s, and ML
s. 

 
These four additional equations are obtained with the assumptions that only aqueous species are 
involved in the exchange between the canal node I and the subsurface nodes K, J, and L and the 
exchange is mainly due to advection.  These assumptions result in the following four equations: 
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where Ma is the set of aqueous species, c
ija  is the ij-th entry of the decomposed unit matrix via 

diagonalization of the reaction network in the canal domain, c
jIC  is the concentration of the j-th 

canal species at the I-th node of the canal domain, s
jJC  is the concentration of the j-th subsurface 

species at the J-th node of the subsurface domain, s
jKC  is the concentration of the j-th subsurface 

species at the K-th node of the subsurface domain, s
jLC  is the concentration of the j-th subsurface 

species at the L-th node of the subsurface domain, rain
jKC  is the concentration of the j-th species of the 

rainfall that falls on the K-th node of the subsurface domain, rain
jLC  is the concentration of the j-th 

species of the rainfall that falls on the L-th node of the subsurface domain, and s
ija  is the ij-th entry 

of the decomposed unit matrix via diagonalization of the reaction network in the subsurface domain. 
 
 
3.8.4 Coupling Among River, Overland, and Subsurface Flows 
 
The interaction among one-dimensional river, two-dimensional overland, and three-dimensional 
subsurface flows involves three options: (1) river is discretized as finite-width and finite-depth on 
the three-dimensional subsurface media (Fig. 3.8-6), (2) river is discretized as finite-width and zero-
depth on the three-dimensional subsurface media (Fig. 3.8-7), and (3) river is discretized as zero-
width and zero-depth on the three-dimensional subsurface media (Fig. 3.4-8).  Option 1 is the most 
realistic one.  However, because of the computational demands, it is normally used in small scale 
studies involving the investigations of infiltration and discharge between river and subsurface media 
on a local scale.  Option 2 is normally used in medium scale studies while Option 3 is normally 
employed in large scale investigations.  In Option 1, for every river node there are associated with 
two overland nodes M and N and a number of subsurface interfacing nodes such as K. , J, .., and L 
(Fig. 3.8-6).  In Option 2,  for every river node I, there are associated with two overland nodes M and 
N and three subsurface interfacing nodes  K, J, and L (Fig. 3.4-7).  In Option 3, for every river node 
I, there is associated with two overland nodes M and N one subsurface node J (Fig. 3.8-8). 
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Fig. 3.8-6.  Interfacing Nodes for Every River Node when Rivers  

Are Discretized as Finite-Width and Finite-Depth 
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Fig. 3.8-7.  Interfacing Nodes for Every River Node when Rivers  

Are Discretized as Finite-Width and Zero-Depth 
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Fig. 3.8-8.  Interfacing Nodes for Every River Node when Rivers  

Are Discretized as Zero-Width and Zero-Depth 
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Similar to the coupling of salt transport among river, overland, and subsurface media, the coupling 
of water quality transport is achieved by imposing the continuity of water quality fluxes and 
formulation of individual node fluxes. 
 
Interaction between Overland Node M and Canal Node I.  Two equations are obtained based on 
the continuity of fluxes and the formulation of fluxes as 
 

( )( ) ( )( )( )
( )( ) ( )( )( )

1 1 1 11 1 1 (
2
1 1 1 (
2

o o o o o c
I I I M I I

o o o o o c
M M M M M I

M Q sign Q E sign Q E and

M Q sign Q E sign Q E

= + + −

= + + −
 (3.8.24) 

 

 
Interaction between Overland Node N and Canal Node I.  Two equations are obtained based on 
the continuity of fluxes and the formulation of fluxes as 
 

( )( ) ( )( )( )
( )( ) ( )( )( )

2 2 2 21 1 1 (
2

1 1 1 (
2

o o o o o c
I I I N I I

o o o o o c
N N N N N I

M Q sign Q E sign Q E and

M Q sign Q E sign Q E

= + + −

= + + −
 (3.8.25) 

 

 
Interaction between Overland Node M, Subsurface Node K, and Canal Node I.  Two equations 
are obtained based on the continuity of fluxes and the formulation of fluxes as 
 

( )( ) ( )( )

( )( ) ( )( )
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∑ ∑ ∑
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⎬
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 (3.8.26) 

 

where Ma is the set of aqueous species, o
ija  is the ij-th entry of the decomposed unit matrix via 

diagonalization of the reaction network in the overland domain. 
 
Interaction between River Bank Node N, Subsurface Node L, and Canal Node I.  Two equations 
are obtained based on the continuity of fluxes and the formulation of fluxes 
 

( )( ) ( )( )

( )( ) ( )( )

1 1 11 1
2 2 4
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 (3.8.27) 
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Interaction between Subsurface Node J and Canal Node I.  Two equations are obtained based on 
the continuity of fluxes and the formulation of fluxes as 
 

( )( ) ( )( )

( )( ) ( )( )

1 11 2 1
2 2

1 1 11 1
2 2 2

a a
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⎝ ⎠
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 (3.8.28) 

 
 

3.9 Vastly Different Time Scales among Various Media 
 
The time scales for hydrology and hydraulics and water quality transport in river/stream/canal 
networks, overland regime and subsurface media are vastly different.  The time scale for flow and 
transport may be in the order of seconds and minutes in 1D-river/stream/canal networks, minutes in 
2D-overland regime, and hours, days or even weeks in 3D-subsurface media.  To handle this kind of 
very different time-scale problems, the approach of using variable time-step sizes among different 
domains is taken.  Figure 3.9-1 shows the model structure of over-all coupling between various 
interfacial media.   In Figure 3.9-1, Δt = GT is the global time-step size (it is noted that total 
simulation time may consist of several Δt’s); GTS is the number of time steps in each GT and ΔtGT is 
the time-step size; 3DF is the number of time steps for 3D flow simulations in each GT and Δt3DF is 
time step size; 2DF is the number of time steps for 2D flow simulations and Δt2DF is the time step 
size;  1DF is the number of time steps for 1D flow simulations and Δt1DF is the time step size.   
 
Figures 3.9-2 shows the detail structure on 1D only river/stream/canal networks simulations. For 
flow computation in one time step, we first linearize all coefficients in and boundary conditions (by 
linearize boundary conditions, we mean, for example, to fix variable-type boundary conditions if 
they are prescribed) for the governing equations using previous iterates and solve the linearized 
equations within the nonlinear loop.  Within the nonlinear loop, first solve flow equations to obtain 
HQW1, where HQW1 is the water depth and discharge for the 1D case; then for every several flow 
time steps, solve salinity and thermal transport equation to yield C1 and T1, where C1 and T1 are the 
salt concentration and temperature, respectively.  When fluid flow and salt and thermal transport are 
solved to convergences, repeat one more nonlinear loop to provide flow fields (i.e., HQW1) for the 
simulation of reactive chemical transport.  The solution of reactive chemical transport would render 
CR1, where CR1 is the concentration of reactive biogeochemical species for 1D.  After density-
dependent flow fields, salinity, temperature, and reactive chemical transport are solved, proceed to 
the next time step.  Figures 3.9-3 and 3.9-4 show detail computational structures for simulations in 
2D overland and 3D subsurface media, respectively.  
 
Figures 3.9-5, 3.9-6, and 3.9-7 show detail structures for simulating in coupled 1D and 2D, coupled 
2D and 3D, and coupled 3D and 1D flow and transport, respectively.   In all eight figures, the 
naming convention of the state-variables is systematic combination of H, Q, C, T, CR, R, W, P, 0, 1, 
2, and 3.  H denotes water depth or head, Q denotes discharge, C denote salt concentration, T denote 
temperature, CR denote concentration of reactive entities, R denotes source/sinks, W denotes 
working iterative values, P denotes previous time, 0 denote initial values, 1 denote 1D, 2 denotes 2D, 
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and 3 denotes 3D.  For example, HQW1 (at convergence, HQW1 would be HQ1) is the water depth 
and discharge of the iterative working values for 1D case;  CR2 is the concentrations of reactive 
entities for 2D cases;  TP1 is the temperature at the previous time step for 1D cases.   DIV denotes 
the divergence of the velocity, i.e. DIV = ∇⋅V. 
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Global time step loop, ΔtGT = GT/GTS

I. Global nonlinear iteration loop:
linearize model coefficients and fix interface/variable-type

boundary conditions based on the previous nonlinear iterate

Global period loop, Δt = GT

Density-, temperature-
dependent 1DF

(Δt1DF = ΔtGT*GTS/1DF)

Density-, temperature-
dependent 2DF

(Δt2DF = ΔtGT*GTS/2DF)

Density-, temperature-
dependent 3DF

(Δt3DF = ΔtGT*GTS/3DF)

Interface Coupling

To obtain a convergent
flow solution within
one global time step

Note: ΔtGT = Δt3DF for (1) 3D only, (2) 1D/3D, (3) 2D/3D, and (4) 1D/2D/3D simulations.
                = Δt2DF for (1) 2D only and (2) 1D/2D simulations.
                = Δt1Df for 1D simulations only.

To obtain flow and
transport solutions

within one global time step

2D/3D 3D/1D

2D/1D

II. Repeat the last global nonlinear iteration with nonlinear reactive
transport equations also solved in respective transport time step loops

 
Fig. 3.9-1.   Overall Coupled Structure of WASH123D 
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Global (1DF) time step loop, ΔtGT = Δt1DF = GT/GTS

Global period loop, Δt = GT

To obtain a convergent
flow solution within

one global (1DF) time step

To obtain flow and transport
solutions within one global

(1DF) time step

Solving linearized 1D flow equation

Solving linear 1D salt transport equation

Solving linear 1D heat transfer equation

1DT time step loop (Δt1DT = Δt1DF*1DF/1DT)

II. Repeat the last global nonlinear iteration with nonlinear reactive
transport equations also solved in the 1D transport

time step loop  (within a 1DF time step)

I. Global nonlinear iteration loop:
linearize model coefficients and fix variable-type boundary

conditions based on the previous nonlinear iterate
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Fig. 3.9-2.  Computation Structure of WASH123D for 1D only Simulations 
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Global (2DF) time step loop, ΔtGT = Δt2DF = GT/GTS

Global period loop, Δt = GT

To obtain a convergent
flow solution within

one global (2DF) time step

To obtain flow and transport
solutions within one global

(2DF) time step

Solving linearized 2D flow equation
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Solving linear 2D heat transfer equation

2DT time step loop (Δt2DT = Δt2DF*2DF/2DT)
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time step loop  (within a 2DF time step)

I. Global nonlinear iteration loop:
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Fig. 3.9-3.  Computation Structure of WASH123D for 2D only Simulations 
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Global (3DF) time step loop, ΔtGT = Δt3DF = GT/GTS

Global period loop, Δt = GT
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one global (3DF) time step

To obtain flow and transport
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Fig. 3.9-4.  Computation Structure of WASH123D for 3D only Simulations 
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Global (2DF) time step loop, ΔtGT = Δt2DF = GT/GTS

Global period loop, Δt = GT
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Fig. 3.9-5.  Computation Structure of WASH123D for Coupled 1D/2D Simulations 
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Global (3DF) time step loop, ΔtGT = Δt3DF = GT/GTS

Global period loop, Δt = GT
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Fig. 3.9-6.  Computation Structure of WASH123D for Coupled 2D/3D Simulations 

 



 3-225

Global (3DF) time step loop, ΔtGT = Δt3DF = GT/GTS

Global period loop, Δt = GT
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Fig. 3.9-7.  Computation Structure of WASH123D for Coupled 3D/1D Simulations 
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Fig. 3.9-8.  Computation Structure of WASH123D for Coupled 1D/2D/3D Simulations
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