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2 MATHEMATICAL BASIS 

 
In this section, we are to give governing equations, initial conditions, and boundary conditions for 
simulating water flow and chemical and sediment transport in watershed systems. 
 
 
2.1 Water Flow in One-Dimensional River/Stream/Canal Network 

 
The governing equations of water flow in one-dimensional river/stream/canal can be derived based 
on the conservation law of water mass and linear momentum (Singh, 1996), and can be written as 
follows. 
 
The continuity equation: 
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where t is time [t]; x is the axis along the river/stream/canal direction [L]; A is cross-sectional area of 
the river/stream [L2]; Q is flow rate of the river/stream/canal [L3/t]; SS is the man-induced source 
[L3/t/L]; SR is the source due to rainfall [L3/t/L]; SE is the sink due to evapotranspiration [L3/t/L]; SI 
is the source due to exfiltration from the subsurface media [L3//t/L]; S1 and S2 are the source terms 
contributed from overland flow [L3/t/L]. 
 
The momentum equation: 
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where h is water depth [L]; V is river/stream/canal velocity [L/t]; g is gravity [L/t2]; Zo is bottom 
elevation [L]; Δρ = ρ - ρo is the density deviation [M/L3] from the reference density (ρo), which is a 
function of temperature and salinity as well as other chemical concentrations; c is the shape factor of 
the cross-sectional area; Fx is the momentum flux due to eddy viscosity [L4/t2]; MS is the external 
momentum-impulse from artificial sources/sinks [L3/t2]; MR is the momentum-impulse gained from 
rainfall [L3/t2]; ME is the momentum-impulse lost to evapotranspiration [L3/t2]; MI is the momentum-
impulse gained from the subsurface due to exfiltration [L3/t2]; M1 and M2 are the momentum-impulse 
gained from the overland flow [L3/t2]; ρ is the water density [M/L3]; B is the top width of the cross-
section [L]; τs is the surface shear stress [M/t2/L]; P is the wet perimeter [L]; and τb is the bottom 
shear stress [M/t2/L], which can be assumed proportional to the flow rate as τb/ρ = κV2 where κ = 
gn2/R1/3 and R is the hydraulic radius (L) and n is the Manning’s roughness. 
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2.1.1 Fully Dynamic Wave Approaches 
 
Equations (2.1.1) and (2.1.2) written in the conservative form are the governing equations for one-
dimensional flow in river/stream/canals.  Depending on the simplification of the momentum 
equation, one can have three approaches: fully dynamic wave, diffusive wave, and kinematic wave.  
For the fully dynamic wave approach, all terms in Eq. (2.1.2) are retained.  Under such 
circumstances, the conservative form of the governing equations may be used or they may be cast in 
the advection form or in the characteristic form.   In this report the characteristic form of the fully 
dynamic approach will be used as the main option because it is the most natural way and amenable 
to the advective numerical methods, e.g., the upstream approximation or the Lagrangian-Eulerian 
method. 
 
For a non-prismatic river/stream/canal network, the cross-sectional area is a function not only of the 
water depth but also of the river distance, i.e., 
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where A# is a function of the water depth h(x,t) and the axis along the river/stream/canal direction x.  
Differentiating Eq. (2.1.3) with respect to x and t, respectively, we have 
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where B(x,t) = B#(h,x) = ∂A#/∂h is the top width of the cross-section, [L]. 
 
Substituting Q = VA and Eqs. (2.1.4) and (2.1.5) into Eqs. (2.1.1) and (2.1.2), we obtain 
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Equations (2.1.6) and (2.1.7) can be written in matrix form as 
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where 
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where ε  is the eddy viscosity. 
 
The eigenvalues and eigenvectors of A are 
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Denoting 
B
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where L and L-1, respectively, are the right and left eigenmatrices, respectively, of the matrix A.  Set 
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where W is a characteristic wave variable.  Equation (2.1.16) transforms the primitive variable E = 
{h, V}T to the characteristic variable W = {W1, W2}T. 
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Multiplying both side of Eq. (2.1.8) by L-1 yields  
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Since by definition ∂W = L-1∂E and L-1AL is a diagonal matrix whose entries are the eigenvalues of 
A, we have 
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Substituting L-1 (L-1 is defined by Eq. (2.1.15)) into the right hand side of Eq. (2.1.18) and 
making an integral transformation so that (g/c)∂h = ∂ω, we obtain 
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where c is the wave speed and ω is the transformed wave speed.  Equation (2.1.19) simply states that 
the positive gravity wave (V + ω) is advected by the speed (V + c) while Equation (2.1.20) states that 
the negative gravity wave (V - ω) is advected by the speed (V - c). 
 
For transient simulations, the water depth (or water stage) and the cross-sectionally averaged 
velocity must be given as the initial condition.  In addition, appropriate boundary conditions need to 
be specified to match the corresponding physical system. 
 
The system of Eqs. (2.1.19) and (2.1.20) are identical to the system of Eqs. (2.1.1) and (2.1.2) on the 
differential level.  They offer advantages in their amenability to innovative advective numerical 
methods such as the upstream finite difference, upwind finite element, or semi-Lagrangian scheme.  
Furthermore, the implementation of boundary conditions is very straightforward.  Only when the 
wave is coming into the region of interest, the boundary condition is required.  For the wave that is 
going out of the region of interest, there is no need to specify a boundary condition. 
 
Open upstream boundary condition: 
 
The boundary condition at an upstream point depends on flow conditions.  If the flow is 
supercritical, both waves are transported into the region and two boundary conditions are needed.  
The water depth and velocity at the boundary are determined entirely by the flow condition that 
prevails at the upstream. The governing equations for this case can be set up based on the continuity 
of mass as well as momentum between the boundary and the upstream as follows  
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where Vup is the cross-sectional averaged velocity from the incoming upstream fluid, Aup is the cross-
sectional area in the upstream, Qup is the flow rate of the incoming fluid from the upstream, hc is the 
water depth to the centroid of the cross-sectional area of the boundary, hupc is the water depth to the 
centroid of the upstream cross-sectional area, and Mup is the momentum-impulse of the incoming 
fluid from the upstream.  It should be noted that both the water depth and velocity in the upstream 
must be measured to provide values of Qup and Mup.  If the flow is critical, the positive wave is 
transported into the region from upstream and the negative wave is immobile.  The water depth and 
velocity at the boundary are determined by the flow conditions prevail at the upstream and by the 
condition of critical flow.  The governing equations for this case may be set up based on the 
continuity of mass and the requirement of critical flow condition as 
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If the flow is subcritical, while the positive wave is transported into the region, the negative wave is 
transported out of the region.  The water depth and velocity are determined by the flow condition 
prevail at upstream and by flow dynamics in the region.  The governing equations are set up based 
on the continuity of mass between the boundary and the upstream, and on flow dynamics in the 
region  
 

( ) 0, == − hVFandQVA up  (2.1.24)
 

where F-(V, h), a function of velocity and water depth, is the negative wave boundary function. 
 
In summary, the boundary condition at an open upstream boundary point is given by Eqs. (2.1.22), 
(2.1.23), and (2.1.24), respectively, for the case of supercritical, critical, and subcritical flows, 
respectively. 
 
Open downstream boundary condition: 
 
If the flow is supercritical on an open downstream boundary point, both waves are transported out of 
region.  Under such circumstances, no boundary conditions are needed.  The water depth and 
velocity on the boundary are determined by flow dynamics in the region.  The governing equations 
for V and h are 
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where F+(V, h), a function of V and h, is the positive wave boundary function.  If the flow is critical, 
the water depth and velocity at the boundary are determined by flow dynamics in the region and by 
the condition of critical flow.  Thus, the governing equations for critical flow are given by 
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If the flow is subcritical, while the positive wave is transported out of the region, the negative wave 
is transported into the region.  The water depth and velocity are determined by flow dynamics in the 
region and by what is the control on the boundary.  The governing equations may be given by 
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where Qdn(h), a function of h, is the rating curve function for the downstream boundary and hdn(t), a 
function of t, is the water depth at the downstream boundary.  The adaptation of Eq. (2.1.27) 
depends on the physical configuration at the boundary. 
 
In summary, the boundary condition at an open downstream boundary is given by Eqs. (2.1.25), 
(2.1.26), and (2.1.27), respectively, for the case of supercritical flow, critical flow, and subcritical 
flows, respectively. 
 
Closed upstream boundary condition: 
 
At the closed upstream boundary, physically all flow conditions can occur. When the supercritical 
flow happens, both positive and negative waves are transported into the region.  Two boundary 
condition equations are needed.  Because the boundary is closed, it is impermeable.  The governing 
equations can be obtained by simply substituting Qup = 0 and Mup = 0 into Eq. (2.1.22) to yield 
 

0 0cVA and VAV gh Aρ ρ= + =  (2.1.28)
 

The solutions for Eq. (2.1.28) are not unique.  One possible solution is V = 0 and h = 0. 
 
For the critical flow, the velocity is equal to the wave speed, V = c, the negative wave is immobile. 
On the other hand, the positive wave is transported into the region of interest, one boundary-
condition equation is needed.  Because the closed boundary is impermeable, the governing equations 
may be set up by imposing zero flow rate and the condition of critical flow as 
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When the flow is subcritical, the positive wave is transported into the region of interest while the 
negative wave is transported out of the region of interest.   Only the boundary condition for the 
positive wave is needed.  Since no fluid from the outside world is transported into the region via the 
boundary, the boundary condition for the positive wave can be stated with Q = VA =0.  The 
governing equations for V and h are thus given by 
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In summary, the boundary condition at a closed upstream point is given by Eqs. (2.1.28), (2.1.29), 
and (2.1.30), respectively, for the case of supercritical flow, critical flow, and subcritical flows, 
respectively. 
 
Closed downstream boundary condition: 
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At the closed downstream boundary, physical condition dictates that the velocity at the boundary is 
zero.  Since the velocity is zero, supercritical flow cannot occur at the closed boundary point because 
the water depth is greater or equal to zero.  Therefore, the flow can only be either critical or 
subcritical.  For critical flow, c = V = 0, which is very unlikely.   Therefore, it is highly unlikely that 
critical flow will occur at the closed downstream boundary. 
 
For the subcritical flow, the positive wave is transported out of the region and no boundary condition 
is needed for this wave.  On the other hand, the negative wave is transported into the region of 
interest.  The governing equations for V and h are 
 

( ) 00, ==+ VandhVF  (2.1.31)
 
which is based on the physics that V = 0 and the water depth is governed by internal flow dynamics. 
 
In summary, supercritical flow cannot occur at a closed downstream point.  The boundary condition 
at a closed downstream boundary point is either V = 0 and h = 0 for critical flow or is given by Eq. 
(2.1.31) for subcritical flow. 
 
Natural internal boundary condition at junctions: 
 
For the junction node J (Figure 2.1-1), we have one unknown:  the water surface elevation or the 
stage, HJ.  The governing equation for this junction is obtained as 
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for the case when the storage effect of the junction is accounted for, or 
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for the case when the storage effect of the junction is not included. 
 

 

J

1J 2J

3J

 
Fig. 2.1-1.  Schematic of a Junction 

 
In Eqs. (2.1.32) and (2.1.33), JV is the volume of the junction J; hJ is the water depth of the junction 
J; QIJ is the flow rate of the Ith reach to the Jth junction; I is the identification number of 
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river/stream/canal reach; NJ is the total number of river/stream/canal reaches that are connected to 
the junction J (it is 3 in the case shown); VIJ and AIJ are the velocity and cross sectional area, 
respectively, of the Ith reach at the location entering the Jth junction. 
 
The node IJ located at the boundary between the Ith reach and the Jth junction is termed the natural 
internal boundary of reach I.  The governing equations for the internal boundary node IJ depend on 
whether this node is a downstream or an upstream node in reference to the reach I.  Let us say that 
node IJ is a downstream point if the flow is from the reach I toward the junction J.  On the other 
hand, we say that the node IJ is an upstream point if the flow is from the junction J toward the reach 
I.   With this definition, we can generate equations for any internal boundary node IJ, which will be 
stated in the following. 
 
If IJ is a downstream internal boundary, we have three cases to consider: subcritical flow, critical 
flow, and supercritical flow.   For the case of subcritical flow, the positive wave is going out of the 
reach and no boundary condition for this wave is needed.  On the other hand, the negative wave is 
going into the region and its boundary condition is obtained by the assumption that no loss in energy 
between the junction and node IJ.  The governing equations for node IJ are given as 
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where F+(VIJ,hIJ), a function of the velocity VIJ (velocity at node IJ) and hIJ (water depth at node IJ), 
is the positive wave boundary function; EIJ is the energy line at node IJ,  ZoIJ is the bottom elevation 
at node IJ; and HJ is the water surface elevation of the junction J.  The second equation of Eq. 
(2.1.34) is obtained from the assumption that the total energy is constant from the junction to the 
node IJ.  In the case of critical flow, the positive wave is going out of the reach and there is no need 
of a boundary condition for this wave.  The negative wave is immobile and its boundary condition is 
given by the condition of critical flow.  The governing equations for node IJ under critical flow are 
given by 
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where BIJ is the top width of the cross-section of the I-th reach at node IJ and AIJ is the cross-section 
area of the I-th reach at node IJ.  In the case of supercritical flow, both positive and negative waves 
are going out of the reach, therefore no boundary conditions are needed and the governing equations 
for node IJ under supercritical flow are given by 
 

( ) ( ) 0,0, == −+ IJIJIJIJ hVFandhVF  (2.1.36)
 

where ( )IJIJ hVF ,− , a function of the velocity VIJ and hIJ, is the negative wave boundary function. 
 
If IJ is an upstream point, we have also three cases to consider: subcritical, critical, and supercritical 
flows.  For the case of subcritical flow, the positive wave is going into the reach and its boundary 
condition is obtained with the assumption that the specific energy is constant between the junction J 
and the node IJ.  With this assumption, the governing equations for node IJ are given by 
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In the case of critical flow, the positive wave is going into the reach from the junction and its 
boundary condition is obtained with the assumption of constant energy line between the junction and 
the node IJ, and the negative wave is immobile and its boundary condition is obtained from the 
condition of critical flow.  The governing equations for node IJ under critical flow are given by 
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In the case of supercritical flow, both positive and negative waves are going into the region from the 
junction J to the reach I.  Two boundary conditions are required for this case.  One of the boundary 
conditions is obtained with the assumption of constant energy line between the junction J and the 
node IJ.  The other boundary condition is obtained with the assumption that the supercritical flow at 
node IJ will become a critical flow in a very short distance (so short that it can be conceptually 
considered to locate at IJ).  With these assumptions the governing equations for node IJ under 
supercritical flow is given by Eq. (2.1.38). 
 
In summary, the governing equations at a natural internal boundary node of a reach connecting to 
junctions are given by one of Eq. (2.1.34) through (2.1.38) depending on whether the node IJ is a 
downstream or an upstream point and whether the flow is supercritical, critical, or subcritical. 
 
Controlled internal boundary condition at control structures: 
 
For any structure, S (which may be a weir, a gate, or a culvert), there are two river/stream/canal 
reaches connecting to the structure.  The node 1S located at the upstream of the structure is termed 
the controlled-internal boundary of the first reach while the Node 2S located at the downstream of 
the structure is called the controlled-internal boundary of the second reach (Fig. 2.1-2).  The 
specification of boundary conditions for the internal boundaries separated by a structure requires 
elaboration. 

 

1S

2S

h2S

h1S
V1S

FS V2S

Pressure
Distribution

Pressure
Distribution

Datum

Zo1S

Zo2S

V1S
2/2g

V2S
2/2g

hLS

H1S

H2S

Energy Line

 
Fig. 2.1-2.  The control volume (red outline) between Nodes 1S and 2S 
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The flow configuration around a structure and its surrounding reaches may be very dynamic under 
transient flows.  Governing equations of flow at Nodes 1S and 2S depend on the changing dynamics 
of water stages around the structure.  When both stages are below the height of the structure, the two 
reaches connecting the structure are decoupled.  When at least one of the stages is above the 
structure, two reaches are either sequentially coupled or fully coupled via the structure.  Here for 
sake of simplicity of discussions, we assume that the flow direction is from Reach 1 to Reach 2.  In 
other words, Reach 1 is an upstream reach and Reach 2 is a downstream reach.  If the flow direction 
is reversed, we can have the boundary condition similarly prescribed. 
 
There are five unknowns, V1S (velocity of the upstream reach Node 1S), h1S (the water depth of the 
upstream Node 1S), Q (the flow rate through the internal-boundary complex), V2S (the velocity of the 
downstream reach Node 2S), and h2S (the water depth of the downstream Node 2S); five equations 
must be set up for this internal-boundary complex consisting of a upstream reach node, a structure, 
and a downstream node. The governing equations for these five unknowns can be obtained 
depending on the flow conditions at the upstream and downstream reaches separated by the internal 
boundary structure.  The flow condition can be supercritical, critical, or subcritical at Node 1S and 
Node 2S. 
 
Node 1S is a downstream point relative to the first reach or is the upstream point relative to the 
structure. The positive wave is transported out of Reach 1 over the structure to Reach 2, and there is 
no need of a boundary condition for this wave.  As for the negative wave, if the flow is supercritical, 
it is transported out of the reach, and there is no need to prescribe a boundary condition for this 
wave.  Thus, the governing equations for Node 1S under supercritical flow are given by 
 

( ) ( ) SSSSSS AVQandhVFhVF 111111 ,0,,0, === −+  (2.1.39)
 

where F+(V1S,h1S), a function of V1S and h1S, is the positive wave boundary function; and F-(V1S,h1S), 
a function of V1S and h1S, is the negative wave boundary function. 
 
If the flow is critical, the negative wave is immobile and its governing equation must satisfy the 
condition of critical flow.  Thus, the two governing equations for Node 1S under critical flow are 
given by 
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where B1S and A1S, respectively, are the top width and the area, respectively, of the cross-section at 
Node 1S. 
 
If the flow is subcritical, the negative wave is transported into the reach from the downstream reach 
via the structure, and its boundary condition is obtained by equating the flow rates at Nodes 1S and 
2S.  Thus the governing equations for Node 1S under subcritical flow are given by 
 

( ) SSSSSSSS AVQandAVAVhVF 11221111 ,,0, ===+  (2.1.41)
 
A comment is in order here.  When the flow at Note 1S is supercritical or critical, the flow in the 
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upstream reach is decouple from the flow in the downstream reach.  Under such conditions, Eq. 
(2.1.39) or (2.1.40) is used to solve to the values of V1S and h1S, which then yield the flow rate Q, the 
energy level H1S at Node 1S, or the momentum-impulse M1S at Node 1S.  These quantities (Q, H1S, 
and M1S) may serve as the boundary conditions for Node 2S.  As to which of these quantities is 
needed for the internal boundary Node 2S depends on the flow condition at Node 2S.  This point will 
be taken up when the boundary conditions for Node 2S are addressed. When the flow at Node 1S is 
subcritical, then the flows in the upstream and downstream reaches are coupled via the second 
equation in Eq. (2.1.41).  
 
On the other hand, Node 2S is an upstream point relative to the second reach or a downstream point 
relative to the structure.  If the flow is supercritical at Node 2S, both the positive and the negative 
waves are coming into the reach from the upstream reach via the structure, and two boundary 
conditions are needed.  These two boundary conditions can be obtained by the principle of mass 
continuity and the principle of momentum/impulse or the Bernoulli’s equation between Nodes 1S 
and 2S.  The structure between Nodes 1S and 2S will exert reaction force, FS, on the fluid between 
two nodes or it induces energy loss, hLS, between two nodes (Fig. 2.1-2).  Thus, the governing 
equations for Node 2S are 
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where FS is the force exerted by the structure on the fluid; hLS is the energy loss between Nodes 1 
and 2; H2S and H1S (defined in Fig. 2.1-2), respectively, are the energy level at Nodes 2S and 1S, 
respectively; and M2S (= ρV2SA2SV2S + ρg h2ScA2S) and M1S (= ρV1SA1SV1S + ρg h1ScA1S), respectively, 
are the momentum-impulse at Nodes 2S and 1S, respectively (where ρ is the fluid density, g is the 
gravity constant, h2Sc is the water depth to the centroid of the cross-sectional area at Node 2, and h1Sc 
is the water depth to the centroid of the cross-sectional area at Node 1). 
 
If the flow at Node 2S is critical, one of the two boundary equations is obtained by the requirement 
of critical conditions while the other is obtained by the principle of mass continuity and the principle 
of  momentum/impulse or the Bernoulli’s equation between Nodes 1S and 2S.  Thus, the governing 
conditions for Node 2S are given as follows 
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 (2.1.43)

 
If the flow at Node 2S is subcritical, the positive wave is transported into the reach from the 
upstream reach via the structure while the negative wave is transport out of the reach.  The boundary 
condition for the positive wave is obtained by the principle of mass continuity and the principle of 
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momentum/impulse or the Bernoulli’s equation between Nodes 1S and 2S.  Thus the two governing 
equations for Node 2S under subcritical flow are given as follows 
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 (2.1.44)

 
In summary, the governing equations for internal boundary nodes separated by a structure are 
given by any combination of Eq. (2.1.39), (2.1.40), or (2.1.41) and Eq. (2.1.42), (2.1.43), or 
(2.1.44).  All combinations provide five governing equations for five unknowns (V1S, h1S, Q, V2S, 
and h2S), except for one combination. 

 
The combination of Eq. (2.1.41) and Eq. (2.1.42) only generates four equations; one more equation 
is needed.  This combination represents the situation that flow in the upstream reach is subcritical 
and in the downstream reach is supercritical.  For this situation to occur, flow must under go a 
transitional state of critical flow over the structure, and the critical flow condition on the structure 
must be satisfied.  Thus, the following additional governing equations can be set up by applying the 
principle of mass continuity and the principle of momentum-impulse or the Bernoulli equation to a 
control volume between Node 1S and the structure (Fig. 2.1-3) as  
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Fig. 2.1-3.  The control volume (red outline) between Node 1S and structure. 
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where AS, BS, and VS, are the area, top width, and velocity of the cross-sectional area over the 
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structure; hL1S is head loss between Node 1S and the structure; F1S is the force the structure exerts 
on the fluid between Node 1S and the structure, HS is the total head over the structure (Fig. 2.1-3); 
and MS (= ρVSASVS + g hScAS) is the momentum-impulse at the structure (where hSc is the water 
depth to the centroid of the cross-sectional area at the structure).   Now, Eq. (2.1.41), (2.1.42), and 
(2.1.45) give seven equations for seven unknowns (V1S, h1S, Q, V2S, h2S, VS, and hS). 
 
The theoretical presentation about the governing equations for the internal-boundary complex is 
valid for any structure including weirs, gates, and culverts.  The differences among various 
structures are characterized by the formulation of the head loss functions, hLS(Q, h1S, h2S) and hL1S 
(Q, h1S, hS), which depend on the flow rate Q and the water depth h1S, and h2S. 
 
2.1.2 Diffusive Wave Approaches 
 
In a diffusive approach, the inertia terms in the momentum equation is assumed negligible when 
compared with the other terms.  By further assuming negligible eddy viscosity and MS = MR = ME = 
MI = M1 = M2 = 0, we approximate the river/stream/canal velocity with the following equation 
(Hergarten and Neugebauer, 1995). 
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 (2.1.46)

 

where n is Manning’s roughness [tL-1/3], a is a unit-dependent factor (a = 1 for SI units and a = 1.49 
for U.S. Customary units) to make the Manning’s roughness unit-independent, R is the hydraulic 
radius [L], and H = h + Zo is the water stage. 
 
Using the definition Q = VA and substituting Eq. (2.1.46) into Eq. (2.1.1), we obtain 
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(2.1.48)

 
To achieve transient simulations, either water depth or stage must be given as the initial condition. In 
addition, appropriate boundary conditions need to be specified to match the corresponding physical 
system.  In our model, four types of boundary conditions may be specified depending on physical 
configurations of the boundary.  These boundary conditions are addressed below. 
 
Dirichlet boundary condition: prescribed water depth or stage 
 
On a Dirichlet boundary, either the water depth or stage can be prescribed as a function of time.  
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This boundary condition can be expressed as 
 

( ) ,d o d dh h t or H h Z H on B= = + =  (2.1.49)
 

where hd(t) is a prescribed time-dependent water depth on the Dirichlet boundary [L], Hd(t) is a 
prescribed time-dependent water stage [L], and Bd is the Dirichlet boundary point.  A Dirichlet 
boundary point can locate at the upstream or down stream point, control structures, or even interior 
point. 
 
Flux boundary condition: prescribed flow rate 
 
On a flux boundary, a time-dependent flow rate is prescribed as a function of time as 
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where Qf(t) a prescribed time-dependent flow rate [L3/t] and Bf is a flux boundary point.  
Mathematically, a flux boundary condition can be applied to an upstream or downstream point.  
However, in practice, it is often applied to an upstream boundary point. 
 
Water depth-dependent boundary condition: prescribed rating curve 
 
This condition is often used to describe the flow rate at a downstream river/stream boundary at 
which the flow rate is a function of water depth.  It can be written as 
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where Qr(h(xr,t)) is a water depth-dependent flow rate [L3/t], xr is the x-coordinate on the boundary 
Br, and Br is a boundary point on which the prescribed rating curve is applied. 
 
Junction boundary condition: 

 
This condition is applied to a boundary of a river/stream/canal reach that is connected to a junction 
(Fig. 2.1-1).  For the junction complex consisting of NJ river/stream/canal reaches (e.g., in Fig. 2.1-1, 
NJ = 3) and one junction (say J), we have (NJ + 1) unknowns, which are flow rates, QIJ (QIJ is the 
flow rate from the I-th reach to junction J), and water stage at junction J, HJ.   Therefore, we need to 
set up (NJ + 1) equations.   The first equation is obtained by applying the continuity of mass at the 
junction to result in Eq. (2.1.35) for the case when the storage effect of the junction must be 
accounted for or Eq. (2.1.36) when this effect is negligible.  The other NJ equations can be obtained 
by assuming the energy loss from any reach to the junction is negligible to result in 
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where HIJ is the water stage the internal boundary Node IJ of the I-th reach connecting to junction J. 
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Equations (2.1.32) or (2.1.33) along with Eq. (2.1.52) provide (NJ + 1) equations to solve for (NJ + 
1) unknowns. 
 
Weir boundary condition: 
 
For any weir (W), there are two river/stream/canal reaches connecting to it.  Node 1W located just 
upstream of the weir is termed the controlled-internal boundary of the upstream reach while Node 
2W located just downstream of the weir is called the controlled-internal boundary of the downstream 
reach (Figure 2.1-4).  The specification of boundary conditions for the internal boundaries for the 
diffusive wave approach is given as 
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where Qw is the weir discharge rate, which is a given function of the water depths hup at Node 1W 
and hdn at Node 2W (Fig. 2.1-5). 
 

W

1W 2W
Reach 1 Reach 2

 
Fig. 2.1-4.  Schematic of weir. 
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Fig. 2.1-5.  Flow configurations around a weir. 

 
The flow configuration around the weir and its surrounding reaches may be very dynamic under 
transient flows.  Both of the water stages at Nodes 1W and 2W may be below the weir, both may be 
above the weir, or one below the weir while the other is above the weir (Fig. 2.1-5).  When both 
stages are below the height of the weir, the two reaches connecting the weir are decoupled.  When at 
least one of the stages is above the weir, two reaches are coupled via the weir.  The weir discharge, 
Qw, can be obtained by solving the continuity equation and the Bernoulli equation between Nodes 
1W and 2W.  The weir formulae under various stage conditions are given as 
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(1) For submerged flow 
 

( ) updnupdndnupWdnWW hhandhhifhhgLhCQ <≥−=
3
22  (2.1.54)

 
 (2) For free fall flow 
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22
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 (3) For decoupled flow 
 

0=WQ  (2.1.56)
 

where Cw is the weir coefficient and Lw is the weir length.  It should be noted that the above 
formulae are valid for broad weir.  For other types of weirs, different weir discharge formulae may 
be used and they can easily be incorporated into the computer code. 
 
 
 
Gate boundary condition: 
 
For any gate (G), there are two river/stream/canal reaches connecting to it.  Node 1G located just 
upstream of the gate G is termed the controlled-internal boundary of the upstream reach while Node 
2G located just downstream of the gate G is called the controlled-internal boundary of the 
downstream reach (Fig. 2.1-6).  The specification of boundary conditions for the internal boundaries 
separated by a gate can be made similar to that of a weir as follows. 
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where Qg is the gate discharge rate, which is a given function of the water depths hup at 1G and hdn at 
2G (Fig. 2.1-7). 
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Fig. 2.1-6.  Schematic of Gate. 
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hup
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Fig. 2.1-7.  Flow configurations around a gate. 

 
The flow configuration around the gate and its surrounding reaches may be very dynamic under 
transient flows.  Depending on the water stages at Nodes 1G and 2G (H1G and H2G), we have several 
configurations (Fig. 2.1-7).  The gate discharge, Qg, can be obtained by solving the continuity 
equation and the Bernoulli equation between Nodes 1G and 2G.  The gate formulae under various 
stage conditions are given as 
 
(1) For free fall flow and not influenced by the gate opening 
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(2) For submerged flow and not influenced by the gate opening 
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(3) For free flow and influenced by the gate opening 
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(4) For submerged flow and influenced by the gate opening 
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(5) For decoupled flow 
 

0=gQ  (2.1.62)
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where Cg is the gate coefficient, a is the gate opening, and Lg is the weir length. 
 
Culvert boundary condition: 
 
Similar to weirs and gates, the boundary conditions for the culvert can be stated as 
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where Qc is the discharge through the culvert or culverts, Node 1C is the point upstream of the 
culvert and 2C is the point downstream of the culvert, hup is the water stage above the culvert at 
Node 1C, and hdn is the water stage above the culvert at Node 2C.  A wide range of culvert discharge 
formulae can be used and they can be easily incorporated in the computer code. 
 
 
2.1.3 Kinematic Wave Approaches 
 
In a kinematic approach, all the assumptions for the diffusive approach are hold.  However, the 
velocity is given by modifying Eq. (2.1.46) with ∂Zo/∂x replacing ∂H/∂x as follows 
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Substituting Eq. (2.1.64) into Eq. (2.1.1) and using the definition Q = VA, we obtain 
 

1 2S R E I
A VA S S S S S S
t x

∂ ∂
+ = + − + + +
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 (2.1.65)

 
It is noted that Eq. (2.1.65) represents the advective transport of the cross-sectional area, A.  It is an 
ideal equation amenable for numerically innovative advective transport algorithm. 
 
To achieve transient simulations, either water depth or stage must be given as the initial condition. In 
addition, appropriate boundary conditions need to be specified to match the corresponding physical 
configuration.  In a kinematic wave approach, boundary conditions are required only at upstream 
boundaries.  An upstream boundary point can be an open boundary or a closed boundary.  On an 
open upstream boundary, either the cross-sectional area (equivalent to water depth or water stage) or 
the flow rate can be specified as 
 

upup BonorAA upQVA =⋅= n  (2.1.66)
 

where Hup is the water stage of the incoming upstream flow, Qup is the flow rate of the incoming 
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upstream flow, and Bup is the open upstream boundary point.  The flow rate through a closed 
upstream boundary point is by default equal to zero. 
 
 
2.1.4 Thermal Transport 
 
The thermal transport equation is derived based on the conservation principle of energy as: 
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where ρw is the water density [M/L3]; Cw is the heat capacity of water [L2/t2/T]; T is the temperature 
[T]; DH is the apparent thermal conductivity including the effect of dispersion, diffusion, and 
conduction [E/t/L/T = ML/t3/T, where E is the unit of energy]; Sh

a is the heat source due to artificial 
injection/withdraw including rainfall [E/t/L = ML/t3]; Sh

r is the heat source due to rainfall 
[E/t/L=ML/t3]; Sh

n is the heat source due to net radiation [E/t/L = ML/t3]; Sh
b is the heat sink due to 

back radiation from water surface to the atmosphere [E/t/L = ML/t3]; Sh
e is the heat sink due to 

evaporation [E/t/L = ML/t3]; Sh
s is the heat sink due to sensible heat flux [E/t/L = ML/t3]; Sh

i is the 
heat source due to exfiltration from subsurface [E/t/L = ML/t3]; Sh

o1 is the heat source from overland 
flow via Bank 1 [E/t/L = ML/t3]; Sh

o2 is the heat source from overland flow via Bank 2 [E/t/L = 
ML/t3]; and Sh

c is the heat source due to chemical reaction [E/t/L = ML/t3].  In Eq. (2.1.67), Sh
r, Sh

i, 
Sh

o1, and Sh
o2 are given by 
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where Tr is the temperature of the rainwater [T], Ti is the temperature of the exfiltration water from 
the subsurface flow [T], To1 is the temperature of the water from overland flow via river Bank 1 [T], 
and To2 is the temperature of the water from overland flow via river Bank 2 [T]. 
 
The heat source due to net radiation, Sh

n, heat sink due to back radiation, Sh
b, heat sink due to 

evaporation, Sh
e, and heat sink due to sensible heat, Sh

s, are given by their respective heat fluxes as 
follows 
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h BHSBHSBHSBHS ==== ;;;  (2.1.70)
 

where Hn, Hb, He, and Hs are the net radiation flux, back radiation flux, latent heat flux, and sensible 
 heat flux, respectively.  These fluxes depend on only meteorological condition and water 
temperature.  They may be computed from follow equations (Yeh, 1969; Yeh et al., 1973; McCuen, 
1989; Song and Li. 2000; and Jennifer et al., 2002). 
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Net radiation Hn 
 

( ) ( ) ososn HaHaH AA−+−= 11  (2.1.71)
in which 

( ) dayftBtusHH oso //35.061.0 2+⋅=  (2.1.72)
and 

( ) ( )[ ] dayftBtueCTH aao //031.0460 22/14 ++= εσA  (2.1.73)
 

where sa  and Aa  are the albedos of the water surface for short- and long-wave radiation 
respectively; soH  and oH A are the solar short- and long-wave radiation respectively; Ho is the solar 
constant, s is the percentage of possible sunshine; ε = 0.97 is emissivity of water surface; σ = 4.15 x 
10-8 Btu/ft2/day/R4 is the Stenfan-Boltzmann constant; Ta is air temperature in oF; C is the brunt 
coefficient; and ea is the air vapor pressure in millimeter of mercury.  
 
Back radiation Hb  
 

( ) dayftBtuTH ab //460 24+= εσ  (2.1.74)
 
Sensible heat flux Hs 
 

( )( ) ( ) dayftBtupTTWH as //760/3.77326.0 2⋅−+=  (2.1.75)
 

where W is the wind speed in miles per hour and p is the atmospheric pressure in millimeter of 
mercury. 
 
Latent heat flux of evaporation He 
 

( )( ) dayftBtueeWH awe //3.77326.0 2−+=  (2.1.76)
 

where ew is the saturated vapor pressure in millimeter of mercury at the water temperature T. 
 
In addition to the initial boundary condition, boundary conditions must be specified for the 
temperature.  Four types of global boundary conditions are provided in this report as follows. 
 
Dirichlet boundary condition: 
 
This condition is applied when the temperature is prescribed as a function of time on the boundaries: 
 

( ),     db b dT T x t on B=  (2.1.77)
 

where Tdb(xb,t) is a time-dependent temperature on the Dirichlet boundary Bd [T]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
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< Case 1 > Flow is coming in from outside: 
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∂
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< Case 2 > Flow is going out from inside:  
 

0    H
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where Tvb(xb,t) is a time-dependent temperature [T] through the variable boundary Bv, which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total heat-flow rate is given at the river/stream 
boundary.  Usually, this boundary is an upstream boundary node.  The conditions can be expressed 
as 
 

( ),H
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ρ ∂
− = Φ

∂
 (2.1.80)

 

where ( , )cb bx tΦ  is total heat-flow rate (E/t = ML2/t3, where E denotes the unit of energy) through 
the Cauchy boundary, which takes a positive value if it is going out of the region and a negative 
value if it is coming into the region. 
 
Neumann boundary condition: 
 
This boundary condition is used when the conductive heat-flow rate is known at the river/stream 
boundary node.  It can be written as 
 

( ),H
nb b

TD A x t
x

∂
− = Φ

∂
 (2.1.81)

 

where ( ),nb bx tΦ  is the heat flux through the Neumann boundary. 
 
In addition to the above four types of global boundary conditions, two types of internal boundary 
conditions are implemented: internal boundary nodes connecting to natural junctions and two 
internal boundary nodes for every control structures.  These internal boundary conditions are 
mathematically stated similar to fluid flow of diffusive wave approaches. 
 
Internal boundary condition at junctions: 
 
If Node IJ is the internal node from Reach I connecting to Junction J (Fig. 2.1-1), the boundary 
conditions at Node IJ is given as  
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where sign(QIJ) is equal 1.0 if the flow is from Reach I into Junction J, -1.0 if flow is from Junction 
J into Reach I; TIJ is the temperature at Node IJ; and TJ is the temperature at Junction J which is 
given by 
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if the storage effect of Junction J is negligible or 
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if the storage effect of Junction J is significant. 
 
Internal boundary condition at control structure: 
 
If Nodes 1S and 2S are two internal boundary nodes connecting to Structure S (Fig. 2.1-2), the 
boundary conditions at Nodes 1S and 2S are given 
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where sign(Q) is equal 1.0 if the flow is from Node 1S to Node 2S, -1.0 if flow is from Node 2S to 
Node 1S; T1S is the temperature at Node 1S; and T2S is the temperature at Node 2S. 
 
 
2.1.5 Salinity Transport 
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where S is the salinity [M/L3]; DS is the longitudinal dispersion coefficient for salinity [L2/t]; Ms
a is 

the artificial source of the salt [M/t/L]; Ms
r is the salt source from rainfall [M/t/L]; Ms

e is the salt sink 
from evaporation, which most likely would be zero [M/t/L]; Ms

i is the salt source from subsurface 
[M/t/L]; Ms

o1 is the salt source from overland via River Bank 1 [M/t/L]; and Ms
o2 is the salt source 

from overland source viz River Bank 2 [M/L/t].  In Eq. (2.1.86), Ms
e is likely to be zero and Ms

r, Ms
i, 

Ms
o1, and Ms

o2 are given by 
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and 
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where Sr is the salinity of the rainwater [M/L3], Si is the salinity of the exfiltration water from the 
subsurface flow [M/L3], So1 is the salinity of the water from overland flow via River Bank 1 [M/L3], 
and So2 is the salinity of the water from overland flow via River Bank 2 [M/L3]. 
 
As in thermal transport, four types of global boundary conditions for salinity transport are provided 
in this report as follows: 
 
Dirichlet boundary condition: 
 
This condition is applied when the salinity is prescribed as a function of time on the boundaries: 
 

( ),db bS S x t=  (2.1.89)
 

where ( ),db bS x t  is a time-dependent salinity on the Dirichlet boundary [M/L3]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
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< Case 2 > Flow is going out from inside: 
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0bS S x t
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where ( ),vb bS x t  is a time-dependent salinity on the variable boundary [M/L3], which is associated 
with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total salt-flow rate is given at the river/stream 
boundary.  Usually, this boundary is an upstream boundary node.  The conditions are expressed as 
 

( ),S
cb b

SQS D A x t
x
∂

− = Φ
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 (2.1.92)
 

where ( ),cb bx tΦ  is total salt-flow rate on the Cauchy boundary [M/t], which takes a positive value if 
it is going out of the region and a negative value if it is coming into the region. 
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Neumann boundary condition: 
 
This boundary condition is used when the dispersive salt-flow rate is known at the river/stream 
boundary node.  It can be written as 
 

( ),S
nb b

SD A x t
x
∂

− = Φ
∂

 (2.1.93)
 

where ( ),nb bx tΦ  is the salt rate due to salt concentration through the Neumann boundary [M/L]. 
 
The internal boundary conditions at junctions and control structures for salinity transport are  stated 
similarly to those for thermal transport as follows. 
 
Internal boundary condition at junctions: 
 
If Node IJ is the internal node from Reach I connecting to Junction J (Fig. 2.1-1), the boundary 
condition at Node IJ is given as 
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where SIJ is the salinity at Node IJ and SJ is the salinity at Junction J, which is governed by 
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if the storage effect of Junction J is negligible or 
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if the storage effect of Junction J is significant. 

 
Internal boundary condition at control structure: 
 
If Nodes 1S and 2S are two internal boundary nodes connecting to Structure S (Fig. 2.1-2), the 
boundary conditions at nodes 1S and 2S are given 
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S S
S S S S S S S
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x x
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where S1S is the salinity at Node 1S and S2S is the salinity at Node 2S. 
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2.2 Water Flow in Two-Dimensional Overland Regime 

 
The governing equations for two-dimensional overland flow can be derived based on the 
conservation law of water mass and linear momentum [Wang and Connor, 1975].  The governing 
equations of a dynamic wave model in conservative form can be written as follows. 
 
The continuity equation: 
 

( ) ( )uh vhh S R E I
t x y

∂ ∂∂
+ + = + − +

∂ ∂ ∂
 (2.2.1) 

 

where h is the water depth [L]; u is the velocity component in the x-direction [L/t]; v is the velocity 
component in the y-velocity [L/t]; SS is the man-induced source [L3/t/L2]; SR is the source due to 
rainfall [L3/t/L2]; SE is the sink due to evapotranspiration [L3/t/L2]; and SI is the source from 
subsurface media due to exfiltration [L/t].   It should be noted that uh = qx is the flux the x-direction 
[L3/t/L2] and vh = qy is the flux in the y-direction [L3/t/L2]. 
 
The x-momentum equation: 
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2
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where Zo is the bottom elevation of overland [L]; ]; Δρ = ρ - ρo is the density deviation [M/L3] from 
the reference density (ρo), which is a function of temperature and salinity as well as other chemical 
concentrations; S

XM  is the x-component of momentum-impulse from artificial sources/sinks [L2/t2]; 
R

XM  is the x-component of momentum-impulse gained from rainfall [L2/t2]; E
XM  is the x-

component of momentum-impulse lost to evapotranspiration [L2/t2]; I
XM  is the x-component of 

momentum-impulse gained from the subsurface media due to exfiltration [L2/t2]; Fxx and Fyx are the 
water fluxes due to eddy viscosity along the x-direction [L3/t2]; τxs is the component of surface shear 
stress along the x-direction over unit horizontal overland area [M/L/t2]; τxb  is the component of 
bottom shear stress along the x-direction over unit horizontal overland area [M/L/t2], which can be 
assumed proportional to the x-component flow rate, i.e., τxb/ρ = κ|V|u. 
 
The y-momentum equation: 
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 (2.2.3) 
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where S
yM is the y-component of momentum-impulse from artificial sources/sinks [L2/t2]; R

yM is 

the y-component of momentum-impulse gained from rainfall [L2/t2]; E
yM  is the y-component of 

momentum-impulse lost to evapotranspiration L2/t2]; I
yM  is the y-component of momentum-

impulse gained from the subsurface media due to exfiltration [L2/t2];  Fxy and Fyy are the water fluxes 
due to eddy viscosity along the y-direction [L3/t2]; τys is the component of surface shear stress along 
the y-direction over unit horizontal overland area [M/L/t2]; τyb is the component of bottom shear 
stress along the y-direction over unit horizontal overland area [M/L/t2], which can be assumed 
proportional to the y-component flow rate, i.e., τyb/ρ = κ|V|v. 
 
 
2.2.1 Fully Dynamic Wave Approaches 
 
Eqs. (2.2.1) through (2.1.3) written in conservative form are the governing equations for two-
dimensional flow in overland.  Depending on the simplification of the momentum equation, one can 
have three approaches: fully dynamic wave, diffusive wave, and kinematic wave.  For the fully 
dynamic wave approach, all terms in Eqs. (2.2.1) and (2.2.3) are retained.  Under such 
circumstances, the conservative form of the governing equations may be used or they may be cast in 
the advection form or in the characteristic form.   In this report, while the conservative form of fully 
dynamic wave equation is used as an option, the characteristic form of the fully dynamic approach 
will be used as a primary option.  The characteristic form is the most natural way to deal with 
hyperbolic-dominant equations and amenable to the advective numerical methods, for example the 
upstream approximation or the Lagrangian-Eulerian method. 
 
With an adequate mathematical manipulation, Eqs. (2.2.1) through (2.2.3) can be written in 
advective form as follows 
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which can be written in matrix form as 
 

t x y
∂ ∂ ∂
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∂ ∂ ∂x y
E E EA A R D  (2.2.7) 
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Let the matrix B be the linear combination of the matrices Ax and Ay as follows 
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where A is a third rank vector with the matrices Ax and Ay as its components and k is a unit vector.  
The eigenvalues and eigenvectors of the defined matrix B are 
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where kx and ky are the x- and y-component of the unit vector k. 
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Now we compose an eigenmatrix and its inverse from the eigenvectors of B as 
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Let us define a characteristic vector W by 
 

1

2

3

0

1

1

y x T

yx

yx

k k
Wh

kk u in which W
g ggh v W

kk
g ggh

⎡ ⎤
⎢ ⎥

−⎢ ⎥
∂ ⎧ ⎫⎧ ⎫⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥∂ = ∂ = ∂ =⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪ ⎪ ⎪∂⎢ ⎥ ⎩ ⎭ ⎩ ⎭

⎢ ⎥−⎢ ⎥
⎣ ⎦

-1W L E W  (2.2.16)

 

where the first characteristic variable W1 is a vorticity or shear wave.  The second and third 
components, W2 and W3, are the amplitudes of the two gravity waves.   The multiplication of Eq. 
(2.2.7) by L-1 yields 
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or, with the transformation between E and W given by L-1∂E= ∂W, 
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Substituting Ax and Ay in Eq. (2.2.8) and L-1 and L in Eq. (2.2.15) into Eq. (2.2.18), and 
performing matrix multiplication, we obtain 
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where 
ghc =  (2.2.20)
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It is noted that the coefficient matrices L-1AxL and L-1AyL, respectively, of (∂W/∂x) and (∂W/∂y), 
respectively, are not diagonal matrices because L-1 is not an eigenmatrix of Ax nor of Ay.  
Rearranging Eq. (2.2.19), we obtain 
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For a general consideration, we define a new L*-1 (and its inverse L*) which plays the following 
transformation.  
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where k = k(1)⋅k(2) is the inner product of k(1) and k(2).  It should be noted that two unit wave 
directions k(1) and k(2) should not be orthogonal so that the transformation will not be singular.   
Multiplying both side of Eq. (2.2.7) by this new L*-1 and repeating mathematical manipulations 
involved in Eqs. (2.2.19) and (2.2.21), we have 
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where 
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Substituting L*-1 defined in Eq. (2.2.23) into the right hand side of Eq. (2.2.24), we obtain 
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Writing out Eq. (2.2.26) in its three components, we have the following three equations for three 
unknowns W1, W2, and W3 
 

1 1 1
1 1 1

W W Wu v S A B
t x y

∂ ∂ ∂
+ + + = +

∂ ∂ ∂
 (2.2.28)

 

( ) ( )(2) (2)2 2 2
2 2 2x y

W W Wu ck v ck S A B
t x y

∂ ∂ ∂
+ + + + + = +

∂ ∂ ∂
 (2.2.29)

 

( ) ( )(2) (2)3 3 3
3 3 3x y

W W Wu ck v ck S A B
t x y

∂ ∂ ∂
+ − + − + = +

∂ ∂ ∂
 (2.2.30)

 
Equations (2.2.28), (2.29), and (2.230) indicate that the vorticity wave is advected by the velocity V, 
the positive gravity wave by V + ck(2), and the negative gravity wave by V - ck(2), where k(2) is a unit 
vector. 
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We can write Eq. (2.2.26) in Lagrangian form as 
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where V is the transporting velocity of the vorticity wave W1, (V + ck(2)) is the transporting velocity 
of positive gravity wave W2, and (V - ck(2)) is the transporting velocity of negative gravity wave W3. 
Substituting the definition of the characteristic variable W in Eq. (2.2.23) into Eq. (2.2.31), we have 
the following three equations for the three waves 
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It is noted that a diagonalization can be achieved with special selections of kx

(1), ky
(1), kx

(2), and ky
(2) 

to make  S1, S2, and S3 zeros. 
 
In solving Eqs. (2.2.28) through (2.2.30) or Eqs. (2.2.32) through (2.2.34), the water depth h, and the 
velocity components, u and v, must be given initially or they can be obtained by simulating the 
steady-state version of Eqs. (2.2.28) through (2.2.30).   In addition, appropriate boundary conditions 
need to be specified to match the corresponding physical system.  The characteristics form of the 
governing equation offers great advantages over the primitive form in adapting appropriate 
numerical algorithms and in defining boundary conditions.  Innovative hyperbolic numerical 
algorithms can be employed to approximate the system because each of the three equations is a 
decoupled advective transport equation of a wave.  The specification of boundary conditions is made 
easy pending the wave direction.  We demonstrate how boundary conditions are specified in the 
following.  An overland boundary segment can be either open or closed.  In the former case, the 
boundary condition for any wave is needed only when it is transported into the region of interest. 
When a wave is transported out of the region, there is no need to specify the boundary condition 
because internal flow dynamics due to this wave affects the boundary values of u, v, and h.  In the 
later case, the flow rate on the boundary is zero. 
 
Open upstream boundary condition: 
 
At an open upstream boundary segment, the vorticity is always transported into the region from 
upstream.  If the flow is supercritical, then both gravity waves also transported into the region from 
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upstream; thus three boundary conditions are needed.  The water depth and velocity components at 
the boundary are determined entirely by the flow condition that prevails at the upstream.  The 
governing equations for this case can be set up based on the continuity of mass as well as 
momentums between the upstream and boundary as 
 

( )
2 2

( ) , ;  ( , );   ( , )
2 2

up up up
n b x x b y y b

gh ghh q t uh n M t and vh n M t⋅ = ⋅ + = ⋅ + =n V x n V x n V x  (2.2.35)
 

where n is the outward unit vector of the boundary segment; ( , )up
n bq tx , a function of time t, is flow 

rate normal to the boundary from the upstream; bx  is the coordinate on the boundary; nx is the x-
component of n; ( , )up

x bM tx is the x-momentum/impulse from the upstream; ny is the y-component of 
n; and ( , )up

y bM tx  is the y-momentum/impulse from the upstream.  It is noted that u, v, and h from 

the upstream must be given to provide up
nq , up

xM and up
yM . 

 
In the case of subcritical flow, one of the two gravity waves is transported into the region while the 
other is transported out of the region.  The water depth and velocity are determined with the 
upstream flow condition and internal flow dynamics.  The governing equations are set up based on 
the continuity of mass between the boundary and the upstream and on the flow dynamics in the 
region as 
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where A  is the unit vector parallel to the boundary segment; ( ),up bH tx , a function of time t, is the 

water stage in the incoming fluid from the upstream; ( , )up
bq txA , a function of time t, is the flow rate 

parallel to the boundary. 
 
Open downstream boundary condition: 
 
At an open downstream boundary segment, the vorticity is always transported out of the region into 
downstream.  If the flow is supercritical, then both gravity waves also transported out of the region 
into downstream; thus three is no need to specify the boundary conditions.  The water depth and 
velocity components at the boundary are determined entirely by internal flow dynamics.  The 
governing equations for this case are given by 
 

( ) ( ) ( ) 000 === −+⊗ u,v,hFand;u,v,hF;u,v,hF  (2.2.37)
 

where ( )u,v,hF⊗ , a function of velocity and water depth, is the vorticity wave boundary function. 
 
In the case of subcritical flow, one of the two gravity waves is transported into the region from 
downstream while the other is transported out of the region into downstream.  The water depth and 
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velocity are determined by the internal flow dynamics and the control of the downstream boundary 
segment 
 

( ) ( )

( ) ( ) ( ) ( )
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where hdn(t), a function of time t, is the water depth of the downstream boundary an qn
dn(h), a 

function of water depth h, is the rating curve of the downstream boundary. 
 
Closed upstream boundary condition: 
 
At the closed upstream boundary, physically all flow conditions can occur.  The vorticity wave is 
always transported from the outside of the boundary into the region. When the supercritical flow 
happens, both gravity waves are also transported into the region.  Thus, three boundary condition 
equations are needed.  Because the boundary is closed, it is impermeable.  The governing equations 
can be obtained by simply substituting qn

up = 0, Mx
up = 0, and My

up = 0 into Eq. (2.2.35) to yield 
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22

=+⋅=+⋅=⋅
ghnvhandghnuhh yx VnVnVn  (2.2.39)

 

The solutions for Eq. (2.2.39) are not unique.  One of the possible solution is u = 0, v = 0, and h = 0. 
 
When the flow is subcritical, one of the two gravity waves is transported from the outside of the 
boundary into the region while the other is transported from inside the boundary to the outside The 
boundary conditions are needed only for the incoming waves.  Since no fluid from the outside world 
is transported into the region via the closed boundary, one of the two boundary condition equations 
can be stated with Vn ⋅ = 0.  The other boundary equation can be obtained by assuming no slip 
condition on the boundary.  Thus, three governing equations are given as 
 

( ) ( )0;  0;   , , 0 0;  0;   , , 0h h and F u v h or   h h and F u v h+ −⋅ = ⋅ = = ⋅ = ⋅ = =n V V n V VA A  (2.2.40)
 

depending on which wave is transported out of the region. 
 
Closed downstream boundary condition: 
 
At the closed downstream boundary, physical condition dictates that normal flow rate at the 
boundary is zero.  The vorticity wave is always transported out of the region.  If the flow is 
supercritical, both gravity waves are also transported out of the region.  The velocity and water depth 
on the boundary is determined entirely by internal flow dynamics and no boundary condition is 
needed.  The governing equations are given by the wave boundary functions subject to the constraint 
that fluid flux is zero as follows: 
 

( ) ( ) ( ), , 0;   , , 0; , , 0 0F u v h F u v h and F u v h subject to⊗ + −= = = ⋅ =n V  (2.2.41)
 
The only feasible solution of Eq. (2.1.31) is u = 0, v = 0, and h = 0.  Therefore, supercritical flow 
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cannot occur at a closed downstream segment. 
 
In the case of subcritical flow, one of the two gravity waves is transported into the region while the 
other is transported out of the region.  The water depth and velocity are determined with the internal 
flow dynamics and the condition of zero normal flux as 
 

( ) ( ) ( ) ( ), , 0;  , , 0; 0   , , 0;  , , 0; 0F u v h F u v h and h or F u v h F u v h and h⊗ + ⊗ −= = ⋅ = = = ⋅ =n V n V (2.2.42)
 
Overland-river interface boundary condition: 
 
At the overland-river interface, the flux must be continuous as 
 

1 1 2 2Bank Bankh S and h S= =(n V) (n V)i i  (2.2.43)
 

where S1 and S2 are sources of water which appear in Eq. (2.1.1)  
 
 
2.2.2 Diffusive Wave Approaches 
 
For diffusion wave models, the inertia terms in Eqs. (2.2.2) and (2.2.3) are assumed not important 
when compared to the others.  With the further assumption that eddy viscosity is insignificant and 
Mx

S = Mx
R = Mx

E = Mx
I = My

S = My
R = My

E = My
I = 0, we approximate the velocity V = (u, v) as follows 
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Using the definition q = Vh and substituting Eq. (2.2.44) into Eq. (2.2.1), we obtain 
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in which 
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To achieve transient simulations, either water depth or stage must be given as the initial condition. In 
addition, appropriate boundary conditions need to be specified to match the corresponding physical 
system.  In our model, four types of boundary conditions may be specified depending on physical 
configurations of the boundary.  These boundary conditions are addressed below. 
 



 2-35

Dirichlet boundary condition: prescribed water depth or stage 
 
On a Dirichlet boundary, either the water depth or stage can be prescribed as a function of time.  
This boundary condition can be expressed as 
 

( ) 0, ( , ),d b d b dh h t or H h Z H t on B= = + =x x  (2.2.47)
 

where ( ),d bh tx  is a prescribed time-dependent water depth on the Dirichlet boundary [L], ( , )d bH tx  
is a prescribed time-dependent water stage [L], and Bd is the Dirichlet boundary segment.  A 
Dirichlet boundary segment can locate at the up-streams or down-streams, control structures, or even 
interior points. 
 
Flux boundary condition: prescribed flow rate 
 
On a flux boundary, a time-dependent flow rate is prescribed as a function of time as 
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2 f

s

f b
hK H q t on B

gh
ρ

ρ ρ
⎛ ⎞

− ⋅ ∇ + ∇ Δ − =⎜ ⎟
⎝ ⎠

τn x  (2.2.48)

 

where n is an outward unit vector at the flux boundary point, ( ),f bq tx  a prescribed time-dependent 
flow rate [L3/t/L], and Bf is a flux boundary segment.  Mathematically, a flux boundary condition can 
be applied to an upstream or downstream segment.  However, in practice, it is often applied to an 
upstream boundary segment. 
 
Water depth-dependent boundary condition: prescribed rating curve 
 
This condition is often used to describe the flow rate at a downstream boundary at which the flow 
rate is a function of water depth.  It can be written as 
 

( ) ( )( ),
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r r r
hK H q h x t on B
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where qr(h(xr,t)) is a water depth-dependent flow rate [L3/t/L], xr is the x-coordinate on the boundary 
Br, and Br is a boundary segment on which the prescribed rating curve is applied. 
 
Overland-river interface boundary condition: 
 
At the overland-river interface, the flux must be continuous as 
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where S1 and S2 are sources of water which appear in Eq. (2.1.1)  
 
 
2.2.3 Kinematic Wave Approaches 
 
In a kinematic approach, all the assumptions for the diffusive approach are hold.  However, the 
velocity is given by modifying Eq. (2.2.44) with 0Z∇  replacing H∇  as follows 
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Substituting Eq. (2.2.51) into Eq. (2.2.1) and using the definition q = Vh, we obtain 
 

( ) S R E I
h h S S S S
t

∂
+∇ ⋅ = + − +

∂
V  (2.2.52)

 
It is noted that Eq. (2.2.52) represents the advective transport of the water depth, h.  It is an ideal 
equation amenable for numerically innovative advective transport algorithm. 
 
To achieve transient simulations, either water depth or stage must be given as the initial condition. In 
addition, appropriate boundary conditions need to be specified to match the corresponding physical 
configuration.  In a kinematic wave approach, boundary conditions are required only at upstream 
boundaries.  An upstream boundary segment can be an open boundary or a closed boundary.  On an 
open upstream boundary, either the water depth or the flow rate can be specified as 
 

( ) ( ), ,up up up up uph h t or h q t on B= ⋅ =x n V x  (2.2.53)
 

where ( ),up uph tx  is the water depth of the incoming upstream flow, ( ),up upq tx  is the flow rate of the 

incoming upstream flow, upx  is the coordinate on the upstream boundary, and upB  is the open 
upstream boundary segment.  The flow rate through a closed upstream boundary segment is by 
default equal to zero. 
 
 
2.2.4 Thermal Transport 
 
The thermal transport equation is derived based on the conservation principle of energy as: 
 

( ) ( ) ( )
cisebnra

ww
ww

HHHHHHHH

ThC
t

hTC

++−−−++=

∇⋅⋅∇−⋅∇+
∂

∂ HDqTρρ
 (2.2.54)

 

where ρw is the water density [M/L3]; Cw is the heat capacity of water [L2/t2/T]; T is the temperature 
[T]; DH is the apparent thermal conductivity tensor including the effect of dispersion, diffusion, and 
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conduction [E/L/t/T = ML/t3/T, where E is the unit of energy]; Ha is the heat source due to artificial 
injection/withdraw including rainfall [E/t/L2 = M/t3]; Hr is the heat source due to rainfall [E/t/L2 = 
M/t3]; Hn is the heat source due to net radiation [E/t/L2 = M/t3]; Hb is the heat sink due to back 
radiation from water surface to the atmosphere [E/t/L2 = M/t3]; He is the heat sink due to evaporation 
[E/t/L2 = M/t3]; Hs is the heat sink due to sensible heat flux [E/t/L2 = M/t3]; Hi is the heat source due 
to exfiltration from subsurface [E/t/L2 = M/t3]; and Hc is the heat source due to chemical reaction 
[E/t/L2 = M/t3].  In Eq. (2.2.54), Hr and Hi are given by 
 

0
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r w w

r w w i
w w

C I T if I
H C RT H

C I T if I
ρ

ρ
ρ

⎧ ≥⎪= = ⎨
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 (2.2.55)

 

where R is the rainfall rate [L/t], Tr is the temperature of the rainwater [T], I is the exfiltration rate 
[L/t], and Ti is the temperature of the exfiltration water from the subsurface flow [T].   Hn, Hb, He, 
and Hs are the net radiation flux, back radiation flux, latent heat flux, and sensible heat flux, 
respectively.  These fluxes depend on only meteorological condition and water temperature.  The 
formulation of these heat/energy fluxes were presented in Section 2.1. 
 
In addition to the initial boundary condition, boundary conditions must be specified for the 
temperature.  Four types of global boundary conditions are provided in this report as follows. 
 
Dirichlet boundary condition: 
 
This condition is applied when the temperature is prescribed as a function of time on the boundaries:  
 

( ),db b dT T t on B= x  (2.2.56)
 

where ( ),db bT tx  is a time-dependent temperature on the Dirichlet boundary dB  [T]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ) ( ),w w w w vb b vC T h T C T t on Bρ ρ⋅ − ⋅∇ = ⋅Hn q D n q x  (2.2.57)
 
< Case 2 > Flow is going out from inside: 
 

0 vh T on B− ⋅ ⋅∇ =Hn D  (2.2.58)
 

where ( ),vb bT tx  is a time-dependent temperature on the variable boundary vB  [T], which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
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This boundary condition is employed when the total heat-flow rate is given at the boundary.  
Usually, this boundary is a flow-in boundary.  The conditions can be expressed as 
 

( ) ( )w w cb cC T h T t on Bρ⋅ − ⋅∇ = ΦHn q D  (2.2.59)
 

where ( )tcbΦ  is total heat flux on the Cauchy boundary cB  [E/L/t = ML/t3, where E denotes the unit 
of energy], which takes a positive value if it is going out of the region and a negative value if it is 
coming into the region. 
 
Neumann boundary condition: 
 
This boundary condition is used when the conductive heat-flow rate is known at the boundary.  It 
can be written as 
 

( ),nb b nh T t on B− ⋅ ⋅∇ = ΦHn D x  (2.2.60)
 

where ( ),nb b tΦ x  is the heat flux on the Neumann boundary nB  [E/L/t]. 
 
In addition to the four types of global boundary conditions, an internal boundary condition may be 
specified for the exchange of energy/heat flux between the overland and river/stream network.  
Mathematically, this boundary condition is described below. 
 
Overland-river interface boundary condition: 
 

( ) ( )1 2
1 2    o o

w w Bank h w w Bank hC T h T S and C T h T Sρ ρ⋅ − ⋅∇ = ⋅ − ⋅∇ =H Hn q D n q D  (2.2.61)
 

where Sh
o1 and Sh

o2 are the heat sources, which appeared in Eq. (2.1.67).  These heat sources can be 
calculated using Eq. (2.1.69) if the temperatures in the overland water and river water are 
discontinuous at the interfaces.  If the temperatures are continuous, then these heat sources should be 
formulated by imposing the continuity of the temperatures in the overland water and river water at 
the interface. 
 
 
2.2.5 Salinity Transport 
 

( ) ( ) ( ) is
s

es
s

rs
s

as
s MMMMShS

ts
hS

+−+=∇⋅⋅∇−⋅∇+
∂
∂ SDq  (2.2.62)

 

where S is the salinity [M/L3]; DS is the longitudinal dispersion coefficient for salt [L2/t]; Ms
as is the 

artificial source of the salt [M/t//L2]; Ms
rs is the salt source from rainfall [M/t/L2; Ms

es is the salt sink 
from evaporation [M/t/L2]; Ms

is is the salt source from subsurface [M/t/L2].  In Eq. (2.2.62), Ms
es is 

likely to be zero and Ms
rs and Ms

is are given by 
 

0
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 (2.2.63)
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where R is the rainfall rate [L/t], Sr is the salinity of the rainwater [M/L3], I is the exfiltration rate 
[L/t], and Si is the salinity of the exfiltration water from the subsurface flow [M/L3]. 
 
As in thermal transport, four types of global boundary conditions for salinity transport are provided 
in this report as follows. 
 
Dirichlet boundary condition: 
 
This condition is applied when the salinity is prescribed as a function of time on the boundaries:  
 

( ),db b dS S t on B= x  (2.2.64)
 

where ( ),db bS tx  is a time-dependent salinity on the Dirichlet boundary dB  [M/L3]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ) ( ),vb b vS h S S t on B⋅ − ⋅∇ = ⋅Sn q D n q x  (2.2.65)
 
< Case 2 > Flow is going out from inside: 
 

0 vh S on B− ⋅ ⋅∇ =Sn D  (2.2.66)
 

where ( ),vb bS tx  is a time-dependent salinity on the variable boundary vB  [M/L3], which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total salt-flow rate is given at the boundary.  Usually, 
this boundary is a flow-in boundary.  The conditions are expressed as 
 

( ) ( ),cb b cS h S S t on B⋅ − ⋅∇ =Sn q D x  (2.2.67)
 

where ( ),cb bS tx  is total salt-flow rate on the Cauchy boundary cB  [M/L/t], which takes a positive 
value if it is going out of the region and a negative value if it is coming into the region. 
 
Neumann boundary condition: 
 
This boundary condition is used when the dispersive salt-flow rate is known at the boundary.  t can 
be written as 
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( )nb nh S S t on B− ⋅ ⋅∇ =Sn D  (2.2.68)
 

where ( )nbS t is the salt flux on the Neumann boundary [M/L/t]. 
 
As in thermal transport, in addition to the four types of global boundary conditions, an internal 
boundary condition may be specified for the exchange of salt between the overland and river/stream 
network.  Mathematically, this boundary condition is described below. 
 
River-overland interface boundary condition: 
 

( ) ( )1 2
1 2

S o S o
Bank s Bank sS h S M and S h S M⋅ − ⋅∇ = ⋅ − ⋅∇ =n q D n q D  (2.2.69)

 

where Ms
o1 and Ms

o2, which appeared in Eq. (2.1.86),  are the salt sources from overland into the 
rivers.  These salt sources can be calculated using Eq. (2.1.88) if the salinity in the overland water 
and river water are discontinuous at the interfaces.  If the salinity is continuous, then these salt 
sources should be formulated by imposing the continuity of salinity in the overland water and river 
water at the interface. 
 
 
 
2.3 Water Flow in Three-Dimensional Subsurface Media 

 
2.3.1 Water Flow 
 
The governing equation of subsurface density dependent flow through saturated-unsaturated porous 
media can be derived based on the conservation law of water mass (Yeh, 1987; Yeh et al., 1994; Lin 
et al., 1997).  It is written as follows. 
 

qzh
t
hF

ooo ρ
ρ

ρ
ρ

ρ
ρ *
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⎦

⎤
⎢
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⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇+∇⋅⋅∇=

∂
∂ K  (2.3.1) 

 

where ρ is the density of water; ρo is the reference density of water; h is the referenced pressure head 
[L]; t is the time [t]; K is the hydraulic conductivity tensor [L/t]; z is the potential head [L]; ρ* is the 
density of source water; q is the source and/or sink [L3/L3/t]; and F is the water capacity [1/L] given 
by 
 

dh
dSn

n
aF ee

e

e ++= θβ
θ

''  (2.3.2) 
 

where 'a  is the modified compressibility of the medium [1/L], θe is the effective moisture content 
[L3/L3], ne is the effectively porosity [L3/L3], 'β  is the compressibility of water [1/L], and S is the 
degree of saturation.  The Darcy’s velocity is given by 
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⎟⎟
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⎞
⎜⎜
⎝

⎛
∇+∇⋅−= zho

ρ
ρKV  (2.3.3) 

 
 
To achieve transient simulation, the following initial condition needs to be given. 
 

( ) ,Rinhh i x=  (2.3.4) 
 

where R is the region of interest and hi is the prescribed pressure head [L], which can be obtained by 
either field measurements or by solving the steady state version of Eq. (2.3.1). 
 
Five types of boundary conditions are taken into account as follows. 
 
Dirichlet boundary condition: 
 
This boundary condition is used when pressure head can be prescribed on the boundary.  It can be 
expressed as 
 

( ) ( ) 0, == xx dd Bonthh  (2.3.5) 
 

where hd(x,t) is the Dirichlet head on the boundary surface Bd(x) = 0 
 
Neumann boundary condition: 
 
This boundary condition is employed when the flux results from pressure-head gradient is known as 
a function of time.  It is written as 
 

( ) ( ) 0, ==∇⋅⋅− xxKn nn
o Bontqh
ρ
ρ  (2.3.6) 

 

where qn(x,t) is the Neumann flux and Bn(x) = 0 is the Neumann boundary surface. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the flux results from total-head gradient is known as a 
function of time.  It can be written as 
 

( ) ( ) 0, ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅+∇⋅⋅− xxKKn cc

o Bontqzh
ρ
ρ  (2.3.7) 

 

where qc(x,t) is the Cauchy flux and Bc(x) = 0 is the Cauchy boundary surface. 
 
River Boundary Condition: 
 
This boundary condition is employed when there is a thin layer of medium separating the river and 
the subsurface media. 
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( ) ( ) 0=−−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇+∇⋅⋅− xKn rR

R

Ro Bonhh
b
Kzh

ρ
ρ  (2.3.8) 

 

where KR is the hydraulic conductivity of the thin layer, bR is the thickness of the thin layer, hR is the 
water depth in the river, and Br(x) = 0 is the surface between the river and subsurface media. 
 
Variable Boundary Condition: 
 
This boundary condition is usually used for the ground surface boundary when the coupling of 
surface and subsurface systems is not taken into account. 
 
(1) During precipitation periods: 
 

( ) ( ) ( ), , 0o
p p vh h t iff h z q t on Bρ

ρ
⎛ ⎞

= − ⋅ ⋅ ∇ +∇ ≥ =⎜ ⎟
⎝ ⎠

x n K x x  (2.3.9) 

or 

( ) ( ), 0o
p p vh z q t iff h h on Bρ

ρ
⎛ ⎞

− ⋅ ⋅ ∇ +∇ = ≤ =⎜ ⎟
⎝ ⎠

n K x x  (2.3.10)

 
 
 (2) During non-precipitation period:  
 

( ) ( ), 0 0o
p vh h t iff h z on Bρ

ρ
⎛ ⎞

= − ⋅ ⋅ ∇ +∇ ≥ =⎜ ⎟
⎝ ⎠

x n K x  (2.3.11)

 

( ) ( ), 0o
m e vh h t iff h z q on Bρ

ρ
⎛ ⎞

= − ⋅ ⋅ ∇ +∇ ≤ =⎜ ⎟
⎝ ⎠

x n K x  (2.3.12)

or 

( ) ( ), 0o
e m vh z q t iff h h on Bρ

ρ
⎛ ⎞

− ⋅ ⋅ ∇ +∇ = ≥ =⎜ ⎟
⎝ ⎠

n K x x  (2.3.13)

 

where hp(x,t) is ponding depth, qp(x,t) is the flux due to precipitation, hm(x,t) is the minimum 
pressure head, and qe(x,t) is the potential evaporation rate on the surfaces of the variable boundary 
condition Bv(x) = 0.  Only one of Eqs. (2.3.9) through (2.3.13) is used at any point on the variable 
boundary at any time. 
 
 
2.3.2 Thermal Transport 
 
The thermal transport equation is derived based on the conservation principle of energy as: 
 

( )[ ] ( ) ( ) ca
w

mbww HHTTC
t

TCC
w

+=∇⋅⋅∇−⋅∇+
∂
+∂ HDVρρθρ  (2.3.14)
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where ρw is the water density [M/L3]; Cw is the heat capacity of water [L2/t2/T];  θ is the moisture 
content [L3/L3]; ρb is the bulk density of the media [M/L3]; Cm is the heat capacity of the matrix 
[L2/t2/T]; T is the temperature [T]; DH is the apparent thermal conductivity tensor including the 
effect of dispersion, diffusion, and conduction [E/t/L/T = ML/t3/T, where E is the unit of energy]; Ha 
is the heat source due to artificial injection/withdraw [E/t/L3 = M/L/t3], and Hc is the heat source due 
to chemical reaction [E/t/L3 = M/L/t3]. 
 
In addition to the initial boundary condition, boundary conditions must be specified for the 
temperature.  Five types of global boundary conditions are provided in this report as follows. 
 
 
Dirichlet boundary condition: 
 
This condition is applied when the temperature is prescribed as a function of time on the boundaries:  
 

( ) ( ), ,     ( ) 0db dT t T t on B= =x x x  (2.3.15)
 

where ( ),dbT tx  is a time-dependent temperature on the Dirichlet boundary Bd(x) = 0 [T]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ) ( ), ( ) 0w w w w vb vC T T C T t on Bρ ρ⋅ − ⋅∇ = ⋅ =Hn V D n V x x  (2.3.16)
 
< Case 2 > Flow is going out from inside: 
 

0 ( ) 0vT on B− ⋅ ⋅∇ = =Hn D x  (2.3.17)
 

where ( ),vbT tx  is a time-dependent temperature on the variable boundary, Bv(x) = 0, [T], which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total heat-flow rate is given at the river/stream 
boundary.  Usually, this boundary is an upstream boundary node.  The conditions can be expressed 
as 
 

( ) ( ), ( ) 0w w cb cC T T H t on Bρ⋅ − ⋅∇ = =Hn V D x x  (2.3.18)
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where ( ),cbH tx   is total heat flux through the Cauchy boundary, Bc(x) = 0, [E/L2/t = M/t3, where E 
denotes the unit of energy], which takes a positive value if it is going out of the region and a 
negative value if it is coming into the region. 
 
Neumann boundary condition: 
 
This boundary condition is used when the conductive heat-flow rate is known at the river/stream 
boundary node.  It can be written as 
 

( ), ( ) 0nb nT H t on B− ⋅ ⋅∇ = =Hn D x x  (2.3.19)
 

where ( ),nbH tx  is the heat flux through the Neumann boundary, Bn(x) = 0, [E/L2/t]. 
 
Atmosphere-subsurface interface boundary condition: 
 
At the interface of the atmosphere and subsurface media, a heat budget boundary condition is 
specified as 
 

( ) sebnww HHHHTTC −−−=∇⋅−⋅− HDVn ρ  (2.3.20)
 

where Hn, Hb, He, and Hs are calculated using Eqs. (2.1.71) through (2.1.76). 
 
In addition to the five types of global boundary conditions, two interface boundary conditions may 
be specified: one for the exchange of energy/heat flux between the subsurface media and 
river/stream network and the other for energy/heat exchange between the subsurface media and the 
overland.  Mathematically, these boundary conditions are described below. 
 
Subsurface-river interface boundary condition: 
 

( ) i
hww

P

SdPTTC =∇⋅−⋅∫ HDVn ρ  (2.3.21)
 

where Sh
i is the heat sources in Eq. (2.1.67) and P is the wet perimeter of the river.  The heat source 

can be calculated using Eq. (2.1.68) if the temperatures in the subsurface and river are discontinuous 
at the interfaces.  If the temperatures are continues, then this heat source should be formulated by 
imposing the continuity of the temperatures in the subsurface and river water at the interfaces. 
 
Subsurface-overland interface boundary condition: 
 

( ) iww HTTC =∇⋅−⋅ HDVn ρ  (2.3.22)
 

where Hi is the heat source in Eq. (2.2.54).  This heat source can be calculated using Eq. (2.2.55) if 
the temperatures in the subsurface and overland are discontinuous at the interface.  If the 
temperatures are continues, then this heat source should be formulated by imposing the continuity of 
the temperatures in the subsurface and overland at the interface. 
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2.3.3 Salinity Transport 
 

( ) ( ) ( ) asS
S S S

t
θ

θ
∂

+ ∇⋅ − ∇ ⋅ ⋅∇ =
∂

SV D  (2.3.23)
 

where S is the salinity [M/L3]; DS is the longitudinal dispersion coefficient [L2/t]; and Sas is the 
artificial source of the salt [M/L3/t]. 
 
As in thermal transport, four types of global boundary conditions for salinity transport are provided 
in this report as follows. 
 
Dirichlet boundary condition: 
 
This condition is applied when the salinity is prescribed as a function of time on the boundaries:  
 

( ) ( ), , ( ) 0db dS x t S t on B= =x x  (2.3.24)
 

where ( ),dbS tx  is a time-dependent salinity on the Dirichlet boundary, Bd(x) = 0, [M/L3]. 
 
Variable boundary condition: 
 
This boundary condition is employed when the flow direction would change with time during 
simulations.  Two cases are considered, regarding to the flow direction on the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

( ) ( ), ( ) 0vb vS S VS t on Bθ⋅ − ⋅∇ = ⋅ =Sn V D n x x  (2.3.25)
 
< Case 2 > Flow is going out from inside: 
 

0 ( ) 0vS on Bθ− ⋅ ⋅∇ = =Sn D x  (2.3.26)
 

where Svb(x,t) is a time-dependent salinity [M/L3] on the variable boundary, Bv(x) = 0, which is 
associated with the incoming flow. 
 
Cauchy boundary condition: 
 
This boundary condition is employed when the total salt-flow rate is given at pervious boundaries.  
Usually, this boundary is a flow-in boundary.  The conditions are expressed as 
 

( ) ( ), ( ) 0scb cS S Q t on Bθ⋅ − ⋅∇ = =Sn V D x x  (2.3.27)
 

where ( ),scbQ tx  is total salt-flow rate [M/L2/t] through the Cauchy boundary, Bc(x) = 0, which takes 
a positive value if it is going out of the region and a negative value if it is coming into the region. 
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Neumann boundary condition: 
 
This boundary condition is used when the dispersive salt-flow rate is known at the boundary.  It can 
be written as 
 

( ),snbS Q tθ− ⋅ ⋅∇ =Sn D x  (2.3.28)
 

where ( ),snbQ tx  is the salt flux through the Neumann boundary, Bn(x) = 0, [M/L2/t]. 
 
In addition to the four types of global boundary conditions, two interface boundary conditions may 
be specified: one for the exchange of salt flux between the subsurface media and river/stream 
network and the other for salt exchange between the subsurface media and the overland.  
Mathematically, these boundary conditions are described below. 
 
Subsurface-river interface boundary condition: 
 

( ) i
s

P

S S dP Mθ⋅ − ⋅∇ =∫ Sn V D  (2.3.29)
 

where Ms
i is the salt source in Eq. (2.1.86) and P is the wet perimeter of the river.  The salt source 

can be calculated using Eq. (2.1.87) if the salinity in the subsurface and river is discontinuous at the 
interfaces.  If the salinity is continuous, then this salt source should be formulated by imposing the 
continuity of the salinity in the subsurface and river at the interface. 
 
Subsurface-overland interface boundary condition: 
 

( ) is
sS S Mθ⋅ − ⋅∇ =Sn V D  (2.3.30)

 

where Ms
is is the salt source in Eq. (2.2.62).  This salt source can be calculated using Eq. (2.2.63) if 

the salinity in the subsurface and overland is discontinuous at the interface.  If the salinity is 
continuous, then this salt source should be formulated by imposing the continuity of the salinity in 
the subsurface and overland at the interface. 
 
 
 
2.4 Coupling Fluid Flows Among Various Media 

 
One of the critical issues in a first principle physics-based watershed model is its treatments of 
coupling among various media.  There appear a number of watershed models that have dealt with 
each component medium on the bases of first principle in the past decade (MIKE11-MIKE SHE 
[Abbott et al., 1986a, 1986b], SHETRAN [Ewen et al., 2000], MODFLOW-HMS [HydroGeoLogic, 
Inc., 2001], InHM [VanderKwaak, 1999], GISWA [Wigmosta and Perkins, 1997], SFRSM-HSE 
[SFWMD, 2005], COSFLOW [Yeh et al., 1997], WASH123D  Version 1.0 [Yeh et al., 1998]).  
However, rigorous considerations on coupling among media seemed lacking.  For example, a 
linkage term is normally formulated between the river/stream/canal dynamics and subsurface fluid 
flow (e.g., MODNET [Walton et al., 1999]) or between overland and subsurface flows (e.g., 
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MIKE11-MIKE SHE [http://www.dhisoftware.com/mikeshe/; 
http://www.dhisoftware.com/mikeshe/components]).  The linkage term usually introduces non-
physical parameters.   As a result, such watershed models have degraded even though each media-
component module has taken a first principle physics-based approach.  A rigorous treatment of 
coupling media should be based the continuity of mass, momentum, and state variables. This is the 
approach taken in this report.  Mathematical statements on coupling between pairs of media are 
address below. 
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2.4.1 Coupling between River/Stream/Canal and Overland Flows 
 
The fluxes between overland regime and canals/streams/rivers network are dynamics and depend on 
the water surface elevations in the vicinity of the interface between canal/stream/river and overland 
regime (Fig.  2.4-1).  The basic principle of coupling is to impose continuous of fluxes and the state 
variables (water surface elevations, temperature, and salinity in the overland and in the canal) if 
these state variables do not exhibit discontinuity.  If the state variables exhibit discontinuity, then the 
linkage term is used to simulate the volumetric fluxes or simplified formulations of heat fluxes and 
salinity fluxes are imposed.  
 
When a levee is present on the bank of the canal (left column in Fig. 2.4-1), there are several 
possibilities on the dynamic interactions between overland flow and river flow dynamics.  If water 
surfaces in both the overland regime and river are below the top of the levee, the two flow systems 
are decoupled (Fig. 2.4-1a). 
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Fig. 2.4-1.  Flow interactions between overland regime and canal: bank with levee (left column) 

and bank without levee (right column) 
 
 
When the water surface in the overland regime is above the top of the levee and in the canal is below 
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the top of the levee (Fig. 2.4-1b), the flux is a function of the water depth in the overland regime 
given 
 

( ) ( )Bo
o

O
oco ZhfShhfqq ;1 ==⋅⇒== Vn  (2.4.1) 

 

where qo is the outward normal flux of the overland flow, qc is the lateral flow from the overland to 
the canal, ho is the water depth in the overland regime, f(ho) is a prescribed function of ho given by 
the shape and width of the levee,  n is the outward unit vector (from the overland side) of the 
overland-canal interface, V is the velocity in the overland regime, S1 is defined in Eq. (2.1.1), Zo|B is 
the bottom elevation evaluated at the canal bank (in this case Zo|B is the elevation of the top of the 
levee).  The coupling of thermal and/or salinity transport between the overland regime and river 
networks for this case can be stated as 
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n q D

n q D
 (2.4.2) 

 

where To is the temperature of the overland water at the interface and So is the salinity of the 
overland water at the interface.  
 
On the other hand, when the water surface in the overland regime is belowe the top of the levee and 
in the canal is above the top of the levee (Fig. 2.4-1c), the flux is a function of the water depth in the 
overland regime given by 
 

( ) ( )Bo
c

O
cco ZhfShhfqq ;1 ==⋅⇒== Vn  (2.4.3) 

 

where hc is the water depth in the canal and f(hc) is a prescribed function of hc.  The coupling of 
thermal and salinity transport between the overland regime and river networks for this case can be 
stated as 
 

( )
( )

1
1 1

1
1 1

o c
w w Bank h w w

o c
Bank s

C T h T S C S T and

S h S M S S

ρ ρ⋅ − ⋅∇ = =

⋅ − ⋅∇ = =

H

S

n q D

n q D
 (2.4.4) 

 

where Tc is the temperature of the canal water at the interface and Sc is the salinity of the canal water 
at the interface.  
 
When the water surfaces in both the overland and canal are above the top of the levee (Fig. 2.4-1d), 
then the continuity of fluxes and state variables must be imposed as 
 

( ) ( )1
o c o c

O o O o Cq q h S and H H h Z h Z= ⇒ ⋅ = = ⇒ + = +n V  (2.4.5) 
 

where (h + Zo)|O denotes that (h + Zo) is evaluated at point O (Fig. 2.4-1 d).  Similarly, (h + Zo)|C 
denotes that (h + Zo) is evaluated at point C.  The coupling of thermal and/or salinity transport 
between the overland regime and river networks for this case can be obtained by formulating the 
fluxes 
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where sign(S1) is 1.0 if the flow is from overland to canal, -1.0 if the flow is from canal to overland.  
For this case, the temperature and salinity in the canal may be the same as those in the overland 
water at the interface.  If this is the case, we impose the continuity of temperature and/or salinity to 
yield the fluxes 
 

( )
( )

1
1 1

1
1 1

o o c
w w Bank h Bank

o o c
Bank S Bank

C T h T S and T T

and S h S M and S S

ρ⋅ − ⋅∇ = =

⋅ − ⋅∇ = =

H

S

n q D

n q D
 (2.4.7) 

 
When a levee is not present on the bank of the canal (right column in Fig. 2.4-1), there are two 
possibilities on the dynamic interactions between overland flow and river flow dynamics.  If water 
surface in the canal falls below the bank, the flux is either zero if the overland flow is not present or 
is nonzero and directed from the overland into the canal if overland flow is present (Fig. 2.4-1 e) as 
 

( ) ( )2 ;o c o o
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where S2 is defined in Eq. (2.1.1) and Zo|B is the bottom elevation evaluated at point O on the canal 
bank.  The coupling of thermal and/or salinity transport between the overland regime and river 
networks for this case can be stated as 
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When the water surface in the canal is above the bank (Figs. 2.4-1f and 2.4-1.g), the flux direction 
can be either from the overland into the canal or from the canal into the overland depending on the 
flow dynamics in the overland and in the canal.  The direction of the flux and its magnitude are 
obtained by imposing the continuity of flux and state variables  
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The coupling of thermal and/or salinity transport between the overland regime and river networks 
for this case can be stated as 
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For these two cases (Fig. 2.4-1f and 2.4-1g), the temperature and salinity in the canal may be the 
same as those in the overland water at the interface.  If this is the case, we impose the continuity of 
temperature and/or salinity to yield the fluxes 
 

( )
( )

1
2 2

1
2 2

o o c
w w Bank h Bank

o o c
Bank s Bank

C T h T S and T T and

S h S M and S S

ρ⋅ − ⋅∇ = =

⋅ − ⋅∇ = =

H

S

n q D

n q D
 (2.4.12)

 
 
2.4.2 Coupling between Overland and Subsurface Flows 
 
The fluxes between overland and subsurface media are obtained by imposing continuous of fluxes 
and state variables if these state variables do not exhibit discontinuity.  If the state variables exhibit 
discontinuity, then a linkage term is used to simulate the fluxes.  Consider the interaction between 
the overland subsurface and subsurface flows.   There are two cases: in one case, there is no 
impermeable layers on the ground surface (Fig. 2.4-2a) and, in another case, there are thin layers of 
very impermeable layers such as pavements or sediment deposits on the ground surface (Fig. 2.4-
2b). 
 
For the case of no impermeable layers on the ground surface (Fig. 2.4-2a), it can easily be seen that 
the pressures in the overland flow (if it is present) and in the subsurface media will be continuous 
across the interface.  Thus, the interaction must be simulated by imposing continuity of pressures 
and fluxes as 
 

o s o s soh h and Q Q I h zρ
ρ

⎛ ⎞
= = ⇒ = − ⋅ ⋅ ∇ + ∇⎜ ⎟

⎝ ⎠
n K  (2.4.13)

 

where ho is the water depth in the overland if it is present, hs is the pressure head in the subsurface, 
Qo is the flux from the overland to the interface and Qs is the flux from the interface to the 
subsurface media, I is defined in Eq. (2.2.1), n is an outward unit vector of the ground subsurface, K 
is the hydraulic conductivity tensor, and hs is the pressure head in the subsurface media.  The use of 
a linkage term such as Qo = Qs = K(ho - hs), while may be convenient, is not appropriate because it 
introduces a non-physics parameter K.  The calibration of K to match simulations with field data 
renders the coupled model ad hoc even though the overland and subsurface flows are each 
individually physics-based. 
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Fig. 2.4-2.  Flow interactions between overland regime and subsurface media. 

 
For the cases with thin impervious layers (Fig. 2.4-2b), one can include the impervious layers as part 
of the subsurface media or exclude these layers from the modeling.   If one includes the thin layers, 
then it is obvious the pressures in the overland flow and in the layer are continuous across the 
interface, thus continuity of pressures and fluxes must imposed to simulate the interaction.  On the 
other hand, if the thin layers are not included, it is obvious, the pressures in the overland flow and 
the subsurface are not continuous across the removed layers, then a linkage term is used to model the 
flux between across interface as 
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where Kb and b are the hydraulic conductivity and thickness, respectively, of the removed bottom 
sediment layer.  These parameters in the linkage term are the material properties and geometry of the 
removed layer.  These parameters, in theory, can be obtained independent of model calibration. 
 
The coupling of thermal and/or salinity transport between the overland regime and subsurface media 
can be stated as 
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where sign(I) is 1.0 if I is positive and is -1.0 if negative; Ts is the temperature of subsurface water at 
the interface; To is the temperature of overland water at the interface; Ss is the salinity of subsurface 
water at the interface; and So is the salinity of overland water at the interface.  
 
The temperature and salinity in the overland water may be the same as those in the subsurface water 
at the interface.  If this is the case, we impose the continuity of temperature and/or salinity to yield 
the fluxes 
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2.4.3 Coupling between Subsurface and River/Stream/Canal Flows 
 
The fluxes between canal and subsurface are obtained by imposing continuous of fluxes and state 
variables if these state variables do not exhibit discontinuity.  If the state variables exhibit 
discontinuity, then a linkage term is used to simulate the fluxes.  Consider the interaction between 
the canal and subsurface.  There are two cases: in one case, there is not any thin layer of sediment 
materials (Fig. 2.4-3a) and, in another case, there are thin layers of sediment materials between the 
canal bottom and the top of surface media (Fig. 2.4-3b). 
 
For the case of no thin layer of sediments (Fig. 2.4-3a), it can easily be seen that the pressures in the 
canal and in the subsurface media will be continuous across the interface of canal bottom and 
subsurface media.  Thus, the interaction must be simulated by imposing continuity of pressure and 
flux as follows. 
 

c s c s sO
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where hc is the water depth in the canal, hs is the pressure head in the subsurface, Qc is the flux from 
the canal to the interface and Qs is the flux from the interface to the subsurface media, SI is defined 
in Eq. (2.1.1),  n is an outward unit vector of the subsurface media interfacing the canal, K is the 
hydraulic conductivity tensor of the subsurface media, hs is the pressure head in the subsurface 
media, and P is the wet perimeter of the canal.  The use of a linkage term such as Qc = Qs = K(hc - 
hs), while may be convenient, is not appropriate because it introduces a non-physics parameter K. 
The calibration of K to match simulations with field data renders the coupled model ad hoc even 
though the canal and subsurface flows are each individually physics-based. 
 
For the cases with thin layers of sediments (Fig. 2.4-3b), one can include the sediment layers as part 
of the subsurface media or exclude these layers from the modeling.  If one includes the thin layers, 
then it is obvious the pressures in the canal and in the sediment layer are continuous across the 
interface of canal bottom and the top of the thin layers, thus continuity of pressures must imposed to 
simulate the interaction.  On the other hand, if the thin layers are excluded (Fig. 2.4-3c), the 
pressures in the canal and subsurface are not continuous across the bottom of canal and the top of 
subsurface media, then, a linkage term can be used to model the flux between the canal and surface 
media as 
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hc = hsThe interface flux Q is determined by Qc = Qsand on the interface
The linkage by  Q=K(hc-hs)  is not appropriate
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Fig. 2.4-3.  Flow interactions between canal and subsurface media. 
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where Kb and b are the hydraulic conductivity and thickness, respectively, of the removed bottom 
sediment layer.  These parameters in the linkage term are the material properties and geometry of the 
removed layer.  These parameters, in theory, can be obtained independent of model calibration. 
 
The coupling of thermal and/or salinity transport between the canal and subsurface media can be 
stated as 
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where sign(SI) is 1.0 if SI is positive and is -1.0 if negative; Ts is the temperature of subsurface water 
at the interface; Tc is the temperature of canal water at the interface; Ss is the salinity of subsurface 
water at the interface; and Sc is the salinity of canal water at the interface.  
 
Similar to the interaction between the overland regime and subsurface media, the temperature and 
salinity in the canal water may be the same as those in the subsurface water at the interface.  If this is 
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the case, we impose the continuity of temperature and/or salinity to yield the fluxes 
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2.5 Sediment and Water Quality Transport in 1D River/Stream/Canal Networks 

 
In WASH123D, sediments are categorized based on their physical and chemical properties. For each 
category of sediment, we include mobile suspended sediment particles scattered in water column and 
immobile bed sediment particles accumulated in river/stream bed. The distribution of suspended 
sediment and bed sediment is controlled through hydrological transport as well as erosion and 
deposition processes.  
 
In river/stream networks, there are six phases and three forms of biochemical species. As shown in 
Figure 2.5-1, the six phases are suspended sediment, bed sediment, mobile water, immobile water, 
suspension precipitate, and bed precipitate phases; and the three forms are dissolved biochemicals, 
particulate biochemicals sorbed onto sediments, and precipitates. Usually, biochemical species in the 
suspended sediment phase, the mobile water phase and the suspension precipitate phase are 
considered mobile.  Biochemical species in the bed sediment phase, the immobile water phase and 
the bed precipitate phase are considered immobile.  
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2.5-1. Sediments and Chemicals in River/Stream Networks 
 
A reactive system is completely defined by specifying biogeochemical reactions (Yeh, et al. 2001a). 
 In the transport simulation, biogeochemical reactions can be divided into two classes (Rubin, 1983): 
(1) Fast/equilibrium reactions, and (2) Slow/kinetic reactions.  The former are sufficiently fast 
compared to transport time scale and reversible, so that local equilibrium may be assumed.  The 
latter are not sufficiently fast compared to transport time scale.  They are either reversible or 
irreversible, where the local equilibrium formulation is inappropriate.  
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As shown in Figure 2.5-2, the biogeochemical reactions considered in the model can be categorized 
into ten types which take place between various phases:  (1) aqueous complexation in column water, 
(2) adsorption/desorption or ion-exchange to suspended sediment, (3) precipitation/dissolution in 
water column, (4) adsorption/desorption or ion-exchange between column water and bed sediment, 
(5) aqueous complexation in pore water, (6) adsorption/desorption or ion-exchange to bed sediment, 
(7) precipitation/dissolution in bed, (8) volatilization reactions from water column to the atmopshere, 
(9) diffusion reactions between column and pore water, and (10) sedimentation reactions.  Any 
individual reaction representing any of these chemical and physical processes may be simulated as 
kinetic or as equilibrium, which makes the code extremely flexible for application to a wide range of 
biogeochemical transport problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.5-2.  Biogeochemical Reactions Considered in the Model 
 
 
2.5.1 Bed Sediment 
 
The balance equation for bed sediments is simply the statement that the rate of mass change is due to 
erosion/deposition as 
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where P is the river/stream cross-sectional wetted perimeter [L], Mn is wetted perimeter-averaged 
concentration of the n-th bed sediment in mass per unit bed area [M/L2], Dn is the deposition rate of 
the n-th sediment in mass per unit bed area per unit time [M/L2/T], Rn is the erosion rate of the n-th 
sediment in mass per unit bed area per unit time [M/L2/T],  

n

is
MM  is the source of the n-th sediment 

from groundwater exfiltration in mass per unit river length [M/L/T], and NS is the total number of 
sediment size fractions. Concentrations of all bed sediments must be given initially for transient 
simulations. No boundary condition is needed for bed sediments. In equation (2.5.1), we estimate the 
deposition and erosion rates using the different equations for cohesive and non-cohesive sediments. 
 
For cohesive sediments, e.g., silt and clay, following equations are used (Yeh et al., 1998; Gerritsen 

(1) Aqueous complexation in mobile water phase, 
(2) Adsorption/desorption or ion-exchange between 
mobile water and suspended sediment phases,  
(3) Precipitation/dissolution between mobile water 
and suspension precipitate phases, 
(4) Adsorption/desorption or ion-exchange between 
mobile water and bed sediment phases,  
(5) Aqueous complexation in immobile water phase, 
(6) Adsorption/desorption or ion-exchange between 
immobile water and bed sediment phases,  
(7) Precipitation/dissolution between immobile water 
and bed precipitate phases, 
(8) Volatilization from mobile water phase, 
(9) Diffusion between mobile and immobile water 
phases, 
(10) Sedimentation of particulates between 
suspended and bed sediment phases 
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et al., 2000) 
 

( ) ( )min ,   where max 0,  1n sn n Dn n Dn b cDnD V S P S h t P τ τ= Δ = −  (2.5.2) 
and 

( ) ( )0min ,  where  max 0,  1n n Rn n Rn b cRnR E P DMA t P τ τ= Δ = −  (2.5.3) 
 

where Vsn is the settling velocity of the n-th sediment [L/T], Sn is the cross-section-averaged 
suspended concentration of n-th sediment [M/L3], h is the water depth [L], ∆t is the time step size 
[T], τb is the bottom shear stress or the bottom friction stress [M/L/T2], τcDn is the critical shear stress 
for the deposition of the n-th sediment [M/L/T2], E0n is the erodibility of the n-th sediment [M/L2/T], 
DMAn is the amount of locally available dry matter of n-th sediment, expressed as dry weight per 
unit area [M/L2], τcRn is the critical shear stress for the erosion of the n-th sediment [M/L/T2]. 
 
For Non-cohesive sediments, e.g., sand, we have two options. 
 
Option 1 (Prandle et al., 2000) 
 

( ) ( )2min ,   where  max 0,  1n sn n Dn n Dn cDn cRnD V S N S h t N V V⎡ ⎤= Δ = −⎣ ⎦  (2.5.4) 
and 

( ) ( )0min ,  where max 0,  1n n Rn n Rn cDn cRnR E N DMA t N V V= Δ = −  (2.5.5) 
 

where VcDn and VcRn represent the critical friction velocities for the onset of deposition and erosion, 
respectively [L/T].  
 
Option 2 (Yeh et al., 1998) 
 

max ,0  sAn sn
n

G GD
L
−⎛ ⎞= ⎜ ⎟Δ⎝ ⎠

 (2.5.6) 

and 

max ,0sn sAn
n

G GR
L
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 (2.5.7) 
 

where GsAn is the actual load rate of the n-th sediment per unit width at a upstream location [M/L/T], 
Gsn is the maximum load rate of the n-th size fraction sediment per unit width at a downstream 
location [M/L/T], ΔL is the distance between the upstream and the downstream locations.  
 

sAn nG S VR=  (2.5.8) 
and 
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ρ ρ
−

=
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 (2.5.9) 
 

where V is the river/stream flow velocity [L/T], R is hydraulic radius [L], ρ is the density of water 
[M/L3], S is the friction slope, τcrn is the critical bottom shear stress of the n-th sediment at which 
sediment movement begins [M/L/T2], g is gravity [L/T2], dn is the median diameter of the n-th 
sediment particle [L], and ρsn is the density of the n-th sediment [M/L3].  
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It should be noted that equations (2.5.2) through (2.5.9) are the sample models programmed in the 
computer code to estimate sediment deposition and erosion rate. Any other phenomenological model 
equation can be easily incorporated in the code. 
 
 
2.5.2 Suspended Sediments 
 
The continuity equation of suspended sediment can be derived based on the conservation law of 
material mass as (Yeh et al., 2005): 
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where Sn is the cross-sectional-averaged concentration of the n-th suspended sediment in the unit of 
mass per unit column volume [M/L3], Kx is the dispersion coefficient [L2/T], 

n

as
SM  is the artificial 

source of the n-th suspended sediment [M/L/T], 
n

is
SM  is the source of the n-th suspended sediment 

from groundwater exfiltration [M/L/T], and 1
n

os
SM  and 2

n

os
SM  are overland sources of the n-th 

suspended sediment from river bank 1 and 2, respectively [M/L/T].  
 
Concentrations of all suspended sediments must be given initially for transient simulations. Four 
types of boundary conditions are taken into account for suspended sediments, including Dirichlet, 
Variable, Cauchy, and Neumann boundary conditions (Yeh et al., 2005). 
 
Dirichlet boundary condition:  Dirichlet boundary conditions are prescribed on the boundary where 
the suspended sediment concentration is known, 
 

( , ) on ( )n dn b d bS S x t B x=  (2.5.11)
 

where xb is the axis coordinate of the boundary node [L], ( , )dn bS x t  is a time-dependent Dirichlet 
concentration of the n-th fraction size on the boundary ( )d bB x  [M/L3]. 
 
Variable boundary condition:  Variable boundary conditions are normally specified on the boundary 
where the flow direction can change with time or on any open boundary.  On the variable boundary, 
when the flow is directed into the region of the interest, the mass rate into the region is given by the 
product of the flow rate and concentration of the incoming fluid.  When the flow is directed out of 
the region, the sediment mass is assumed carried out via advection.  Mathematically, a variable 
boundary condition is given as   
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where n is a unit outward direction, and ( , )vn bS x t  is a time-dependent concentration at the boundary 
that is associated with the incoming flow on the variable boundary ( )v bB x  [M/L3].  
 
Cauchy boundary condition:  This boundary condition is employed when the total material flow rate 
is given. Usually, this boundary is an upstream flux boundary.  
 

( , )    ( )
n

n
n x S c b c b

Sn QS AK Q x t on B x
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where ( , )
nS c bQ x t  is a time-dependent material flow rate at the Cauchy boundary boundary [M/t] 

( )c bB x . 
 
Neumann boundary condition:  This boundary condition is used when the diffusive material flow 
rate is known at the boundary node. 
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where ( , ) 
nS n bQ x t  is a time-dependent diffusive material flow rate at the boundary ( )n bB x  [M/t]. 

 
 
2.5.3 Immobile Bed-Sediment Species 
 
The balance equation for immobile species is simply the statement that the rate of mass change is 
due to biogeochemical reaction as: 
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where hb is the river/stream bed depth [L], ρbw is the density of bed pore-water [M/L3], θb is the 
porosity of the bed sediment [L3/L3], Cbw is the concentration of dissolved chemical in the immobile 
pore-water phase in the unit of chemical mass per bed-water mass [M/M], rCbw│N’ is the production 
rate of Cbw due to all N reactions in the unit of chemical mass per  bed volume per time [M/L3/t], Cbp 
is the concentration of bed precipitate in the unit of chemical mass per bed-water mass [M/M], 
rCbp│N’ is the production rate of Cbp due to all N reactions in the unit of chemical mass per bed 
volume per time [M/L3/t], Cbsn is the concentration of particulate sorbed on to bed sediment of the n-
th fraction size in the unit of chemical mass per unit of bed-sediment mass [M/M], Mn is the 
concentration of the n-th bed sediment in the unit of sediment mass per bed area [M/L2], rCbsn│N’ is 
the production rate of Cbsn due to all N reactions in the unit of chemical mass per bed volume per 
time [M/L3/t]. 
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Define 
 

'       ,  ,   i N b i N bw bp bsnr Ph r A where i C C or C= =  (2.5.19)
 

Equation (2.5.16) through (2.5.18) can be modified as  
 

( )b bw b bw
Cbw N

Ph C Ar
t

ρ θ∂
=

∂
 (2.5.20)

 
( )b bw b bp

Cbp N

Ph C
Ar

t
ρ θ∂

=
∂

 (2.5.21)
 

( )n bsn
Cbsn N

PM C Ar
t

∂
=

∂
 (2.5.22)

 
Define  
 

/ ,     
/ ,                             

b bw b bw bp
i

n bsn

Ph A for C and C
PM A for C

ρ θ
ρ

⎧
= ⎨
⎩

 (2.5.23)

 
Equation (2.5.20) through (2.5.22) can be summarized as  
 

( ) ,   i i
i N im

A C Ar i M
t
ρ∂

= ∈
∂

 (2.5.24)
 

where Ci is the concentration of species i, which is immobile, in the unit of chemical mass per unit 
phase mass [M/M], ρi is the density of the phase associated with species i [M/L3], ri│N is the 
production rate of species i due to all N reactions in the unit of chemical mass per column volume 
per time [M/L3/t], and Mim is the number of immobile species. The concentrations of all immobile 
species must be given initially for transient simulations. No boundary conditions are needed for 
immobile species. 
 
 
2.5.4 Mobile Column-Water Species 
 
The continuity equation of mobile species can be derived based on the conservation law of material 
mass stating that the rate of mass change is due to both advective-dispersive transport and 
biogeochemical reactions as: 
 

( ) ( )w w
w w Cw N

A C L C Ar
t

ρ ρ∂
+ =

∂
 (2.5.25)

 
( )

( )w p
w p Cp N

A C
L C Ar

t
ρ

ρ
∂

+ =
∂

 (2.5.26)
 

( ) ( )n sn
n sn Csn N

AS C L S C Ar
t

∂
+ =

∂
 (2.5.27)
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where ρw is the density of column water [M/L3], Cw is the concentration of dissolved chemical in the 
mobile water phase in the unit of chemical mass per column-water mass [M/M], rCw│N is the 
production rate of Cw due to all N reactions in the unit of chemical mass per column volume per time 
[M/L3/t], Cp is the concentration of suspension precipitate in the unit of chemical mass per column-
water mass [M/M], rCp│N is the production rate of Cp due to all N reactions in the unit of chemical 
mass per column volume per time [M/L3/t], Csn is the concentration of particulate sorbed on to 
suspended sediment of the n-th fraction size in the unit of chemical mass per unit of sediment mass 
[M/M], Sn is the concentration of suspended sediment in the unit of sediment mass per column 
volume [M/L3], rCsn│N is the production rate of Csn due to all N reactions in the unit of chemical 
mass per column volume per time [M/L3/t], and L is an operator that will be defined in Eq. (2.5.30) 
later.  
 
Define  
 

        
                      
w w p

i
n sn

for C and C
S for C
ρ

ρ
⎧

= ⎨
⎩

 (2.5.28)

 
Equation (2.5.25) through (2.5.27) can be summarized as  
 

( ) ( ) ,   i i
i i i N m im

A C L C Ar i M M M
t
ρ ρ∂

+ = ∈ = −
∂

 (2.5.29)
 

where Ci is the concentration of species i, which is mobile, in the unit of chemical mass per unit 
phase mass [M/M], ρi is the density of the phase associated with species i [M/L3], ri│N is the 
production rate of species i due to all N reactions in the unit of chemical mass per column volume 
per time [M/L3/t], M is the total number of chemical species, Mm is the number of mobile chemical 
species, and operator L is defined as  
 

( ) 1 2( )( ) ( )
i i i i i i

i i as rs es os os isi i
i i x C C C C C C

CQ CL C AK M M M M M M
x x x

ρρρ
∂⎡ ⎤∂ ∂

= − − + − + + +⎢ ⎥∂ ∂ ∂⎣ ⎦
 (2.5.30)

 

where 
i

as
CM  is the artificial source of species i [M/L/T], 

i

rs
CM  is the rainfall source of species i 

[M/L/T], 
i

rs
CM  is the sink of species i due to evaporation, 1

i

os
CM  and 2

i

os
CM are the overland sources 

of species i from river bank 1 and 2, respectively [M/L/T], and 
i

is
CM  is the mass rate of the source of 

species i in river/stream from subsurface [M/L/T]. 
 
Concentrations of all mobile species must be given initially for transient simulations.  Four types of 
boundary conditions are taken into account for mobile species, including Dirichlet, Variable, 
Cauchy, and Neumann boundary conditions (Yeh et al., 2005), which are similar to those for 
suspended sediment transport and are presented below: 
 
Dirichlet boundary condition: On a Dirichlet boundary, the concentrations of all mobile species are 
prescribed  
 

( , ) ( ) 0  i idb b m dC C x t i M on B x= ∈ =  (2.5.31)
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where ( , )idb bC x t  is the prescribed concentration of the i-th mobile species on the Dirichlet boundary 
( ) 0dB x =  [M/M]. 

 
Variable boundary condition:  On a variable boundary, the concentrations of all mobile species are 
known and they contribute to the increase of chemical masses in the region of interest when the flow 
is coming into the region.  When the flow is going out of the region, the transport of all mobile 
species out of the region is assumed due to advection only, which implies that one must put an 
outgoing boundary far away from the source. 
 
< Case 1 > Flow is coming in from outside (nQ < 0) 
 

( ) ( , ) ( ) 0i i
i i x i ivb b m v

Cn Q C AK nQ C x t i M on B x
x

ρρ ρ∂⎛ ⎞− = ∈ =⎜ ⎟∂⎝ ⎠
 (2.5.32)

 
< Case 2 > Flow is going out from inside (nQ > 0). 
 

0 ( ) 0i i
x m v

CnAK i M on B x
x

ρ∂
− = ∈ =

∂
 (2.5.33)

 

where n is the unit outward direction and ( , )ivb bC x t  is the concentration of the i-th species in the 
incoming fluid on the variable boundary ( ) 0vB x =  [M/M]. 
 
Cauchy boundary condition:  On a Cauchy boundary chemical flux for any mobile species is 
prescribed 
 

( , ) ( ) 0
i

i i
i i x C cb b m c

Cn Q C AK Q x t i M on B x
x

ρρ ∂⎛ ⎞− = ∈ =⎜ ⎟∂⎝ ⎠
 (2.5.34)

 

where ( , )
iC cb bQ x t  is the mass flux of Ci through the Cauchy boundary ( ) 0cB x =  [M/t]. 

 
Neumann boundary condition: On a Neumann boundary, chemical flux of any mobile species due to 
dispersion is prescribed 
 

( , ) ( ) 0
i

i i
x C nb b m n

CnAK Q x t i M on B x
x

ρ∂
− = ∈ =

∂
 (2.5.35)

 

where ( , )
iC nb bQ x t  is the mass flux of Ci through the Neumann boundary ( ) 0nB x =  [M/t]. 

 
 
2.5.5 Diagonalization of Species Transport Equations 
 
The temporal-spatial distribution of chemical species is described by a system of Mim mass balance 
equations [equation (2.5.24)], and Mm reactive transport equations [equation (2.5.29)]. These two 
equations can be recast in the following form  
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( ) ( ) ,   i i
i i i i N

A C L C Ar i M
t
ρ α ρ∂

+ = ∈
∂

 (2.5.36)
 

where M is the total number of chemical species, αi is 0 for immobile species and 1 for mobile 
species. 
 
The determination of ri⏐N and associated parameters is a primary challenge in biogeochemical 
modeling.  Instead of using an ad hoc method to formulate ri⏐N, we use reaction-based formulations 
(Steefel and Cappellen, 1998).  In a reaction-based formulation, ri⏐N is given by the summation of 
rates of all reactions that the i-th species participates in,  
 

( ) [ ]
1

( ) ,   
N

i i
i N reaction ik ik k

k

d C
r r i M

dt
ρ

ν μ
=

= = − ∈∑  (2.5.37)
 

where νik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
products, μik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
reactants, and rk is the rate of the k-th reaction.  
 
Substituting equation (2.5.37) into equation (2.5.36) results in the transport equations of M chemical 
species described by   
 

[ ]
1

( ) ( ) ( ) ,   ;     ( )
N

i i
i i i ik ik k

k

A C L C A r i M or L A
t t
ρ α ρ ν μ

=

∂ ∂
+ = − ∈ + =

∂ ∂∑ ACU α C νr  (2.5.38)
 

where U is a unit matrix, CA is a vector with its components representing M species concentrations 
multiply the cross section area of the river [M/L], α is a diagonal matrix with αi as its diagonal 
component, C is a vector with its components representing M species concentrations [M/L3], ν is the 
reaction stoichiometry matrix, and r is the reaction rate vector with N reaction rates as its 
components. Equation (2.5.38) represents a mass balance for species i, which states that the rate of 
change of any species mass is due to advection-dispersion coupled with contributing reactions that 
describe the biogeochemical processes.  
 
In a primitive approach, equation (2.5.38) is integrated to yield the distributions and evolutions of 
chemical species in a region of interest.  However, when some fast equilibrium reactions take place 
in the system, this approach is not adequate (Fang et al., 2003).  Here, we will take a diagonalization 
approach through decomposition.  Equation (2.5.38) written in matrix form can be decomposed 
based on the type of biogeochemical reactions via Gauss-Jordan column reduction of reaction matrix 
ν. Among all the fast/equilibrium and slow/kinetic reactions, “redundant reactions” are defined as 
fast reactions that are linearly dependent on other fast reactions, and “irrelevant reactions” are 
kinetic reactions that are linearly dependent on only equilibrium reactions.  In order to avoid 
singularity of the reaction matrix, redundant fast reactions are omitted from the system prior to 
decomposition.  The removal of irrelevant slow reactions alleviates problems associated with rate 
formulation uncertainty and parameterization for these reactions. 
 
Decomposition is performed by pivoting on the NE equilibrium reactions and decoupling them from 
the NK kinetic reactions.  In other words, each fast reaction can be used to eliminate one chemical 
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species from simultaneous consideration.  An incomplete Gauss-Jordan row decomposition of the 
reaction matrix  ν by pivoting on NE equilibrium reactions will result in NE equilibrium-variables 
and NKIV kinetic-variables.  To analyze the system behavior, it is advantageous to perform a 
complete decomposition, in which the reduction of the reaction matrix is done by pivoting on NE 
equilibrium reactions and on NKI linearly independent kinetic reactions to result in NE equilibrium-
variables, NKI kinetic-variables, and NC components.  The complete decomposition is given as 
follows: 
 

2

3
3

dt 
L A

dt

dt
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A
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A

C

A 0 0 B 0  0 D K  KC r
C rA A 0 B B 0  0 D KC

rCA A U B B α  0  0  0C

(2.5.39)

 

where A11 is the submatrix of the reduced U matrix with size of NE × NE,  A21 is the submatrix of the 
reduced U matrix with size of NKI × NE, and A31 is the submatrix of the reduced U matrix with size 
of NC × NE; 012 is the zero submatrix of the reduced U matrix with size of NE × NKI, A22 is the 
submatrix of the reduced U matrix with size of NKI × NKI,  and A32 is the submatrix of the reduced U 
matrix with size of NC × NKI; 013 is the zero submatrix of the reduced U matrix with size of NE × NC, 
023 is the submatrix of the reduced U matrix with size of NKI × NC, and U33 is the unit submatrix of 
the reduced U matrix with size of NC × NC;  CA1, CA2, and CA3 are the subvectors of the vector CA 
with sizes of NE, NKI, and NC, respectively; B11 is the submatrix of the reduced α matrix with size of 
NE × NE,  B21 is the submatrix of the reduced α matrix with size of NKI × NE, and B31 is the submatrix 
of the reduced α matrix with size of NC × NE; 012 is the zero submatrix of the reduced α matrix with 
size of NE × NKI, A22 is the submatrix of the reduced α matrix with size of NKI × NKI,  and B32 is the 
submatrix of the reduced α matrix with size of NC × NKI; 013 is the zero submatrix of the reduced α 
matrix with size of NE × NC, 023 is the submatrix of the reduced α matrix with size of NKI × NC, and 
α33 is the diagonal submatrix of the reduced α matrix with size of NC × NC;  C1, C2, and C3 are the 
subvectors of the vector C with sizes of NE, NKI, and NC, respectively;  D11 is the diagonal submatrix 
of the reduced ν matrix with size of NE × NE,  K12 is the submatrix of the reduced ν matrix with size 
of NE × NKI, and K13 is the submatrix of the reduced ν matrix with size of NE × NKD(k); 021 is the zero 
submatrix of the reduced ν matrix with size of NKI × NE, D22 is the diagonal submatrix of the reduced 
ν matrix with size of NKI × NKI,  and K23 is the submatrix of the reduced ν matrix with size of NKI × 
NKD(k); 013 is the zero submatrix of the reduced ν matrix with size of NC × NE, 032 is the zero 
submatrix of the reduced ν matrix with size of NC × NKI, and 033 is the zero submatrix of the reduced 
ν matrix with size of NC × NKD(k);  r1, r2, and r3 are the subvectors of the vector r with sizes of NE, 
NKI, and NKD(k), respectively. 
 
For incomplete decomposition of the reaction matrix ν, Equation (2.5.39) can be connoted as 
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where A11 and A21 are the submatrices of the reduced U matrix with size of NE × NE and NKIV × NE, 
respectively (note that NKIV = M – NE = NKI + NC); 012 and U22 are the zero- and unit-submatrices, 
respectively, of the reduced U matrix with size of NE × NKIV and NKIV × NKIV, respectively; CA1 and 
CA2 are the subvectors of the vector CA with sizes of NE and NKIV, respectively; B11 and B21 are the 
submatrices of the reduced α matrix with sizes of NE × NE and NKIV × NE, respectively; 012 and α22 
are the zero- and unit- submatrices, respectively, of the reduced α matrix with size of NE × NKIV and 
NKIV × NKIV, respectively; C1 and C2 are the subvectors of the vector C with sizes of NE and NKIV, 
respectively;  D11 is the diagonal submatrix of the reduced ν matrix with size of NE × NE and K12 is 
the submatrix of the reduced ν matrix with size of NE × NKIV; 021 is the zero submatrix of the reduced 
ν matrix with size of NKIV × NE and  K22 is the submatrix of the reduced ν matrix with size of NKIV × 
NE;  r1 and r2 are the subvectors of the vector r with sizes of NE and  NKIV, respectively.   
  
For reactions that are fast, equilibrium may be regarded as being reached instantaneously among the 
relevant species and the reaction rates may be regarded as infinite. An infinite rate is mathematically 
represented by a mass action equation or a user specified nonlinear algebraic equation. As a result, 
the decomposition of equation (2.5.38) to equation (2.5.40) effectively reduces a set of M species 
reactive transport equations into two subsets of equations. The first set contains NE algebraic 
equations representing mass action laws for the equilibrium reactions, and the second set contains 
NKIV kinetic-variable transport equations. These equation subsets are defined as 
 
Algebraic Equations for Equilibrium Reactions 
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 (2.5.41)

 

where Ki
e is the equilibrium constant of the i-th fast reaction, Aj is the activity of the j-th species, 

Fi(C1,..,CM; p1,p2,..) is an empirical function of all species and a number of parameters p1, p2, … for 
the i-th fast reaction.  Ei was called an equilibrium-variable (Fang, et al., 2003) because 

( )iAE
t

∂
≈ ∞

∂
simply means that Ei can reach equilibrium instantaneously. 

 
Transport Equations for Kinetic-Variables  
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∑ ∑
 (2.5.42)

 

where Ei was called kinetic variable (Fang, et al., 2003) because as Ei is transported it is subject to 
only kinetic reactions.  This is in contrast to Eq. (2.5.38) where as Ci is transported, it is subject to 
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both equilibrium and kinetic reactions. 
 
Assign 
 

2 2
1

,  i
KN

i ij j KIV
j

R K r N
=

= ∈∑  (2.5.43)

 
The reduction of Eq. (2.5.38) to Eq. (2.5.41) and (2.5.42) is equivalent to reducing M governing 
equations for immobile and mobile species to the mixed NE algebraic equations for equilibrium 
variables and NKIV transport equations for kinetic-variables specified as follows 
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where Ei is the concentration of the i-th kinetic-variable [M/L3], Ei
m is the concentration of mobile 

part of the i-th kinetic-variable [M/L3], 
i

as
EM  is the artificial source of the i-th kinetic-variable 

[M/L/T], 
i

rs
EM  is the rainfall source of the i-th kinetic-variable [M/L/T], 

i

es
EM  is the evaporation 

sink of the i-th kinetic variable [M/L/T], 1
i

os
EM  and 2

i

os
EM  are overland sources of the i-th kinetic-

variable from river banks 1 and 2, respectively [M/L/T], 
i

is
EM  is the mass rate of the source of the i-

th kinetic-variable in river/stream from subsurface [M/L/T], Ri is the production rate of i-th kinetic-
variable due to biogeochemical reactions [M/L3/T], and NKIV is the number of kinetic variable 
variables. 
 
Boundary conditions for mobile species need to be transformed into corresponding boundary 
conditions for kinetic-variables, which are stated in the following.  
 
Dirichlet boundary condition: 
 

( , ) ( ) 0m m
i i db b m dE E x t i M on B x= ∈ =  (2.5.45)

 

where ( , )m
i db bE x t  is the specified concentration of the mobile portion of the i-th kinetic variable on 

the Dirichlet boundary ( ) 0dB x =  [M/L3]. 
 
Variable boundary condition: 
 
< Case 1 > Flow is coming in from outside (nQ < 0) 
 

( , ) ( ) 0
m

m mi
i x i vb b m v

En QE AK nQE x t i M on B x
x
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 (2.5.46)

 
< Case 2 > Flow is going out from inside (nQ > 0). 
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0 ( ) 0
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x m v
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∂
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where n is the unit outward direction and ( , )m

i vb bE x t  is the concentration of the mobile portion of the 
i-th kinetic variable on the variable boundary ( ) 0vB x =  [M/L3]. 
 
Cauchy boundary condition: 
 

( , ) ( ) 0m
i

m
m i
i x cb b m cE

En QE AK Q x t i M on B x
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where ( , )m
i

cb bE
Q x t  is the mass flux of Ei

m through the Cauchy boundary ( ) 0cB x =  [M/t]. 

 
Neumann boundary condition: 
 

( , ) ( ) 0m
i nb

m
i

x b m nE

EnAK Q x t i M on B x
x

∂
− = ∈ =

∂
 (2.5.49)

 

where ( , )m
i

nb bE
Q x t  is the mass flux of Ei

m through the Neumann boundary ( ) 0nB x =  [M/t]. 

 
 
 
2.6 Sediment and Water Quality Transport in Two-Dimension Overland Regime 

 
Researches on overland water quality modeling include studies of sediment (McDonald and Cheng, 
1994; Harris and Wiberg, 2001; and Zeng and Beck, 2003) and water quality transport (Falconer and 
Lin, 1997; Tufford and McKellar, 1999; Shen et al., 2002; and Zheng et al., 2004) as well as thermal 
and salinity transport.  Most of the existing overland water quality models simulate either specific 
systems (Cerco and Cole, 1995; Shen et al., 2002; and Zheng et al., 2004) or systems containing 
specific reactions (Brown and Barnwell, 1987; Ambrose et al, 1993; and Bonnet and Wessen, 2001). 
They may provide efficient monitoring and management tools because they are calibrated for 
specific environments, but the extension of a calibrated model to other environmental conditions 
needs to be carefully evaluated. With better understanding and mathematical formulation of complex 
biogeochemical interactions (Thomann, 1998; Somlyody et al., 1998; and Yeh et al., 2001a), models 
considering interactions among biogeochemicals based on reaction mechanism have a better 
potential for application to other systems (Steefel and Cappellen, 1998). Although a few reaction-
based models can handle contaminant transport subject to kinetically controlled chemical reactions 
(Cheng et al., 2000; and Yeh et al., 2005), no existing overland water quality model, to our 
knowledge, has the design capability that permitts the use of a fully mechanistic approach to 
estimate both kinetically and equilibrium controlled reactive chemical transport in overland water 
systems. 
 
This section presents a general two-dimensional depth-averaged numerical model simulating the 
water quality in overland shallow water systems using a general paradigm of diagonalized reaction-
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SS = suspended sediment  
BS = bed sediment  
MW = in mobile water 
IMW = in immobile water 
SP = suspension precipitate 
BP = bed precipitate 
C = dissolved chemical  
CS = particulate on SS 
CB = particulate on BS 
1 = clay 2 = silt 3 = sand  B

ed
  

  
  

  
  

  

based approaches.  In our model, sediments are categorized based on their physical and chemical 
properties. For each category of sediment, we include mobile suspended sediment particles scattered 
in water column and immobile bed sediment particles accumulated in water bed. The distribution of 
suspended sediment and bed sediment is controlled through hydrological transport as well as erosion 
and deposition processes. There are six phases and three forms for biogeochemical species. As 
shown in Figure 2.6-1, the six phases are suspended sediment, bed sediment, mobile water, 
immobile water, suspension precipitate, and bed precipitate phases; and the three forms are dissolved 
chemicals, particulate chemicals sorbed onto sediments, and precipitates. 
 
In the transport simulation, biogeochemical reactions can be divided into two classes (Rubin, 1983): 
(1) equilibrium-controlled “fast” reactions, and (2) kinetically-controlled “slow” reactions. The 
former are sufficiently fast compared to the transport time-scale and are reversible, so that local 
equilibrium may be assumed. The latter are not sufficiently fast compared to the transport time-
scale. As shown in Figure 2.6-2, biogeochemical reactions taken into account in the model include 
aqueous complexation, adsorption/desorption, ion-exchange, precipitation/dissolution, volatilization, 
diffusion, and sedimentation, etc. Any individual reaction representing any of these chemical and 
physical processes may be simulated as kinetic or as equilibrium, which makes the code extremely 
flexible for application to a wide range of biogeochemical transport problems. 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2.6-1. Sediments and Chemicals in River/Stream Networks 

 
 
2.6.1 Bed Sediment 
 
The balance equation for bed sediments is simply the statement that the rate of mass change is due to 
erosion/deposition as (Yeh, et al., 2005) 
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where Mn is the concentration of the n-th bed sediment in mass per unit bed area [M/L2], Dn is the 
deposition rate of the n-th sediment in mass per unit bed area per unit time [M/L2/T], Rn is the 
erosion rate of the n-th sediment in mass per unit bed area per unit time [M/L2/T],  

n

is
MM  is the source 

of the n-th sediment from groundwater exfiltration in mass per unit area [M/L2/T], and NS is the total 
number of sediment size fractions. Concentrations of all bed sediments must be given initially for 
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transient simulations. No boundary condition is needed for bed sediments. In equation (2.6.1), we 
estimate the deposition and erosion rates using the different equations for cohesive and non-cohesive 
sediments. 
 
For cohesive sediments, e.g., silt and clay, following equations are used (Yeh et al., 1998; Gerritsen 
et al., 2000) 
 

( ) ( )min ,   where max 0,  1n sn n Dn n Dn b cDnD V S P S h t P τ τ= Δ = −  (2.6.2) 
and 

( ) ( )0min ,  where  max 0,  1n n Rn n Rn b cRnR E P DMA t P τ τ= Δ = −  (2.6.3) 
 

 
 
 

 

 

 

 

 

 
Fig. 2.6-2.  Biogeochemical Reactions Considered in the Model 

 
where Vsn is the settling velocity of the n-th sediment [L/T], Sn is the depth-averaged suspended 
concentration of n-th sediment [M/L3], h is the water depth [L], ∆t is the simulation time step size 
[T], τb is the bottom shear stress or the bottom friction stress [M/L/T2], τcDn is the critical shear stress 
for the deposition of the n-th sediment [M/L/T2], E0n is the erodibility of the n-th sediment [M/L2/T], 
DMAn is the amount of locally available dry matter of n-th sediment, expressed as dry weight per 
unit area [M/L2], τcRn is the critical shear stress for the erosion of the n-th sediment [M/L/T2]. 
 
For Non-cohesive sediments, e.g., sand, we have two options. 
 
Option 1 (Prandle et al., 2000) 
 

( ) ( )2min ,   where  max 0,  1n sn n Dn n Dn cDn cRnD V S N S h t N V V⎡ ⎤= Δ = −⎣ ⎦  (2.6.4) 
and 

( ) ( )0min ,  where max 0,  1n n Rn n Rn cDn cRnR E N DMA t N V V= Δ = −  (2.6.5) 
 

where VcDn and VcRn represent the critical friction velocities for the onset of deposition and erosion, 
respectively [L/T].  
 

(1) Aqueous complexation in mobile water phase, 
(2) Adsorption/desorption or ion-exchange between 
mobile water and suspended sediment phases,  
(3) Precipitation/dissolution between mobile water 
and suspension precipitate phases, 
(4) Adsorption/desorption or ion-exchange between 
mobile water and bed sediment phases,  
(5) Aqueous complexation in immobile water phase, 
(6) Adsorption/desorption or ion-exchange between 
immobile water and bed sediment phases,  
(7) Precipitation/dissolution between immobile water 
and bed precipitate phases, 
(8) Volatilization from mobile water phase, 
(9) Diffusion between mobile and immobile water 
phases, 
(10) Sedimentation of particulates between 
suspended and bed sediment phases 
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Option 2 (Yeh et al., 1998) 
 

max ,0  sAn sn
n

G GD
L
−⎛ ⎞= ⎜ ⎟Δ⎝ ⎠

 (2.6.6) 

and 

max ,0sn sAn
n

G GR
L
−⎛ ⎞= ⎜ ⎟Δ⎝ ⎠

 (2.6.7) 
 

where GsAn is the actual load rate of the n-th sediment per unit width at a upstream location [M/L/T], 
Gsn is the maximum load rate of the n-th size fraction sediment per unit width at a downstream 
location [M/L/T], ΔL is the distance between the upstream and the downstream locations.  
 

sAn nG S VR=  (2.6.8) 
and 

2

2

( )10
( )

b crn
sn

n sn

VRSG
gd
ρ τ τ

ρ ρ
−

=
−

 (2.6.9) 
 

where V is the overland flow velocity [L/t], R is hydraulic radius [L], ρ is the density of water 
[M/L3], S is the friction slope, τcrn is the critical bottom shear stress of the n-th sediment at which 
sediment movement begins [M/L/t2], g is gravity [L/t2], dn is the median diameter of the n-th 
sediment particle [L], and ρsn is the density of the n-th sediment [M/L3].  
 
It should be noted that equations (2.6.2) through (2.6.9) are the sample models programmed in the 
computer code to estimate sediment deposition and erosion rate. Any other phenomenological model 
equation can be easily incorporated in the code. 
 
 
2.6.2 Suspended Sediments 
 
The continuity equation of suspended sediment can be derived based on the conservation law of 
material mass as (Yeh et al., 2005): 
 

( ) ( ) ( ) ,      [1, ]as rs is
n n n

n
n n n n sS S S

hS S h S M M M R D n N
t

∂
∂

+ ∇ −∇ ∇ = + + + − ∈q Ki i  (2.6.10)
 

where Sn is the depth-averaged concentration of the n-th suspended sediment in the unit of mass per 
unit column volume [M/L3], K is the dispersion coefficient tensor [L2/t], and as

nS
M , rs

nS
M , and is

nS
M  

are the mass rate of artificial source, rainfall source, and groundwater source of the n-th suspended 
sediment [M/L2/t].  
 
Concentrations of all suspended sediments must be given initially for transient simulations.  Five 
types of boundary conditions are taken into account for suspended sediments, including Dirichlet, 
Variable, Cauchy, Neumann, and river/stream-overland interface boundary conditions (Yeh et al., 
2005). 
 
Dirichlet boundary condition:  Dirichlet boundary conditions are prescribed on the boundary where 
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the suspended sediment concentration is known, 
 

( , , ) ( ) 0n ndb b b dS S x y t on B= =x  (2.6.11)
 

where xb and yb are the coordinates of the boundary node [L], and ( , , )ndb b bS x y t is a time-dependent 
concentration of the n-th sediment size on the Dirichlet boundary ( ) 0dB =x [M/L3]. 
 
Variable boundary condition:  Variable boundary conditions are normally specified on the boundary 
where the flow direction can change with time or on any open boundary.  On the variable boundary, 
when the flow is directed into the region of the interest, the mass rate into the region is given by the 
product of the flow rate and concentration of the incoming fluid.  When the flow is directed out of 
the region, the sediment mass is assumed carried out via advection.  Mathematically, a variable 
boundary condition is given as   
 

( ) ( , , ) 0 ( ) 0n n nvb b b vS h S S x y t if on B− ∇ = ≤ =n q K n q n q xi i i i  (2.6.12)
and 

( ) 0 0 ( ) 0n vh S if on B− ∇ = ≥ =n K n q xi i i  (2.6.13)
 

where n is a unit outward direction and ( , , )nvb b bS x y t is a time-dependent concentration of the n-th 
sediment in the incoming fluid at the boundary [M/L3] ( ) 0vB =x .  
 
Cauchy boundary condition:  This boundary condition is employed when the total material flow rate 
is given. Usually, this boundary is an upstream flux boundary.  
 

( ) ( , , ) ( ) 0
nn n S cb b b cS h S Q x y t on B− ∇ = =n q K xi i  (2.6.14)

 

where ( , , )
nS cb b bQ x y t is a time-dependent material flow rate of the n-th sediment through the Cauchy 

boundary ( ) 0cB =x  [M/t/L]. 
 
Neumann boundary condition:  This boundary condition is used when the diffusive material flow 
rate is known at the boundary node. 
 

( , , ) ( ) 0
nn S nb b b nbh S Q x y t on B− ∇ = =n K xi i  (2.6.15)

 

where ( , , )
nS nb b bQ x y t is a time-dependent diffusive material flow rate of the n-th sediment trough the 

Neumann boundary ( ) 0nbB =x  [M/t/L]. 
 
Overland-River/Stream interface boundary condition: The boundary condition is needed when one-
dimensional sediment transport in river/stream networks is coupled with two-dimensional sediment 
transport in overland regime.  We assume that the exchange of sediment mass between river/stream 
and overland flows is mainly due to advection.  Under such circumstances, the interfacial boundary 
condition is stated as 
 

( ) ( ) ( ) ( ){ }1
1 1 1 ( , , )
2n n n n D b bS h S sign S sign S x y t⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦n q K n q n q n q  (2.6.16)
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where 1 ( , , )n D b bS x y t  is the time-dependent concentration of the n-th sediment at the 1-D node 
corresponding to the boundary [M/L3].  It is the contribution of 1D transport to the overland 
boundary. 
 
 
2.6.3 Immobile Species 
 
The balance equation for immobile species is simply the statement that the rate of mass change is 
due to biogeochemical reaction as: 
 

( ) 'b bw b bw
b Cbw N

h C h r
t

ρ θ∂
=

∂
 (2.6.17)

 
( )

'b bw b bp
b Cbp N

h C
h r

t
ρ θ∂

=
∂

 (2.6.18)
 

( ) 'n bsn
b Cbsn N

M C h r
t

∂
=

∂
 (2.6.19)

 

where hb is the bed depth [L], ρbw is the density of bed pore-water [M/L3], θb is the porosity of the 
bed sediment [L3/L3], Cbw is the concentration of dissolved chemical in the immobile pore-water 
phase in the unit of chemical mass per bed-water mass [M/M], rCbw│N’ is the production rate of Cbw 
due to all N reactions in the unit of chemical mass per  bed volume per time [M/L3/t], Cbp is the 
concentration of bed precipitate in the unit of chemical mass per bed-water mass [M/M], rCbp│N’ is 
the production rate of Cbp due to all N reactions in the unit of chemical mass per bed volume per 
time [M/L3/t], Cbsn is the concentration of particulate sorbed on to bed sediment of the n-th fraction 
size in the unit of chemical mass per unit of bed-sediment mass [M/M], Mn is the concentration of 
the n-th bed sediment in the unit of sediment mass per bed area [M/L2], rCbsn│N’ is the production 
rate of Cbsn due to all N reactions in the unit of chemical mass per bed volume per time [M/L3/t]. 
 
Define 
 

'       ,  ,   i N b i N bw bp bsnr h r h where i C C or C= ⋅ =  (2.6.20)
 
Equation (2.6.16) through (2.6.18) can be modified as  
 

( )b bw b bw
Cbw N

h C hr
t

ρ θ∂
=

∂
 (2.6.21)

 
( )b bw b bp

Cbp N

h C
h r

t
ρ θ∂

= ⋅
∂

 (2.6.22)
 

( )b n bsn
Cbsn N

h M C hr
t

∂
=

∂
 (2.6.23)

 
Define  
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/ ,       
/ ,                               

b bw b bw bp
i

n bsn

h h for C and C
M h for C

ρ θ
ρ

⎧
= ⎨
⎩

 (2.6.24)

 
Equation (2.6.21) through (2.6.23) can be summarized as  
 

( ) ,   i i
i N im

h C hr i M
t
ρ∂

= ∈
∂

 (2.6.25)
 

where Ci is the concentration of species i, which is immobile, in the unit of chemical mass per unit 
phase mass [M/M], ρi is the density of the phase associated with species i [M/L3], ri│N is the 
production rate of species i due to all N reactions in the unit of chemical mass per column volume 
per time [M/L3/t], and Mim is the number of immobile species. The concentrations of all immobile 
species must be given initially for transient simulations. No boundary conditions are needed for 
immobile species. 
 
 
2.6.4 Mobile Species 
 
The continuity equation of mobile species can be derived based on the conservation law of material 
mass stating that the rate of mass change is due to both advective-dispersive transport and 
biogeochemical reactions as: 
 

( ) ( )w w
w w Cw N

h C L C hr
t

ρ ρ∂
+ =

∂
 (2.6.26)

 
( )

( )w p
w p Cp N

h C
L C hr

t
ρ

ρ
∂

+ =
∂

 (2.6.27)
 

( ) ( )n sn
n sn Csn N

hS C L S C hr
t

∂
+ =

∂
 (2.6.28)

 

where ρw is the density of column water [M/L3], Cw is the concentration of dissolved chemical in the 
mobile water phase in the unit of chemical mass per column-water mass [M/M], rCw│N is the 
production rate of Cw due to all N reactions in the unit of chemical mass per column volume per time 
[M/L3/t], Cp is the concentration of suspension precipitate in the unit of chemical mass per column-
water mass [M/M], rCp│N is the production rate of Cp due to all N reactions in the unit of chemical 
mass per column volume per time [M/L3/t], Csn is the concentration of particulate sorbed on to 
suspended sediment of the n-th fraction size in the unit of chemical mass per unit of sediment mass 
[M/M], Sn is the concentration of suspended sediment in the unit of sediment mass per column 
volume [M/L3], rCsn│N is the production rate of Csn due to all N reactions in the unit of chemical 
mass per column volume per time [M/L3/t], and the operator L is defined in Eq. (2.6.31) later.  
 
Define  
 

        
                      
w w p

i
n sn

for C and C
S for C
ρ

ρ
⎧

= ⎨
⎩

 (2.6.29)
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Equation (2.6.26) through (2.6.28) can be summarized as  
 

( ) ( ) ,   i i
i i i N m im

h C L C hr i M M M
t
ρ

ρ
∂

+ = ∈ = −
∂

 (2.6.30)
 

where Ci is the concentration of species i, which is mobile, in the unit of chemical mass per unit 
phase mass [M/M], ρi is the density of the phase associated with species i [M/L3], ri│N is the 
production rate of species i due to all N reactions in the unit of chemical mass per column volume 
per time [M/L3/t], M is the total number of chemical species, Mm is the number of mobile chemical 
species, and operator L is defined as  
 

[ ]( ) ( ) ( ) ( )as rs es rs
i i i i

i i i i i i C C C C
L C C h C M M M Mρ ρ ρ= ∇ ⋅ −∇ ⋅ Κ ⋅∇ − + − +q  (2.6.31)

 

where as
iC

M  is the mass ratte of artificial source of species i [M/L2/T], rs
iC

M  is the mass rate of the 
rainfall source of species i [M/L2/T], es

iC
M  is the mass rate of the evaporation sink of species i 

[M/L2/T], and is
cC

M  is mass rate of  the source of species i in the overland from subsurface [M/L2/T]. 
 
Concentrations of all mobile species must be given initially for transient simulations.  Similar to 
suspended sediment transport, five types of boundary conditions are taken into account for mobile 
species, including Dirichlet, Variable, Cauchy, Neumann, and river/stream-overland interface 
boundary conditions (Yeh et al., 2005). 
 
Dirichlet boundary condition:  Dirichlet boundary conditions are prescribed on the boundary where 
the suspended sediment concentration is known, 
 

( , , ) ( ) 0i idb b b m dC C x y t i M on B= ∈ =x  (2.6.32)
 

where xb and yb are the coordinates of the boundary node [L], and ( , , )idb b bC x y t is a time-dependent 
concentration of the i-th mobile species on the Dirichlet boundary ( ) 0dB =x [M/M]. 
 
Variable boundary condition:  Variable boundary conditions are normally specified on the boundary 
where the flow direction can change with time or on any open boundary.  On the variable boundary, 
when the flow is directed into the region of the interest, the mass rate into the region is given by the 
product of the flow rate and concentration of the incoming fluid.  When the flow is directed out of 
the region, the sediment mass is assumed carried out via advection.  Mathematically, a variable 
boundary condition is given as   
 

( )( ) ( , , )  0  ( ) 0,  i i i i i ivb b b v mC h C C x y t if on B i Mρ ρ ρ⋅ − ⋅∇ = ⋅ ⋅ ≤ = ∈n q K n q n q x  (2.6.33)
and 

( )( ) 0 0 ( ) 0,i i v mh C if on B i Mρ− ⋅ ⋅∇ = ⋅ ≤ = ∈n K n q x  (2.6.34)
 

where n is a unit outward direction and ( , , )i vb b bC x y t is a time-dependent concentration of the i-th 
mobile species in the incoming fluid at the boundary [M/M] ( ) 0vB =x .  
 
Cauchy boundary condition:  This boundary condition is employed when the total material flow rate 
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is given. Usually, this boundary is an upstream flux boundary.  
 

( )( ) ( , , ) ( ) 0
ii i i i C cb b b m cC h C Q x y t i M on Bρ ρ⋅ − ⋅∇ = ∈ =n q K x  (2.6.35)

 

where ( , , )
iC cb b bQ x y t is a time-dependent material flow rate of the i-th mobile species through the 

Cauchy boundary ( ) 0cB =x [M/t/L]. 
 
Neumann boundary condition:  This boundary condition is used when the diffusive material flow 
rate is known at the boundary node. 
 

( ) ( , , ) ( ) 0
ii i C nb b b m nbh C Q x y t i M on Bρ− ⋅ ⋅∇ = ∈ =n K x  (2.6.36)

 

where ( , , )
iC nb b bQ x y t is a time-dependent diffusive material flow rate of the i-th mobile species 

through the Neumann boundary ( ) 0nbB =x  [M/t/L]. 
 
Overland-river/stream interface boundary condition: The boundary condition is needed when one-
dimensional sediment transport in river/stream networks is coupled with two-dimensional sediment 
transport in overland regime.  We assume that the exchange of sediment mass between river/stream 
and overland flows is mainly due to advection.  Under such circumstances, the interfacial boundary 
condition is stated as 
 

( ) ( ) ( ) ( ){ }1
1( ) 1 1 ( , , )
2i i i i i i i i D b bC h C sign C sign C x y tρ ρ ρ ρ⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦n q K n q n q n q  (2.6.37)

 

where 1 ( , , )i D b bC x y t  is the time-dependent concentration of the i-th species at the 1-D node 
corresponding to the overland-river/stream interfacial boundary point [M/M]. 
 
 
2.6.5 Diagonalization of Species Transport Equations 
 
The temporal-spatial distribution of chemical species is described by a system of Mim mass balance 
equations [equation (2.6.25)], and Mm reactive transport equations [equation (2.6.30)]. These two 
equations can be recast in the following form  
 

( ) ( ) ,   i i
i i i i N

h C L C hr i M
t
ρ

α ρ
∂

+ = ∈
∂

 (2.6.38)
 

where M is the total number of chemical species, αi is 0 for immobile species and 1 for mobile 
species. 
 
The determination of ri⏐N and associated parameters is a primary challenge in biogeochemical 
modeling.  Instead of using an ad hoc method to formulate ri⏐N, we use reaction-based formulations 
(Steefel and Cappellen, 1998).  In a reaction-based formulation, ri⏐N is given by the summation of 
rates of all reactions that the i-th species participates in,  
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( ) [ ]
1

( ) ,   
N

i i
i N reaction ik ik k

k

d C
r r i M

dt
ρ

ν μ
=

= = − ∈∑  (2.6.39)
 

where νik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
products, μik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
reactants, and rk is the rate of the k-th reaction.  
 
Substituting equation (2.6.39) into equation (2.6.38) results in the transport equations of M chemical 
species described by  
 

[ ]
1

( ) ( ) ( ) ,   ;     ( )
N

i i h
i i i ik ik k

k

h C L C h r i M or L h
t t
ρ

α ρ ν μ
=

∂ ∂
+ = − ∈ + =

∂ ∂∑ CU α C νr  (2.6.40)
 

where U is a unit matrix, Ch is a vector with its components representing M species concentrations 
multiply the water depth [M/L2], α is a diagonal matrix with αi as its diagonal component, C is a 
vector with its components representing M species concentrations [M/L3], ν is the reaction 
stoichiometry matrix, and r is the reaction rate vector with N reaction rates as its components. 
Equation (2.6.40) represents a mass balance for species i, which states that the rate of change of any 
species mass is due to advection-dispersion coupled with contributing reactions that describe the 
biogeochemical processes.  
 
In a primitive approach, equation (2.6.40) is integrated to yield the distributions and evolutions of 
chemical species in a region of interest.  However, when some fast equilibrium reactions take place 
in the system, this approach is not adequate (Fang et al., 2003).  Here, we will take a diagonalization 
approach through decomposition.  Equation (2.6.40) written in matrix form can be decomposed 
based on the type of biogeochemical reactions via Gauss-Jordan column reduction of reaction matrix 
ν. Among all the fast/equilibrium and slow/kinetic reactions, “redundant reactions” are defined as 
fast reactions that are linearly dependent on other fast reactions, and “irrelevant reactions” are 
kinetic reactions that are linearly dependent on only equilibrium reactions.  In order to avoid 
singularity of the reaction matrix, redundant fast reactions are omitted from the system prior to 
decomposition.  The removal of irrelevant slow reactions alleviates problems associated with rate 
formulation uncertainty and parameterization for these reactions. 
 
Decomposition is performed by pivoting on the NE equilibrium reactions and decoupling them from 
the NK kinetic reactions.  In other words, each fast reaction can be used to eliminate one chemical 
species from simultaneous consideration.  An incomplete Gauss-Jordan row decomposition of the 
reaction matrix  ν by pivoting on NE equilibrium reactions will result in NE equilibrium-variables 
and NKIV kinetic-variables.  To analyze the system behavior, it is advantageous to perform a 
complete decomposition, in which the reduction of the reaction matrix is done by pivoting on NE 
equilibrium reactions and on NKI linearly independent kinetic reactions to result in NE equilibrium-
variables, NKI kinetic-variables, and NC components.  The complete decomposition is given as 
follows: 
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 (2.6.41)

 

where A11 is the submatrix of the reduced U matrix with size of NE × NE,  A21 is the submatrix of the 
reduced U matrix with size of NKI × NE, and A31 is the submatrix of the reduced U matrix with size 
of NC × NE; 012 is the zero submatrix of the reduced U matrix with size of NE × NKI, A22 is the 
submatrix of the reduced U matrix with size of NKI × NKI,  and A32 is the submatrix of the reduced U 
matrix with size of NC × NKI; 013 is the zero submatrix of the reduced U matrix with size of NE × NC, 
023 is the submatrix of the reduced U matrix with size of NKI × NC, and U33 is the unit submatrix of 
the reduced U matrix with size of NC × NC;  Ch1, Ch2, and Ch3 are the subvectors of the vector Ch 
with sizes of NE, NKI, and NC, respectively; B11 is the submatrix of the reduced α matrix with size of 
NE × NE,  B21 is the submatrix of the reduced α matrix with size of NKI × NE, and B31 is the submatrix 
of the reduced α matrix with size of NC × NE; 012 is the zero submatrix of the reduced α matrix with 
size of NE × NKI, A22 is the submatrix of the reduced α matrix with size of NKI × NKI,  and B32 is the 
submatrix of the reduced α matrix with size of NC × NKI; 013 is the zero submatrix of the reduced α 
matrix with size of NE × NC, 023 is the submatrix of the reduced α matrix with size of NKI × NC, and 
α33 is the diagonal submatrix of the reduced α matrix with size of NC × NC;  C1, C2, and C3 are the 
subvectors of the vector C with sizes of NE, NKI, and NC, respectively;  D11 is the diagonal submatrix 
of the reduced ν matrix with size of NE × NE,  K12 is the submatrix of the reduced ν matrix with size 
of NE × NKI, and K13 is the submatrix of the reduced ν matrix with size of NE × NKD(k); 021 is the zero 
submatrix of the reduced ν matrix with size of NKI × NE, D22 is the diagonal submatrix of the reduced 
ν matrix with size of NKI × NKI,  and K23 is the submatrix of the reduced ν matrix with size of NKI × 
NKD(k); 013 is the zero submatrix of the reduced ν matrix with size of NC × NE, 032 is the zero 
submatrix of the reduced ν matrix with size of NC × NKI, and 033 is the zero submatrix of the reduced 
ν matrix with size of NC × NKD(k);  r1, r2, and r3 are the subvectors of the vector r with sizes of NE, 
NKI, and NKD(k), respectively. 
 
For incomplete decomposition of the reaction matrix ν, Equation (2.6.41) can be connoted as 
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1

11 12 11 12 11 121 1
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C
A 0 B 0 D KC r

C rA C B α  0 K
 (2.6.42)

 

where A11 and A21 are the submatrices of the reduced U matrix with size of NE × NE and NKIV × NE, 
respectively (note that NKIV = M – NE = NKI + NC); 012 and U22 are the zero- and unit-submatrices, 
respectively, of the reduced U matrix with size of NE × NKIV and NKIV × NKIV, respectively; Ch1 and 
Ch2 are the subvectors of the vector Ch with sizes of NE and NKIV, respectively; B11 and B21 are the 
submatrices of the reduced α matrix with sizes of NE × NE and NKIV × NE, respectively; 012 and α22 
are the zero- and unit- submatrices, respectively, of the reduced α matrix with size of NE × NKIV and 
NKIV × NKIV, respectively; C1 and C2 are the subvectors of the vector C with sizes of NE and NKIV, 
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respectively;  D11 is the diagonal submatrix of the reduced ν matrix with size of NE × NE and K12 is 
the submatrix of the reduced ν matrix with size of NE × NKIV; 021 is the zero submatrix of the reduced 
ν matrix with size of NKIV × NE and  K22 is the submatrix of the reduced ν matrix with size of NKIV × 
NE;  r1 and r2 are the subvectors of the vector r with sizes of NE and  NKIV, respectively.   
  
For reactions that are fast, equilibrium may be regarded as being reached instantaneously among the 
relevant species and the reaction rates may be regarded as infinite. An infinite rate is mathematically 
represented by a mass action equation or a user specified nonlinear algebraic equation. As a result, 
the decomposition of equation (2.6.40) to equation (2.6.42) effectively reduces a set of M species 
reactive transport equations into two subsets of equations. The first set contains NE algebraic 
equations representing mass action laws for the equilibrium reactions, and the second set contains 
NKIV kinetic-variable transport equations. These equation subsets are defined as 
 
Algebraic Equations for Equilibrium Reactions 
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 (2.6.43)

 

where Ki
e is the equilibrium constant of the i-th fast reaction, Aj is the activity of the j-th species, 

Fi(C1,..,CM; p1,p2,..) is an empirical function of all species and a number of parameters p, p2, … for 
the i-th fast reaction.  Ei was called an equilibrium-variable (Fang, et al., 2003) because 

( )ihE
t

∂
≈ ∞

∂
simply means that Ei can reach equilibrium instantaneously. 

 
Transport Equations for Kinetic-Variables  
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 (2.6.44)

 

where Ei was called a kinetic variable (Fang, et al., 2003) because as Ei is transported it is subject to 
only kinetic reactions.  This is in contrast to Eq. (2.6.44) where as Ci is transported, it is subject to 
both equilibrium and kinetic reactions. 
 
Assign 
 

2 2
1

,  i
KN

i ij j KIV
j

R K r N
=

= ∈∑  (2.6.45)

 
The reduction of Eq. (2.6.40) to Eq. (2.6.43) and (2.6.44) is equivalent to reducing M governing 
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equations for immobile and mobile species to the mixed NE algebraic equations for equilibrium 
variables and NKIV transport equations for kinetic-variables specified as follows 
 

( ) ( ) ( ) ,  as rs is
i i i

m mi
i i i KIVE E E

hE E h E M M M hR i N
t

∂ ⎡ ⎤+ ∇ −∇ ∇ = + + + ∈⎣ ⎦∂
q Ki i i  (2.6.46)

 

where Ei is the concentration of the i-th kinetic-variable [M/L3], Ei
m is the concentration of mobile 

part of the i-th kinetic-variable [M/L3], as
iE

M is the artificial source of the i-th kinetic-variable 

[M/L2/T], rs
iE

M  is the rainfall source of the i-th kinetic-variable [M/L2/T], 1os
iE

M and 2os
iE

M  are 

overland sources of the i-th kinetic-variable from river banks 1 and 2, respectively [M/L2/T], is
iE

M  is 

the mass rate of the source of the i-th kinetic-variable in the overland from subsurface [M/L2/T], Ri is 
the production rate of i-th kinetic-variable due to biogeochemical reactions [M/L3/T], and NKIV is the 
number of kinetic variable variables. 
 
Initial and boundary condition for chemical species need to be transformed into corresponding initial 
and boundary conditions for kinetic-variables, which are stated in the following.  
 
Dirichlet boundary condition: 
 

( , , ) ( ) 0  m m
i i db b b m dE E x y t i M on B= ∈ =x  (2.6.47)

 

where ( , , )m
i db b bE x y t is the prescribed concentration of the mobile portion of the i-th kinetic variable 

on the Dirichlet boundary ( ) 0dB =x [M/L3]. 
 
Variable boundary condition: 
 
< Case 1 > Flow is coming in from outside (nQ < 0) 
 

( ) ( , , ) ( ) 0m m m
i i i vb b b i vE h E E x y t i M on B− ∇ = ∈ =n q K n q xi i i  (2.6.48)

 
< Case 2 > Flow is going out from inside (nQ > 0). 
 

( ) 0 ( ) 0m
i m vh E i M on B− ∇ = ∈ =n K xi i  (2.6.49)

 

where n is the unit outward vector and ( , , )m
i vb b bE x y t  is the concentration of the mobile portion of the 

i-th kinetic variable on the variable boundary ( ) 0vB =x  [M/L3]. 
 
Cauchy boundary condition: 
 

( ) ( , , ) ( ) 0m
i

m m
i i cb b b i cE

E h E Q x y t i M on B− ∇ = ∈ =n q K xi i  (2.6.50)
 

where ( , , )m
i

cb b bE
Q x y t  is the mass flux of Ei

m through the Cauchy boundary ( ) 0cB =x  [M/t/L]. 
 
Neumann boundary condition: 
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( ) ( , , ) ( ) 0m
i

m
i nb b b i nE

h E Q x y t i M on B− ∇ = ∈ =n K xi i  (2.6.51)
 

where ( , , )m
i

nb b bE
Q x y t  is the mass flux of Ei

m through the Neumann boundary ( ) 0nB =x  [M/t/L]. 
 
Overland-river/stream interface boundary condition: 
 

( ) ( ) ( ) ( ){ }1
1 1 1 ( , , )
2

m m m m
i i i i D b bE h E sign E sign E x y t⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦n q K n q n q n q  (2.6.52)

 

where 1 ( , , )m
i D b bE x y t  is the time-dependent concentration of the mobile portion of the i-th kinetic 

variable at the 1-D node corresponding to the overland-river/stream interfacial boundary point 
[M/L3]. 
 
 
 
2.7 Reactive Biogeochemical Transport in Three-Dimension Subsurface Media 

 
Reactive chemical transport in the subsurface occurs over a broad range of geochemical 
environments at various space and time scales. Coupled models that simulate hydrological transport 
and complex biogeochemical reactions are important tools for quantitative predictions of the fate and 
transport of chemicals in groundwater. Biogeochemical reactions can be divided into two classes 
(Rubin, 1983): (1) equilibrium-controlled “fast” reactions, and (2) kinetically-controlled “slow” 
reactions. The former are sufficiently fast compared to the transport time-scale and are reversible, so 
that local equilibrium may be assumed. The latter are not sufficiently fast compared to the transport 
time-scale. They may be either reversible or irreversible. Local equilibrium conditions cannot be 
assumed.  
  
Due to computational limitations, existing coupled models for subsurface reactive transport have 
various capabilities (Keum and Hahn, 2003). Some models couple transport with equilibrium 
chemistry (e.g., Cederberg et al., 1985; Liu and Narasimhan, 1989; Yeh and Tripathi, 1991; 
Parkhurst, 1995; and Parkhurst and Appelo, 1999), while some couple transport with kinetic 
chemistry (e.g., MacQuarrie et al., 1990; Tompson, 1993; Lensing et al., 1994; Wood et al., 1994; 
Adeel et al., 1995; Yeh et al., 1998; and Saiers et al., 2000). Models coupling transport with both 
equilibrium and kinetic reactions appeared in the mid-1990s (e.g., Steefel and Lasaga, 1994; 
Chilakapati, 1995; Chilakapati et al., 1998; Tebes-Stevens et al., 1998; Yeh et al., 2001b; Brun and 
Engesgaard, 2002). Most of these models either implicitly assumes that equilibrium reactions occur 
only among aqueous species or consider only limited reaction networks. These limitations affect the 
generality of the models. There appears to be few general-purpose transport models that can simulate 
generic reaction networks including mixed equilibrium/kinetic biochemical and geochemical 
reactions (Yeh et al., 2004).  
 
This report presents a general mathematical framework and a three-dimensional numerical 
implementation to simulate reactive chemical transport in subsurface water subject to a defined flow 
field. Chemical species considered include dissolved species, suspension precipitates and surface 
species that encompass adsorbed species, ion-exchanged species and free sites. Biogeochemical 
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reactions taken into account in the model include aqueous complexation, adsorption/desorption, ion-
exchange, precipitation/dissolution, reduction/oxidation, and volatilization. Any individual reaction 
representing any of these chemical and physical processes may be simulated as kinetic or as 
equilibrium, which makes the approach applicable to a wide range of biogeochemical transport 
problems.   In the subsurface, all dissolved species are assumed mobile while all surface species and 
suspension precipitates are assumed immobile. 
 
 
2.7.1 Immobile Species 
 
The balance equation for immobile species is simply the statement that the rate of mass change is 
due to biogeochemical reaction as: 
 

( )w p
Cp N

C
r

t
θρ

θ
∂

=
∂

 (2.7.1) 

and 
( )b A s

Cs N
S C r
t

ρ θ∂
=

∂
 (2.7.2) 

 

where ρw is the density of pore-water [M/L3], θ is the porosity of the media [L3/L3], Cp is the 
concentration of precipitate in the unit of chemical mass per por-water mass [M/M], rCp│N is the 
production rate of Cp due to all N reactions in the unit of chemical mass per pore-water volume per 
time [M/L3/t], bρ is the bulk density in dry media mass per unit media volume [M/L3], SA is the 
surface area per unit dry mass [L2/M], Cs is the concentration of surface species in unit of chemical 
mass per surface area [M/L2], and rCs│N is the production rate of Cs due to all N reactions in the unit 
of chemical mass per pore-water per time [M/L3/t]. 
 
Equation (2.7.1) and (2.7.2) can be combined as  
 

( ) ,   i i
i N im

C r i M
t

θρ θ∂
= ∈

∂
 (2.7.3) 

 

where Ci is the concentration of the i-th immobile, ri│N is the production rate of species i due to all N 
reactions in the unit of chemical mass per pore-water volume per time [M/L3/t], Mim is the number of 
immobile species, and ρi is defined by 
 

,          
/ ,     

w p
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 (2.7.4) 

 
The concentrations of all immobile species must be given initially for transient simulations. No 
boundary conditions are needed for immobile species. 
 
 
2.7.2 Mobile Species 
 
The continuity equation of mobile species, i.e. dissolved species in the water phase, can be derived 
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based on the mass conservation law stating that the rate of mass change is due to both advective-
dispersive transport and biogeochemical reactions as 
 

( ) ( ) [ ( )] ,   
i

asi i
i i i i C i mN

C
C C M r i M

t
θρ

ρ θ ρ θ
∂

+∇⋅ −∇⋅ ⋅∇ = + ∈
∂

V D  (2.7.5) 
 

where Ci is the concentration of the i-th dissolved species in the unit of chemical mass per unit water 
mass [M/M], ρi is the density of water [i.e., Ci  = Cw] [M/L3], V is the Darcy velocity [L/t], D is the 
dispersion coefficient tensor [L2/t],  ri│N is the production rate of species i due to all N reactions in 
the unit of chemical mass per volume of water per time [M/L3/t], 

i

as
CM is the artificial source of Ci in 

unit of chemical mass per unit of medium volume [M/L3/t], and Mm is the number of mobile 
chemical species. 
 
Concentrations of all mobile species must be given initially for transient simulations.  Similar to 
salinity transport, six types of boundary conditions are taken into account for mobile species, 
including Dirichlet, Variable, Cauchy, Neumann, river/stream-overland interface, and overland-
subsurface interface boundary conditions (Yeh et al., 2005).  These boundary conditions are stated 
below: 
 
Dirichlet boundary condition:  This condition is applied when the species concentration is 
prescribed as a function of time on the boundaries:  
 

( ) ( ), , ( ) 0i idb dC t C t on B= =x x x  (2.7.6) 
 

where ( ),idbC tx  is a time-dependent concentration of the i-th species on the Dirichlet boundary, 
Bd(x) = 0, [M/M]. 
 
Variable boundary condition:  This boundary condition is employed when the flow direction would 
change with time during simulations.  Two cases are considered, regarding to the flow direction on 
the boundary. 
 
< Case 1 > Flow is coming in from outside: 
 

[ ] ( )( ) ( ) , ( ) 0i i i i i i vb vC C C t on Bρ θ ρ ρ⋅ − ⋅∇ = ⋅ =n V D n V x x  (2.7.7) 
 
< Case 2 > Flow is going out from inside: 
 

[ ]( ) 0 ( ) 0i i vC on Bθ ρ⋅ ⋅∇ = =-n D x  (2.7.8) 
 
where Civb(x,t) is a time-dependent concentration of the i-th species [M/M] on the variable boundary, 
Bv(x) = 0, which is associated with the incoming flow. 
 
Cauchy boundary condition:  This boundary condition is employed when the total salt-flow rate is 
given at pervious boundaries.  Usually, this boundary is a flow-in boundary.  The conditions are 
expressed as 
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[ ] ( )( ) , ( ) 0
ii i i i C cb cC C Q t on Bρ θ ρ⋅ − ⋅∇ = =n V D x x  (2.7.9) 

 

where ( ),
iC cbQ tx  is total chemical flux of the i-th species [M/L2/t] through the Cauchy boundary, 

Bc(x) = 0, which takes a positive value if it is going out of the region and a negative value if it is 
coming into the region. 
 
Neumann boundary condition:  This boundary condition is used when the dispersive salt-flow rate 
is known at the boundary.  It can be written as 
 

( ) ( )( ) , ( ) 0
ii i C nb nC Q t on Bθ ρ⋅ ⋅∇ = =-n D x x  (2.7.10)

 

where ( ),
iC nbQ tx  is the chemical flux of the i-th species through the Neumann boundary, Bn(x) = 0, 

[M/L2/t]. 
 
In addition to the four types of global boundary conditions, two interface boundary conditions may 
be specified: one for the exchange of chemicals between the subsurface media and river/stream 
network and the other for chemical exchange between the subsurface media and the overland.  
Mathematically, these boundary conditions are described below. 
 
Subsurface-river interface boundary condition: 
 

[ ] ( ) ( ) ( ){ }1
1( ) 1 1 ( , , , )
2i i i i i i i i D b b bC C sign C sign C x y z tρ θ ρ ρ ρ⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦n V D n V n V n V (2.7.11)

 

where 1 ( , , , )i D b b bC x y z t  is the time-dependent concentration of the i-th species at the 1-D node 
corresponding to the subsurface-river/stream interfacial boundary points [M/M]. 
 
Subsurface-overland interface boundary condition: 
 

[ ] ( ) ( ) ( ){ }2
1( ) 1 1 ( , , , )
2i i i i i i i i D b b bC C sign C sign C x y z tρ θ ρ ρ ρ⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦n V D n V n V n V (2.7.12)

 

where 2 ( , , , )i D b b bC x y z t  is the time-dependent concentration of the i-th species at the 2-D node 
corresponding to the subsurface-overland interfacial boundary point [M/M]. 
 
 
2.7.3 Diagonalization of Species Transport Equations 
 
The temporal-spatial distribution of chemical species is described by a system of Mim mass balance 
equations [equation (2.7.3)], and Mm reactive transport equations [equation (2.7.5)]. These two 
equations can be recast in the following form  
 

( ) ( ) ,   i i
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where L is an operator defined as  
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( ) ( ) [ ( )]
i

as
i i i i i i CL C C C Mρ ρ θ ρ= ∇⋅ −∇⋅ ⋅∇ −V D  (2.7.14)

 

 
The determination of ri⏐N and associated parameters is a primary challenge in biogeochemical 
modeling.  Instead of using an ad hoc method to formulate ri⏐N, we use reaction-based formulations 
(Steefel and Cappellen, 1998).  In a reaction-based formulation, ri⏐N is given by the summation of 
rates of all reactions that the i-th species participates in,  
 

( ) [ ]
1

( ) ,   
N

i i
i N reaction ik ik k

k

d C
r r i M

dt
ρ

ν μ
=

= = − ∈∑  (2.7.15)
 

where νik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
products, μik is the reaction stoichiometry of the i-th species in the k-th reaction associated with the 
reactants, and rk is the rate of the k-th reaction.  
 
Substituting equation (2.7.15) into equation (2.7.18) results in the transport equations of M chemical 
species described by  
 

[ ]
1

( ) ( ) ( ) ,   ;     ( )
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i i
i i i ik ik k
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C L C r i M or L h
t t

θθρ α ρ θ ν μ
=

∂ ∂
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∂ ∂∑ CU α C νr  (2.7.16)
 

where U is a unit matrix, Cθ is a vector with its components representing M species concentrations 
multiply the moisture content [M/L3], α is a diagonal matrix with αi as its diagonal component, C is 
a vector with its components representing M species concentrations [M/L3], ν is the reaction 
stoichiometry matrix, and r is the reaction rate vector with N reaction rates as its components. 
Equation (2.7.16) represents a mass balance for species i, which states that the rate of change of any 
species mass is due to advection-dispersion coupled with contributing reactions that describe the 
biogeochemical processes.  
 
In a primitive approach, equation (2.7.16) is integrated to yield the distributions and evolutions of 
chemical species in a region of interest.  However, when some fast equilibrium reactions take place 
in the system, this approach is not adequate (Fang et al., 2003).  Here, we will take a diagonalization 
approach through decomposition.  Equation (2.7.16) written in matrix form can be decomposed 
based on the type of biogeochemical reactions via Gauss-Jordan column reduction of reaction matrix 
ν. Among all the fast/equilibrium and slow/kinetic reactions, “redundant reactions” are defined as 
fast reactions that are linearly dependent on other fast reactions, and “irrelevant reactions” are 
kinetic reactions that are linearly dependent on only equilibrium reactions.  In order to avoid 
singularity of the reaction matrix, redundant fast reactions are omitted from the system prior to 
decomposition.  The removal of irrelevant slow reactions alleviates problems associated with rate 
formulation uncertainty and parameterization for these reactions. 
 
Decomposition is performed by pivoting on the NE equilibrium reactions and decoupling them from 
the NK kinetic reactions.  In other words, each fast reaction can be used to eliminate one chemical 
species from simultaneous consideration.  An incomplete Gauss-Jordan row decomposition of the 
reaction matrix  ν by pivoting on NE equilibrium reactions will result in NE equilibrium-variables 
and NKIV kinetic-variables.  To analyze the system behavior, it is advantageous to perform a 
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complete decomposition, in which the reduction of the reaction matrix is done by pivoting on NE 
equilibrium reactions and on NKI linearly independent kinetic reactions to result in NE equilibrium-
variables, NKI kinetic-variables, and NC components.  The complete decomposition is given as 
follows: 
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 (2.7.17)

 

where A11 is the submatrix of the reduced U matrix with size of NE × NE,  A21 is the submatrix of the 
reduced U matrix with size of NKI × NE, and A31 is the submatrix of the reduced U matrix with size 
of NC × NE; 012 is the zero submatrix of the reduced U matrix with size of NE × NKI, A22 is the 
submatrix of the reduced U matrix with size of NKI × NKI,  and A32 is the submatrix of the reduced U 
matrix with size of NC × NKI; 013 is the zero submatrix of the reduced U matrix with size of NE × NC, 
023 is the submatrix of the reduced U matrix with size of NKI × NC, and U33 is the unit submatrix of 
the reduced U matrix with size of NC × NC;  Ch1, Ch2, and Ch3 are the subvectors of the vector Ch 
with sizes of NE, NKI, and NC, respectively; B11 is the submatrix of the reduced α matrix with size of 
NE × NE,  B21 is the submatrix of the reduced α matrix with size of NKI × NE, and B31 is the submatrix 
of the reduced α matrix with size of NC × NE; 012 is the zero submatrix of the reduced α matrix with 
size of NE × NKI, A22 is the submatrix of the reduced α matrix with size of NKI × NKI,  and B32 is the 
submatrix of the reduced α matrix with size of NC × NKI; 013 is the zero submatrix of the reduced α 
matrix with size of NE × NC, 023 is the submatrix of the reduced α matrix with size of NKI × NC, and 
α33 is the diagonal submatrix of the reduced α matrix with size of NC × NC;  C1, C2, and C3 are the 
subvectors of the vector C with sizes of NE, NKI, and NC, respectively;  D11 is the diagonal submatrix 
of the reduced ν matrix with size of NE × NE,  K12 is the submatrix of the reduced ν matrix with size 
of NE × NKI, and K13 is the submatrix of the reduced ν matrix with size of NE × NKD(k); 021 is the zero 
submatrix of the reduced ν matrix with size of NKI × NE, D22 is the diagonal submatrix of the reduced 
ν matrix with size of NKI × NKI,  and K23 is the submatrix of the reduced ν matrix with size of NKI × 
NKD(k); 013 is the zero submatrix of the reduced ν matrix with size of NC × NE, 032 is the zero 
submatrix of the reduced ν matrix with size of NC × NKI, and 033 is the zero submatrix of the reduced 
ν matrix with size of NC × NKD(k);  r1, r2, and r3 are the subvectors of the vector r with sizes of NE, 
NKI, and NKD(k), respectively. 
 
For incomplete decomposition of the reaction matrix ν, Equation (2.7.17) can be connoted as 
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where A11 and A21 are the submatrices of the reduced U matrix with size of NE × NE and NKIV × NE, 
respectively (note that NKIV = M – NE = NKI + NC); 012 and U22 are the zero- and unit-submatrices, 



 2-86

respectively, of the reduced U matrix with size of NE × NKIV and NKIV × NKIV, respectively; Cθ1 and 
Cθ2 are the subvectors of the vector Cθ with sizes of NE and NKIV, respectively; B11 and B21 are the 
submatrices of the reduced α matrix with sizes of NE × NE and NKIV × NE, respectively; 012 and α22 
are the zero- and unit- submatrices, respectively, of the reduced α matrix with size of NE × NKIV and 
NKIV × NKIV, respectively; C1 and C2 are the subvectors of the vector C with sizes of NE and NKIV, 
respectively;  D11 is the diagonal submatrix of the reduced ν matrix with size of NE × NE and K12 is 
the submatrix of the reduced ν matrix with size of NE × NKIV; 021 is the zero submatrix of the reduced 
ν matrix with size of NKIV × NE and  K22 is the submatrix of the reduced ν matrix with size of NKIV × 
NE;  r1 and r2 are the subvectors of the vector r with sizes of NE and  NKIV, respectively.   
  
For reactions that are fast, equilibrium may be regarded as being reached instantaneously among the 
relevant species and the reaction rates may be regarded as infinite. An infinite rate is mathematically 
represented by a mass action equation or a user specified nonlinear algebraic equation. As a result, 
the decomposition of equation (2.7.16) to equation (2.7.18) effectively reduces a set of M species 
reactive transport equations into two subsets of equations. The first set contains NE algebraic 
equations representing mass action laws for the equilibrium reactions, and the second set contains 
NKIV kinetic-variable transport equations. These equation subsets are defined as 
 
Algebraic Equations for Equilibrium Reactions 
 

1 1 1 2 1
1

1 1 2
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which is replaced with a thermodynamically consistent equation: 
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 (2.7.19)

 

where Ki
e is the equilibrium constant of the i-th fast reaction, Aj is the activity of the j-th species, 

Fi(C1,..,CM; p1,p2,..) is an empirical function of all species and a number of parameters p, p2, … for 
the i-th fast reaction.  Ei was called an equilibrium-variable (Fang, et al., 2003) because 

( )iE
t

θ∂
≈ ∞

∂
simply means that Ei can reach equilibrium instantaneously. 

 
Transport Equations for Kinetic-Variables  
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1

2 1 2 2 1 1 2
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θ θ

α

=

= =

∂
+ = ∈ =

∂

= + = +

∑

∑ ∑
 (2.7.20)

 

where Ei was called a kinetic variable (Fang, et al., 2003) because as Ei is transported it is subject to 
only kinetic reactions.  This is in contrast to Eq. (2.7.16) where as Ci is transported, it is subject to 
both equilibrium and kinetic reactions. 
 
Assign 
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2 2
1

,  i
KN

i ij j KIV
j

R K r N
=

= ∈∑  (2.7.21)
 

The reduction of Eq. (2.7.15) to Eq. (2.7.18) and (2.7.19) is equivalent to reducing M governing 
equations for immobile and mobile species to NE algebraic equations for equilibrium variables and 
NKIV transport equations for kinetic-variables specified as follows 
 

( ) ( ) ( ) ,  as
i

m mi
i i i KIVE

E E E M R i N
t

θ θ θ∂ ⎡ ⎤+ ∇ −∇ ∇ = + ∈⎣ ⎦∂
V Di i i  (2.7.22)

 

where Ei is the concentration of the i-th kinetic-variable [M/L3], Ei
m is the concentration of mobile 

part of the i-th kinetic-variable [M/L3], as
iE

M is the artificial source of the i-th kinetic-variable 

[M/L3/T], Ri is the production rate of i-th kinetic-variable due to biogeochemical reactions [M/L3/T], 
and NKIV is the number of kinetic variable variables. 
 
Initial and boundary condition for chemical species need to be transformed into corresponding initial 
and boundary conditions for kinetic-variables, which are stated in the following.  
 
Dirichlet boundary condition: 
 

( , , , ) ( ) 0m m
i id b b b dE E x y z t on B= =x  (2.7.23)

 

where ( , , )m
id b bE x y t  is the specified concentration of the mobile portion of the i-th kinetic variable on 

the Dirichlet boundary ( ) 0dB =x   [M/L3]. 
 
Variable boundary condition: 
 
< Case 1 > Flow is coming in from outside (nQ < 0) 
 

( ) ( , , , ) ( ) 0m m m
i i iv b b b vE E E x y z t on Bθ− ∇ = =n V D n V xi i i  (2.7.24)

 
< Case 2 > Flow is going out from inside (nQ > 0). 
 

( ) 0 ( ) 0m
i vE on Bθ− ∇ = =n D xi i  (2.7.25)

 

where n is the unit outward vector and ( , , , )m
iv b b bE x y z t  is the concentration of the mobile portion of 

the i-th kinetic variable on the variable boundary ( ) 0vB =x  [M/L3]. 
 
Cauchy boundary condition: 
 

( ) ( , , , ) ( ) 0m
i

m m
i i b b b ccE

E E Q x y z t on Bθ− ∇ = =n V D xi i  (2.7.26)
 

where ,( , , )m
i

b b bcE
Q x y z t  is the mass flux of Ei

m through the Cauchy boundary ( ) 0cB =x  [M/t/L2]. 
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Neumann boundary condition: 
 

( ) ( , , , ) ( ) 0m
i

m
i b b b nnE

E Q x y z t on Bθ− ∇ = =n D xi i  (2.7.27)
 

where ( , , , )m
i

b b bnE
Q x y z t  is the mass flux of Ei

m through the Neumann boundary ( ) 0nB =x  [M/t/L2]. 
 
Subsurface-river interface boundary condition: 
 

( ) ( ) ( ){ }11( ) 1 1 ( ' )
2

m m m m D
i i i i jE E sign E sign E C sθ⎡ ⎤⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦n V D n V n V n V  (2.7.28)

 

Where 1( ' )m D
i jE C s  is the mobile portion of the subsurface i-th kinetic variables with its argument 

being the linear combination of 1-D river/stream species concentrations 1 'D
jC s  [M/L3]. 

 
Subsurface-overland interface boundary condition: 
 

( ) ( ) ( ){ }21( ) 1 1 ( ' )
2

m m m m D
i i i i jE E sign E sign E C sθ⎡ ⎤⋅ − ⋅∇ = ⋅ + ⋅ + − ⋅⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎣ ⎦n V D n V n V n V  (2.7.29)

 

where 2( ' )m D
i jE C s  is the mobile portion of the subsurface i-th kinetic variables with its argument 

being the linear comination of 2-D overland species concentrations 2 'D
jC s  [M/L3]. 

 
 
 
2.8 Coupling Transport Among Various Media 

 
As in coupling flows among various media, a rigorous treatment of coupling transport among media 
should be based the continuity of material fluxes and state variables.  This rigorous treatment in 
coupling chemical transport among various media can be taken similar to the case of flows.   We 
simply impose the continuity of material fluxes and species concentrations for all mobile (between 
river/stream networks and overland regime) dissolved aqueous species (between subsurface media 
and overland regime and between subsurface media and river/stream networks) .  
 
However, because the state variables (dissolved chemical concentrations, suspend sediment 
concentrations, and mobile particulate chemical concentrations) in various media may not be 
continuous because these state variables are true three-dimensional distribution in subsurface media, 
but are vertically averaged quantities in overland regime and cross-sectional area averaged quantity 
in river/stream networks.   Because of the averaging processes, mass fluxes between media can be 
considered due mainly to the advective transport.  If this assumption is valid, the coupling of 
transport among various medial is much simpler than that for fluid flow. 
 
 
2.8.1 Coupling between Overland Transport and River/StreamNetworks 
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The coupling of transport between overland and canal is similar to that of salinity transport.  When a 
levee is present on the bank of the canal (left column in Fig. 2.4-1), there are several possibilities on 
the interactions between overland and river flow transport.  If water surfaces in both the overland 
regime and river are below the top of the levee, the two flow systems are decoupled and transport in 
overland is decoupled from that in river networks (Fig. 2.4-1a). 
 
When the water surface in the overland regime is above the top of the levee and in the canal is below 
the top of the levee (Fig. 2.4-1b), the flow is from the overland to river network and thus the 
transport is also one way from the overland to river network.  The fluxes are given by 
 

[ ] 1 1( )
i

osl o
Bank CC h C M S Cρ ρ ρ⋅ − ⋅∇ = =n q D  (2.8.1) 

 

where C [denotes Sn with ρ = 1 for supended sediment, Cw with ρ = ρw for dissolved species, Cp with 
ρ = ρw for precipitated species, CSn with ρ = Sn for particulate species] is sediment concentration 
[M/L3] or species concentrations [M/M] in the overland flow,

i

osl
CM is the source rate of the i-th 

species in the canal from the overland via bank 1, which appeared in Eq. (2.5.30) [M/t/L],  Co is the 
value of C in the overland water at the interface.  When the water surface in the overland regime is 
below the top of the levee and in the canal is above the top of the levee (Fig. 2.4-1c), the flow is 
from the canal to overland and thus the transport is one way from the canal to overland.  The fluxes 
are given by 
 

[ ] 1 1( )
i

osl c
Bank CC h C M S Cρ ρ ρ⋅ − ⋅∇ = =n q D  (2.8.2) 

 

where Cc is the value of C in the canal water.  When the water surfaces in the overland and canal are 
above the top of the levee (Fig. 2.4-1d), flow direction can e either from the overland to the canl or 
from the canal to the overland depending on the flow dynamics in the overland and in the canal.  If 
the state variable C is discontinues at the interface of the canal and overland, the fluxes are given by 
 

[ ] ( )( ) ( )( )1 1 1 1
1( ) 1 1
2i

osl o c
Bank CC h C M S sign S C sign S Cρ ρ ρ ρ⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦n q D  (2.8.3) 

 

If the state variable is continuous, the fluxes are modeled by imposing its continuity to yield the 
fluxes 
 

[ ] 1 1( )
i

osl o c
Bank C BankC h C M and C Cρ ρ⋅ − ⋅∇ = =n q D  (2.8.4) 

 

 
When a levee is not present on the bank of the canal (right column in Fig. 2.4-1), there are two 
possibilities on the interactions between overland and river transport.  If water surface in the canal 
falls below the bank, the flux is either zero if the overland flow is not present or is nonzero and 
directed from the overland into the canal if overland flow is present (Fig. 2.4-1e).  Under this 
circumstance, the fluxes are given by 
 

[ ] 2
2 2( )

i

os o
Bank CC h C M S Cρ ρ ρ⋅ − ⋅∇ = =n q D  (2.8.5) 
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where 2
i

os
CM is the source rate of the i-th species in the canal from the overland via bank 2, which 

appeared in Eq. (2.5.30) [M/t/L], 
 
When the water surface in the canal is above the bank (Figs. 2.4-1f and 2.4-1.g), the flow direction 
can be either from the overland into the canal or from the canal into the overland depending on the 
flow dynamics in the overland and in the canal.  If the state variable is discontinuous, the fluxes are  
 

[ ] ( )( ) ( )( )2
2 2 2 2

1( ) 1 1
2i

os o c
Bank CC h C M S sign S C sign S Cρ ρ ρ ρ⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦n q D  (2.8.6) 

 
If the state variable is continuous, we impose the continuity of the state variable to yield the fluxes 
 

[ ] 2
2 2( )

i

os o c
Bank C BankC h C M and C Cρ ρ⋅ − ⋅∇ = =n q D  (2.8.7) 

 
 
Because kinetic variables E are chosen as the primary variables in the transport module, for reactive 
chemical transport, the interfacial boundary conditions in terms of species concentrations must be 
transformed into those in terms of kinetic variables.  Since reaction networks in overland and 
river/stream/canal networks are identical, every corresponding kinetic variable in the overland and 
river/stream networks contains the same mobile portion.   Thus, one simply replaces Cρ  with m

iE  in 
Eqs. (2.8.1) through (2.8.7).   For completeness of this report, these equations are listed below. 
 
For couling via bank 1: 
 
When the water surface in the overland regime is above the top of the levee and in the canal is below 
the top of the levee (Fig. 2.4-1b), the flow is from the overland to river network and thus the 
transport is also one way from the overland to river network.  The flux of the i-th kinetic variables 
are given by 
 

( )1
1 1i

om m os m
i i Bank E iE h E M S E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.8) 

 

When the water surface in the overland regime is below the top of the levee and in the canal is above 
the top of the levee (Fig. 2.4-1c), the flow is from the canal to overland and thus the transport is one 
way from the canal to overland, the flux of the i-th kinetic variable is given as 

( )1
1 1i

cm m os m
i i Bank E iE h E M S E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.9) 

 

When the water surfaces in the overland and canal are above the top of the levee (Fig. 2.4-1d), flow 
direction can e either from the overland to the canl or from the canal to the overland depending on 
the flow dynamics in the overland and in the canal.  If the state variable E is discontinues at the 
interface of the canal and overland, the fluxes are given by 
 

( )( )( ) ( )( )( )1
1 1 1 1

1 1 1
2i

o cm m os m m
i i Bank E i iE h E M S sign S E sign S E⎡ ⎤⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦ ⎢ ⎥⎣ ⎦

n q D  (2.8.10)
 

If the state variable E is continuous, the fluxes are modeled by imposing its continuity to yield the 



 2-91

fluxes 
 

( ) ( )1
1 1i

o cm m os m m
i i Bank E i Bank iE h E M and E E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.11)

 

In Equations (2.8.8) through (2.8.11), m
iE  is the concentration of the mobile portion of the i-th 

kinetic variable [M/L3], ( )om
iE is the value of m

iE in the overland water at the interface [M/L3], and 
1

i

os
EM is the source of the kinetic variable Ei in the canal from the overland via bank 1 [M/t/L], which 

appeared in Eq. (2.5.44), and ( )cm
iE is the value of m

iE in the canal water at the interface.   
 
For couling via bank 2: 
 
When a levee is not present on the bank of the canal (right column in Fig. 2.4-1), there are two 
possibilities on the interactions between overland and river transport.  If water surface in the canal 
falls below the bank, the flux is either zero if the overland flow is not present or is nonzero and 
directed from the overland into the canal if overland flow is present (Fig. 2.4-1e).  Under this 
circumstance, the fluxes are given by 
 

( )2
2 2i

om m os m
i i Bank E iE h E M S E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.12)

 

When the water surface in the canal is above the bank (Figs. 2.4-1f and 2.4-1g), the flow direction 
can be either from the overland into the canal or from the canal into the overland depending on the 
flow dynamics in the overland and in the canal.  If the state variable is discontinuous, the fluxes are  
 

( )( )( ) ( )( )( )2
2 2 2 2

1 1 1
2i

o cm m os m m
i i Bank E i iE h E M S sign S E sign S E⎡ ⎤⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦ ⎢ ⎥⎣ ⎦

n q D  (2.8.13)

 
If the state variable is continuous, we impose the continuity of the state variable to yield the fluxes 
 

( ) ( )2
2 2i

o cm m os m m
i i Bank E i Bank iE h E M and E E⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n q D  (2.8.14)

 
In Equstions (2.8.12) through (2.8.14), 2

i

os
EM is the source of the kinetic variable Ei in the canal from 

the overland via bank 2 [M/t/L], which appeared in Eq. (2.5.44). 
 
 
2.8.2 Coupling between Subsurface and Overland Transport 
 
The coupling of overland and subsurface transport is through the exchange of dissolved species only. 
Sediments, particulate species, and precipitated species in the overland flow will not exchange with 
adsorbed/ion exchanged and precipitated species in the subsurface flow.  If the concentrations of 
dissolved chemicals in overland water and subsurface water at the ground surface are discontinuous, 
the chemical flux is given by 
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( )( ) ( ) ( )( ) ( )( ) 1 1
2is

i

s ow w w wI
w i w i I w i I w iC

SC C M sign S C sign S Cρ θ ρ ρ ρ⎡ ⎤⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦ ⎢ ⎥⎣ ⎦
n V D (2.8.15)

 

where ( )ow
iC is the concentration of the i-th dissolved species in the overland water and ( )sw

iC is the 
concentration of the i-th dissolved species of subsurface water at the interface and is

iC
M  is mass rate 

of the source of the i-th dissolved species in overland from subsurface media [M/t/L2], which 
appeared in Eq. (2.6.31).  If the concentrations are continuous, we impose the continuity of dissolved 
concentration to yield the fluxes 
 

( ) ( )on the interface( ) is
i

s ow w w w
i i i i i iC
C C M and C Cρ θ ρ⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n V D  (2.8.16)

 
 
The transforemation of the interfacial boundary conditions, Eq. (2.8.15) and (2.8.16), to those in 
terms of kinetic variables is not straightforward because the reaction networks for the subsurface and 
overland may not be identical.  If every kinetic-variable in the subsurface corresponding to that in 
the overland contains the same dissolved aqueous species, then the transformation is straightforwd 
as  
 

( )( )( ) ( )( )( )( ) 1 1
2is

i

s ow w w wI
i i I i I iE

SE E M sign S E sign S Eθ ⎡ ⎤⎡ ⎤⋅ − ⋅∇ = = + + −⎣ ⎦ ⎢ ⎥⎣ ⎦
n V D  (2.8.17)

 

for the case when the state variables are discontinuous, and 
 

( ) ( )on the interface( ) is
i

s ow w w w
i i i iE

E E M and E Eθ⎡ ⎤⋅ − ⋅∇ = =⎣ ⎦n V D  (2.8.18)
 

for the case when the state variables are continuous.  In Equstions (2.8.17) and (2.8.18), ( )ow
iE is the 

concentration of the dissolved portion of i-th kinetic variables in the overland water and ( )sw
iE is the 

concentration of the dissolved portion of the i-th kinetic variable in subsurface water at the interface 
and is

iE
M  is the mass rate of the source of the i-th kinetic variable in overland from subsurface media 

[M/t/L2], which appeared in Eq. (2.6.46).  
 
It should be kept in mind that ( )ow

iE and ( )sw
iE (and as a matter of fact ( )w

iE ) must have the same 
dissolved species content for Equations (2.8.17) and (2.8.18) to be valid.  Otherwise, the coupling in 
terms of kinetic-variables requires further elaborations that will be addressed in Section 2.8.4. 
 
 
2.8.3 Coupling between Subsurface and River/Stream/Canal Transport 
 
Similar to the coupling between subsurface and overland, the transport between subsurface and canal 
is coupled and the fluxes between two media depend on if the dissolved concentration is continuous 
or not.  For the case of discontinuous chemical concentration, the flux is given by 
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( ) ( )( ) ( ) ( )( ) ( )( )
( )( ) ( ) ( )( ) ( )( )

1 1
2

1 1
2i

s cw w w w
w i w i w i w i

s cis w w
C w i w i

P

C C sign C sign C

M sign C sign C dP

ρ θ ρ ρ ρ

ρ ρ

⋅ − ⋅∇ = + + −

= + + −∫

n Vn V D n V n V

n V n V n V

i i i

i i i
 (2.8.19)

 
where ( )sw

iC and ( )cw
iC are the concentrations of the i-th dissolved species in the subsurface and canal 

waters.  If the concentration is continuous, we impose its continuity to yield the flux 
 

( ) ( ) ( )on the interface( )
i

s cw w is w w
w i w i C i i

P

C C dP M and C Cρ θ ρ⋅ − ⋅∇ = =∫n V D  (2.8.20)

 
where is

iC
M is mass rate of the source of the i-th dissolved species in canal from subsurface media 

[M/t/L]. 
 
Similar to the coupling between subsurface and overland flows, the transforemation of the interfacial 
boundary conditions, Eq. (2.8.19) and (2.8.20), to those in terms of kinetic variables is not 
straightforward because the reaction networks for the subsurface and river/stream newtworks may 
not be identical.  If every kinetic-variable in the subsurface corresponding to that in the river/stream 
contains the same dissolved aqueous species, then the transformation is straightforwd and is given in 
Eqs. (2.8.21) and (2.8.22), respectively, for the cases of discontinuity and conctinuity, respectively, 
in species concentrations, 
 

( ) ( )( )( ) ( )( )( )( )
( )( )( ) ( )( )( )( )

1 1
2

1 1
2i

s cw w w w
i i i i

s cis w w
E i i

P

E E sign E sign E

M sign E sign E dP

θ⋅ − ⋅∇ = + + −

= + + −∫

n Vn V D n V n V

n V n V n V

i i i

i i i
 (2.8.21)

and 

( ) ( ) ( )on the interface( )
i

s cw w is w w
i i E i i

P

E E dP M and E Eθ⋅ − ⋅∇ = =∫n V D  (2.8.22)

 
where ( )sw

iE and ( )cw
iE are the concentration of the dissolved portion of i-th kinetic variables in the 

subsurface and canal.  
 
It should be kept in mind that ( )cw

iE and ( )sw
iE (and as a matter of fact ( )w

iE ) must have the same 
content of dissolved species for Equations (2.8.21) and (2.8.22) to be valid.  Otherwise, the coupling 
in terms of kinetic-variables requires further elaborations that will be addressed in Section 2.8.4. 
 
 
2.8.4 Coupling of Reactive Transport between Groundwater and Surface Transport 
 
Since reaction networks for groundwater and surface waters (in overland and river/stream flows) are 
likely to be different, the continuity of species fluxes and the continuity of species concentration or 
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the formulation of species fluxes must be transformed from those in terms of species concentration 
to those in terms of kinetic variables.   
 
After decomposition of reaction networks, kinetic-variables and their corresponding dissolved 
portion are simply defined as linear combination of species 
 

{ } [ ] { } ,   { } [ ] { } { } [ ] { } ,  { } [ ] { }w w
g g g g g g s s s s s sand= = = =E A C E B C E A C E B C  (2.8.23)

 
where the subscript g denotes the groundwater system; the subscript s denote the surface water 
system; {E} and {Ew} are the vectors of size M; and [A] and [B] are the decomposed unit matrices 
of size M x M.  It is noted that the i-th reaction extent, Ei, is an equilibrium variable if its evolution is 
governed by an indepdendnt equilibrium raeaction and a set of linearly depending kinetic reactions; 
a kinetic variable if by an independent kinetic reaction and a set of linearly dependent kinetic 
reactions; a component if its concentration remains constant (Fang et al., 2003).  Inverting Eq. 
(2.8.23), we have 
 

1 1{ } [ ] { } { } [ ] { }g g g s s sand− −= =C A E C A E  (2.8.24)
 
Continuity of flux of all aqueous requires 
 

( ) ( )
( ) ( )

( )1 1

{ } { } [ ] { } [ ] { } ,

{ } { } [ ] { } [ ] { }

[ ] [ ] { } [ ] [ ] { }

w w w w
g g g g g g

w w w w
g g g s g s

g s s g s s

thus

θ θ

θ θ

θ− −

⋅ − ⋅∇ = ⋅ − ⋅∇

⋅ − ⋅∇ = ⋅ − ⋅∇

= ⋅ − ⋅∇

n V E D E n V B C D B C

n V E D E n V B C D B C

n V B A E D B A E

 (2.8.25)

 
Continuity of aqueous speces require 
 

1{ } [ ] { } [ ] { } [ ] [ ] { }w w w
g g g g s g s s

−= = =E B C B C B A E  (2.8.26)
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