2 MATHEMATICAL BASIS
In this section, we are to give governing equations, initial conditions, and boundary conditions for

simulating water flow and chemical and sediment transport in watershed systems.

2.1 Water Flow in One-Dimensional River/Stream/Canal Network

The governing equations of water flow in one-dimensional river/stream/canal can be derived based
on the conservation law of water mass and linear momentum (Singh, 1996), and can be written as
follows.

The continuity equation:

04,90 g 45, —S,+S, +5 +5, @2.1.1)
ot Ox

where 7 is time [t]; x is the axis along the river/stream/canal direction [L]; 4 is cross-sectional area of
the river/stream [L*]; Q is flow rate of the river/stream/canal [L*/t]; S is the man-induced source
[L3/t/L]; S is the source due to rainfall [L*/t/L]; Sg is the sink due to evapotranspiration [L*/L]); S)

1s the source due to exfiltration from the subsurface media [L3//t/ L]; S; and S; are the source terms
contributed from overland flow [L*/t/L].

The momentum equation:

Z
0,0 _  0(Zo+h) gahddp OF,
ot  Ox ox cp Ox  Ox

2.1.2
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where A is water depth [L]; ¥ is river/stream/canal velocity [L/t]; g is gravity [L/t*]; Z, is bottom
elevation [L]; Ap = p - p, is the density deviation [M/L*] from the reference density (p,), which is a
function of temperature and salinity as well as other chemical concentrations; c is the shape factor of
the cross-sectional area; F, is the momentum flux due to eddy viscosity [L*/t*]; Ms is the external
momentum-impulse from artificial sources/sinks [L*/t*]; M is the momentum-impulse gained from
rainfall [L*/t*]; Mg is the momentum-impulse lost to evapotranspiration [L*/t*]; M;is the momentum-
impulse gained from the subsurface due to exfiltration [L*/t*]; M; and M, are the momentum-impulse
gained from the overland flow [L*/t]; p 1s the water density [M/L’]; Bis the top width of the cross-
section [L]; 7' is the surface shear stress [M/t*/L]; P is the wet perimeter [L]; and 7’ is the bottom
shear stress [M/t/L], which can be assumed proportional to the flow rate as 7°/p = kV* where x =
gn*/R"” and R is the hydraulic radius (L) and # is the Manning’s roughness.
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2.1.1 Fully Dynamic Wave Approaches

Equations (2.1.1) and (2.1.2) written in the conservative form are the governing equations for one-
dimensional flow in river/stream/canals. Depending on the simplification of the momentum
equation, one can have three approaches: fully dynamic wave, diffusive wave, and kinematic wave.
For the fully dynamic wave approach, all terms in Eq. (2.1.2) are retained. Under such
circumstances, the conservative form of the governing equations may be used or they may be cast in
the advection form or in the characteristic form. In this report the characteristic form of the fully
dynamic approach will be used as the main option because it is the most natural way and amenable
to the advective numerical methods, e.g., the upstream approximation or the Lagrangian-Eulerian
method.

For a non-prismatic river/stream/canal network, the cross-sectional area is a function not only of the
water depth but also of the river distance, 1.e.,

A(x,t)= A" (h(x,t),x) (2.1.3)

where A" is a function of the water depth /(x,¢) and the axis along the river/stream/canal direction x.
Differentiating Eq. (2.1.3) with respect to x and ¢, respectively, we have

oA _oA" oh oA" ox _ A" oh _ 4 oh

o =4 - —~_B== 2.1.4)
ot Oh 0t oOx Ot Oh Ot Ot
and
04 04" oh 0A" ox 04" oh 04" oh 04"
“s =4 g - 4+ =B—+ (2.1.5)
Oox Ooh Ox Ox Ox ©Oh ox Ox Oox Ox

where B(x,1) = B"(h,x) = 04"/0h is the top width of the cross-section, [L].

Substituting Q = VA4 and Eqgs. (2.1.4) and (2.1.5) into Eqgs. (2.1.1) and (2.1.2), we obtain

oh _Ooh AoV 1 v 04"
—+V —t—=——=—(S5; + S5, =S, + S5, +S5, +S, ) ———— 2.1.6
ot axBaxB(SRE"z)Bax (2.16)
a_V+V6_V+g@:—l%_g%_g_h6A_p+
ot ox ox A Ox ox cp Ox
| —V(Ss+S, =S, +S,+5,+85,)+ Q2.1.7)
il S _p_b
A (MS+MR—ME+M,+M]+M2)+u
P
Equations (2.1.6) and (2.1.7) can be written in matrix form as
a—E+A6—E=R+D (2.1.8)
ot Ox

where
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E={h V}; A= "B

B R={R R}; D={0 D} (2.1.9)
g Vv
in which
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Yo,

= _LF, :li Aga—V in which F_= —Aga—V
A ox Aox ox X

has been assumed  (2.1.12)

where ¢ is the eddy viscosity.

The eigenvalues and eigenvectors of A are

T
/gA 1 14 1
=V +,[5= =<{— = =
4 B € {2

2.1.13
i (2.1.13)
A 1[4 1]
A=V- 52 e, =y"7 - (2.1.14)
B 2\'gB 2
Denoting ¢ = 1/% , we define
e _c g
2 2g c
L=|¢ which gives L' = (2.1.15)
1 1 _8
2 2 c

where L and L™, respectively, are the right and left eigenmatrices, respectively, of the matrix A. Set

1

OW =L"'0E = o oh (2.1.16)
£ oV

c

where W is a characteristic wave variable. Equation (2.1.16) transforms the primitive variable E =
{h, V}" to the characteristic variable W = {W,, W>}".
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Multiplying both side of Eq. (2.1.8) by L™ yields

L-'%_lt':+L-‘ ALL—I%E:L-IRJrL-ID 2.1.17)

Since by definition SW = L'0E and L' AL is a diagonal matrix whose entries are the eigenvalues of
A, we have

V+ 0
oW |VHe W_pRs'D o 2V_pRiL'd 2118
ot 0 V—c | ox Dt

Substituting L™ (L™ is defined by Eq. (2.1.15)) into the right hand side of Eq. (2.1.18) and
making an integral transformation so that (g/c)ch = dv, we obtain

DV+c(V + C()) = a(V + CO) +(V + C)a(V + C()) =§Rl + R2 +D (2.1.19)
Dt Ot ox c
DVc(V—a’)Ea(V—w)JF(V_C)M:_ERﬁRﬁD (2.1.20)
Dt ot ox c
in which
c= &4, w:}ids (2.1.21)
B’ Oc(s) o

where c is the wave speed and o is the transformed wave speed. Equation (2.1.19) simply states that
the positive gravity wave (V' + w) is advected by the speed (V' + ¢) while Equation (2.1.20) states that
the negative gravity wave (V - w) is advected by the speed (V' - ¢).

For transient simulations, the water depth (or water stage) and the cross-sectionally averaged
velocity must be given as the initial condition. In addition, appropriate boundary conditions need to
be specified to match the corresponding physical system.

The system of Egs. (2.1.19) and (2.1.20) are identical to the system of Egs. (2.1.1) and (2.1.2) on the
differential level. They offer advantages in their amenability to innovative advective numerical
methods such as the upstream finite difference, upwind finite element, or semi-Lagrangian scheme.
Furthermore, the implementation of boundary conditions is very straightforward. Only when the
wave is coming into the region of interest, the boundary condition is required. For the wave that is
going out of the region of interest, there is no need to specify a boundary condition.

Open upstream boundary condition:

The boundary condition at an upstream point depends on flow conditions. If the flow is
supercritical, both waves are transported into the region and two boundary conditions are needed.
The water depth and velocity at the boundary are determined entirely by the flow condition that
prevails at the upstream. The governing equations for this case can be set up based on the continuity
of mass as well as momentum between the boundary and the upstream as follows
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VA=V, ,4,=0, and pVAV +pgh A=pV A4V, +pgh,A,=M, (2.122)
where V,,, is the cross-sectional averaged velocity from the incoming upstream fluid, 4,,, is the cross-
sectional area in the upstream, Q,, is the flow rate of the incoming fluid from the upstream, 4. is the
water depth to the centroid of the cross-sectional area of the boundary, £, is the water depth to the
centroid of the upstream cross-sectional area, and M,,, is the momentum-impulse of the incoming
fluid from the upstream. It should be noted that both the water depth and velocity in the upstream
must be measured to provide values of Q,, and M,,. If the flow is critical, the positive wave is
transported into the region from upstream and the negative wave is immobile. The water depth and
velocity at the boundary are determined by the flow conditions prevail at the upstream and by the
condition of critical flow. The governing equations for this case may be set up based on the
continuity of mass and the requirement of critical flow condition as

B 2
VA=0, and g{% 1 (2.1.23)

Ifthe flow is subcritical, while the positive wave is transported into the region, the negative wave is
transported out of the region. The water depth and velocity are determined by the flow condition
prevail at upstream and by flow dynamics in the region. The governing equations are set up based
on the continuity of mass between the boundary and the upstream, and on flow dynamics in the
region

VA=0, and F(V,h)=0 (2.1.24)
where F_(V, h), a function of velocity and water depth, is the negative wave boundary function.

In summary, the boundary condition at an open upstream boundary point is given by Egs. (2.1.22),
(2.1.23), and (2.1.24), respectively, for the case of supercritical, critical, and subcritical flows,
respectively.

Open downstream boundary condition:

If the flow is supercritical on an open downstream boundary point, both waves are transported out of
region. Under such circumstances, no boundary conditions are needed. The water depth and
velocity on the boundary are determined by flow dynamics in the region. The governing equations
for V'and & are

F.(V,h)=0 and F(V,h)=0 (2.1.25)

where F'(V, h), a function of V and £, is the positive wave boundary function. If the flow is critical,
the water depth and velocity at the boundary are determined by flow dynamics in the region and by
the condition of critical flow. Thus, the governing equations for critical flow are given by

B 2
F.(V,h)=0 and Q3 =1 (2.1.26)
gA
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If the flow is subcritical, while the positive wave is transported out of the region, the negative wave
is transported into the region. The water depth and velocity are determined by flow dynamics in the
region and by what is the control on the boundary. The governing equations may be given by

F.(V,h)=0 and vA=Q,(h) or E(V,h)=0 and h=h,(t) (2.1.27)

where Qu,(h), a function of 4, is the rating curve function for the downstream boundary and 44,(?), a
function of 7, is the water depth at the downstream boundary. The adaptation of Eq. (2.1.27)
depends on the physical configuration at the boundary.

In summary, the boundary condition at an open downstream boundary is given by Egs. (2.1.25),
(2.1.26), and (2.1.27), respectively, for the case of supercritical flow, critical flow, and subcritical
flows, respectively.

Closed upstream boundary condition:

At the closed upstream boundary, physically all flow conditions can occur. When the supercritical
flow happens, both positive and negative waves are transported into the region. Two boundary
condition equations are needed. Because the boundary is closed, it is impermeable. The governing
equations can be obtained by simply substituting Q,,, = 0 and M,,, = 0 into Eq. (2.1.22) to yield

VA=0 and PVAV + pgh. A=0 (2.1.28)
The solutions for Eq. (2.1.28) are not unique. One possible solution is V"= 0 and 4 = 0.

For the critical flow, the velocity is equal to the wave speed, V' = ¢, the negative wave is immobile.
On the other hand, the positive wave is transported into the region of interest, one boundary-
condition equation is needed. Because the closed boundary is impermeable, the governing equations
may be set up by imposing zero flow rate and the condition of critical flow as

2
VA=0 and BQ3 =1 (2.1.29)
gA

When the flow is subcritical, the positive wave is transported into the region of interest while the
negative wave is transported out of the region of interest. Only the boundary condition for the
positive wave is needed. Since no fluid from the outside world is transported into the region via the
boundary, the boundary condition for the positive wave can be stated with Q = V4 =0. The
governing equations for V and 4 are thus given by

VA=0 and F(V,h)=0 (2.1.30)
In summary, the boundary condition at a closed upstream point is given by Eqs. (2.1.28), (2.1.29),

and (2.1.30), respectively, for the case of supercritical flow, critical flow, and subcritical flows,
respectively.

Closed downstream boundary condition:
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At the closed downstream boundary, physical condition dictates that the velocity at the boundary is
zero. Since the velocity is zero, supercritical flow cannot occur at the closed boundary point because
the water depth is greater or equal to zero. Therefore, the flow can only be either critical or
subcritical. For critical flow, ¢ = V=0, which is very unlikely. Therefore, it is highly unlikely that
critical flow will occur at the closed downstream boundary.

For the subcritical flow, the positive wave is transported out of the region and no boundary condition

is needed for this wave. On the other hand, the negative wave is transported into the region of
interest. The governing equations for V and /4 are

F.(V,h)=0 and V=0 (2.1.31)
which is based on the physics that /= 0 and the water depth is governed by internal flow dynamics.

In summary, supercritical flow cannot occur at a closed downstream point. The boundary condition

at a closed downstream boundary point is either V = 0 and h = 0 for critical flow or is given by Eq.
(2.1.31) for subcritical flow.

Natural internal boundary condition at junctions:

For the junction node J (Figure 2.1-1), we have one unknown: the water surface elevation or the
stage, H;. The governing equation for this junction is obtained as

d¥, dh, ¢ <
= =Y V, A 2.1.32
an a2 Qo =2V (2:132)

for the case when the storage effect of the junction is accounted for, or

NJ N./
z O, = Z Viyd, =0 (2.1.33)
7 7

for the case when the storage effect of the junction is not included.

1J 2J

3J

Fig. 2.1-1. Schematic of a Junction

In Egs. (2.1.32) and (2.1.33), ¥ is the volume of the junction J; /;1s the water depth of the junction
J; Oy is the flow rate of the I reach to the J” junction; 7 is the identification number of
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river/stream/canal reach; N, is the total number of river/stream/canal reaches that are connected to
the junction J (it is 3 in the case shown); V;; and A, are the velocity and cross sectional area,
respectively, of the /" reach at the location entering the J” junction.

The node 1J located at the boundary between the /" reach and the J” junction is termed the natural
internal boundary of reach /. The governing equations for the internal boundary node 1/ depend on
whether this node is a downstream or an upstream node in reference to the reach /. Let us say that
node 1J is a downstream point if the flow is from the reach / toward the junction J. On the other
hand, we say that the node 1/ is an upstream point if the flow is from the junction J toward the reach
1. With this definition, we can generate equations for any internal boundary node ZJ, which will be
stated in the following.

If 1J is a downstream internal boundary, we have three cases to consider: subcritical flow, critical
flow, and supercritical flow. For the case of subcritical flow, the positive wave is going out of the
reach and no boundary condition for this wave is needed. On the other hand, the negative wave is
going into the region and its boundary condition is obtained by the assumption that no loss in energy
between the junction and node IJ. The governing equations for node 1/ are given as

2
F+(V1Jahu) =0 and E, = zi th,+Z,,=H, (2.1.34)
g

where F' (Vi hyy), a function of the velocity Vi (velocity at node 1J) and 4;; (water depth at node 1J),
is the positive wave boundary function; £}, is the energy line at node 1J, Z,;;1s the bottom elevation
at node 1J; and H; is the water surface elevation of the junction J. The second equation of Eq.
(2.1.34) is obtained from the assumption that the total energy is constant from the junction to the
node 1J. In the case of critical flow, the positive wave is going out of the reach and there is no need
of a boundary condition for this wave. The negative wave is immobile and its boundary condition is
given by the condition of critical flow. The governing equations for node [/ under critical flow are
given by

2
B
F.(Vy,hy,)=0 and OuBy (2.1.35)
g4y

where By is the top width of the cross-section of the /-th reach at node 1/ and 4, is the cross-section
area of the /-th reach at node ZJ. In the case of supercritical flow, both positive and negative waves
are going out of the reach, therefore no boundary conditions are needed and the governing equations
for node 1J under supercritical flow are given by

F+(VIJ:hIJ ): 0 and F—(Vljﬂhlj) =0 (2.1.36)

where F_ (V, - ), a function of the velocity V;; and /4, is the negative wave boundary function.

If IJ 1s an upstream point, we have also three cases to consider: subcritical, critical, and supercritical
flows. For the case of subcritical flow, the positive wave is going into the reach and its boundary
condition is obtained with the assumption that the specific energy is constant between the junction J
and the node IJ. With this assumption, the governing equations for node 1/ are given by
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)2
H, =§+hﬂ +Z,y and F—(VIJ’hIJ):O (2.1.37)

In the case of critical flow, the positive wave is going into the reach from the junction and its
boundary condition is obtained with the assumption of constant energy line between the junction and
the node 1J, and the negative wave is immobile and its boundary condition is obtained from the
condition of critical flow. The governing equations for node ZJ under critical flow are given by

2 2
4 IJBIJ

H, =2i+hu +Z, and =1 (2.1.38)

In the case of supercritical flow, both positive and negative waves are going into the region from the
junction J to the reach /. Two boundary conditions are required for this case. One of the boundary
conditions is obtained with the assumption of constant energy line between the junction J and the
node 1J. The other boundary condition is obtained with the assumption that the supercritical flow at
node 1J will become a critical flow in a very short distance (so short that it can be conceptually
considered to locate at 1J). With these assumptions the governing equations for node ZJ under
supercritical flow is given by Eq. (2.1.38).

In summary, the governing equations at a natural internal boundary node of a reach connecting to
Jjunctions are given by one of Eq. (2.1.34) through (2.1.38) depending on whether the node 1J is a
downstream or an upstream point and whether the flow is supercritical, critical, or subcritical.

Controlled internal boundary condition at control structures:

For any structure, S (which may be a weir, a gate, or a culvert), there are two river/stream/canal
reaches connecting to the structure. The node /S located at the upstream of the structure is termed
the controlled-internal boundary of the first reach while the Node 25 located at the downstream of
the structure is called the controlled-internal boundary of the second reach (Fig. 2.1-2). The
specification of boundary conditions for the internal boundaries separated by a structure requires
elaboration.

| Pressure |
| Distribution !

| Pressure |
| Dislribulionj

Datum

Fig. 2.1-2. The control volume (red outline) between Nodes 1S and 2S
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The flow configuration around a structure and its surrounding reaches may be very dynamic under
transient flows. Governing equations of flow at Nodes /S and 2S5 depend on the changing dynamics
of water stages around the structure. When both stages are below the height of the structure, the two
reaches connecting the structure are decoupled. When at least one of the stages is above the
structure, two reaches are either sequentially coupled or fully coupled via the structure. Here for
sake of simplicity of discussions, we assume that the flow direction is from Reach / to Reach 2. In
other words, Reach / is an upstream reach and Reach 2 is a downstream reach. Ifthe flow direction
is reversed, we can have the boundary condition similarly prescribed.

There are five unknowns, Vs (velocity of the upstream reach Node 1S), /s (the water depth of the
upstream Node 15), O (the flow rate through the internal-boundary complex), V>s (the velocity of the
downstream reach Node 2S5), and 4,5 (the water depth of the downstream Node 2S5); five equations
must be set up for this internal-boundary complex consisting of a upstream reach node, a structure,
and a downstream node. The governing equations for these five unknowns can be obtained
depending on the flow conditions at the upstream and downstream reaches separated by the internal
boundary structure. The flow condition can be supercritical, critical, or subcritical at Node /S and
Node 2S.

Node /S is a downstream point relative to the first reach or is the upstream point relative to the
structure. The positive wave is transported out of Reach I over the structure to Reach 2, and there is
no need of a boundary condition for this wave. As for the negative wave, if the flow is supercritical,
it is transported out of the reach, and there is no need to prescribe a boundary condition for this
wave. Thus, the governing equations for Node /S under supercritical flow are given by

F, (VIS’hIS): 0, F—(VIS’hlS) =0, and Q =V g4 (2.1.39)

where F(V;s,h;s), a function of V;gand /s, is the positive wave boundary function; and F_(Vs,h;s),
a function of V5 and A/g, is the negative wave boundary function.

If the flow is critical, the negative wave is immobile and its governing equation must satisfy the
condition of critical flow. Thus, the two governing equations for Node /S under critical flow are
given by

2
B

F+(V15’h15): 0, ?gA;S =1, and Q=V Ay (2.1.40)
1S

where B;gand A s, respectively, are the top width and the area, respectively, of the cross-section at
Node IS.

If the flow is subcritical, the negative wave is transported into the reach from the downstream reach

via the structure, and its boundary condition is obtained by equating the flow rates at Nodes /S and
2§. Thus the governing equations for Node /.S under subcritical flow are given by

F+(VIS’hIS): 0, Vis Ais = V5 4y, and QO =V A (2.1.41)

A comment is in order here. When the flow at Note /S is supercritical or critical, the flow in the
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upstream reach is decouple from the flow in the downstream reach. Under such conditions, Eq.
(2.1.39) or (2.1.40) is used to solve to the values of V;5and 4,5, which then yield the flow rate Q, the
energy level H;s at Node 7§, or the momentum-impulse M;s at Node /S. These quantities (Q, Hs,
and M;s) may serve as the boundary conditions for Node 2S. As to which of these quantities is
needed for the internal boundary Node 25 depends on the flow condition at Node 2S. This point will
be taken up when the boundary conditions for Node 2§ are addressed. When the flow at Node /5 is
subcritical, then the flows in the upstream and downstream reaches are coupled via the second
equation in Eq. (2.1.41).

On the other hand, Node 2S is an upstream point relative to the second reach or a downstream point
relative to the structure. If the flow is supercritical at Node 2§, both the positive and the negative
waves are coming into the reach from the upstream reach via the structure, and two boundary
conditions are needed. These two boundary conditions can be obtained by the principle of mass
continuity and the principle of momentum/impulse or the Bernoulli’s equation between Nodes /S
and 2S. The structure between Nodes /S and 2S5 will exert reaction force, Fs, on the fluid between
two nodes or it induces energy loss, A.s, between two nodes (Fig. 2.1-2). Thus, the governing
equations for Node 2 are

H,s + hLS =H,
O =Vs4ys, Visdys =Vis 4, and or (2.1.42)
M, +Fg =M

where Fs is the force exerted by the structure on the fluid; /s is the energy loss between Nodes /
and 2; H,s and Hs (defined in Fig. 2.1-2), respectively, are the energy level at Nodes 25 and /5,
respectively; and Mos (= pVaosAasVas + pg hoscAas) and Mis (= pVisAisVis+ pg hiscAs), respectively,
are the momentum-impulse at Nodes 25 and /S, respectively (where p is the fluid density, g is the
gravity constant, /s, is the water depth to the centroid of the cross-sectional area at Node 2, and /s,
is the water depth to the centroid of the cross-sectional area at Node 7).

If the flow at Node 2§ is critical, one of the two boundary equations is obtained by the requirement
of critical conditions while the other is obtained by the principle of mass continuity and the principle
of momentum/impulse or the Bernoulli’s equation between Nodes /5 and 2S. Thus, the governing
conditions for Node 25 are given as follows

O’B
32S =1, V2SA2S = VlSA1S9 0= VISAIS
g4;s
or H +h . .=H
05 BOOE U (2.1.43)
32S =1, VisAys =Visds, Q=VsA4s, and or
845

M, +F

1S

:MIS

If the flow at Node 2S is subcritical, the positive wave is transported into the reach from the
upstream reach via the structure while the negative wave is transport out of the reach. The boundary
condition for the positive wave is obtained by the principle of mass continuity and the principle of
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momentum/impulse or the Bernoulli’s equation between Nodes /S and 2S. Thus the two governing
equations for Node 25 under subcritical flow are given as follows

F (Vzwhzs) =0, stAzs = VISA1S7 0= VISAIS

or HZS+hLS:HlS
(2.1.44)
F. (stahzs) =0, stAzs = V1sA1sa Q = V1sAls, and or
Mzs + Es = MIS

In summary, the governing equations for internal boundary nodes separated by a structure are
given by any combination of Eq. (2.1.39), (2.1.40), or (2.1.41) and Eq. (2.1.42), (2.1.43), or
(2.1.44). All combinations provide five governing equations for five unknowns (Vis, his, Q, Vs,
and hys), except for one combination.

The combination of Eq. (2.1.41) and Eq. (2.1.42) only generates four equations, one more equation
is needed. This combination represents the situation that flow in the upstream reach is subcritical
and in the downstream reach is supercritical. For this situation to occur, flow must under go a
transitional state of critical flow over the structure, and the critical flow condition on the structure
must be satisfied. Thus, the following additional governing equations can be set up by applying the
principle of mass continuity and the principle of momentum-impulse or the Bernoulli equation to a
control volume between Node 1S and the structure (Fig. 2.1-3) as

2
K A 291
TR 1]
|
Vis > hyg L Disibution |
N H V S
S
/—5 ——— -
r Pressure | 9.<3L'\ HS
| Distribution |
—————— - 1S
A

oS

Datum

Fig. 2.1-3. The control volume (red outline) between Node 1S and structure.

HS + hLlS = HIS
2
B
Qg Af =1, Vidy=Visds,  Q=Vds, and  or (2.1.45)
S
Ms + Es = MIS

where As, Bs, and Vs, are the area, top width, and velocity of the cross-sectional area over the
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structure; hyjs is head loss between Node 1S and the structure; F s is the force the structure exerts
on the fluid between Node 1S and the structure, Hy is the total head over the structure (Fig. 2.1-3),;
and Ms (= pVsAsVs + g hs.As) is the momentum-impulse at the structure (where hs, is the water
depth to the centroid of the cross-sectional area at the structure). Now, Eq. (2.1.41), (2.1.42), and
(2.1.45) give seven equations for seven unknowns (Vis, his, O, Vas, has, Vs, and hg).

The theoretical presentation about the governing equations for the internal-boundary complex is
valid for any structure including weirs, gates, and culverts. The differences among various
structures are characterized by the formulation of the head loss functions, 4;5(Q, h;s, hos) and hy ;s
(O, hys, hs), which depend on the flow rate Q and the water depth /5, and /2s.

2.1.2 Diffusive Wave Approaches

In a diffusive approach, the inertia terms in the momentum equation is assumed negligible when
compared with the other terms. By further assuming negligible eddy viscosity and Ms= Mg = Mg =
M;= M; =M, =0, we approximate the river/stream/canal velocity with the following equation
(Hergarten and Neugebauer, 1995).

2/3

_—a R 1 (aH h dAp Btsj

n 1(62) _OH _hoap BT
ox Ox c¢p Ox  Agp

_+_ —
o B e (2.1.46)

where n is Manning’s roughness [tL'"? ], @ 1s a unit-dependent factor (e = 1 for SI units and a = 1.49

for U.S. Customary units) to make the Manning’s roughness unit-independent, R is the hydraulic
radius [L], and H = h + Z, is the water stage.

Using the definition Q = V4 and substituting Eq. (2.1.46) into Eq. (2.1.1), we obtain

S
Baa_l;l_ﬁi(K{aﬁ_H—FiaaAp B jf }j:SS +8p =S+ 8, +85,+5, (2.1.47)
o X cp ox Agp
in which
K:aARz/s 1 |
" {H(az” \/_W_haAm Bz’ (2.1.48)
Ox ox cp ox  Agp

To achieve transient simulations, either water depth or stage must be given as the initial condition. In
addition, appropriate boundary conditions need to be specified to match the corresponding physical
system. In our model, four types of boundary conditions may be specified depending on physical
configurations of the boundary. These boundary conditions are addressed below.

Dirichlet boundary condition: prescribed water depth or stage

On a Dirichlet boundary, either the water depth or stage can be prescribed as a function of time.
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This boundary condition can be expressed as
h=h,(1) or H=h+Z,=H,, on B, (2.1.49)

where /4(t) 1s a prescribed time-dependent water depth on the Dirichlet boundary [L], Hu(?) is a
prescribed time-dependent water stage [L], and By is the Dirichlet boundary point. A Dirichlet
boundary point can locate at the upstream or down stream point, control structures, or even interior
point.

Flux boundary condition: prescribed flow rate

On a flux boundary, a time-dependent flow rate is prescribed as a function of time as

N
(o, hasp B
ox cp Ox  Agp

J:Qf(t) on B, (2.1.50)

where Oq«t) a prescribed time-dependent flow rate [L*/t] and By is a flux boundary point.
Mathematically, a flux boundary condition can be applied to an upstream or downstream point.
However, in practice, it is often applied to an upstream boundary point.

Water depth-dependent boundary condition: prescribed rating curve

This condition is often used to describe the flow rate at a downstream river/stream boundary at
which the flow rate is a function of water depth. It can be written as

N
_K[6H+i8Ap_Bz' ]

= h B
o o B dgp 0, (h(x,.t) on B, (2.1.51)

where O,(h(x,,1)) is a water depth-dependent flow rate [L*/t], x. is the x-coordinate on the boundary
B,, and B, is a boundary point on which the prescribed rating curve is applied.

Junction boundary condition:

This condition is applied to a boundary of a river/stream/canal reach that is connected to a junction
(Fig.2.1-1). For the junction complex consisting of N;river/stream/canal reaches (e.g., in Fig. 2.1-1,
N;=3) and one junction (say J), we have (N, + 1) unknowns, which are flow rates, Q;; (Qy is the
flow rate from the /-th reach to junction J), and water stage at junction J, H;. Therefore, we need to
setup (N, + 1) equations. The first equation is obtained by applying the continuity of mass at the
junction to result in Eq. (2.1.35) for the case when the storage effect of the junction must be
accounted for or Eq. (2.1.36) when this effect is negligible. The other N;equations can be obtained
by assuming the energy loss from any reach to the junction is negligible to result in

2 s
L[Q_] CHy=H, TeN, where Q,J=_K[aﬂ+w_p_3_fJ|
2g\ 4, ox cp Ox Agp

where Hj;is the water stage the internal boundary Node J of the /-th reach connecting to junction J.
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Equations (2.1.32) or (2.1.33) along with Eq. (2.1.52) provide (N, + 1) equations to solve for (N, +
1) unknowns.

Weir boundary condition:

For any weir (W), there are two river/stream/canal reaches connecting to it. Node /7 located just
upstream of the weir is termed the controlled-internal boundary of the upstream reach while Node
2W located just downstream of the weir is called the controlled-internal boundary of the downstream
reach (Figure 2.1-4). The specification of boundary conditions for the internal boundaries for the
diffusive wave approach is given as

h Br’
-n-K|VH +—V(Ap)——— = h . h d
n ( +cp ( p) Agp]‘lw QW( up > dn) an

(2.1.53)

h Br®
-n-K|VH+—V(Ap) - = h ,h
n ( + cp ( p) Ang QW( up ° dn)

where Q,, is the weir discharge rate, which is a given function of the water depths 4,, at Node /W
and &4, at Node 20 (Fig. 2.1-5).

Reach 1 Reach 2

Fig. 2.1-4. Schematic of weir.

W W
77 |7 7

Free Fall Weir

Sumerged Weir

Fig. 2.1-5. Flow configurations around a weir.

The flow configuration around the weir and its surrounding reaches may be very dynamic under
transient flows. Both of the water stages at Nodes /7 and 2 may be below the weir, both may be
above the weir, or one below the weir while the other is above the weir (Fig. 2.1-5). When both
stages are below the height of the weir, the two reaches connecting the weir are decoupled. When at
least one of the stages is above the weir, two reaches are coupled via the weir. The weir discharge,
0., can be obtained by solving the continuity equation and the Bernoulli equation between Nodes
IW and 2W. The weir formulae under various stage conditions are given as
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(1) For submerged flow

2
0, = CthnLW,/2gihu —h, ) if h, = Eh"P and h,, <h, (2.1.54)
(2) For free fall flow
2 . 2
0, :mCWhupL 2gh,, if h, < Eh“” (2.1.55)
(3) For decoupled flow
0,=0 (2.1.56)

where C,, is the weir coefficient and L,, is the weir length. It should be noted that the above
formulae are valid for broad weir. For other types of weirs, different weir discharge formulae may
be used and they can easily be incorporated into the computer code.

Gate boundary condition:

For any gate (G), there are two river/stream/canal reaches connecting to it. Node /G located just
upstream of the gate G is termed the controlled-internal boundary of the upstream reach while Node
2G located just downstream of the gate G is called the controlled-internal boundary of the
downstream reach (Fig. 2.1-6). The specification of boundary conditions for the internal boundaries
separated by a gate can be made similar to that of a weir as follows.

h Bt
_HK(VH-F_V(AP)_ Agp} lG:Qg (hup’hdn) and

cp

(2.1.57)

h Bt®
-n-K|VH +—V(Ap)- = h ,h
n ( +Cp ( p) Agp)|20 Qg( up dn)

where O is the gate discharge rate, which is a given function of the water depths £,,, at /G and Ay, at

2G (Fig. 2.1-7).
Le

Reach 1 Reach 2

A4
1G 2G

Fig. 2.1-6. Schematic of Gate.
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AV
a
h Ihup hdn
2G
y
Free flow, not influenced by gate opening Submerged flow, not influenced by gate opening

Submerged flow, influenced by gate opening Decoupled flow

Free flow, but influenced by gate opening

Fig. 2.1-7. Flow configurations around a gate.

The flow configuration around the gate and its surrounding reaches may be very dynamic under
transient flows. Depending on the water stages at Nodes /G and 2G (H,;¢ and H,¢), we have several
configurations (Fig. 2.1-7). The gate discharge, Q,, can be obtained by solving the continuity
equation and the Bernoulli equation between Nodes /G and 2G. The gate formulae under various
stage conditions are given as

(1) For free fall flow and not influenced by the gate opening

. 2 2
Cohylos28h, i hy<Zh, and a>Zh, (2.1.58)

Q, = 3\/—

(2) For submerged flow and not influenced by the gate opening

0, =C,h, L

dn—'g

2¢(h, —h,) if hdn_3h hy <hy,. and a>Zh (2.1.59)

up 3 up
or free flow and influenced by the gate opening
(3) For free fl d infl d by th i
0, = \/gc alL,\2gh,, if h, <§hup and a<§hup (2.1.60)

(4) For submerged flow and influenced by the gate opening

2 2
0, = CgaLg1/2gihup —h,, ) if h, > 3 —h,,h, <h,, and a <§hup (2.1.61)

(5) For decoupled flow

0,=0 (2.1.62)



where C, is the gate coefficient, a is the gate opening, and L, is the weir length.
Culvert boundary condition:

Similar to weirs and gates, the boundary conditions for the culvert can be stated as

N

cp Agp

(2.1.63)

h Bt®
et Vi s L (30)- 55 0 o)

where Q. is the discharge through the culvert or culverts, Node /C is the point upstream of the
culvert and 2C is the point downstream of the culvert, £,, is the water stage above the culvert at
Node /C, and Ay, 1s the water stage above the culvert at Node 2C. A wide range of culvert discharge
formulae can be used and they can be easily incorporated in the computer code.

2.1.3 Kinematic Wave Approaches

In a kinematic approach, all the assumptions for the diffusive approach are hold. However, the
velocity is given by modifying Eq. (2.1.46) with &Z,/cx replacing JH/ck as follows

2/3

_-a| R 1 [aza LaA_p_BTSJ 5 164
" 1+(5Zoj2 0z, hosp B |\ O cp O dgp (2.1.64)
Ox ox cp Ox  Agp
Substituting Eq. (2.1.64) into Eq. (2.1.1) and using the definition Q = V4, we obtain
04 oOVA
—+——=85,+8, -8, +§5,+5,+S, (2.1.65)
ot Ox

It is noted that Eq. (2.1.65) represents the advective transport of the cross-sectional area, 4. Itis an
ideal equation amenable for numerically innovative advective transport algorithm.

To achieve transient simulations, either water depth or stage must be given as the initial condition. In
addition, appropriate boundary conditions need to be specified to match the corresponding physical
configuration. In a kinematic wave approach, boundary conditions are required only at upstream
boundaries. An upstream boundary point can be an open boundary or a closed boundary. On an
open upstream boundary, either the cross-sectional area (equivalent to water depth or water stage) or
the flow rate can be specified as

A=4, or n-VA=Q, on B (2.1.66)

up

where H,, 1s the water stage of the incoming upstream flow, Q,, is the flow rate of the incoming
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upstream flow, and B,, is the open upstream boundary point. The flow rate through a closed
upstream boundary point is by default equal to zero.

2.1.4 Thermal Transport

The thermal transport equation is derived based on the conservation principle of energy as:

a(pWCWAT) " a(IOWCWQT) —E(D HAa_T)
ot Ox Ox Ox

=S+ S, +8 =8 -8 =8 +S +S)+87+Sf

(2.1.67)

where p,, is the water density [M/L"]; C,, is the heat capacity of water [L*/t*/T]; T'is the temperature
[T]; D" is the apparent thermal conductivity including the effect of dispersion, diffusion, and
conduction [E/t/L/T = ML/t’/T, where E is the unit of energy]; S," is the heat source due to artificial
injection/withdraw including rainfall [E/A/L = ML/t']; S, is the heat source due to rainfall
[E//L=ML/t]; S;" is the heat source due to net radiation [E/t/L = ML/t’]; S,” is the heat sink due to
back radiation from water surface to the atmosphere [E/t/L = ML/t’]; S is the heat sink due to
evaporation [E/t/L = ML/t’]; 8" is the heat sink due to sensible heat flux [E/t/L = ML/t’]; Sy’ is the
heat source due to exfiltration from subsurface [E/t/L = ML/t’]; S,°’ is the heat source from overland
flow via Bank / [E/t/L = ML/t’]; S, is the heat source from overland flow via Bank 2 [E/t/L =
ML/t’]; and S is the heat source due to chemical reaction [E/A/L = ML/t’]. In Eq. (2.1.67), Sy, S,
S;°!, and S, are given by

(C,p ST i 8,20
S/ =C,p,S,.T"; S =] P IS (2.1.68)
C,p,ST  if 8, <0

and

i {chW&T‘“ if520 {CWpWSQToz if S,20 2.1.69)

" c,p, ST i S,<0 CoppS, T if S,<0

where 7" is the temperature of the rainwater [T], 7" is the temperature of the exfiltration water from
the subsurface flow [T], 7°" is the temperature of the water from overland flow via river Bank / [T],
and 7 is the temperature of the water from overland flow via river Bank 2 [T].

The heat source due to net radiation, Sj", heat sink due to back radiation, S? , heat sink due to
evaporation, S;°, and heat sink due to sensible heat, S;’, are given by their respective heat fluxes as
follows

S, =BH,, S;=BH,; S;=BH, S, =BH, (2.1.70)

where H,, H,, H,, and H, are the net radiation flux, back radiation flux, latent heat flux, and sensible

heat flux, respectively. These fluxes depend on only meteorological condition and water
temperature. They may be computed from follow equations (Yeh, 1969; Yeh et al., 1973; McCuen,
1989; Song and Li. 2000; and Jennifer et al., 2002).
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Net radiation H,

H,=(-a)H,+(1-a)H, @.1.71)
in which
H,=H, (0.61s+0.35) Bu/fi’/day (2.1.72)
and
H,, =eo(T, + 460) |C +0.031(e,)'*|  Buu/ fi*1day 2.1.73)

where a, and a, are the albedos of the water surface for short- and long-wave radiation
respectively; H , and H, are the solar short- and long-wave radiation respectively; H, is the solar

constant, s is the percentage of possible sunshine; ¢ =0.97 is emissivity of water surface; 6 =4.15 x
10® Btu/ft*/day/R* is the Stenfan-Boltzmann constant; 7, is air temperature in °F; C is the brunt
coefficient; and e, is the air vapor pressure in millimeter of mercury.

Back radiation H,
H,=¢o(T, +460)  Btu/ fi*/day (2.1.74)
Sensible heat flux H;
H, =026(73+73W)\T ~T,)-(p/760) Btu/ ft* /day (2.1.75)

where W is the wind speed in miles per hour and p is the atmospheric pressure in millimeter of
mercury.

Latent heat flux of evaporation H,

H,=026(73+7.3W)e, —e,) Btul ft*/day (2.1.76)

where e, is the saturated vapor pressure in millimeter of mercury at the water temperature 7.

In addition to the initial boundary condition, boundary conditions must be specified for the
temperature. Four types of global boundary conditions are provided in this report as follows.

Dirichlet boundary condition:

This condition is applied when the temperature is prescribed as a function of time on the boundaries:
T=T,(x,.t) on B, (2.1.77)
where T5(x5,t) is a time-dependent temperature on the Dirichlet boundary B, [T].

Variable boundary condition:

This boundary condition is employed when the flow direction would change with time during
simulations. Two cases are considered, regarding to the flow direction on the boundary.
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< Case 1 > Flow is coming in from outside:

oT
prwQT - DHA& = prwQT;b (‘xb ’t) on BV (2'1'78)

< Case 2 > Flow is going out from inside:

—DHAZ—Tzo on B, (2.1.79)
X

where T,5(xp,t) 1s a time-dependent temperature [T] through the variable boundary B,, which is
associated with the incoming flow.

Cauchy boundary condition:

This boundary condition is employed when the total heat-flow rate is given at the river/stream
boundary. Usually, this boundary is an upstream boundary node. The conditions can be expressed
as

oT
p,C.OT - DHAa— =0, (x,.1) (2.1.80)
X
where @, (x,,?) is total heat-flow rate (E/t = ML?/t*, where E denotes the unit of energy) through

the Cauchy boundary, which takes a positive value if it is going out of the region and a negative
value if it is coming into the region.

Neumann boundary condition:

This boundary condition is used when the conductive heat-flow rate is known at the river/stream
boundary node. It can be written as

oT
—DHAa = @, (x,.1) (2.1.81)

where @, (x,,) is the heat flux through the Neumann boundary.

In addition to the above four types of global boundary conditions, two types of internal boundary
conditions are implemented: internal boundary nodes connecting to natural junctions and two
internal boundary nodes for every control structures. These internal boundary conditions are
mathematically stated similar to fluid flow of diffusive wave approaches.

Internal boundary condition at junctions:

If Node 1J is the internal node from Reach / connecting to Junction J (Fig. 2.1-1), the boundary
conditions at Node 1/ is given as
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(pWCWQT - DHAa—T]
ox

v=p..C, %Qu [(1 + Sl'gl’l(QU ))TIJ + (1 - Sl'gl’l(QU ))TJ ] (2.1.82)

where sign(Q;;) is equal 1.0 if the flow is from Reach 7 into Junction J, -1.0 if flow is from Junction
J into Reach 7; T}, is the temperature at Node 1J; and 7 is the temperature at Junction J which is
given by

> p.C, %Q,y 1+ sign(0, )7, +(1 = sign(0, ), ]= 0 (2.1.83)

if the storage effect of Junction J is negligible or

d(pwfl:V,T,) _ Z p.C. %QU [(1 + sign(0, )T, + (1 - sign(Q, )T, | (2.1.84)

if the storage effect of Junction J is significant.
Internal boundary condition at control structure:

If Nodes /S and 2§ are two internal boundary nodes connecting to Structure S (Fig. 2.1-2), the
boundary conditions at Nodes /.5 and 2§ are given

oT oT
(prWQT - DHA&JLS = (prWQT - DHAajbs
(2.1.85)

= pWCW%Qs [(1 + Sign(QS ))Tls + (1 - Sign(QS ))TZS]

where sign(Q) is equal 1.0 if the flow is from Node /S to Node 28, -1.0 if flow is from Node 25 to
Node I8; Ts is the temperature at Node /S; and 7> is the temperature at Node 2.

2.1.5 Salinity Transport

a(4S) N 0(0s) _ Q(DSAG—SJ MY M MM M+ M (2.1.86)
ot ox ox ox

where S is the salinity [M/L*]; D® is the longitudinal dispersion coefficient for salinity [L*/t]; M," is
the artificial source of the salt [M/t/L]; M, is the salt source from rainfall [M/t/L]; M, is the salt sink
from evaporation, which most likely would be zero [M/t/L]; My’ is the salt source from subsurface
[M//L]; M,°" is the salt source from overland via River Bank I [M/t/L]; and M, is the salt source
from overland source viz River Bank 2 [M/L/t]. In Eq. (2.1.86), M| is likely to be zero and My, MS",
M and M,* are given by

M!=S,S"; M=

S8 if S >0
{’ /5 (2.1.87)

S,S if S,<0
and
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S8 if §>0 S.S? if S§,>0
MO[ ={ 1 l-f 1 . MYOZ ={ 2 l.f‘ 2 (2.1.88)

CSS  if 8§, <0 S,S if §,<0
where §” is the salinity of the rainwater [M/L’], $' is the salinity of the exfiltration water from the
subsurface flow [M/L’], $°' is the salinity of the water from overland flow via River Bank / [M/L’],
and S* is the salinity of the water from overland flow via River Bank 2 [M/L3].

As in thermal transport, four types of global boundary conditions for salinity transport are provided
in this report as follows:

Dirichlet boundary condition:
This condition is applied when the salinity is prescribed as a function of time on the boundaries:
S=8,(x,.1) (2.1.89)

where S, (xb,t) is a time-dependent salinity on the Dirichlet boundary [M/L"].

Variable boundary condition:

This boundary condition is employed when the flow direction would change with time during
simulations. Two cases are considered, regarding to the flow direction on the boundary.

< Case 1 > Flow is coming in from outside:

oS
QS—DSAa—:Qva (xb,t) (2.1.90)
X
< Case 2 > Flow is going out from inside:
psaBStat) (2.1.91)
ox

where S, (xb, t) is a time-dependent salinity on the variable boundary [M/L"], which is associated

with the incoming flow.
Cauchy boundary condition:

This boundary condition is employed when the total salt-flow rate is given at the river/stream
boundary. Usually, this boundary is an upstream boundary node. The conditions are expressed as

QS—DSAZ—Szd)cb(xb,t) (2.1.92)

X

where @, (x,,7) is total salt-flow rate on the Cauchy boundary [M/t], which takes a positive value if

it is going out of the region and a negative value if it is coming into the region.
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Neumann boundary condition:

This boundary condition is used when the dispersive salt-flow rate is known at the river/stream
boundary node. It can be written as

oS
—DSAa—x =0, (x,,1) (2.1.93)

where @, (x,,7) is the salt rate due to salt concentration through the Neumann boundary [M/L].

The internal boundary conditions at junctions and control structures for salinity transport are stated
similarly to those for thermal transport as follows.

Internal boundary condition at junctions:

If Node 1J is the internal node from Reach / connecting to Junction J (Fig. 2.1-1), the boundary
condition at Node 1/ is given as

( 05 - DSAa_Sj vz %QIJ [(1 +sign(Q, ))SU + (1 —sign(Q, ))S"} (2.1.94)

Ox

where Sy is the salinity at Node 1J and S; is the salinity at Junction J, which is governed by

Z%Q[J [(1 + Sign(QiJ ))Si.l + (1 - Sign(QiJ ))SJ ] =0 (2.1.95)

1

if the storage effect of Junction J is negligible or

d(V,S,) 1

T =Y 0, [ (1+5ign(2,))S, +(1-sign(0,))S, ] (2.1.96)

if the storage effect of Junction J is significant.

Internal boundary condition at control structure:

If Nodes /S and 28 are two internal boundary nodes connecting to Structure S (Fig. 2.1-2), the
boundary conditions at nodes 1S and 28S are given

5 48
(o5-0045)

where S5 is the salinity at Node /.5 and S»g is the salinity at Node 2.

ls{QS—DSAa—Sj

Ox

= %QS [(1+sign(05)) S, +(1-sign(05))Sos | (2.1.97)
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2.2 Water Flow in Two-Dimensional Overland Regime

The governing equations for two-dimensional overland flow can be derived based on the
conservation law of water mass and linear momentum [Wang and Connor, 1975]. The governing
equations of a dynamic wave model in conservative form can be written as follows.

The continuity equation:

@4- a(uh) N 8(vh)
ot Ox oy

=S+R-E+1 2.2.1)

where / is the water depth [L]; u is the velocity component in the x-direction [L/t]; v is the velocity
component in the y-velocity [L/t]; Ss is the man-induced source [L*/t/L?]; Sk is the source due to
rainfall [L*/t/L?]; Sg is the sink due to evapotranspiration [L*/t/L*]; and S; is the source from
subsurface media due to exfiltration [L/t]. It should be noted that uk = g, is the flux the x-direction
[L*/t/L*] and vh = g, is the flux in the y-direction [L*/t/L?].

The x-momentum equation:

o(z,+h) gp? oF
6((;2}1) . Gu(guh) N 6v(guh) __gh ( (; )_ g2h aaAp 3 8;; B ayx N
x 4 o= prov oo 2.2.2)
(M, + M M F M)
P

where Z, is the bottom elevation of overland [L]; ]; Ap = p - p, is the density deviation [M/L] from
the reference density (p,), which is a function of temperature and salinity as well as other chemical

concentrations; M XS is the x-component of momentum-impulse from artificial sources/sinks [L*/t*];

M XR is the x-component of momentum-impulse gained from rainfall [L*/t*]; M XE is the x-

component of momentum-impulse lost to evapotranspiration [L*/t*]; M X' is the x-component of
momentum-impulse gained from the subsurface media due to exfiltration [Lz/tz]; F.and F), are the
water fluxes due to eddy viscosity along the x-direction [L*/t*]; 7, is the component of surface shear
stress along the x-direction over unit horizontal overland area [M/L/t’]; 7,” is the component of
bottom shear stress along the x-direction over unit horizontal overland area [M/L/t*], which can be
assumed proportional to the x-component flow rate, i.e., 7.”/p = x|V/u.

The y-momentum equation;

8(vh) . ﬁu(vh) N 5v(vh) ——gh 6(20 +h) g gh® OAp ~ OF,, ~ oOF,, .
ot 0 0 0 2 0. 0
x y o y p oy x Oy 2.23)
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where M yS is the y-component of momentum-impulse from artificial sources/sinks [L*/t*]; M yR is
the y-component of momentum-impulse gained from rainfall [L*/t*]; M yE is the y-component of

momentum-impulse lost to evapotranspiration L*/t*]; M yl is the y-component of momentum-

impulse gained from the subsurface media due to exfiltration [L*/t*]; F,, and F,, are the water fluxes
due to eddy viscosity along the y-direction [L/t*]; 7,’ is the component of surface shear stress along
the y-direction over unit horizontal overland area [M/L/t]; ryb is the component of bottom shear
stress along the y-direction over unit horizontal overland area [M/L/t*], which can be assumed
proportional to the y-component flow rate, i.e., ryb/p = k|V|v.

2.2.1 Fully Dynamic Wave Approaches

Egs. (2.2.1) through (2.1.3) written in conservative form are the governing equations for two-
dimensional flow in overland. Depending on the simplification of the momentum equation, one can
have three approaches: fully dynamic wave, diffusive wave, and kinematic wave. For the fully
dynamic wave approach, all terms in Egs. (2.2.1) and (2.2.3) are retained. Under such
circumstances, the conservative form of the governing equations may be used or they may be cast in
the advection form or in the characteristic form. In this report, while the conservative form of fully
dynamic wave equation is used as an option, the characteristic form of the fully dynamic approach
will be used as a primary option. The characteristic form is the most natural way to deal with
hyperbolic-dominant equations and amenable to the advective numerical methods, for example the
upstream approximation or the Lagrangian-Eulerian method.

With an adequate mathematical manipulation, Eqgs. (2.2.1) through (2.2.3) can be written in
advective form as follows

oh oh ,ou Oh , Ov

—tu—+h—+v—+h—=(S+R-E+1
o "ox ox oy oy ( ) (2.24)

ou  oh  ou  Ou oz, 1{8&( ﬁFyx}
—+g—+u—+v—=-g¢g -—— +

ot ox Ox Oy ox h| Ox Oy
s R - | (2.2.5)
u(S+R-E+1)—(M°+M " -M+M,") v _¢
— + X X
h ph
: OF_  OF
@+ga—h+u@+v@=—gaz"—gh oap_1 e
ot ox Ox Oy oy 2p Oy h| Ox Oy
(2.2.6)

v(S+R-E+1)-(M +M -MF+M) < -1
— - - + — =
h ph

which can be written in matrix form as

OE OE oE
ZHA = +A Z==R+D
A tATTAS (2.2.7)
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where

u h % 0 h
E=(h u v}'; A =|g ; Ay=10 v 0 (2.2.8)
0 u g v
S+R-E+1
& 0Z, gh’> oAp u(SS+SR_SE +SI)_(MXS +M, S -M] +MX1) v -1
R={R, ;={-g—2— - + = 2.2.9)
R ox 2p Ox h ph
Uz, ghtanp v(SitS=8+8)~(M M M M) 7 -
oy 2p Oy h ph
0 0

0 1for. oF. | |1]a ou) @ 8 ov)]
D=<D, p=1——| —=+—= — —[hgn—uj+— he,, —u+h5yr—v (2.2.10)

D h| ox oy | hlox\ ~ ox) oy oy - Ox )|

g 1[oF., oF ] I ]

- == LY hnga—u+h8ﬂ@ il hgyy@
h| ox 0Oy | h| ox o) Oox) oy oy )|
Let the matrix B be the linear combination of the matrices A, and Ay as follows
uk, +vk, hk hk,
B=A-k=Ak +Ak =| gk, uk, +vk, 0 (2.2.11)
gk, 0 uk, +vk,

where A is a third rank vector with the matrices Ay and Ay as its components and k is a unit vector.
The eigenvalues and eigenvectors of the defined matrix B are

Ao=uk +vk, e =00 k,  —k[ (2.2.12)
T
h k
=k, +vk, +Afgh e, = {\/i_ glz‘x gzy} 2.2.13)
T
k
Ay =uk vk, —\Jgh e = {— */i_h g;‘x gzy} (2.2.14)

where k. and £, are the x- and y-component of the unit vector k.
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Now we compose an eigenmatrix and its inverse from the eigenvectors of B as

o V&h _Agh 0otk
2 2 ¥
k k k. k
L=|k, £ | g L= 1A (2.2.15)
2 2 A gh g g
—k gk, gk, 1 k. k,
L 2 2] . Jgh & &
Let us define a characteristic vector W by
0 k, -k, T
Lok k| "
OW =L"0E = T = 2L oup inwhich W=1{W, (2.2.16)
Jeh g 2|, W
L kK
| Jeh 2 g

where the first characteristic variable W, is a vorticity or shear wave. The second and third
components, W, and W3, are the amplitudes of the two gravity waves. The multiplication of Eq.
(2.2.7) by L™ yields

A E A E o ReL D (2.2.17)
ot Ox Y

or, with the transformation between E and W given by L' 0E= oW,

aﬂJrL*leLaﬂjLL*‘A LaﬂzL’leLL’lD (2.2.18)
ot ox Ty

Substituting A and A, in Eq. (2.2.8) and L' and L in Eq. (2.2.15) into Eq. (2.2.18), and
performing matrix multiplication, we obtain

-u gcky B ngy | _V _ ngx ngx _
2 2 2 2
hk
WM 0 Vv 0 Y opRiLd 2.2.19)
ot c Ox c g oy
hk hk
v 0 u—ck, X 0 v— cky
- [ |
where
c=./gh (2.2.20)
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It is noted that the coefficient matrices L™ AL and L'lAyL, respectively, of (OW/0x) and (OW/0y),

respectively, are not diagonal matrices because L™ is not an eigenmatrix of Ay nor of Ay.
Rearranging Eq. (2.2.19), we obtain

5 u 0 0 5 % 0 0 5 S,
a_vtv+ 0 u+ck, 0 8_W+ 0 v+ck, 0 8_W+ S, r=L"(R+D) (2.2.21)
0 0 wu-ck, g 0 0 v-—ck, g S;
where
g k‘,%—kx@
T Oox oy
Sl
R S P L i (2.2.22)
g c " Ox “ oy 7 ay ﬁx
3
_h kka—u+kk(2)av kk au 6\/
c 7 Ox oy g 6y 6x
For a general consideration, we define a new L*™' (and its inverse L*) which plays the following
transformation.
_ . .
0 _ —
0 ky(l) _kx(l) 3 3
1 k@ k 2) oh k@ J @ k@
oW=L"oE=|- & D gl g2 & &L (2.2.23)
c g g 5 k 2k 2k
1 k (2) k 2) v k (2) gky(z) gk (2)
_ X Yy - Y
c g g |k 2k 2k |

where k = k'"-k® is the inner product of k) and k. It should be noted that two unit wave
directions k" and k' should not be orthogonal so that the transformation will not be singular.
Multiplying both side of Eq. (2.2.7) by this new L*"' and repeating mathematical manipulations
involved in Egs. (2.2.19) and (2.2.21), we have

u 0 0 vo0 0 S,
aa—vtv+ 0 u+ck® 0 W 1o v+ck,® 0 aaﬂ+ S, ;=L (R+D) (2.2.24)

X y
0 0 u-ck 0 0 v—ck S

where
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gk(l)%—k“)%
Toox Y oy

A
S, = ﬁ[k Ok <2>a_“+k;2>kx“>%—kﬁk}f“(a—”ﬂﬂ (22.25)
S

cl 77 ox oy oOx

—_h k (2)k (2)a_u+kx(2)kx(2)@_kx(2)k 2) 8_u+@
c| V7 ox oy T \oy ox

w

Substituting L*"' defined in Eq. (2.2.23) into the right hand side of Eq. (2.2.24), we obtain

o, +u o +v o,
ow. ) az;CW v ow. Sl AL |E
2 k)2 ck @2l +48 t =44, L +<B 2.2.26
at ( X ) ax y ) ay 2 2 2 ( )
SS A3 BS
ow, ( i (2))5W3 ( i m)aWs
ot * ox g oy
where
ky(l)R2 _kx(l)R3 ky(l)Dx kx(l)D
Al ) k (2 Bl k (2) k (2)
Ayt ={-R +=—R,+——R, t and {B,{={——D +——D, (2.2.27)
y c g g B g g
3 @) (@) 3 2) ®)
-1 k k, k k,
—R +——R, + R, —D + D,
c g g g g

Writing out Eq. (2.2.26) in its three components, we have the following three equations for three
unknowns W;, W5, and W3

o
+

o,
u

ow,

ot ox

o,

t ox

oW,

+v

Oy

L+ S =

A + B,

+ (u +ck,? )% + (v +ck,” )aaﬂ +8,=4,+B,

y

a—t3+(u —ck? )%‘i‘(\/ —ck,"” )%+S3 =A,+B,

ox Oy

(2.2.28)

(2.2.29)

(2.2.30)

Equations (2.2.28), (2.29), and (2.230) indicate that the vorticity wave is advected by the velocity V,
the positive gravity wave by V + ck®, and the negative gravity wave by V - ck®, where k® is a unit

vector.
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We can write Eq. (2.2.26) in Lagrangian form as

D,W,
DT Sl Al Bl
M+S:A+B (2.2.31)
DT 2 2 2 okt
S A B
Dy s ’ ’ ’
Dt

where V is the transporting velocity of the vorticity wave W, (V + ck'?) is the transporting velocity
of positive gravity wave W5, and (V - ck®) is the transporting velocity of negative gravity wave W;.
Substituting the definition of the characteristic variable W in Eq. (2.2.23) into Eq. (2.2.31), we have
the following three equations for the three waves

ky(l) ll)),,u _kx(l) ll));/v +S, =4+ B, (2.2.32)
T T
D ,c Op  u kYD,
P Thar e DR 22.33)
D ¢ @p u kPD v
_é Vgl;i) +kxg. Vl—)ckz(-) + ;_ VB‘/;> +S3:A3+B3 (2.2.34)

1t is noted that a diagonalization can be achieved with special selections of kxm , ky(l), kx(z) ,and ky(z)
to make S;, S>, and S; zeros.

In solving Egs. (2.2.28) through (2.2.30) or Egs. (2.2.32) through (2.2.34), the water depth 4, and the
velocity components, u and v, must be given initially or they can be obtained by simulating the
steady-state version of Egs. (2.2.28) through (2.2.30). In addition, appropriate boundary conditions
need to be specified to match the corresponding physical system. The characteristics form of the
governing equation offers great advantages over the primitive form in adapting appropriate
numerical algorithms and in defining boundary conditions. Innovative hyperbolic numerical
algorithms can be employed to approximate the system because each of the three equations is a
decoupled advective transport equation of a wave. The specification of boundary conditions is made
easy pending the wave direction. We demonstrate how boundary conditions are specified in the
following. An overland boundary segment can be either open or closed. In the former case, the
boundary condition for any wave is needed only when it is transported into the region of interest.
When a wave is transported out of the region, there is no need to specify the boundary condition
because internal flow dynamics due to this wave affects the boundary values of u, v, and /. In the
later case, the flow rate on the boundary is zero.

Open upstream boundary condition:

At an open upstream boundary segment, the vorticity is always transported into the region from
upstream. If the flow is supercritical, then both gravity waves also transported into the region from
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upstream; thus three boundary conditions are needed. The water depth and velocity components at
the boundary are determined entirely by the flow condition that prevails at the upstream. The
governing equations for this case can be set up based on the continuity of mass as well as
momentums between the upstream and boundary as

2 2
n-Vi=q"(x,,t); n-Vuh+nX%:M;’p(xb,t); and n-Vvh+ny%=M;”’(xb,t) (2.2.35)

where n is the outward unit vector of the boundary segment; ¢.”(x,,?), a function of time ¢, is flow
rate normal to the boundary from the upstream; x, is the coordinate on the boundary; n, is the x-
component of n; M ¥ (x,,t) is the x-momentum/impulse from the upstream; n, is the y-component of
n; and M ”(x,,?) is the y-momentum/impulse from the upstream. It is noted that u, v, and / from

: : up up up
the upstream must be given to provide ¢,”, M " and M7 .

In the case of subcritical flow, one of the two gravity waves is transported into the region while the
other is transported out of the region. The water depth and velocity are determined with the
upstream flow condition and internal flow dynamics. The governing equations are set up based on
the continuity of mass between the boundary and the upstream and on the flow dynamics in the
region as

n-Vi= qi””) (xh,t) or h+Z,=H,, (Xb,t); £-Vh= qg“”) (Xb,t); and F. (u,v,h) =0

or (2.2.36)
n-Vhi=q" (x,,t) orh+2,= H,, (x,.t); {-Vh=q{" (x,,t); and F_(u,v,h)=0

where / is the unit vector parallel to the boundary segment; H,, (x b,t) , a function of time ¢, is the

water stage in the incoming fluid from the upstream; ¢,”(x,,?) , a function of time ¢, is the flow rate
parallel to the boundary.

Open downstream boundary condition:

At an open downstream boundary segment, the vorticity is always transported out of the region into
downstream. Ifthe flow is supercritical, then both gravity waves also transported out of the region
into downstream; thus three is no need to specify the boundary conditions. The water depth and
velocity components at the boundary are determined entirely by internal flow dynamics. The
governing equations for this case are given by

Fo(uv,h)=0; F (uv,h)=0;, and F (uv,h)=0 (2.2.37)

where F (u v,h), a function of velocity and water depth, is the vorticity wave boundary function.

In the case of subcritical flow, one of the two gravity waves is transported into the region from
downstream while the other is transported out of the region into downstream. The water depth and
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velocity are determined by the internal flow dynamics and the control of the downstream boundary
segment

F, (uvh) =0, F, (u,v,h) =0; and h=h,(x,,t)or n-Vh= qj”(h)
or (2.2.38)
Fy(u,v,h)=0; F (u,v,h)=0; and h=h, (x,,t)orn-Vh=q" (h)

where 4™(1), a function of time ¢, is the water depth of the downstream boundary an qnd"(h), a
function of water depth 4, is the rating curve of the downstream boundary.

Closed upstream boundary condition:

At the closed upstream boundary, physically all flow conditions can occur. The vorticity wave is
always transported from the outside of the boundary into the region. When the supercritical flow
happens, both gravity waves are also transported into the region. Thus, three boundary condition
equations are needed. Because the boundary is closed, it is impermeable. The governing equations
can be obtained by simply substituting ¢,” = 0, M;y? = 0, and M,” = 0 into Eq. (2.2.35) to yield

2 2

n-Vh=0; n~Vuh+nxg§ =0; and n-Vvh+nyg§ ) (2.2.39)

The solutions for Eq. (2.2.39) are not unique. One of the possible solutionisu=0,v=0, and 2= 0.

When the flow is subcritical, one of the two gravity waves is transported from the outside of the
boundary into the region while the other is transported from inside the boundary to the outside The
boundary conditions are needed only for the incoming waves. Since no fluid from the outside world
is transported into the region via the closed boundary, one of the two boundary condition equations
can be stated with n-V = 0. The other boundary equation can be obtained by assuming no slip
condition on the boundary. Thus, three governing equations are given as

n-Vh=0; {-Vh=0; and F,(u,v,h)=0 or n-Vh=0; (-Vh=0; and F (u,v,h)=0 (2.2.40)
depending on which wave is transported out of the region.
Closed downstream boundary condition:

At the closed downstream boundary, physical condition dictates that normal flow rate at the
boundary is zero. The vorticity wave is always transported out of the region. If the flow is
supercritical, both gravity waves are also transported out of the region. The velocity and water depth
on the boundary is determined entirely by internal flow dynamics and no boundary condition is
needed. The governing equations are given by the wave boundary functions subject to the constraint
that fluid flux is zero as follows:

F®(u,v,h)=0; F+(u,v,h):0; and F_(u,v,h)zO subjectto mn-V =0 (2.2.41)

The only feasible solution of Eq. (2.1.31) isu =0, v= 0, and 2 = 0. Therefore, supercritical flow

2-33



cannot occur at a closed downstream segment.
In the case of subcritical flow, one of the two gravity waves is transported into the region while the

other is transported out of the region. The water depth and velocity are determined with the internal
flow dynamics and the condition of zero normal flux as

Fy(u,v,h)=0; F (u,v,h)=0;and n-Vh=0 or Fy(u,v,h)=0; F (u,v,h)=0;and n-Vh=0 (2.2.42)
Overland-river interface boundary condition:

At the overland-river interface, the flux must be continuous as

(neV)h

Bak1 =S and (nV)h

Bank 2 = SZ (2.2.43)

where S; and S, are sources of water which appear in Eq. (2.1.1)

2.2.2 Diffusive Wave Approaches

For diffusion wave models, the inertia terms in Egs. (2.2.2) and (2.2.3) are assumed not important
when compared to the others. With the further assumption that eddy viscosity is insignificant and
ME=MF=mF=Mm!= MyS = MyR = MyE = My[ =0, we approximate the velocity V = (u, v) as follows

s

2/3
v ! (VH+iV(Ap)—’—J
n|1+(vZ,) \/ h - 2p pgh) (2.2.44)

~VH ——V(Ap)+——
2p (40) pgh

Using the definition q = Vh and substituting Eq. (2.2.44) into Eq. (2.2.1), we obtain

‘Z_I;I_v.{K(VHJF%V(Ap)—;gShH=SS+SR—SE+S, (2.2.45)
in which
P n" 1 1
" [”(VZO)ZT3 \/‘—VH—hV(Ap)—i- c (2240
2p pgh

To achieve transient simulations, either water depth or stage must be given as the initial condition. In
addition, appropriate boundary conditions need to be specified to match the corresponding physical
system. In our model, four types of boundary conditions may be specified depending on physical
configurations of the boundary. These boundary conditions are addressed below.
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Dirichlet boundary condition: prescribed water depth or stage

On a Dirichlet boundary, either the water depth or stage can be prescribed as a function of time.
This boundary condition can be expressed as

h:hd(xb,t) or  H=h+Z7Z,=H,x,,t), on B, (2.2.47)

where 7, (x b t) 1s a prescribed time-dependent water depth on the Dirichlet boundary [L], H,(x,,?)
is a prescribed time-dependent water stage [L], and By is the Dirichlet boundary segment. A
Dirichlet boundary segment can locate at the up-streams or down-streams, control structures, or even
interior points.

Flux boundary condition: prescribed flow rate

On a flux boundary, a time-dependent flow rate is prescribed as a function of time as

h T
_n-K(VH+$V(Ap)—pgh]:qf(x,,,t) on B (2.2.48)

where n is an outward unit vector at the flux boundary point, ¢, (x b t) a prescribed time-dependent
flow rate [L*/t/L], and Byis a flux boundary segment. Mathematically, a flux boundary condition can
be applied to an upstream or downstream segment. However, in practice, it is often applied to an
upstream boundary segment.

Water depth-dependent boundary condition: prescribed rating curve

This condition is often used to describe the flow rate at a downstream boundary at which the flow
rate is a function of water depth. It can be written as

h T
-n-K|VH+—V(Ap)——|=q,(h(x,,t)) on B 2.2.49
Vit va0)- g (h(50) @249

where q.(h(x,.t)) is a water depth-dependent flow rate [L*/t/L], x, is the x-coordinate on the boundary
B,, and B, is a boundary segment on which the prescribed rating curve is applied.

Overland-river interface boundary condition:

At the overland-river interface, the flux must be continuous as

h TS
-n-K|VH+—V(Ap)—— =S and
[ 2 ( p) pghj Bank 1 1
N . (2.2.50)
T
-n-K|VH+—V(Ap)— =S
( 2p ( p) pgh] Bank 2 2
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where S; and S; are sources of water which appear in Eq. (2.1.1)

2.2.3 Kinematic Wave Approaches

In a kinematic approach, all the assumptions for the diffusive approach are hold. However, the
velocity is given by modifying Eq. (2.2.44) with VZ, replacing VH as follows

—V(Ap)+—
2p (40) pgh

o

2/3
_Ta_h ! [VZO+1V(A,0)—T—}
n|1+(VZ,) \/‘—vz o = 2p pgh 2.2.51)

Substituting Eq. (2.2.51) into Eq. (2.2.1) and using the definition q = VA, we obtain

oh
5+V-(Vh):SS+SR—SE +S, (2.2.52)

It is noted that Eq. (2.2.52) represents the advective transport of the water depth, 4. It is an ideal
equation amenable for numerically innovative advective transport algorithm.

To achieve transient simulations, either water depth or stage must be given as the initial condition. In
addition, appropriate boundary conditions need to be specified to match the corresponding physical
configuration. In a kinematic wave approach, boundary conditions are required only at upstream
boundaries. Anupstream boundary segment can be an open boundary or a closed boundary. On an
open upstream boundary, either the water depth or the flow rate can be specified as

hzhup(x t) or n-thqup(x t) on B, (2.2.53)

up? up?

where £, (xup, t) is the water depth of the incoming upstream flow, g,, (xup, t) is the flow rate of the

incoming upstream flow, x,, is the coordinate on the upstream boundary, and B, is the open

upstream boundary segment. The flow rate through a closed upstream boundary segment is by
default equal to zero.

2.2.4 Thermal Transport

The thermal transport equation is derived based on the conservation principle of energy as:

o(p,C,hT) "
oV laCal) ( ) (2.2.54)

=H,+H +H -H, -H,-H +H,+H,

where py, is the water density [M/L’]; C,, is the heat capacity of water [L*/tY/T]; T'is the temperature
[T]; D" is the apparent thermal conductivity tensor including the effect of dispersion, diffusion, and
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conduction [E/L/t/T = ML/t’/T, where E is the unit of energy]; H, is the heat source due to artificial
injection/withdraw including rainfall [E/t/L* = M/t’]; H, is the heat source due to rainfall [E/t/L? =
M/t3]; H,, is the heat source due to net radiation [E/t/L2 = M/t3]; H,, is the heat sink due to back
radiation from water surface to the atmosphere [E/t/L>=M/t*]; H, is the heat sink due to evaporation
[E/t/L* = M/t’]; H, is the heat sink due to sensible heat flux [E/t/L* = M/t*]; H; is the heat source due
to exfiltration from subsurface [E/t/L* = M/t’]; and H, is the heat source due to chemical reaction
[E//L? = M/t']. In Eq. (2.2.54), H, and H; are given by

{prwlT" if 120

H =C p RT"; H, =
CplIT if I<0

l

(2.2.55)

where R is the rainfall rate [L/t], 7" is the temperature of the rainwater [T], / is the exfiltration rate
[L/t], and T'is the temperature of the exfiltration water from the subsurface flow [T]. H,, H, H.,
and H, are the net radiation flux, back radiation flux, latent heat flux, and sensible heat flux,
respectively. These fluxes depend on only meteorological condition and water temperature. The
formulation of these heat/energy fluxes were presented in Section 2.1.

In addition to the initial boundary condition, boundary conditions must be specified for the
temperature. Four types of global boundary conditions are provided in this report as follows.

Dirichlet boundary condition:
This condition is applied when the temperature is prescribed as a function of time on the boundaries:
T=T,(x,t) on B, (2.2.56)

where T, (x b,t) is a time-dependent temperature on the Dirichlet boundary B, [T].

Variable boundary condition:

This boundary condition is employed when the flow direction would change with time during
simulations. Two cases are considered, regarding to the flow direction on the boundary.

< Case 1 > Flow is coming in from outside:

n(p,C.aT-D"h-VT)=n-p,CqT,(x,.t) on B, (2.2.57)

< Case 2 > Flow is going out from inside:

-n-D"%2-VIT=0 on B (2.2.58)

v

where T, (xb,t) 1s a time-dependent temperature on the variable boundary B, [T], which is

associated with the incoming flow.

Cauchy boundary condition:
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This boundary condition is employed when the total heat-flow rate is given at the boundary.
Usually, this boundary is a flow-in boundary. The conditions can be expressed as

n-(p,C,aT -D"h-VT)=® (1) on B (2.2.59)

c

where @, (t) is total heat flux on the Cauchy boundary B, [E/L/t= ML/, where E denotes the unit

of energy], which takes a positive value if it is going out of the region and a negative value if it is
coming into the region.

Neumann boundary condition:

This boundary condition is used when the conductive heat-flow rate is known at the boundary. It
can be written as

-n-D"h-VT=® (x,,t) on B (2.2.60)

n

where @ , (x,,¢) is the heat flux on the Neumann boundary B, [E/L/t].

In addition to the four types of global boundary conditions, an internal boundary condition may be
specified for the exchange of energy/heat flux between the overland and river/stream network.
Mathematically, this boundary condition is described below.

Overland-river interface boundary condition:

n-(p,C,aT -D"1-VT)

sani1 =S and n'(,OWCqu -D Hh~VT)

sz =SS0 (2.2.61)

where S;°! and S;,°% are the heat sources, which appeared in Eq. (2.1.67). These heat sources can be
calculated using Eq. (2.1.69) if the temperatures in the overland water and river water are
discontinuous at the interfaces. If the temperatures are continuous, then these heat sources should be
formulated by imposing the continuity of the temperatures in the overland water and river water at
the interface.

2.2.5 Salinity Transport

—ags) +V(gS)- V- (D - VS)= M+ M - M5 + M (2.2.62)
)

where S is the salinity [M/L*]; D® is the longitudinal dispersion coefficient for salt [L*/t]; M,* is the
artificial source of the salt [M/t//Lz]; M, is the salt source from rainfall [M/t/L%; M,* is the salt sink
from evaporation [M/t/L*]; M, is the salt source from subsurface [M/t/L*]. In Eq. (2.2.62), M, is
likely to be zero and M, and M," are given by

. : IS" if 1>0
M?=RS"; M? ={ / } (2.2.63)

IS ifI<0
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where R is the rainfall rate [L/t], S" is the salinity of the rainwater [M/L?], I is the exfiltration rate
[L/t], and S is the salinity of the exfiltration water from the subsurface flow [M/L’].

As in thermal transport, four types of global boundary conditions for salinity transport are provided
in this report as follows.

Dirichlet boundary condition:
This condition is applied when the salinity is prescribed as a function of time on the boundaries:
S=S, (xb,t) on B, (2.2.64)

where S, (X b,t) is a time-dependent salinity on the Dirichlet boundary B, [M/L?].

Variable boundary condition:

This boundary condition is employed when the flow direction would change with time during
simulations. Two cases are considered, regarding to the flow direction on the boundary.

< Case 1 > Flow is coming in from outside:

n-(qS—-hD*-VS)=n-qS,(x,.t) on B (2.2.65)

v

< Case 2 > Flow is going out from inside:

-n-hAD*-VS=0 on B (2.2.66)

v

where S, (xb,t) is a time-dependent salinity on the variable boundary B, [M/L’], which is

associated with the incoming flow.
Cauchy boundary condition:

This boundary condition is employed when the total salt-flow rate is given at the boundary. Usually,
this boundary is a flow-in boundary. The conditions are expressed as
n-(qS-hD*-VS)=5,(x,t) on B (2.2.67)

c

where S, (x,,t) is total salt-flow rate on the Cauchy boundary B, [M/L/t], which takes a positive

value if it is going out of the region and a negative value if it is coming into the region.
Neumann boundary condition:

This boundary condition is used when the dispersive salt-flow rate is known at the boundary. t can
be written as
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—n-hD*-VS=S,(1) on B (2.2.68)

n

where S, (¢)is the salt flux on the Neumann boundary [M/L/t].

As in thermal transport, in addition to the four types of global boundary conditions, an internal
boundary condition may be specified for the exchange of salt between the overland and river/stream
network. Mathematically, this boundary condition is described below.

River-overland interface boundary condition:

n-(qS—D°%-VS)

Bankl:M:l and n-(qS—DSh-VS)

Bank2 — Ms(}z (2'2‘69)

where M°" and M,°’, which appeared in Eq. (2.1.86), are the salt sources from overland into the
rivers. These salt sources can be calculated using Eq. (2.1.88) if the salinity in the overland water
and river water are discontinuous at the interfaces. If the salinity is continuous, then these salt
sources should be formulated by imposing the continuity of salinity in the overland water and river
water at the interface.

2.3 Water Flow in Three-Dimensional Subsurface Media

2.3.1 Water Flow

The governing equation of subsurface density dependent flow through saturated-unsaturated porous
media can be derived based on the conservation law of water mass (Yeh, 1987; Yeh etal., 1994; Lin
et al., 1997). It is written as follows.

L poh_y. K-(vmﬁsz +2 4 2.3.1)
po at po '00

where p is the density of water; p, is the reference density of water; 4 is the referenced pressure head
[L]; ¢ is the time [t]; K is the hydraulic conductivity tensor [L/t]; z is the potential head [L]; p* is the
density of source water; g is the source and/or sink [L*/L*/t]; and F is the water capacity [1/L] given
by

ds

)
F=a-—*+p'0,+n,—
; p'o, T (2.3.2)

e

where a' is the modified compressibility of the medium [1/L], €, is the effective moisture content
[L*/L*], n is the effectively porosity [L*/L’], /' is the compressibility of water [1/L], and S is the

degree of saturation. The Darcy’s velocity is given by
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V=K- (&Vh + sz 2.3.3)
P

To achieve transient simulation, the following initial condition needs to be given.
h=h(x) in R, (2.3.4)

where R is the region of interest and /; is the prescribed pressure head [L], which can be obtained by
either field measurements or by solving the steady state version of Eq. (2.3.1).

Five types of boundary conditions are taken into account as follows.
Dirichlet boundary condition:

This boundary condition is used when pressure head can be prescribed on the boundary. It can be
expressed as

h=h,(x,t) on B,(x)=0 (2.3.5)
where ,4(x,?) is the Dirichlet head on the boundary surface B, (x) =0
Neumann boundary condition:

This boundary condition is employed when the flux results from pressure-head gradient is known as
a function of time. It is written as

—n-K-L2Vi=q(xt) on B(x)=0 (2.3.6)
ol

where ¢,(x,?) is the Neumann flux and B,(x) = 0 is the Neumann boundary surface.
Cauchy boundary condition:

This boundary condition is employed when the flux results from total-head gradient is known as a
function of time. It can be written as

—n-(K-’O” Vh+K-Vz]:qc(x,t) on B(x)=0 (2.3.7)
2

where g.(x,?) is the Cauchy flux and B.(x) = 0 is the Cauchy boundary surface.
River Boundary Condition:

This boundary condition is employed when there is a thin layer of medium separating the river and
the subsurface media.
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—n-K-[&Vh+VZ]=—&(hR —h) on B,(X)ZO (2.3.8)
P by

where K is the hydraulic conductivity of the thin layer, by is the thickness of the thin layer, /4y is the
water depth in the river, and B,(x) = 0 is the surface between the river and subsurface media.

Variable Boundary Condition:

This boundary condition is usually used for the ground surface boundary when the coupling of
surface and subsurface systems is not taken into account.

(1) During precipitation periods:

h=h (xt) iff —n.K(&Vh +sz >g (x,1) on B,(x)=0 2.3.9)
P
or
—n-K(&Vh + ij =q,(x1) iff h<h, on B,(x)=0 (2.3.10)
Je)

(2) During non-precipitation period:

h=h (x1) iff —n-K(&vmwjzo on B,(x)=0 2.3.11)
o,
h=h,(x,) iff —n-K-(&Vh+sz£qe on B,(x)=0 2.3.12)
o,
or
—n-K-(&Vh+sz=qe(x,t) if h=h, on B, (x)=0 (2.3.13)
P

where £,(x,f) is ponding depth, g,(x,?) is the flux due to precipitation, 4,(X,f) is the minimum
pressure head, and g.(x,?) is the potential evaporation rate on the surfaces of the variable boundary
condition B,(x) = 0. Only one of Egs. (2.3.9) through (2.3.13) is used at any point on the variable
boundary at any time.

2.3.2 Thermal Transport

The thermal transport equation is derived based on the conservation principle of energy as:

a[(pwcwe + prm )T
ot

L. (0,C VT)-v-(D" -VT)=H*+H" 2.3.14)
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where p,, is the water density [M/L*]; C, is the heat capacity of water [L*/t*/T]; € is the moisture
content [L*/L*]; pj is the bulk density of the media [M/L’]; C,, is the heat capacity of the matrix
[L*t*/T]; T is the temperature [T]; D" is the apparent thermal conductivity tensor including the
effect of dispersion, diffusion, and conduction [E/t/L/T = ML/t’/T, where E is the unit of energy]; H*
is the heat source due to artificial injection/withdraw [E/t/L* = M/L/t’], and H* is the heat source due
to chemical reaction [E/t/L* = M/L/t’].

In addition to the initial boundary condition, boundary conditions must be specified for the

temperature. Five types of global boundary conditions are provided in this report as follows.

Dirichlet boundary condition:

This condition is applied when the temperature is prescribed as a function of time on the boundaries:
T(x,t)=T,(x,t) on B,(x)=0 2.3.15)

where T, (x,t) is a time-dependent temperature on the Dirichlet boundary B,(x) = 0 [T].

Variable boundary condition:

This boundary condition is employed when the flow direction would change with time during
simulations. Two cases are considered, regarding to the flow direction on the boundary.

< Case 1 > Flow is coming in from outside:
n-(p,CVT-D"VT)=n-p C VT, (x,t) on B(x)=0 (2.3.16)
< Case 2 > Flow is going out from inside:
-n-D"VT=0 on B,(x)=0 (2.3.17)

where T, (x, t) is a time-dependent temperature on the variable boundary, B,(x) =0, [T], which is

associated with the incoming flow.
Cauchy boundary condition:
This boundary condition is employed when the total heat-flow rate is given at the river/stream

boundary. Usually, this boundary is an upstream boundary node. The conditions can be expressed
as

n-(p,C,VT -D".VT)=H,(x;t) on B(x)=0 (2.3.18)
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where H (x, t) is total heat flux through the Cauchy boundary, B.(x) =0, [E/L*/t= M/t}, where E

denotes the unit of energy], which takes a positive value if it is going out of the region and a
negative value if it is coming into the region.

Neumann boundary condition:

This boundary condition is used when the conductive heat-flow rate is known at the river/stream
boundary node. It can be written as

0 D".VT=H,(xt) on B,(x)=0 2.3.19)
where H,, (x,t) is the heat flux through the Neumann boundary, B,(x) = 0, [E/L*/t].

Atmosphere-subsurface interface boundary condition:

At the interface of the atmosphere and subsurface media, a heat budget boundary condition is
specified as

—n-(p,C,VT -D".VT)=H,-H,~H,—H, (2.3.20)
where H,, Hp, H., and H; are calculated using Egs. (2.1.71) through (2.1.76).

In addition to the five types of global boundary conditions, two interface boundary conditions may
be specified: one for the exchange of energy/heat flux between the subsurface media and
river/stream network and the other for energy/heat exchange between the subsurface media and the
overland. Mathematically, these boundary conditions are described below.

Subsurface-river interface boundary condition:

[n{p.cVT-D".VT)P =5 2.3.21)

P

where S) is the heat sources in Eq. (2.1.67) and P is the wet perimeter of the river. The heat source
can be calculated using Eq. (2.1.68) if the temperatures in the subsurface and river are discontinuous
at the interfaces. If the temperatures are continues, then this heat source should be formulated by
imposing the continuity of the temperatures in the subsurface and river water at the interfaces.

Subsurface-overland interface boundary condition:
n-(p,C,VT-D"VT)=H, (2.3.22)

where H; is the heat source in Eq. (2.2.54). This heat source can be calculated using Eq. (2.2.55) if
the temperatures in the subsurface and overland are discontinuous at the interface. If the
temperatures are continues, then this heat source should be formulated by imposing the continuity of
the temperatures in the subsurface and overland at the interface.

2-44



2.3.3 Salinity Transport

a(0s)

V- (VS)-V-(6D*-VS)=S8“ 2.3.23
oV VS)- V(o v) @32

where S is the salinity [M/L’]; D® is the longitudinal dispersion coefficient [L*/t]; and S* is the
artificial source of the salt [M/L*/t].

As in thermal transport, four types of global boundary conditions for salinity transport are provided
in this report as follows.

Dirichlet boundary condition:
This condition is applied when the salinity is prescribed as a function of time on the boundaries:
S(x,t) =S, (X,t) on B,(x)=0 (2.3.24)

where S, (x,t) is a time-dependent salinity on the Dirichlet boundary, B4(x) = 0, [M/L’].

Variable boundary condition:

This boundary condition is employed when the flow direction would change with time during
simulations. Two cases are considered, regarding to the flow direction on the boundary.

< Case 1 > Flow is coming in from outside:
n-(VS-60D*-VS)=n-VS,(x,t) on B,(x)=0 (2.3.25)
< Case 2 > Flow is going out from inside:
-n-0D°-VS=0 on B(x)=0 (2.3.26)

where S,5(x,t) is a time-dependent salinity [M/L?] on the variable boundary, B,(x) = 0, which is
associated with the incoming flow.

Cauchy boundary condition:

This boundary condition is employed when the total salt-flow rate is given at pervious boundaries.
Usually, this boundary is a flow-in boundary. The conditions are expressed as

n-(VS-0D°-vS)=0,,(xt) on B.(x)=0 (2.3.27)

where O, (x, t) is total salt-flow rate [M/L/t] through the Cauchy boundary, B.(x) =0, which takes

a positive value if it is going out of the region and a negative value if it is coming into the region.
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Neumann boundary condition:

This boundary condition is used when the dispersive salt-flow rate is known at the boundary. It can
be written as

-n-0D°-VS =0, ,(x,1) (2.3.28)

where O, (x,t) is the salt flux through the Neumann boundary, B,(x) =0, [M/L*A].

In addition to the four types of global boundary conditions, two interface boundary conditions may
be specified: one for the exchange of salt flux between the subsurface media and river/stream
network and the other for salt exchange between the subsurface media and the overland.
Mathematically, these boundary conditions are described below.

Subsurface-river interface boundary condition:

j n-(VS-60D® - VS)dP = M (2.3.29)
P

where M’ is the salt source in Eq. (2.1.86) and P is the wet perimeter of the river. The salt source
can be calculated using Eq. (2.1.87) if the salinity in the subsurface and river is discontinuous at the
interfaces. If the salinity is continuous, then this salt source should be formulated by imposing the
continuity of the salinity in the subsurface and river at the interface.

Subsurface-overland interface boundary condition:
n-(VS—0D°-VS)=M! (2.3.30)

where M,” is the salt source in Eq. (2.2.62). This salt source can be calculated using Eq. (2.2.63) if
the salinity in the subsurface and overland is discontinuous at the interface. If the salinity is
continuous, then this salt source should be formulated by imposing the continuity of the salinity in
the subsurface and overland at the interface.

2.4 Coupling Fluid Flows Among Various Media

One of the critical issues in a first principle physics-based watershed model is its treatments of
coupling among various media. There appear a number of watershed models that have dealt with
each component medium on the bases of first principle in the past decade (MIKE11-MIKE SHE
[Abbott et al., 1986a, 1986b], SHETRAN [Ewen et al., 2000], MODFLOW-HMS [HydroGeoLogic,
Inc., 2001], InHM [VanderKwaak, 1999], GISWA [Wigmosta and Perkins, 1997], SFRSM-HSE
[SFWMD, 2005], COSFLOW [Yeh et al., 1997], WASH123D Version 1.0 [Yeh et al., 1998]).
However, rigorous considerations on coupling among media seemed lacking. For example, a
linkage term is normally formulated between the river/stream/canal dynamics and subsurface fluid
flow (e.g., MODNET [Walton et al., 1999]) or between overland and subsurface flows (e.g.,
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MIKE11-MIKE SHE [http://www.dhisoftware.com/mikeshe/;
http://www.dhisoftware.com/mikeshe/components]). The linkage term usually introduces non-
physical parameters. As a result, such watershed models have degraded even though each media-
component module has taken a first principle physics-based approach. A rigorous treatment of
coupling media should be based the continuity of mass, momentum, and state variables. This is the
approach taken in this report. Mathematical statements on coupling between pairs of media are
address below.
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2.4.1 Coupling between River/Stream/Canal and Overland Flows

The fluxes between overland regime and canals/streams/rivers network are dynamics and depend on
the water surface elevations in the vicinity of the interface between canal/stream/river and overland
regime (Fig. 2.4-1). The basic principle of coupling is to impose continuous of fluxes and the state
variables (water surface elevations, temperature, and salinity in the overland and in the canal) if
these state variables do not exhibit discontinuity. Ifthe state variables exhibit discontinuity, then the
linkage term is used to simulate the volumetric fluxes or simplified formulations of heat fluxes and
salinity fluxes are imposed.

When a levee is present on the bank of the canal (left column in Fig. 2.4-1), there are several
possibilities on the dynamic interactions between overland flow and river flow dynamics. If water
surfaces in both the overland regime and river are below the top of the levee, the two flow systems
are decoupled (Fig. 2.4-1a).

Bank with levee

Decouple Bank without levee
ho [ .
Continuity of fluxes:
~ —
© The a°=a° = (h°)
C
(@ \Q - hf%
Continuity of fluxes: hCTC O
ho A (e)
A vd T
@) h¢ Continuity of water surfaces and fluxes:
C H°=H° and @°=q°
(b) =
Continuity of fluxes: he o
e=qe=fhe) c
=1 | f
he )
(0]
c Continuity of water surfaces and fluxes:
(C) H°=H® and q°=q°
~
T i pe——
Continuity of water surfaces and fluxes: h
H°=H® and q°=q° o)
~ C
T,— | ©)
hC
0 H=h+2Z
C H = Water Surface
h = Water Depth
(d) Z, = Bottom Elevation

Fig. 2.4-1. Flow interactions between overland regime and canal: bank with levee (left column)
and bank without levee (right column)

When the water surface in the overland regime is above the top of the levee and in the canal is below
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the top of the levee (Fig. 2.4-1b), the flux is a function of the water depth in the overland regime
given

g'=q°=f0") = n-Vil,=5=rl"z,) Q2.4.1)

where ¢° is the outward normal flux of the overland flow, ¢° is the lateral flow from the overland to
the canal, 4° is the water depth in the overland regime, f(%°) is a prescribed function of 4° given by
the shape and width of the levee, n is the outward unit vector (from the overland side) of the
overland-canal interface, V is the velocity in the overland regime, S; is defined in Eq. (2.1.1), Z,|s 1s
the bottom elevation evaluated at the canal bank (in this case Z,| is the elevation of the top of the
levee). The coupling of thermal and/or salinity transport between the overland regime and river
networks for this case can be stated as

n-(p,C,qT -D"1-VT)

sancr =S5 = P, C ST and

w w

(2.4.2)

n-(qS—D%-VS)|,,. =M =55

Bank 1

where T° is the temperature of the overland water at the interface and S” is the salinity of the
overland water at the interface.

On the other hand, when the water surface in the overland regime is belowe the top of the levee and
in the canal is above the top of the levee (Fig. 2.4-1c¢), the flux is a function of the water depth in the
overland regime given by

¢°=q°=fr) = n-VH,=5=r032), (2.4.3)

where /° is the water depth in the canal and f{%°) is a prescribed function of #°. The coupling of
thermal and salinity transport between the overland regime and river networks for this case can be
stated as

n .(prqu - D Hh VT) Bank1 = SZI = pWCWSITC Cll’ld

(2.4.4)
=M =85

Bank1

n-(qS - D%-VS)

where T is the temperature of the canal water at the interface and S° is the salinity of the canal water
at the interface.

When the water surfaces in both the overland and canal are above the top of the levee (Fig. 2.4-1d),
then the continuity of fluxes and state variables must be imposed as

¢"=q¢" =>n-Vh|,=S, and H' =H'=(h+Z)|,=(h+2,)| (2.4.5)
where (h + Z,)|o denotes that (h + Z,) is evaluated at point O (Fig. 2.4-1 d). Similarly, (4 + Z,)|c
denotes that (h + Z,) is evaluated at point C. The coupling of thermal and/or salinity transport
between the overland regime and river networks for this case can be obtained by formulating the
fluxes
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w w

n(p,C,qT -D"h-VT)

s =S =p C.S, %(1+Sign(Sl )T° +(1- sign(S, ))T“)
(2.4.6)
and n-(qS-D%h-VS)

s =M :SI%((1+sign(S]))S” +(1—sign(S]))Sc)

where sign(S;) is 1.0 if the flow is from overland to canal, -1.0 if the flow is from canal to overland.
For this case, the temperature and salinity in the canal may be the same as those in the overland
water at the interface. If this is the case, we impose the continuity of temperature and/or salinity to
yield the fluxes

n(p,CaT =D"h-VT)|,, =S and T°|,,., =T°

Bank1 Bank1

2.4.7
and n-(qS—DSh-VS> ( )

_ ol o
a1 =Mg  and S

_ Q¢
Bank1 — S

When a levee is not present on the bank of the canal (right column in Fig. 2.4-1), there are two
possibilities on the dynamic interactions between overland flow and river flow dynamics. If water
surface in the canal falls below the bank, the flux is either zero if the overland flow is not present or
is nonzero and directed from the overland into the canal if overland flow is present (Fig. 2.4-1 ¢) as

¢=q¢'=f(h") = n-Vh

0=8=/(h"2,

5) (2.4.8)

where S is defined in Eq. (2.1.1) and Z,| is the bottom elevation evaluated at point O on the canal
bank. The coupling of thermal and/or salinity transport between the overland regime and river
networks for this case can be stated as

n-(p,CyqT =D*1-VT)| ., =87 = p,C,S,T° and

n-(qs - D*A-VS) (2:49)

_ 02 __ o
Bank2 _Ms _SZS

When the water surface in the canal is above the bank (Figs. 2.4-1f and 2.4-1.g), the flux direction
can be either from the overland into the canal or from the canal into the overland depending on the
flow dynamics in the overland and in the canal. The direction of the flux and its magnitude are
obtained by imposing the continuity of flux and state variables

q9°=4q° :>n'Vh|O =S, and

2.4.10
H”:H":(h+zo)\0=(h+zo)|c ( )

The coupling of thermal and/or salinity transport between the overland regime and river networks
for this case can be stated as
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n-(p,C.qT -D"h-VT)

_ S02
Bank2 — Mh

=p,C.S, %((1 + sign(Sz)T” + (1 - Sign(S2 ))Tc)) and 2.4.11)

n-(qS—DSh-VS)

=M =8, %((1 +sign($,))S” + (1 - sign (S, ))SC)

For these two cases (Fig. 2.4-1f and 2.4-1g), the temperature and salinity in the canal may be the
same as those in the overland water at the interface. If this is the case, we impose the continuity of
temperature and/or salinity to yield the fluxes

n-(p,C,aT ~D"h-VT)

_ ¢ol o
sz =S, and T

Bank?2 = TC and
(2.4.12)

c

_ ol o
Bank2 — Ms and S

Bank2 = S

n-(qS—Dsh-VS)

2.4.2 Coupling between Overland and Subsurface Flows

The fluxes between overland and subsurface media are obtained by imposing continuous of fluxes
and state variables if these state variables do not exhibit discontinuity. Ifthe state variables exhibit
discontinuity, then a linkage term 1s used to simulate the fluxes. Consider the interaction between
the overland subsurface and subsurface flows. There are two cases: in one case, there is no
impermeable layers on the ground surface (Fig. 2.4-2a) and, in another case, there are thin layers of

very impermeable layers such as pavements or sediment deposits on the ground surface (Fig. 2.4-
2b).

For the case of no impermeable layers on the ground surface (Fig. 2.4-2a), it can easily be seen that
the pressures in the overland flow (if it is present) and in the subsurface media will be continuous
across the interface. Thus, the interaction must be simulated by imposing continuity of pressures
and fluxes as

h=h" and Q°=0" = I[=- n-K-(&Vh‘ + sz (2.4.13)
Y2,

where /° is the water depth in the overland if it is present, /4’ is the pressure head in the subsurface,
Q° is the flux from the overland to the interface and Q' is the flux from the interface to the
subsurface media, / is defined in Eq. (2.2.1), n is an outward unit vector of the ground subsurface, K
is the hydraulic conductivity tensor, and /* is the pressure head in the subsurface media. The use of
a linkage term such as Q° = Q" = K(h° - k"), while may be convenient, is not appropriate because it
introduces a non-physics parameter K. The calibration of K to match simulations with field data
renders the coupled model ad hoc even though the overland and subsurface flows are each
individually physics-based.
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— e The interface flux Q is determined by
h°=hs and Q°=Q° on the interface
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The linkage by Q=K(h°-h%) is not appropriate
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The interface flux Q is determined by The interfaceflux Q is determined by
h°=hs and Q°=Q° on the interface Q=K(h°-h%) on the interface

Fig. 2.4-2. Flow interactions between overland regime and subsurface media.

For the cases with thin impervious layers (Fig. 2.4-2b), one can include the impervious layers as part
of the subsurface media or exclude these layers from the modeling. If one includes the thin layers,
then it is obvious the pressures in the overland flow and in the layer are continuous across the
interface, thus continuity of pressures and fluxes must imposed to simulate the interaction. On the
other hand, if the thin layers are not included, it is obvious, the pressures in the overland flow and
the subsurface are not continuous across the removed layers, then a linkage term is used to model the
flux between across interface as

0’ =0 = I=-n-K -(&Vhs + VZJ = &(hs - ho) 2.4.14)
yo, b

where K; and b are the hydraulic conductivity and thickness, respectively, of the removed bottom
sediment layer. These parameters in the linkage term are the material properties and geometry of the
removed layer. These parameters, in theory, can be obtained independent of model calibration.

The coupling of thermal and/or salinity transport between the overland regime and subsurface media
can be stated as

n(p,CYT-D".VT)=H, = pwcwzl((1 + sign(1)T* +(1- sign(1))T° ))
21 (2.4.15)
and n-(VS — 6D° -VS) =M= 15((1 + sign(]))SS + (1 - Sign(l))S")

where sign(1) is 1.0 if I is positive and is -1.0 if negative; 7" is the temperature of subsurface water at
the interface; 7° is the temperature of overland water at the interface; S is the salinity of subsurface
water at the interface; and S° is the salinity of overland water at the interface.

The temperature and salinity in the overland water may be the same as those in the subsurface water

at the interface. If this is the case, we impose the continuity of temperature and/or salinity to yield
the fluxes
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n-(p,C,VT -D"VT)=H, and T* =T° and

on the surface

(2.4.16)

n-(VS-0D°-VS)=M! and S =5

on the surface

2.4.3 Coupling between Subsurface and River/Stream/Canal Flows

The fluxes between canal and subsurface are obtained by imposing continuous of fluxes and state
variables if these state variables do not exhibit discontinuity. If the state variables exhibit
discontinuity, then a linkage term is used to simulate the fluxes. Consider the interaction between
the canal and subsurface. There are two cases: in one case, there is not any thin layer of sediment
materials (Fig. 2.4-3a) and, in another case, there are thin layers of sediment materials between the
canal bottom and the top of surface media (Fig. 2.4-3b).

For the case of no thin layer of sediments (Fig. 2.4-3a), it can easily be seen that the pressures in the
canal and in the subsurface media will be continuous across the interface of canal bottom and
subsurface media. Thus, the interaction must be simulated by imposing continuity of pressure and
flux as follows.

he=h’ and chQ‘“:>SI:j{-n.K.(&Vh“erﬂdP (2.4.17)
o,
P

where /° is the water depth in the canal, /4’ is the pressure head in the subsurface, O is the flux from
the canal to the interface and O’ is the flux from the interface to the subsurface media, S; is defined
in Eq. (2.1.1), nis an outward unit vector of the subsurface media interfacing the canal, K is the
hydraulic conductivity tensor of the subsurface media, #* is the pressure head in the subsurface
media, and P is the wet perimeter of the canal. The use of a linkage term such as Q° = Q' = K(h° -
h%), while may be convenient, is not appropriate because it introduces a non-physics parameter K.
The calibration of K to match simulations with field data renders the coupled model ad hoc even
though the canal and subsurface flows are each individually physics-based.

For the cases with thin layers of sediments (Fig. 2.4-3b), one can include the sediment layers as part
of the subsurface media or exclude these layers from the modeling. If one includes the thin layers,
then it is obvious the pressures in the canal and in the sediment layer are continuous across the
interface of canal bottom and the top of the thin layers, thus continuity of pressures must imposed to
simulate the interaction. On the other hand, if the thin layers are excluded (Fig. 2.4-3c), the
pressures in the canal and subsurface are not continuous across the bottom of canal and the top of
subsurface media, then, a linkage term can be used to model the flux between the canal and surface
media as
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The interface flux Q is determined by h®=h® and Qc=Qs on the interface
The linkage by Q=K(h¢-h®) is not appropriate

(b)
N2

The interface flux Q is determined by h°=h® and Q°=Q° on the interface

(c)
~_ 7 = /=
N/

The interfaceflux Q is determined by Q=K(he-hs) on the interface

Fig. 2.4-3. Flow interactions between canal and subsurface media.

0 =0'= ﬂ_n,K.(%ws + sz:|dP = l%(h "~ h°)dP (2.4.18)

where K, and b are the hydraulic conductivity and thickness, respectively, of the removed bottom
sediment layer. These parameters in the linkage term are the material properties and geometry of the
removed layer. These parameters, in theory, can be obtained independent of model calibration.

The coupling of thermal and/or salinity transport between the canal and subsurface media can be
stated as

[n-(p,C,VT-D".VT)dP=5,

»
1
=p,C.S, 5((1 +sign(S,)T* + (1 —sign (S, ))TC )) and (2.4.19)
i l . s . c
[ n(VS-6D*-vS)aP=m;=5, 5((1 +sign(S,))S" +(1- sign(s,))5)
where sign(S;) is 1.0 if S; is positive and is -1.0 if negative; T* is the temperature of subsurface water

at the interface; T° is the temperature of canal water at the interface; S° is the salinity of subsurface
water at the interface; and S° is the salinity of canal water at the interface.

Similar to the interaction between the overland regime and subsurface media, the temperature and
salinity in the canal water may be the same as those in the subsurface water at the interface. Ifthis is
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the case, we impose the continuity of temperature and/or salinity to yield the fluxes

[n-(p,C,VT-D".VT)dP=S, and T’

P

=T° and

on the surface

[n-(VS-6D° - VS)aP==M! and S’ (24.20)

P

=8¢

on the surface

2.5 Sediment and Water Quality Transport in 1D River/Stream/Canal Networks

In WASH123D, sediments are categorized based on their physical and chemical properties. For each
category of sediment, we include mobile suspended sediment particles scattered in water column and
immobile bed sediment particles accumulated in river/stream bed. The distribution of suspended
sediment and bed sediment is controlled through hydrological transport as well as erosion and
deposition processes.

In river/stream networks, there are six phases and three forms of biochemical species. As shown in
Figure 2.5-1, the six phases are suspended sediment, bed sediment, mobile water, immobile water,
suspension precipitate, and bed precipitate phases; and the three forms are dissolved biochemicals,
particulate biochemicals sorbed onto sediments, and precipitates. Usually, biochemical species in the
suspended sediment phase, the mobile water phase and the suspension precipitate phase are
considered mobile. Biochemical species in the bed sediment phase, the immobile water phase and
the bed precipitate phase are considered immobile.

—_ SS = suspended sediment

BS = bed sediment

"S3 b MW = in mobile water

Ef SSl IMW = in immobile water

}.3 ©) SP = suspension precipitate

5S CS2 SSZ O o BP = bed precipitate

a3  C=dissolved chemical

§§3 CS = particulate on SS

CB = particulate on BS
1 = clay 2 = silt 3 = sand

"O__ O@BOQp%Iw@ (b
2l %,@800 0@ m&)oo oS

\./D/‘

Fig. 2.5-1. Sediments and Chemicals in River/Stream Networks

/

A reactive system is completely defined by specifying biogeochemical reactions (Yeh, et al. 2001a).

In the transport simulation, biogeochemical reactions can be divided into two classes (Rubin, 1983):
(1) Fast/equilibrium reactions, and (2) Slow/kinetic reactions. The former are sufficiently fast
compared to transport time scale and reversible, so that local equilibrium may be assumed. The
latter are not sufficiently fast compared to transport time scale. They are either reversible or
irreversible, where the local equilibrium formulation is inappropriate.
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As shown in Figure 2.5-2, the biogeochemical reactions considered in the model can be categorized
into ten types which take place between various phases: (1) aqueous complexation in column water,
(2) adsorption/desorption or ion-exchange to suspended sediment, (3) precipitation/dissolution in
water column, (4) adsorption/desorption or ion-exchange between column water and bed sediment,
(5) aqueous complexation in pore water, (6) adsorption/desorption or ion-exchange to bed sediment,
(7) precipitation/dissolution in bed, (8) volatilization reactions from water column to the atmopshere,
(9) diffusion reactions between column and pore water, and (10) sedimentation reactions. Any
individual reaction representing any of these chemical and physical processes may be simulated as
kinetic or as equilibrium, which makes the code extremely flexible for application to a wide range of
biogeochemical transport problems.

7A|r il Water (1) Aqueous complexation in mobile water phase,
Surface (2) Adsorption/desorption or ion-exchange between
®) mobile water and suspended sediment phases,
— ———— Suspended P P

(3) Precipitation/dissolution between mobile water

2) Sediment and suspension precipitate phases,
) Suspension  (4) Adsorption/desorption or ion-exchange between
Mobile Water '@(3) _— Precipitate mobile water and bed sediment phases,
y\\(l) (5) Aqueous complexation in immobile water phase,

(6) Adsorption/desorption or ion-exchange between
10 Bed immobile water and bed sediment phases,

Precipitate  (7) Precipitation/dissolution between immobile water

)
- (4) and bed precipitate phases,
(8) Volatilization from mobile water phase,
Immobile (7) (6 (9) Diffusion between mobile and immobile water

Water >gggiment phases,
(10) Sedimentation of particulates between

suspended and bed sediment phases

Fig. 2.5-2. Biogeochemical Reactions Considered in the Model

2.5.1 Bed Sediment

The balance equation for bed sediments is simply the statement that the rate of mass change is due to
erosion/deposition as

o(PM,)

—5=P(D,=R,) + My, nellN,] (2.5.1)

where P is the river/stream cross-sectional wetted perimeter [L], M, is wetted perimeter-averaged
concentration of the n-th bed sediment in mass per unit bed area [M/L?], D, is the deposition rate of
the n-th sediment in mass per unit bed area per unit time [M/L*/T], R, is the erosion rate of the #-th
sediment in mass per unit bed area per unit time [M/L*/T], M v 18 the source of the n-th sediment

from groundwater exfiltration in mass per unit river length [M/L/T], and N is the total number of
sediment size fractions. Concentrations of all bed sediments must be given initially for transient
simulations. No boundary condition is needed for bed sediments. In equation (2.5.1), we estimate the
deposition and erosion rates using the different equations for cohesive and non-cohesive sediments.

For cohesive sediments, e.g., silt and clay, following equations are used (Yeh et al., 1998; Gerritsen
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et al., 2000)

D, =min(V,,S,P,,, S,h/At) where P, =max(0, 1-7,/7,,,) (2.5.2)

and
R, =min(E, P, DMA,|At) where Py, =max (0, 7,/7,,, —1) (2.5.3)

where Vj, is the settling velocity of the n-th sediment [L/T], S, is the cross-section-averaged
suspended concentration of n-th sediment [M/L’], % is the water depth [L], At is the time step size
[T], 7 is the bottom shear stress or the bottom friction stress [M/L/Tz], 7.pn 18 the critical shear stress
for the deposition of the n-th sediment [M/L/T*], Ey, is the erodibility of the n-th sediment [M/L¥/T],
DMA,, is the amount of locally available dry matter of n-th sediment, expressed as dry weight per
unit area [M/Lz], T.rn 18 the critical shear stress for the erosion of the n-th sediment [M/L/Tz].

For Non-cohesive sediments, e.g., sand, we have two options.
Option 1 (Prandle et al., 2000)

D, =min(V, S ,N,,, S,h/At) where N,, = max[O, B )2] (2.5.4)

snn

and
R, =min(E,,N,,, DMA,/At) where Ny, =max (0, V. [V, —1) (2.5.5)

where V. p, and Vg, represent the critical friction velocities for the onset of deposition and erosion,
respectively [L/T].

Option 2 (Yeh et al., 1998)

G, -G
D — sAn sn , 0 5.
, = max (—AL j (2.5.6)
and
G -G
R = sn sdn , 0 5.
, = max (—AL j (2.5.7)
where G, s the actual load rate of the n-th sediment per unit width at a upstream location [M/L/T],

G, 1s the maximum load rate of the n-th size fraction sediment per unit width at a downstream
location [M/L/T], AL is the distance between the upstream and the downstream locations.

G, =S,VR (2.5.8)
and

2 p—
G. =10 P VRS(r,—-1,,)

2.5.9
gd}’l (pSII _p)2 ( )

where V' is the river/stream flow velocity [L/T], R is hydraulic radius [L], p is the density of water
[M/L3 ], S is the friction slope, 7., is the critical bottom shear stress of the n-th sediment at which
sediment movement begins [M/L/T?], g is gravity [L/T?], d, is the median diameter of the n-th
sediment particle [L], and py, is the density of the n-th sediment [M/LA].
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It should be noted that equations (2.5.2) through (2.5.9) are the sample models programmed in the
computer code to estimate sediment deposition and erosion rate. Any other phenomenological model
equation can be easily incorporated in the code.

2.5.2 Suspended Sediments

The continuity equation of suspended sediment can be derived based on the conservation law of
material mass as (Yeh et al., 2005):

248, 2(0S,) & ( K 95 j
ot ox Ox Ox

=M "+ MS"“‘ + MS”‘”Z + MS”” +(R,-D)P, ne[l,N,]

(2.5.10)

where S, is the cross-sectional-averaged concentration of the n-th suspended sediment in the unit of
mass per unit column volume [M/L?], K, is the dispersion coefficient [L¥/T], M 5, 1s the artificial

source of the n-th suspended sediment [M/L/T], M " is the source of the n-th suspended sediment
from groundwater exfiltration [M/L/T], and M *' and M ** are overland sources of the n-th

suspended sediment from river bank / and 2, respectively [M/L/T].

Concentrations of all suspended sediments must be given initially for transient simulations. Four
types of boundary conditions are taken into account for suspended sediments, including Dirichlet,
Variable, Cauchy, and Neumann boundary conditions (Yeh et al., 2005).

Dirichlet boundary condition: Dirichlet boundary conditions are prescribed on the boundary where
the suspended sediment concentration is known,

S, =84(x,,t)  on  B,(x,) (2.5.11)

where x; is the axis coordinate of the boundary node [L], S, (x,,?) is a time-dependent Dirichlet
concentration of the n-th fraction size on the boundary B,(x,) [M/L].

Variable boundary condition: Variable boundary conditions are normally specified on the boundary
where the flow direction can change with time or on any open boundary. On the variable boundary,
when the flow is directed into the region of the interest, the mass rate into the region is given by the
product of the flow rate and concentration of the incoming fluid. When the flow is directed out of
the region, the sediment mass is assumed carried out via advection. Mathematically, a variable
boundary condition is given as

”(QS,, - 4K, —%S”j=”QSm(be) if nQ<0 on B/(x,) (2.5.12)
X
and
oS .
—nAKXa—”=O if nQ>0 on B,/(x,) (2.5.13)
x
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where 7 is a unit outward direction, and S, (x,,?) is a time-dependent concentration at the boundary
that is associated with the incoming flow on the variable boundary B, (x,) [M/L"].

Cauchy boundary condition: This boundary condition is employed when the total material flow rate
is given. Usually, this boundary is an upstream flux boundary.

( 66S ):QS”(,(xb,t) on B (x,) (2.5.14)

where Qg (x,,t) is a time-dependent material flow rate at the Cauchy boundary boundary [M/t]
Bc ('xb) .

Neumann boundary condition: This boundary condition is used when the diffusive material flow
rate is known at the boundary node.

Be_ 0, () on By(x,) (2.5.15)
X

where Qg ,(x,,t) 1s a time-dependent diffusive material flow rate at the boundary B, (x,) [M/t].

2.5.3 Immobile Bed-Sediment Species

The balance equation for immobile species is simply the statement that the rate of mass change is
due to biogeochemical reaction as:

o(Ph,p,,0,C,,)

s = Phy, |, (2.5.16)
o(Ph,p, 6,C
OPhPC) _ g (2.5.17)
ot
PM
a( a;Cbsn) Phb Cbbr‘l (2.5.18)

where /1, is the river/stream bed depth [L], ps. is the density of bed pore-water [M/L’], 6 is the
porosity of the bed sediment [L3/L ], C 1s the concentration of dissolved chemical in the immobile
pore-water phase in the unit of chemical mass per bed-water mass [M/M], 7cpw | ~ 1s the productlon
rate of Cp,, due to all N reactions in the unit of chemical mass per bed volume per time [M/L /t], Cyp
is the concentration of bed precipitate in the unit of chemical mass per bed-water mass [M/M],
erp| y’ 1s the productlon rate of Cp, due to all N reactions in the unit of chemical mass per bed
volume per time [M/L /t], Cpsy 1s the concentration of particulate sorbed on to bed sediment of the 7-
th fraction size in the unit of chemical mass per unit of bed-sediment mass [M/M], M, is the
concentration of the n-th bed sediment in the unit of sediment mass per bed area [M/Lz], ¥ Chsn | N 1S
the production rate of Cp,, due to all N reactions in the unit of chemical mass per bed volume per
time [M/L*/t].
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Define

1;.|N=Phb1;|N'/A where i=C,, , C

bw> bp>

or C

bsn
Equation (2.5.16) through (2.5.18) can be modified as
a(Phbpbwabc‘bw) — A

Gt erw|N
o(Ph,p, 0,C,)
b abz = Argy |
o(PM C,, )
Tb = Arg, |y

Define

| Php, 0,1 A, for C,, and C,,
P=VPM A, for C,,

Equation (2.5.20) through (2.5.22) can be summarized as

o4pC) _ .

: ieM
Ot

N> im

(2.5.19)

(2.5.20)

(2.5.21)

(2.5.22)

(2.5.23)

(2.5.24)

where C; is the concentration of species 1, which is immobile, in the unit of chemical mass per unit
phase mass [M/M], p; is the density of the phase associated with species i [M/L’], r,-l v 1s the
production rate of species i due to all N reactions in the unit of chemical mass per column volume
per time [M/L>/t], and M, is the number of immobile species. The concentrations of all immobile
species must be given initially for transient simulations. No boundary conditions are needed for

immobile species.

2.5.4 Mobile Column-Water Species

The continuity equation of mobile species can be derived based on the conservation law of material
mass stating that the rate of mass change is due to both advective-dispersive transport and

biogeochemical reactions as:

AP.LD 4 1p,C,) = A
ot

a(4p,C

A4, | L(p,C,) = A1 |
ot

%+ L(S,,Cm) = ArCSn N
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where p,, is the density of column water [M/L"], C,, is the concentration of dissolved chemical in the
mobile water phase in the unit of chemical mass per column-water mass [M/M], rcy, | ~ is the
production rate of C,, due to all N reactions in the unit of chemical mass per column volume per time
[M/L*], C, 1s the concentration of suspension precipitate in the unit of chemical mass per column-
water mass [M/M], r¢, | w 1s the production rate of C, due to all N reactions in the unit of chemical
mass per column volume per time [M/L3/t], C;, is the concentration of particulate sorbed on to
suspended sediment of the n-th fraction size in the unit of chemical mass per unit of sediment mass
[M/M], S, is the concentration of suspended sediment in the unit of sediment mass per column
volume [M/L3], l”csnl v 1s the production rate of C;, due to all N reactions in the unit of chemical
mass per column volume per time [M/L*/t], and L is an operator that will be defined in Eq. (2.5.30)
later.

Define
| p, for C, and C,
P, = {Sn for C. (2.5.28)
Equation (2.5.25) through (2.5.27) can be summarized as
%u(pg) =Ar|y, ieM,=M-M, (2.5.29)

where C; is the concentration of species i, which is mobile, in the unit of chemical mass per unit
phase mass [M/M], p; is the density of the phase associated with species i [M/L’], r,-l v 1s the
production rate of species i due to all N reactions in the unit of chemical mass per column volume
per time [M/L*/t], M is the total number of chemical species, M,, is the number of mobile chemical
species, and operator L is defined as

a C a a pici as rs es os os is

L(pici) :M__ AKXQ _(Mc, ’ +Mc, l _Mc, » +Mc, " +MC, " +Mc, ") (2530)
Ox Ox Ox

where M “ is the artificial source of species i [M/L/T], M." is the rainfall source of species i

[M/L/T], M_" is the sink of species i due to evaporation, M. and M ** are the overland sources

of species i from river bank / and 2, respectively [M/L/T],and M_." is the mass rate of the source of

species i in river/stream from subsurface [M/L/T].

Concentrations of all mobile species must be given initially for transient simulations. Four types of
boundary conditions are taken into account for mobile species, including Dirichlet, Variable,
Cauchy, and Neumann boundary conditions (Yeh et al., 2005), which are similar to those for
suspended sediment transport and are presented below:

Dirichlet boundary condition: On a Dirichlet boundary, the concentrations of all mobile species are
prescribed

C=C,(x,,t) ieM on B, (x)=0 (2.5.31)

m
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where C,, (x,,?) is the prescribed concentration of the i-th mobile species on the Dirichlet boundary
B,(x)=0 [M/M].

Variable boundary condition: On a variable boundary, the concentrations of all mobile species are
known and they contribute to the increase of chemical masses in the region of interest when the flow
is coming into the region. When the flow is going out of the region, the transport of all mobile
species out of the region is assumed due to advection only, which implies that one must put an
outgoing boundary far away from the source.

< Case 1 > Flow is coming in from outside (nQ < 0)
0
o(00C -4k |- 0OIpCun) €M, o B(x)=0 (2532)

< Case 2 > Flow is going out from inside (nQ > 0).

-nAK % =0 ieM, on B(x)=0 (2.5.33)
X

where 7 is the unit outward direction and C, ,(x,,¢) 1s the concentration of the i-th species in the
incoming fluid on the variable boundary B,(x) =0 [M/M].

Cauchy boundary condition: On a Cauchy boundary chemical flux for any mobile species is
prescribed

op,C,
[QAC, AK, /; ) Ocwp(xyt)  i€M,  on  B(x)=0 (2.5.34)
where Q. ,(x,,?) is the mass flux of C; through the Cauchy boundary B,(x) =0 [M/t].

Neumann boundary condition: On a Neumann boundary, chemical flux of any mobile species due to
dispersion is prescribed

-nAK % =00 ,(x,5t) €M, on B/(x)=0 (2.5.35)
. ;

where O, (x,,?) is the mass flux of C; through the Neumann boundary B, (x) =0 [M/t].

2.5.5 Diagonalization of Species Transport Equations
The temporal-spatial distribution of chemical species is described by a system of M;,, mass balance

equations [equation (2.5.24)], and My, reactive transport equations [equation (2.5.29)]. These two
equations can be recast in the following form
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Ap.C.
%JraiL(piCi):AﬂN, ieM (2.5.36)

where M is the total number of chemical species, @; is 0 for immobile species and 1 for mobile
species.

The determination of ;| v and associated parameters is a primary challenge in biogeochemical
modeling. Instead of using an ad hoc method to formulate 7; FN, we use reaction-based formulations
(Steefel and Cappellen, 1998). In a reaction-based formulation, 7; ‘ ~ 1s given by the summation of
rates of all reactions that the i-th species participates in,

| d(pl i
i|N d

N
reaction Z zk )’/}( i€ M (2.5.37)
k=1

where vy is the reaction stoichiometry of the i-th species in the 4-th reaction associated with the
products, 14 1s the reaction stoichiometry of the i-th species in the k-th reaction associated with the
reactants, and 7y is the rate of the k-th reaction.

Substituting equation (2.5.37) into equation (2.5.36) results in the transport equations of M chemical
species described by

a(4p.C,)
ot

+ aiL(piCi) = AZ[(Vik - :uik)rk] (2538)

where U is a unit matrix, C, is a vector with its components representing M species concentrations
multiply the cross section area of the river [M/L], a is a diagonal matrix with ¢; as its diagonal
component, C is a vector with its components representing M species concentrations [M/L*], v is the
reaction stoichiometry matrix, and r is the reaction rate vector with N reaction rates as its
components. Equation (2.5.38) represents a mass balance for species i, which states that the rate of
change of any species mass is due to advection-dispersion coupled with contributing reactions that
describe the biogeochemical processes.

In a primitive approach, equation (2.5.38) is integrated to yield the distributions and evolutions of
chemical species in a region of interest. However, when some fast equilibrium reactions take place
in the system, this approach is not adequate (Fang et al., 2003). Here, we will take a diagonalization
approach through decomposition. Equation (2.5.38) written in matrix form can be decomposed
based on the type of biogeochemical reactions via Gauss-Jordan column reduction of reaction matrix
v. Among all the fast/equilibrium and slow/kinetic reactions, “redundant reactions” are defined as
fast reactions that are linearly dependent on other fast reactions, and “irrelevant reactions” are
kinetic reactions that are linearly dependent on only equilibrium reactions. In order to avoid
singularity of the reaction matrix, redundant fast reactions are omitted from the system prior to
decomposition. The removal of irrelevant slow reactions alleviates problems associated with rate
formulation uncertainty and parameterization for these reactions.

Decomposition is performed by pivoting on the Ny equilibrium reactions and decoupling them from
the Nk kinetic reactions. In other words, each fast reaction can be used to eliminate one chemical
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species from simultaneous consideration. An incomplete Gauss-Jordan row decomposition of the
reaction matrix v by pivoting on Ny equilibrium reactions will result in Ng equilibrium-variables
and Nk kinetic-variables. To analyze the system behavior, it is advantageous to perform a
complete decomposition, in which the reduction of the reaction matrix is done by pivoting on Ng
equilibrium reactions and on Nk; linearly independent kinetic reactions to result in Ny equilibrium-
variables, N; kinetic-variables, and N¢ components. The complete decomposition is given as
follows:

oC,,
A11 012 013 agt Bll 012 013 C1 Dll K12 I<13 I.1
AZI A22 023 d?z + B21 B22 023 L CZ =A 021 D22 K23 r'2 (2-5-39)
A31 A32 U33 aCA3 B31 B32 a33 C3 031 032 033 r3
dt

where A is the submatrix of the reduced U matrix with size of Ng X Ng, Aj; is the submatrix of the
reduced U matrix with size of Ng; X Ng, and Asq is the submatrix of the reduced U matrix with size
of N¢c X Ng; 012 is the zero submatrix of the reduced U matrix with size of Ng X Nk, Ajs 1s the
submatrix of the reduced U matrix with size of Nx; X Ng;, and As; is the submatrix of the reduced U
matrix with size of N¢ % Nkp; 013 18 the zero submatrix of the reduced U matrix with size of Ng X N,
0,3 is the submatrix of the reduced U matrix with size of Ng; x N¢, and Us; is the unit submatrix of
the reduced U matrix with size of N¢c X N¢; Cai, Caz, and Cus are the subvectors of the vector Ca
with sizes of Ng, Nk, and N, respectively; By is the submatrix of the reduced o matrix with size of
Ng x Ng, Baj is the submatrix of the reduced o matrix with size of Nx; X Ng, and B3y is the submatrix
of the reduced o matrix with size of N¢ x Ng; 013 is the zero submatrix of the reduced a matrix with
size of Ng x Nxj, Az is the submatrix of the reduced o matrix with size of Nx; X Nk;, and Bsj is the
submatrix of the reduced a matrix with size of N¢ X Nk;; 013 is the zero submatrix of the reduced o
matrix with size of Ng X N¢, 0,3 is the submatrix of the reduced o matrix with size of Nx; X N¢, and
o33 1s the diagonal submatrix of the reduced a matrix with size of N¢ x N¢; C;, C,, and Cj are the
subvectors of the vector C with sizes of Ng, Nk;, and N, respectively; Dy; is the diagonal submatrix
of the reduced v matrix with size of Ng x Nk, Kj; is the submatrix of the reduced v matrix with size
of N % Nk, and Ky3 1s the submatrix of the reduced v matrix with size of Ng X Nkpa); 021 1s the zero
submatrix of the reduced v matrix with size of Ng; X Ng, Dy, is the diagonal submatrix of the reduced
v matrix with size of Ng; x Ng;, and Kj3 is the submatrix of the reduced v matrix with size of Ng; x
Ngpaw; 013 1s the zero submatrix of the reduced v matrix with size of N¢ X N, 03, is the zero
submatrix of the reduced v matrix with size of N¢ X Nk, and 033 is the zero submatrix of the reduced
v matrix with size of N¢ X Ngpw; I1, Iz, and r3 are the subvectors of the vector r with sizes of Vg,
N1, and Ngpg), respectively.

For incomplete decomposition of the reaction matrix v, Equation (2.5.39) can be connoted as

oC,,

A 0 B 0 C D K
|iA11 U12 } 62’( n {Bu 12 }L[{Cl }} _ A|: 011 Klz }{H} (2.5.40)
21 2 A2 n Oy 2 21 2|
dt
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where A1 and Aj; are the submatrices of the reduced U matrix with size of Ng X Ng and Nk X N,
respectively (note that Ng;y = M — Ng = Nxi1 + Nc¢); 012 and Uy, are the zero- and unit-submatrices,
respectively, of the reduced U matrix with size of Ng x Nx; and Nk X Nkjy, respectively; Caq and
Ca: are the subvectors of the vector Ca with sizes of Nz and Nk;y, respectively; By; and By, are the
submatrices of the reduced a matrix with sizes of Ng x Ng and Ng;y X Ng, respectively; 012 and o,
are the zero- and unit- submatrices, respectively, of the reduced o matrix with size of Ng X Nz and
Ny * Nk, respectively; Cy and C; are the subvectors of the vector C with sizes of Ng and Ny,
respectively; Dy; is the diagonal submatrix of the reduced v matrix with size of N X N and Kj3 is
the submatrix of the reduced v matrix with size of Ng X Nkjy; 021 1s the zero submatrix of the reduced
v matrix with size of Ng;y X Ng and K3, 1s the submatrix of the reduced v matrix with size of Ny x
Ng; ry and r; are the subvectors of the vector r with sizes of Nz and Ny, respectively.

For reactions that are fast, equilibrium may be regarded as being reached instantaneously among the
relevant species and the reaction rates may be regarded as infinite. An infinite rate is mathematically
represented by a mass action equation or a user specified nonlinear algebraic equation. As a result,
the decomposition of equation (2.5.38) to equation (2.5.40) effectively reduces a set of M species
reactive transport equations into two subsets of equations. The first set contains Ny algebraic
equations representing mass action laws for the equilibrium reactions, and the second set contains
Nk kinetic-variable transport equations. These equation subsets are defined as

Algebraic Equations for Equilibrium Reactions

O(AE,)
Ot

O(AE) _

NK
+L(Eim):ADliirii—i_AzKlierj’ ieN, = r,=o o

Jj=1

which is replaced with a thermodynamically consistent equation: K* H A / H A;' g (2.5.41)

JjeM

or F(C,..C\;p\,Dys-) =0 where E, = ZA - and E" = ZBI’/CIJ

Lij

where K;° is the equilibrium constant of the i-th fast reaction, 4; is the activity of the j-th species,
Fi(Cy,..,Cy, pi1,po2,..) 1s an empirical function of all species and a number of parameters p1, p», ... for
the i-th fast reaction. E; was called an equilibrium-variable (Fang, et al., 2003) because

—a(‘;Ef) ~ oo simply means that E; can reach equilibrium instantaneously.

Transport Equations for Kinetic-Variables

O(AE,)

Nk
P +L(Eim):AZK2njr2j’ i€Nyy=M-Ng
¢

J=1

v, (2.5.42)
where E, = ZAZUC +C,, and E" = ZBz;'/Cl/ +a,,C,

J=1 J=1

where E; was called kinetic variable (Fang, et al., 2003) because as E; is transported it is subject to
only kinetic reactions. This is in contrast to Eq. (2.5.38) where as C; is transported, it is subject to
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both equilibrium and kinetic reactions.

Assign

R = Zszrzja ie Ny, (2.5.43)

The reduction of Eq. (2.5.38) to Eq. (2.5.41) and (2.5.42) is equivalent to reducing M governing
equations for immobile and mobile species to the mixed Ny algebraic equations for equilibrium
variables and N,y transport equations for kinetic-variables specified as follows

O(4E)  O(QE") o AKXGL =M, “+M,” —M,*
ot ox  ox o | | |

osl 0s2 is .
+ME, +ME’ +ME1 + AR, ie Ny,

(2.5.44)

where E; is the concentration of the i-th kinetic-variable [M/L3], E;" is the concentration of mobile
part of the i-th kinetic-variable [M/L*], M " 1s the artificial source of the i-th kinetic-variable

[M/L/T], M," is the rainfall source of the i-th kinetic-variable [M/L/T], M, is the evaporation
sink of the i-th kinetic variable [M/L/T], M,*" and M, " are overland sources of the i-th kinetic-
variable from river banks / and 2, respectively [M/L/T], M. " is the mass rate of the source of the i-

th kinetic-variable in river/stream from subsurface [M/L/T], R; is the production rate of i-th kinetic-
variable due to biogeochemical reactions [M/L3/T], and Ngjpr 1s the number of kinetic variable
variables.

Boundary conditions for mobile species need to be transformed into corresponding boundary
conditions for kinetic-variables, which are stated in the following.

Dirichlet boundary condition:

E"=E",(x,,t) ieM, on B,(x)=0 (2.5.45)

1

where E" , (x,,t) is the specified concentration of the mobile portion of the i-th kinetic variable on

1

the Dirichlet boundary B,(x)=0 [M/"3].
Variable boundary condition:

< Case 1 > Flow is coming in from outside (nQ < 0)

m

OE] m .
8); J =nQE" ,(x,,t) ieM, on B,(x)=0 (2.5.46)

n [QE;" — 4K,

< Case 2 > Flow is going out from inside (nQ > 0).

2-66



aEinl B

-nAK
ox

0 ieM on B/(x)=0 (2.5.47)

m

where 7 is the unit outward direction and E" , (x,,?) is the concentration of the mobile portion of the
i-th kinetic variable on the variable boundary B, (x) =0 [M/L? ].

Cauchy boundary condition:

m OE" ,
n(QE,- - 4K, o j =Qpa(Xyst) €M, on  B(x)=0 (2.5.48)
where O, ,(x,,?) is the mass flux of E;" through the Cauchy boundary B, (x) =0 [M/t].

Neumann boundary condition:

OE"
Ox

-nAK =0, (x,,t) ieM on B/(x)=0 (2.5.49)

m

where O, (x,,) is the mass flux of £/ through the Neumann boundary B, (x) =0 [M/t].

2.6 Sediment and Water Quality Transport in Two-Dimension Overland Regime

Researches on overland water quality modeling include studies of sediment (McDonald and Cheng,
1994; Harris and Wiberg, 2001; and Zeng and Beck, 2003) and water quality transport (Falconer and
Lin, 1997; Tufford and McKellar, 1999; Shen et al., 2002; and Zheng et al., 2004) as well as thermal
and salinity transport. Most of the existing overland water quality models simulate either specific
systems (Cerco and Cole, 1995; Shen et al., 2002; and Zheng et al., 2004) or systems containing
specific reactions (Brown and Barnwell, 1987; Ambrose et al, 1993; and Bonnet and Wessen, 2001).
They may provide efficient monitoring and management tools because they are calibrated for
specific environments, but the extension of a calibrated model to other environmental conditions
needs to be carefully evaluated. With better understanding and mathematical formulation of complex
biogeochemical interactions (Thomann, 1998; Somlyody et al., 1998; and Yeh et al., 2001a), models
considering interactions among biogeochemicals based on reaction mechanism have a better
potential for application to other systems (Steefel and Cappellen, 1998). Although a few reaction-
based models can handle contaminant transport subject to kinetically controlled chemical reactions
(Cheng et al., 2000; and Yeh et al., 2005), no existing overland water quality model, to our
knowledge, has the design capability that permitts the use of a fully mechanistic approach to
estimate both kinetically and equilibrium controlled reactive chemical transport in overland water
systems.

This section presents a general two-dimensional depth-averaged numerical model simulating the
water quality in overland shallow water systems using a general paradigm of diagonalized reaction-
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based approaches. In our model, sediments are categorized based on their physical and chemical
properties. For each category of sediment, we include mobile suspended sediment particles scattered
in water column and immobile bed sediment particles accumulated in water bed. The distribution of
suspended sediment and bed sediment is controlled through hydrological transport as well as erosion
and deposition processes. There are six phases and three forms for biogeochemical species. As
shown in Figure 2.6-1, the six phases are suspended sediment, bed sediment, mobile water,
immobile water, suspension precipitate, and bed precipitate phases; and the three forms are dissolved
chemicals, particulate chemicals sorbed onto sediments, and precipitates.

In the transport simulation, biogeochemical reactions can be divided into two classes (Rubin, 1983):
(1) equilibrium-controlled “fast” reactions, and (2) kinetically-controlled “slow” reactions. The
former are sufficiently fast compared to the transport time-scale and are reversible, so that local
equilibrium may be assumed. The latter are not sufficiently fast compared to the transport time-
scale. As shown in Figure 2.6-2, biogeochemical reactions taken into account in the model include
aqueous complexation, adsorption/desorption, ion-exchange, precipitation/dissolution, volatilization,
diffusion, and sedimentation, etc. Any individual reaction representing any of these chemical and
physical processes may be simulated as kinetic or as equilibrium, which makes the code extremely
flexible for application to a wide range of biogeochemical transport problems.

—_ SS = suspended sediment
BS = bed sediment

}.) MW = in mobile water
IMW = in immobile water
}.) ©) SP = suspension precipitate

CS2 SS2 O o BP = bed precipitate
/33 C = dissolved chemical

ST éXBPOOd) BOW oo &g3 CS= parti.culate on SS
2 @8 (g) C&) %)\ CB = particulate on BS
cho B QO @ @OO 1 = clay 2 =silt 3 = sand

B2 CB1 /' <BSt

Fig. 2.6-1. Sediments and Chemicals in River/Stream Networks

2.6.1 Bed Sediment

The balance equation for bed sediments is simply the statement that the rate of mass change is due to
erosion/deposition as (Yeh, et al., 2005)

o(M,)

=D, =R)+ My, nellN,] (2.6.1)

where M, is the concentration of the n-th bed sediment in mass per unit bed area [M/L?], D, is the
deposition rate of the n-th sediment in mass per unit bed area per unit time [M/L*/T], R, is the
erosion rate of the n-th sediment in mass per unit bed area per unit time [M/L*/T], M v, 1s the source

of the n-th sediment from groundwater exfiltration in mass per unit area [M/L*/T], and N s the total
number of sediment size fractions. Concentrations of all bed sediments must be given initially for
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transient simulations. No boundary condition is needed for bed sediments. In equation (2.6.1), we
estimate the deposition and erosion rates using the different equations for cohesive and non-cohesive
sediments.

For cohesive sediments, e.g., silt and clay, following equations are used (Yeh et al., 1998; Gerritsen
et al., 2000)

D, =min(V,,S,P,,, S,h/At) where P, =max(0, 1-7,/7,,,) (2.6.2)
and
R, =min(E,,P,,, DMA,|At) where Py, =max (0, 7,/7,,, —1) (2.6.3)
J " il Water (1) Aqueous complexation in mobile water phase,
Surface (2) Adsorption/desorption or ion-exchange between
(8) mobile water and suspended sediment phases,
— I Suspended (3) Precipitation/dissolution between mobile water
2 Sediment and suspension precipitate phases,
) Suspension  (4) Adsorption/desorption or ion-exchange between
Mobile Water ‘@(3) _— Precipitate mobile water and bed sediment phases,
v%‘(l) (5) Aqueous complexation in immobile water phase,
(6) Adsorption/desorption or ion-exchange between
10) Bed immobile water and bed sediment phases,
Precipitate  (7) Precipitation/dissolution between immobile water
- (4) and bed precipitate phases
Q (8) Volatilization from mobile water phase,
Immobile (7) © Bed (9) Diffusion between mobile and immobile water
Water 5)5 j >Sgdiment phases,
(10) Sedimentation of particulates between
suspended and bed sediment phases

Fig. 2.6-2. Biogeochemical Reactions Considered in the Model

where Vj, is the settling velocity of the n-th sediment [L/T], S, is the depth-averaged suspended
concentration of n-th sediment [M/L*], % is the water depth [L], At is the simulation time step size
[T], 7 is the bottom shear stress or the bottom friction stress [M/L/TZ], 7.pn 18 the critical shear stress
for the deposition of the n-th sediment [M/L/T?], Ey, is the erodibility of the n-th sediment [M/L*/T],
DMA,, is the amount of locally available dry matter of n-th sediment, expressed as dry weight per
unit area [M/L?], zeg, is the critical shear stress for the erosion of the n-th sediment [M/L/T?].

For Non-cohesive sediments, e.g., sand, we have two options.
Option 1 (Prandle et al., 2000)

sn—n

D, =min(V,,S,N,,, S h/Ar) where N, =max[0, 1=(V.po /Vorn) } (2.6.4)

and
Rn = min(EOnNRn > DMAY! /A[) Where NRVI = max (0 ch/ cRn ) (2‘6'5)

where V. p, and Vg, represent the critical friction velocities for the onset of deposition and erosion,
respectively [L/T].
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Option 2 (Yeh et al., 1998)

G, -G
D — sAn Sn ,0 .6.
. =max (—AL j (2.6.6)
and

G -G
R — sn sdn ,0 .6.
= max (—AL j (2.6.7)

where Gy, is the actual load rate of the n-th sediment per unit width at a upstream location [M/L/T],
Gy, 1s the maximum load rate of the n-th size fraction sediment per unit width at a downstream
location [M/L/T], AL is the distance between the upstream and the downstream locations.

G, =SVR (2.6.8)
and
szRS(T}) — Tcrn)

G, =10 >
gdn (psn - p)

(2.6.9)

where V' is the overland flow velocity [L/t], R is hydraulic radius [L], p is the density of water
[M/L3], S is the friction slope, 7., is the critical bottom shear stress of the n-th sediment at which
sediment movement begins [M/L/t*], g is gravity [L/t*], d, is the median diameter of the n-th
sediment particle [L], and p, is the density of the n-th sediment [M/L’].

It should be noted that equations (2.6.2) through (2.6.9) are the sample models programmed in the
computer code to estimate sediment deposition and erosion rate. Any other phenomenological model
equation can be easily incorporated in the code.

2.6.2 Suspended Sediments

The continuity equation of suspended sediment can be derived based on the conservation law of
material mass as (Yeh et al., 2005):
A(hS.)
&n +Ve(qS,)~Ve(hKVS,)=M  +M_ +M_,+R ~D,, ne[l,N] (2.6.10)
where S, is the depth-averaged concentration of the n-th suspended sediment in the unit of mass per
unit column volume [M/L3], K is the dispersion coefficient tensor [Lz/t], and M s M., and M o

are the mass rate of artificial source, rainfall source, and groundwater source of the n-th suspended
sediment [M/L/t].

Concentrations of all suspended sediments must be given initially for transient simulations. Five
types of boundary conditions are taken into account for suspended sediments, including Dirichlet,

Variable, Cauchy, Neumann, and river/stream-overland interface boundary conditions (Yeh et al.,
2005).

Dirichlet boundary condition: Dirichlet boundary conditions are prescribed on the boundary where
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the suspended sediment concentration is known,
S, =8,4(x.,,1)  on B, (x)=0 (2.6.11)

where x; and y;, are the coordinates of the boundary node [L], and S, ,(x,,y,,?)1s a time-dependent
concentration of the n-th sediment size on the Dirichlet boundary B,(x)=0 [M/L’].

Variable boundary condition: Variable boundary conditions are normally specified on the boundary
where the flow direction can change with time or on any open boundary. On the variable boundary,
when the flow is directed into the region of the interest, the mass rate into the region is given by the
product of the flow rate and concentration of the incoming fluid. When the flow is directed out of
the region, the sediment mass is assumed carried out via advection. Mathematically, a variable
boundary condition is given as

n«(qS, —#K+VS,)=neqS, ,(x,,,.t) if neq<0 on B(x)=0 (2.6.12)
and
—n+(hKeVS,)=0 if nq>0 on B,(x)=0 (2.6.13)

where n is a unit outward direction and S, ,(x,,,,?) is a time-dependent concentration of the n-th
sediment in the incoming fluid at the boundary [M/L"] B (x)=0.

Cauchy boundary condition: This boundary condition is employed when the total material flow rate
is given. Usually, this boundary is an upstream flux boundary.

n+(qS, —hK-VS,) =0 ,(x,,3,,1) on  B(x)=0 (2.6.14)

where Q; ,(x,,¥,,t) s a time-dependent material flow rate of the n-th sediment through the Cauchy
boundary B.(x)=0 [M/t/L].

Neumann boundary condition: This boundary condition is used when the diffusive material flow
rate is known at the boundary node.

—nehKeVS, =0, (x,,,1)  on B, (x)=0 (2.6.15)
where Qg ,(x,,,,t) is a time-dependent diffusive material flow rate of the n-th sediment trough the

Neumann boundary B,,(x) =0 [M/t/L].

Overland-River/Stream interface boundary condition: The boundary condition is needed when one-
dimensional sediment transport in river/stream networks is coupled with two-dimensional sediment
transport in overland regime. We assume that the exchange of sediment mass between river/stream
and overland flows is mainly due to advection. Under such circumstances, the interfacial boundary
condition is stated as

n-(qS, —-hK-VS, )=(n- q)%{[l +sign(n- q)]Sﬂ + [1 —sign(n- q)]SMD(xb,yb,t)} (2.6.16)
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where S, ,(x,,y,,t) 1s the time-dependent concentration of the n-th sediment at the 1-D node
corresponding to the boundary [M/L’]. It is the contribution of 1D transport to the overland

boundary.
2.6.3 Immobile Species

The balance equation for immobile species is simply the statement that the rate of mass change is
due to biogeochemical reaction as:

o(h,p,,0,C
(1,04,6,Cy,) _ hbrcbw|N’ (2.6.17)
ot
o(h,p,,0,C
UnPnOiCop) 1 (2.6.18)
ot
oM, C,,
WG -y ] @619

where £, is the bed depth [L], ps, is the density of bed pore-water [M/L?], 8, is the porosity of the
bed sediment [L3/L3], Chy 18 the concentration of dissolved chemical in the immobile pore-water
phase in the unit of chemical mass per bed-water mass [M/M], rcpy | ~’ 1s the production rate of Cp,,
due to all N reactions in the unit of chemical mass per bed volume per time [M/L’/t], Cyp 1s the
concentration of bed precipitate in the unit of chemical mass per bed-water mass [M/M], rcsp | N 1S
the production rate of Cp, due to all N reactions in the unit of chemical mass per bed volume per
time [M/L3/t], Chsn 18 the concentration of particulate sorbed on to bed sediment of the n-th fraction
size in the unit of chemical mass per unit of bed-sediment mass [M/M], M, is the concentration of
the n-th bed sediment in the unit of sediment mass per bed area [M/Lz], ¥ Chsn | ~’ 1s the production
rate of Cp, due to all N reactions in the unit of chemical mass per bed volume per time [M/L3 /t].

Define

nlv=h,-nly'[h where i=C,,, C,, orC,, (2.6.20)

Equation (2.6.16) through (2.6.18) can be modified as

oy, 0,Cy,) _ hrey | (2.6.21)
ot

a(h,p,,0,C

(1,£4,6,Cy,) = herg | (2.6.22)
ot
M

o(hy a;Cbm) — i, |, (2.6.23)

Define
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_ hbpbweb /h’ for wa and Cbp
P {Mﬂ Ih, for C,, (2.6.24)
Equation (2.6.21) through (2.6.23) can be summarized as
o(hp.C,
%ﬂmlw ieM, (2.6.25)

where C; is the concentration of species i, which is immobile, in the unit of chemical mass per unit
phase mass [M/M], p; is the density of the phase associated with species i [M/L’], r,-| ~ 1s the
production rate of species i due to all N reactions in the unit of chemical mass per column volume
per time [M/L3/t], and M,,, is the number of immobile species. The concentrations of all immobile
species must be given initially for transient simulations. No boundary conditions are needed for
immobile species.

2.6.4 Mobile Species

The continuity equation of mobile species can be derived based on the conservation law of material
mass stating that the rate of mass change is due to both advective-dispersive transport and
biogeochemical reactions as:

% + L(pwcw) = her N (2'6'26)
o(hp.C

%"’) FL(p,C,) =i (2.6.27)
SBE 1 15,0,) = (2.6.28

where p,, is the density of column water [M/L*], C,, is the concentration of dissolved chemical in the
mobile water phase in the unit of chemical mass per column-water mass [M/M], ¢y, | ~ 1S the
production rate of C,, due to all N reactions in the unit of chemical mass per column volume per time
[M/L /], C, 1s the concentration of suspension precipitate in the unit of chemical mass per column-
water mass [M/M], r¢, | v is the production rate of C, due to all N reactions in the unit of chemical
mass per column volume per time [M/L*/t], Cs, is the concentration of particulate sorbed on to
suspended sediment of the n-th fraction size in the unit of chemical mass per unit of sediment mass
[M/M], S, is the concentration of suspended sediment in the unit of sediment mass per column
volume [M/L3 ], rcS,,| ~ 1s the production rate of Cj, due to all N reactions in the unit of chemical
mass per column volume per time [M/L/t], and the operator L is defined in Eq. (2.6.31) later.

Define

. for C, and C
p,.={ P S ’ (2.6.29)

SVI f 0 r CS n
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Equation (2.6.26) through (2.6.28) can be summarized as

o(hp,C,
( ap; l)+L(p,Cl):hr;|N’ ieMm :M_Mlm (2.6.30)

where C; is the concentration of species i, which is mobile, in the unit of chemical mass per unit
phase mass [M/M], p; is the density of the phase associated with species i [M/L’], r,-| v 1s the
production rate of species i due to all N reactions in the unit of chemical mass per column volume
per time [M/L*/t], M is the total number of chemical species, M,, is the number of mobile chemical
species, and operator L is defined as

L(pici) =V (quC[) -V [hK : V(pici)] - (Mcfu + Mclrv - Mclev + qu ) (2.6.31)

where M, is the mass ratte of artificial source of species i [M/L¥T], M o 1s the mass rate of the
rainfall source of species i [M/L*/T], M o 1s the mass rate of the evaporation sink of species i

[M/L*/T],and M . 18 mass rate of the source of species i in the overland from subsurface [M/L*/T].

Concentrations of all mobile species must be given initially for transient simulations. Similar to
suspended sediment transport, five types of boundary conditions are taken into account for mobile
species, including Dirichlet, Variable, Cauchy, Neumann, and river/stream-overland interface
boundary conditions (Yeh et al., 2005).

Dirichlet boundary condition: Dirichlet boundary conditions are prescribed on the boundary where
the suspended sediment concentration is known,

C=C,(x,,y,,t) ieM, on B,(x)=0 (2.6.32)

where x; and yj, are the coordinates of the boundary node [L], and C,,(x,,,,?)1s a time-dependent
concentration of the i-th mobile species on the Dirichlet boundary B,(x)=0[M/M].

Variable boundary condition: Variable boundary conditions are normally specified on the boundary
where the flow direction can change with time or on any open boundary. On the variable boundary,
when the flow is directed into the region of the interest, the mass rate into the region is given by the
product of the flow rate and concentration of the incoming fluid. When the flow is directed out of
the region, the sediment mass is assumed carried out via advection. Mathematically, a variable
boundary condition is given as

n'(qpicf _hK'v(piCi)) =n-9p,C,,(x,,,,t) if n-q<0on B(x)=0,ieM, (2.6.33)
and

1 m

-n-(hKK-V(p,C))=0 if n-q<0 on B(x)=0, ieM (2.6.34)

where n is a unit outward direction and C, ,(x,,y,,?) is a time-dependent concentration of the i-th
mobile species in the incoming fluid at the boundary [M/M] B, (x)=0.

Cauchy boundary condition: This boundary condition is employed when the total material flow rate
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is given. Usually, this boundary is an upstream flux boundary.
n'(qpici _hKV(plCI)) :Qcicb(xb,yb,t) i EMm on BC(X) =0 (2.6.35)

where Q. ,(x,,,,1)is a time-dependent material flow rate of the i-th mobile species through the
Cauchy boundary B, (x)=0[M/t/L].

Neumann boundary condition: This boundary condition is used when the diffusive material flow
rate is known at the boundary node.

-n-hK-V(p,C) =0, (x,,y,,t) ieM, on B,(x)=0 (2.6.36)

where Q. ,(x,,7,,t)is a time-dependent diffusive material flow rate of the i-th mobile species
through the Neumann boundary B,,(x) =0 [M/t/L].

Overland-river/stream interface boundary condition: The boundary condition is needed when one-
dimensional sediment transport in river/stream networks is coupled with two-dimensional sediment
transport in overland regime. We assume that the exchange of sediment mass between river/stream
and overland flows is mainly due to advection. Under such circumstances, the interfacial boundary
condition is stated as

n'(qpici _hK'v(piCi)) = (n'q)%{[l +Sign(n'q):|pici + |:1 —sign(n 'q)]p;CnD(xbaybat)} (2-637)

where C,, ,(x,,7,,t) 1s the time-dependent concentration of the i-th species at the 1-D node
corresponding to the overland-river/stream interfacial boundary point [M/M].

2.6.5 Diagonalization of Species Transport Equations

The temporal-spatial distribution of chemical species is described by a system of M;,, mass balance
equations [equation (2.6.25)], and My, reactive transport equations [equation (2.6.30)]. These two
equations can be recast in the following form

O(hp,C,
%W,.L(picgzmw ieM (2.6.38)
where M is the total number of chemical species, a; is 0 for immobile species and 1 for mobile
species.

The determination of 7; | ~ and associated parameters is a primary challenge in biogeochemical
modeling. Instead of using an ad hoc method to formulate ; FN, we use reaction-based formulations
(Steefel and Cappellen, 1998). In a reaction-based formulation, 7; ‘ ~ 1s given by the summation of
rates of all reactions that the i-th species participates in,
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d(pC)

1

.

N
v = 1 reation =2 (v —un] ieM (2.6.39)
k=1

where vy is the reaction stoichiometry of the i-th species in the 4-th reaction associated with the
products, 14 1s the reaction stoichiometry of the i-th species in the k-th reaction associated with the
reactants, and 7y is the rate of the k-th reaction.

Substituting equation (2.6.39) into equation (2.6.38) results in the transport equations of M chemical
species described by

ok g” ok ) |, aL(pC)= hZ[(v,k wor), ieM; or

(2.6.40)

where U is a unit matrix, C, is a vector with its components representing M species concentrations
multiply the water depth [M/L?], a is a diagonal matrix with g as its diagonal component, C is a
vector with its components representing M species concentrations [M/L’], v is the reaction
stoichiometry matrix, and r is the reaction rate vector with N reaction rates as its components.
Equation (2.6.40) represents a mass balance for species i, which states that the rate of change of any
species mass is due to advection-dispersion coupled with contributing reactions that describe the
biogeochemical processes.

In a primitive approach, equation (2.6.40) is integrated to yield the distributions and evolutions of
chemical species in a region of interest. However, when some fast equilibrium reactions take place
in the system, this approach is not adequate (Fang et al., 2003). Here, we will take a diagonalization
approach through decomposition. Equation (2.6.40) written in matrix form can be decomposed
based on the type of biogeochemical reactions via Gauss-Jordan column reduction of reaction matrix
v. Among all the fast/equilibrium and slow/kinetic reactions, “redundant reactions” are defined as
fast reactions that are linearly dependent on other fast reactions, and “irrelevant reactions” are
kinetic reactions that are linearly dependent on only equilibrium reactions. In order to avoid
singularity of the reaction matrix, redundant fast reactions are omitted from the system prior to
decomposition. The removal of irrelevant slow reactions alleviates problems associated with rate
formulation uncertainty and parameterization for these reactions.

Decomposition is performed by pivoting on the Ny equilibrium reactions and decoupling them from
the Nk kinetic reactions. In other words, each fast reaction can be used to eliminate one chemical
species from simultaneous consideration. An incomplete Gauss-Jordan row decomposition of the
reaction matrix v by pivoting on Ny equilibrium reactions will result in Nz equilibrium-variables
and Ng;p kinetic-variables. To analyze the system behavior, it is advantageous to perform a
complete decomposition, in which the reduction of the reaction matrix is done by pivoting on Ng
equilibrium reactions and on Nk; linearly independent kinetic reactions to result in Ny equilibrium-
variables, Ng; kinetic-variables, and N¢ components. The complete decomposition is given as
follows:
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oC

hi

All 012 013 agt Bll 012 013 Cl Dll I<12 K13 r‘1
A21 A22 023 th + B21 B22 023 L C2 =h 021 D22 K23 r2 (2"6-41)
A31 A32 U33 acm B31 B32 a’33 C3 031 032 033 r3

dt

where Ay is the submatrix of the reduced U matrix with size of Ng X Ng, Aj; is the submatrix of the
reduced U matrix with size of Ng; X Ng, and A3 is the submatrix of the reduced U matrix with size
of Nc X Ng; 012 is the zero submatrix of the reduced U matrix with size of Ng X Nk, Aj, is the
submatrix of the reduced U matrix with size of Nx; X Ng;, and A3, is the submatrix of the reduced U
matrix with size of N¢ X Nkp; 013 18 the zero submatrix of the reduced U matrix with size of Ng X N,
0,3 is the submatrix of the reduced U matrix with size of Nx; X N¢, and Us; is the unit submatrix of
the reduced U matrix with size of N¢c x N¢; Chi, Chz, and Cyps are the subvectors of the vector Cy
with sizes of Ng, Nk;, and N¢, respectively; By; is the submatrix of the reduced oo matrix with size of
Ng x Ng, By is the submatrix of the reduced o matrix with size of Nx; X Ng, and B3y is the submatrix
of the reduced o matrix with size of N¢ X Ng; 013 is the zero submatrix of the reduced o matrix with
size of Ng x Nxi, Az is the submatrix of the reduced o matrix with size of Nx; X Nk;, and Bs; is the
submatrix of the reduced a matrix with size of N¢ x Nkp; 013 is the zero submatrix of the reduced o
matrix with size of Ng X N¢, 0,3 is the submatrix of the reduced o matrix with size of Nx; X N¢, and
o33 is the diagonal submatrix of the reduced o matrix with size of N¢ x N¢; Cy, C,, and Cj are the
subvectors of the vector C with sizes of Ng, Nx;, and N¢, respectively; Dyy is the diagonal submatrix
of the reduced v matrix with size of Ng x Ng, Kj; is the submatrix of the reduced v matrix with size
of Ng % Nk, and Kj3 is the submatrix of the reduced v matrix with size of Ng X Nkpa); 021 1s the zero
submatrix of the reduced v matrix with size of Ng; X Ng, Dy, is the diagonal submatrix of the reduced
v matrix with size of Ng; X Nk;, and Kj3 is the submatrix of the reduced v matrix with size of Ng; x
Ngpw; 013 1s the zero submatrix of the reduced v matrix with size of N¢ X N, 03, is the zero
submatrix of the reduced v matrix with size of N¢ X Ng;, and 033 is the zero submatrix of the reduced
v matrix with size of N¢ X Ngpw; I1, 2, and r3 are the subvectors of the vector r with sizes of Ng,
N1, and Ngpg), respectively.

For incomplete decomposition of the reaction matrix v, Equation (2.6.41) can be connoted as

oC,,

A 0 B 0 C D K r
|: 1 12 :| dt +|: 1 12}]_{{ l}jzh[ 11 12:H 1} (2.6.42)
A,y U,, || 0C,, B, (LE) C, 0, K,, |1,
dt

where A1y and A, are the submatrices of the reduced U matrix with size of Ng x Ng and Ny X N,
respectively (note that Ng;y = M — Ng = Nxi1 + N¢); 012 and Uy, are the zero- and unit-submatrices,
respectively, of the reduced U matrix with size of Ng x Ny and Nk X Ngjy, respectively; Cpy and
Ch; are the subvectors of the vector Cy, with sizes of Nz and Ny, respectively; By; and By; are the
submatrices of the reduced a matrix with sizes of Nz X Ng and Ny % Ng, respectively; 052 and o,
are the zero- and unit- submatrices, respectively, of the reduced o matrix with size of Ng X Nk and
Ny * Nk, respectively; Cy and C; are the subvectors of the vector C with sizes of Ng and Ny,
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respectively; Dy is the diagonal submatrix of the reduced v matrix with size of Nz x Ny and Kj; is
the submatrix of the reduced v matrix with size of Ng X Nkjy; 021 is the zero submatrix of the reduced
v matrix with size of Nx;y x Ng and Kj; is the submatrix of the reduced v matrix with size of N <
Ng; 11 and r; are the subvectors of the vector r with sizes of Nz and Ny, respectively.

For reactions that are fast, equilibrium may be regarded as being reached instantaneously among the
relevant species and the reaction rates may be regarded as infinite. An infinite rate is mathematically
represented by a mass action equation or a user specified nonlinear algebraic equation. As a result,
the decomposition of equation (2.6.40) to equation (2.6.42) effectively reduces a set of M species
reactive transport equations into two subsets of equations. The first set contains Ng algebraic
equations representing mass action laws for the equilibrium reactions, and the second set contains
Nxy kinetic-variable transport equations. These equation subsets are defined as

Algebraic Equations for Equilibrium Reactions

O(hE, & A(hE,
M_FL(Eim):thiirl[+hZKlijr2j3 ieN, = K=0 = %zo@
J=1

which is replaced with a thermodynamically consistent equation: K* = H A;"" / H Aj’ 4 (2.6.43)
jeM o

JjeM

Ng Ng
or F(C,,..Cy; Py, py,.)=0 where E,=Y 4,C,, and E" =) B, C,

1ij 1ij
Jj=1 Jj=1
where K;° is the equilibrium constant of the i-th fast reaction, 4; is the activity of the j-th species,

Fi(Cy,..,Cy, p1,p2,..) 1s an empirical function of all species and a number of parameters p, p2, ... for
the i-th fast reaction. E; was called an equilibrium-variable (Fang, et al., 2003) because

o(hE,)
Ot

~ oo simply means that E; can reach equilibrium instantaneously.

Transport Equations for Kinetic-Variables

O(hE))

Ny
+L(E"Y=hY K,,1,;, i€Ny, =M-N,
Jj=1

v (2.6.44)
C,+Cy and E" =Y B, C,, +a,C,,

Jj=1

2ij

Ng
where E;, = ZA
Jj=1

where E; was called a kinetic variable (Fang, et al., 2003) because as E; is transported it is subject to
only kinetic reactions. This is in contrast to Eq. (2.6.44) where as C; is transported, it is subject to
both equilibrium and kinetic reactions.

Assign

R = ZKZI‘j‘ij’ 1€ Ny, (2.6.45)

The reduction of Eq. (2.6.40) to Eq. (2.6.43) and (2.6.44) is equivalent to reducing M governing
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equations for immobile and mobile species to the mixed Ny algebraic equations for equilibrium
variables and Nk;y transport equations for kinetic-variables specified as follows

a(gf,-) +Ve(qE")~ V-[(hK.VEim)] =M_ +M_. +M_ +hR,ieNg, (2.6.46)

where E; is the concentration of the i-th kinetic-variable [M/L’], E/" is the concentration of mobile
part of the i-th kinetic-variable [M/L3], M, is the artificial source of the i-th kinetic-variable

[M/Lz/T], M, 1s the rainfall source of the i-th kinetic-variable [M/LZ/T], M, and M, are
overland sources of the i-th kinetic-variable from river banks / and 2, respectively [M/L*/T], M L 18

the mass rate of the source of the i-th kinetic-variable in the overland from subsurface [M/L*/T], R; is
the production rate of i-th kinetic-variable due to biogeochemical reactions [M/L*/T], and Nk;y is the
number of kinetic variable variables.

Initial and boundary condition for chemical species need to be transformed into corresponding initial
and boundary conditions for kinetic-variables, which are stated in the following.

Dirichlet boundary condition:
E"=E",(x,,y,,t) ieM, on B,(x)=0 (2.6.47)

where £ , (x,,v,,t) 1s the prescribed concentration of the mobile portion of the i-th kinetic variable
on the Dirichlet boundary B,(x)=0 [M/LA].

Variable boundary condition:
< Case 1 > Flow is coming in from outside (nQ < 0)
ne(qE" —hKeVE! ) =neqE/" ,(x,.y,.t) i€M, on B,(x)=0 (2.6.48)
< Case 2 > Flow is going out from inside (nQ > 0).
—n+(hK-VE')=0 ieM, on B(x)=0 (2.6.49)

where n is the unit outward vector and E" ,(x,,,,?) is the concentration of the mobile portion of the
i-th kinetic variable on the variable boundary B,(x) =0 [M/L?].

Cauchy boundary condition:
ne(qE;" — hK-VE" ) = Qoo (X 3,50)  i€M,  on B (x)=0 (2.6.50)
where Q,,.,(x,,y,,1) is the mass flux of £/ through the Cauchy boundary B,(x) =0 [M/t/L].

Neumann boundary condition:
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—n°(hK-VE,-m)=QE,mnb(xbabe) ieM, on B,(x)=0 (2.6.51)

where Q,,,,(x,,»,.t) is the mass flux of £/" through the Neumann boundary B, (x) =0 [M/t/L].

Overland-river/stream interface boundary condition:
m m 1 . m . m
n- (qu. —hK-VE, ) =(n- q)E{[l +sign(n- q)]El. + [1 —sign(n- q)]E,. 1D(xb,yb,t)} (2.6.52)

where E", ,(x,,y,,t) is the time-dependent concentration of the mobile portion of the i-th kinetic

variable at the 1-D node corresponding to the overland-river/stream interfacial boundary point
[M/LA].

2.7 Reactive Biogeochemical Transport in Three-Dimension Subsurface Media

Reactive chemical transport in the subsurface occurs over a broad range of geochemical
environments at various space and time scales. Coupled models that simulate hydrological transport
and complex biogeochemical reactions are important tools for quantitative predictions of the fate and
transport of chemicals in groundwater. Biogeochemical reactions can be divided into two classes
(Rubin, 1983): (1) equilibrium-controlled “fast” reactions, and (2) kinetically-controlled “slow”
reactions. The former are sufficiently fast compared to the transport time-scale and are reversible, so
that local equilibrium may be assumed. The latter are not sufficiently fast compared to the transport
time-scale. They may be either reversible or irreversible. Local equilibrium conditions cannot be
assumed.

Due to computational limitations, existing coupled models for subsurface reactive transport have
various capabilities (Keum and Hahn, 2003). Some models couple transport with equilibrium
chemistry (e.g., Cederberg et al., 1985; Liu and Narasimhan, 1989; Yeh and Tripathi, 1991;
Parkhurst, 1995; and Parkhurst and Appelo, 1999), while some couple transport with kinetic
chemistry (e.g., MacQuarrie et al., 1990; Tompson, 1993; Lensing et al., 1994; Wood et al., 1994;
Adeel et al., 1995; Yeh et al., 1998; and Saiers et al., 2000). Models coupling transport with both
equilibrium and kinetic reactions appeared in the mid-1990s (e.g., Steefel and Lasaga, 1994;
Chilakapati, 1995; Chilakapati et al., 1998; Tebes-Stevens et al., 1998; Yeh et al., 2001b; Brun and
Engesgaard, 2002). Most of these models either implicitly assumes that equilibrium reactions occur
only among aqueous species or consider only limited reaction networks. These limitations affect the
generality of the models. There appears to be few general-purpose transport models that can simulate
generic reaction networks including mixed equilibrium/kinetic biochemical and geochemical
reactions (Yeh et al., 2004).

This report presents a general mathematical framework and a three-dimensional numerical
implementation to simulate reactive chemical transport in subsurface water subject to a defined flow
field. Chemical species considered include dissolved species, suspension precipitates and surface
species that encompass adsorbed species, ion-exchanged species and free sites. Biogeochemical
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reactions taken into account in the model include aqueous complexation, adsorption/desorption, ion-
exchange, precipitation/dissolution, reduction/oxidation, and volatilization. Any individual reaction
representing any of these chemical and physical processes may be simulated as kinetic or as
equilibrium, which makes the approach applicable to a wide range of biogeochemical transport
problems. In the subsurface, all dissolved species are assumed mobile while all surface species and
suspension precipitates are assumed immobile.

2.7.1 Immobile Species

The balance equation for immobile species is simply the statement that the rate of mass change is
due to biogeochemical reaction as:

o(0p,C,)

=0 @2.7.1)
and
a(pba‘S;ACv) — grcx N (2‘7.2)

where p,, is the density of pore-water [M/L’], 0 is the porosity of the media [L*/L’], C, is the
concentration of precipitate in the unit of chemical mass per por-water mass [M/M], r¢, | ~ is the
production rate of C, due to all N reactions in the unit of chemical mass per pore-water volume per
time [M/L*/t], p,is the bulk density in dry media mass per unit media volume [M/L’], S, is the

surface area per unit dry mass [L?/M], C, is the concentration of surface species in unit of chemical
mass per surface area [M/Lz], and r¢ | ~1s the production rate of C; due to all N reactions in the unit
of chemical mass per pore-water per time [M/L*/t].

Equation (2.7.1) and (2.7.2) can be combined as

% = erl N> l € Mim (2‘7'3)

where C; is the concentration of the i-th immobile, 7; | ~1s the production rate of species i due to all N
reactions in the unit of chemical mass per pore-water volume per time [M/L3/t], M, 1s the number of
immobile species, and p; is defined by

D, = { Pur Jor C,

0,8,/0, for C, 2.7.4)

The concentrations of all immobile species must be given initially for transient simulations. No
boundary conditions are needed for immobile species.

2.7.2 Mobile Species
The continuity equation of mobile species, i.e. dissolved species in the water phase, can be derived
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based on the mass conservation law stating that the rate of mass change is due to both advective-
dispersive transport and biogeochemical reactions as
2(4p.C.)

T"’V'(Vpici)_v'[al) 'V(pfcf)] = MC,aS + 01’1

ieM 2.7.5)

N? m

where C; is the concentration of the i-th dissolved species in the unit of chemical mass per unit water
mass [M/M], p; is the density of water [i.e., C; = C,,] [M/L?], V is the Darcy velocity [L/t], D is the
dispersion coefficient tensor [L*/t], 7; | v 1s the production rate of species i due to all N reactions in
the unit of chemical mass per volume of water per time [M/L*/t], M. ¢ 1s the artificial source of C; in

unit of chemical mass per unit of medium volume [M/L3/t], and M,, is the number of mobile
chemical species.

Concentrations of all mobile species must be given initially for transient simulations. Similar to
salinity transport, six types of boundary conditions are taken into account for mobile species,
including Dirichlet, Variable, Cauchy, Neumann, river/stream-overland interface, and overland-
subsurface interface boundary conditions (Yeh et al., 2005). These boundary conditions are stated
below:

Dirichlet boundary condition: This condition is applied when the species concentration is
prescribed as a function of time on the boundaries:

C (x,1)=C,(x,t) on B,(x)=0 (2.7.6)

where C,, (x,t) is a time-dependent concentration of the i-th species on the Dirichlet boundary,
Bi(x) =0, [M/M].

Variable boundary condition: This boundary condition is employed when the flow direction would
change with time during simulations. Two cases are considered, regarding to the flow direction on

the boundary.

< Case 1 > Flow is coming in from outside:

n- [VpiCi -6D- V(p,.C[)] =(n-V)pC,, (x,t) on B(x)=0 2.7.7)

< Case 2 > Flow is going out from inside:

-n-[D-V(p,C)]=0 on B,(x)=0 (2.7.8)

where C;,5(x,t) is a time-dependent concentration of the i-th species [M/M] on the variable boundary,
B,(x) = 0, which is associated with the incoming flow.

Cauchy boundary condition: This boundary condition is employed when the total salt-flow rate is

given at pervious boundaries. Usually, this boundary is a flow-in boundary. The conditions are
expressed as
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n-[Vp,C, - 0D-V(p,C)|=0..,(x.t) on B,(x)=0 2.7.9)

where O , (x, t) is total chemical flux of the i-th species [M/L*/t] through the Cauchy boundary,

B.(x) = 0, which takes a positive value if it is going out of the region and a negative value if it is
coming into the region.

Neumann boundary condition: This boundary condition is used when the dispersive salt-flow rate
is known at the boundary. It can be written as

n-(D-V(pC))=0,(x.1) on  B,(x)=0 (2.7.10)

where O, (x,?) is the chemical flux of the i-th species through the Neumann boundary, B,(x) =0,
[M/L*A].

In addition to the four types of global boundary conditions, two interface boundary conditions may
be specified: one for the exchange of chemicals between the subsurface media and river/stream
network and the other for chemical exchange between the subsurface media and the overland.

Mathematically, these boundary conditions are described below.

Subsurface-river interface boundary condition:
n:[Vp,C,—6D-V(p,C)]=(n- {[1+s1gn }plC +[1 sign(n }pl ,,D(xb,y,,,zb,t)} 2.7.11

where C,,(x,,7,,2,,¢) 1s the time-dependent concentration of the i-th species at the 1-D node
corresponding to the subsurface-river/stream interfacial boundary points [M/M].

Subsurface-overland interface boundary condition:
n:[Vp,C,—6D-V(p,C)]=(n- {[1+s1gn ]plC +[1 sign(n :|p, ,2D(xb,yb,zb,t)} (2.7.12

where C,,(x,,y,,z,,t) 1s the time-dependent concentration of the i-th species at the 2-D node
corresponding to the subsurface-overland interfacial boundary point [M/M].

2.7.3 Diagonalization of Species Transport Equations

The temporal-spatial distribution of chemical species is described by a system of Miy, mass balance
equations [equation (2.7.3)], and M,, reactive transport equations [equation (2.7.5)]. These two
equations can be recast in the following form

S s apC) =00,

eM (2.7.13)

where L is an operator defined as
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L(p,C)=V-(Vp,C)—-V:[6D-V(p,C)]- Mc‘.as (2.7.14)

The determination of 7;| v and associated parameters is a primary challenge in biogeochemical
modeling. Instead of using an ad hoc method to formulate 7; FN, we use reaction-based formulations
(Steefel and Cappellen, 1998). In a reaction-based formulation, 7; ‘ v 1s given by the summation of
rates of all reactions that the i-th species participates in,

d(p.C,)

il dt

N
reaction Z[(Vik - /uik )rk ]’ RS M (2.7.15)
k=1

where vy is the reaction stoichiometry of the i-th species in the k-th reaction associated with the
products, g4 1s the reaction stoichiometry of the i-th species in the k-th reaction associated with the
reactants, and 7y is the rate of the £-th reaction.

Substituting equation (2.7.15) into equation (2.7.18) results in the transport equations of M chemical
species described by

o(Gp,C)
ot

N
+a,L(pC) = HZ[(Vik — M1 ], ieM; or U 6;9 +0aL(C) = hvr (2.7.16)
=1

where U is a unit matrix, Cgis a vector with its components representing M species concentrations
multiply the moisture content [M/L’], a is a diagonal matrix with ¢ as its diagonal component, C is
a vector with its components representing M species concentrations [M/L’], v is the reaction
stoichiometry matrix, and r is the reaction rate vector with N reaction rates as its components.
Equation (2.7.16) represents a mass balance for species 7, which states that the rate of change of any
species mass is due to advection-dispersion coupled with contributing reactions that describe the
biogeochemical processes.

In a primitive approach, equation (2.7.16) is integrated to yield the distributions and evolutions of
chemical species in a region of interest. However, when some fast equilibrium reactions take place
in the system, this approach is not adequate (Fang et al., 2003). Here, we will take a diagonalization
approach through decomposition. Equation (2.7.16) written in matrix form can be decomposed
based on the type of biogeochemical reactions via Gauss-Jordan column reduction of reaction matrix
v. Among all the fast/equilibrium and slow/kinetic reactions, “redundant reactions” are defined as
fast reactions that are linearly dependent on other fast reactions, and “irrelevant reactions” are
kinetic reactions that are linearly dependent on only equilibrium reactions. In order to avoid
singularity of the reaction matrix, redundant fast reactions are omitted from the system prior to
decomposition. The removal of irrelevant slow reactions alleviates problems associated with rate
formulation uncertainty and parameterization for these reactions.

Decomposition is performed by pivoting on the Ny equilibrium reactions and decoupling them from
the Nk kinetic reactions. In other words, each fast reaction can be used to eliminate one chemical
species from simultaneous consideration. An incomplete Gauss-Jordan row decomposition of the
reaction matrix v by pivoting on Ny equilibrium reactions will result in Nz equilibrium-variables
and Ng;y kinetic-variables. To analyze the system behavior, it is advantageous to perform a
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complete decomposition, in which the reduction of the reaction matrix is done by pivoting on Ng
equilibrium reactions and on Nk; linearly independent kinetic reactions to result in Ny equilibrium-
variables, Nk; kinetic-variables, and N¢ components. The complete decomposition is given as
follows:

oC,,
Ay 0, 0, agt B, 0, 0, G, D, K, Ky ||
Ay Ay 0, dtaz +| By, B, 0, L] 1Cyp [=6] 0y D, Ky 10 2.7.17)
Ay Ay Uy oC,, B, B;, O35 O 0;, 0, 05 | (1
dt

where Ay is the submatrix of the reduced U matrix with size of Ng X Ng, Aj; is the submatrix of the
reduced U matrix with size of Ng; X Ng, and A3 is the submatrix of the reduced U matrix with size
of Nc X Ng; 012 is the zero submatrix of the reduced U matrix with size of Ng X Nk, Az, is the
submatrix of the reduced U matrix with size of Nx; X Ng;, and As; is the submatrix of the reduced U
matrix with size of N¢ X Nkp; 013 1s the zero submatrix of the reduced U matrix with size of Ng X N¢,
0,3 is the submatrix of the reduced U matrix with size of Nx; x N¢, and Us; is the unit submatrix of
the reduced U matrix with size of Nc X N¢; Chi, Cha, and Cys are the subvectors of the vector Cp
with sizes of Ng, Nk, and N, respectively; By is the submatrix of the reduced o matrix with size of
Ng x Ng, Ba; is the submatrix of the reduced o matrix with size of Nx; X Ng, and B3 is the submatrix
of the reduced o matrix with size of N¢ x Ng; 013 is the zero submatrix of the reduced a matrix with
size of Ng x Nkj, Az 1s the submatrix of the reduced o matrix with size of Nx; X Nk;, and Bsj is the
submatrix of the reduced a matrix with size of N¢ X Nk;; 013 is the zero submatrix of the reduced o
matrix with size of Ng X N¢, 0,3 is the submatrix of the reduced o matrix with size of Nx; X N¢, and
o33 1s the diagonal submatrix of the reduced a matrix with size of N¢ x N¢; C;, C,, and Cj are the
subvectors of the vector C with sizes of Ng, Nx;, and N, respectively; Dy; is the diagonal submatrix
of the reduced v matrix with size of Ng x Ng, Ky, is the submatrix of the reduced v matrix with size
of Ng % Nk, and Ky3 1s the submatrix of the reduced v matrix with size of Ng X Nkpa); 021 1s the zero
submatrix of the reduced v matrix with size of Ng; X Ng, Dy, is the diagonal submatrix of the reduced
v matrix with size of Ng; x Ng;, and Kj3 is the submatrix of the reduced v matrix with size of Ng; x
Ngpaw; 013 1s the zero submatrix of the reduced v matrix with size of N¢ X N, 03, is the zero
submatrix of the reduced v matrix with size of N¢ X Nk, and 033 is the zero submatrix of the reduced
v matrix with size of N¢ X Ngpw; I1, I, and r3 are the subvectors of the vector r with sizes of Ng,
N1, and Ngpg), respectively.

For incomplete decomposition of the reaction matrix v, Equation (2.7.17) can be connoted as

oC,,

|:A11 012 i| dt +{Bn 012 }L({CI}J _ 9|:D11 K12 :|{r1} (2.7.18)
A, Uy | 0C, B, a, C, 0, K,

dt

where A1; and A, are the submatrices of the reduced U matrix with size of Ng x N and Ng;y X NE,
respectively (note that Nx;y = M — Ng = Ny + N¢); 012 and Uy, are the zero- and unit-submatrices,
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respectively, of the reduced U matrix with size of Ng X Nx; and Nk X Ny, respectively; Cop and
Ca; are the subvectors of the vector Cg with sizes of Nz and Nk;y, respectively; By; and By; are the
submatrices of the reduced o matrix with sizes of Nz X Ng and Ny X Ng, respectively; 05, and oz,
are the zero- and unit- submatrices, respectively, of the reduced o matrix with size of Ng X Nk;rand
Ny * Nk, respectively; Cy and C; are the subvectors of the vector C with sizes of Ng and Ny,
respectively; Dy is the diagonal submatrix of the reduced v matrix with size of Nz x Ny and Kj; is
the submatrix of the reduced v matrix with size of Ng X Nk;r; 041 1s the zero submatrix of the reduced
v matrix with size of Ng;» X N and Kj; is the submatrix of the reduced v matrix with size of Ny <
Ng; 11 and r; are the subvectors of the vector r with sizes of Nz and Ny, respectively.

For reactions that are fast, equilibrium may be regarded as being reached instantaneously among the
relevant species and the reaction rates may be regarded as infinite. An infinite rate is mathematically
represented by a mass action equation or a user specified nonlinear algebraic equation. As a result,
the decomposition of equation (2.7.16) to equation (2.7.18) effectively reduces a set of M species
reactive transport equations into two subsets of equations. The first set contains Ny algebraic
equations representing mass action laws for the equilibrium reactions, and the second set contains
Nxy kinetic-variable transport equations. These equation subsets are defined as

Algebraic Equations for Equilibrium Reactions

O(6E)
ot

0(OF,) _

NK
+L(Eim)=6Dliirii+92Klijr2j’ ieN, = n;=o o
j=1

which is replaced with a thermodynamically consistent equation: K* = H A / H A7 (2.7.19)
JjeM

JjeM

NE
or F(C,...C\;p\,Dy,-) =0 where E, = Z ,;C, and Ei”’=ZBwCU

J=l J=1

where K is the equilibrium constant of the i-th fast reaction, 4; is the activity of the j-th species,
Fi(C,,..,Cy, p1,p2..) 1s an empirical function of all species and a number of parameters p, p2, ... for
the i-th fast reaction. FE; was called an equilibrium-variable (Fang, et al., 2003) because

O(0E,)
ot

~ oo simply means that £; can reach equilibrium instantaneously.

Transport Equations for Kinetic-Variables

———L L+ L(E")= 921%4], ieNy,=M-N,

J=1

A(PE,)
ot

(2.7.20)

2ij

whereEi:ZA C,+Cy and E" =) B,,C, +,C,,
J=1

where E; was called a kinetic variable (Fang, et al., 2003) because as E; is transported it is subject to
only kinetic reactions. This is in contrast to Eq. (2.7.16) where as C; is transported, it is subject to
both equilibrium and kinetic reactions.

Assign
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Nk
R =Y K,n, ieNy (2.7.21)
Jj=1

The reduction of Eq. (2.7.15) to Eq. (2.7.18) and (2.7.19) is equivalent to reducing M governing
equations for immobile and mobile species to Ny algebraic equations for equilibrium variables and
Nky transport equations for kinetic-variables specified as follows

a(gf,) +Ve(VE")~ V-[(HD-VEI_’”)] =M_.+0R,ieNy, (2.7.22)

where E; is the concentration of the i-th kinetic-variable [M/L’], E/" is the concentration of mobile
part of the i-th kinetic-variable [M/L’], M . 18 the artificial source of the i-th kinetic-variable

[M/L?/T], R; is the production rate of i-th kinetic-variable due to biogeochemical reactions [M/L*/T],
and Ngjy is the number of kinetic variable variables.

Initial and boundary condition for chemical species need to be transformed into corresponding initial
and boundary conditions for kinetic-variables, which are stated in the following.

Dirichlet boundary condition:
E" = E;(xy,94,2,,1) on  B,(x)=0 (2.7.23)

where E}) (x,,,,t) is the specified concentration of the mobile portion of the i-th kinetic variable on
the Dirichlet boundary B, (x) =0 [M/L’].

Variable boundary condition:
< Case 1 > Flow is coming in from outside (nQ < 0)

no(VE —OD-VE ) = neVE]! (x,.3,.2,.1) on  B,(x)=0 (2.7.24)

< Case 2 > Flow is going out from inside (nQ > 0).
—n+(0D-VE")=0 on B,(x)=0 (2.7.25)

m

where n is the unit outward vector and E'(x,,v,,z,,t) 1s the concentration of the mobile portion of
the i-th kinetic variable on the variable boundary B,(x) =0 [M/LY].

Cauchy boundary condition:
ne(VE" - OD-VE]") = Q.. (5,72, on B(x)=0 (2.7.26)

where Q . (x,,7,2,,?) is the mass flux of £;" through the Cauchy boundary B,(x) =0 [M/t/L].
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Neumann boundary condition:
_n-(ﬁD-VEi’”) = QnE,”’ (xy,¥,,2,,t) on B (x)=0 (2.7.27)

where O . (x,,y,.2,.t) is the mass flux of £/" through the Neumann boundary B, (x) =0 [M/t/LA].

Subsurface-river interface boundary condition:
m m 1 . m . m ]
n-[VEI. —0D-V(E )]=(n-V)5{[l+szgn(n-V)}Ei +[1-sign(n-V)|E"(C)” s)} (2.7.28)

Where E"(C;”'s) is the mobile portion of the subsurface i-th kinetic variables with its argument

being the linear combination of 1-D river/stream species concentrations C}”'s [M/LY].

Subsurface-overland interface boundary condition:
m m 1 . m . m ]
n-[ VE! - 0D -V(E; )]=(n-v)5{[1+szgn(n-v)]E,. +[1-sign(n-V)]E"(C" s)} (2.7.29)

where E"(C;”'s) is the mobile portion of the subsurface i-th kinetic variables with its argument

being the linear comination of 2-D overland species concentrations C:”'s [M/L].

2.8 Coupling Transport Among Various Media

As in coupling flows among various media, a rigorous treatment of coupling transport among media
should be based the continuity of material fluxes and state variables. This rigorous treatment in
coupling chemical transport among various media can be taken similar to the case of flows. We
simply impose the continuity of material fluxes and species concentrations for all mobile (between
river/stream networks and overland regime) dissolved aqueous species (between subsurface media
and overland regime and between subsurface media and river/stream networks) .

However, because the state variables (dissolved chemical concentrations, suspend sediment
concentrations, and mobile particulate chemical concentrations) in various media may not be
continuous because these state variables are true three-dimensional distribution in subsurface media,
but are vertically averaged quantities in overland regime and cross-sectional area averaged quantity
in river/stream networks. Because of the averaging processes, mass fluxes between media can be
considered due mainly to the advective transport. If this assumption is valid, the coupling of
transport among various medial is much simpler than that for fluid flow.

2.8.1 Coupling between Overland Transport and River/StreamNetworks
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The coupling of transport between overland and canal is similar to that of salinity transport. When a
levee is present on the bank of the canal (left column in Fig. 2.4-1), there are several possibilities on
the interactions between overland and river flow transport. If water surfaces in both the overland
regime and river are below the top of the levee, the two flow systems are decoupled and transport in
overland is decoupled from that in river networks (Fig. 2.4-1a).

When the water surface in the overland regime is above the top of the levee and in the canal is below
the top of the levee (Fig. 2.4-1b), the flow is from the overland to river network and thus the
transport is also one way from the overland to river network. The fluxes are given by

n-[qoC —-Dh-V(pC)]

sami1 =M = 8,pC* (2.8.1)

where C [denotes S, with p=1 for supended sediment, C,, with p= p,, for dissolved species, C, with
p = py for precipitated species, Cs, with p =S, for particulate species] is sediment concentration

osl 3

[M/L’] or species concentrations [M/M] in the overland flow, M ¢ is the source rate of the i-th

species in the canal from the overland via bank 7, which appeared in Eq. (2.5.30) [M/t/L], C’is the
value of C in the overland water at the interface. When the water surface in the overland regime is
below the top of the levee and in the canal is above the top of the levee (Fig. 2.4-1c), the flow is
from the canal to overland and thus the transport is one way from the canal to overland. The fluxes
are given by

n-[qoC - Dh-V(pC)]

panr =M™ = 8,pC* (2.8.2)

where C° is the value of C in the canal water. When the water surfaces in the overland and canal are
above the top of the levee (Fig. 2.4-1d), flow direction can e either from the overland to the canl or
from the canal to the overland depending on the flow dynamics in the overland and in the canal. If
the state variable C is discontinues at the interface of the canal and overland, the fluxes are given by

n-[qoC —Dh-V(pC)]

okl = MCL”SZ =S, %[(l+sign (S, ))pC” +(1—sign(S1 ))pCCJ (2.8.3)

If the state variable is continuous, the fluxes are modeled by imposing its continuity to yield the
fluxes

n:[qpC —-Dh-V(pC)]

51
=M. " and C°

Bank 1 = CC (2.8.4)

Bank 1

When a levee is not present on the bank of the canal (right column in Fig. 2.4-1), there are two
possibilities on the interactions between overland and river transport. If water surface in the canal
falls below the bank, the flux is either zero if the overland flow is not present or is nonzero and
directed from the overland into the canal if overland flow is present (Fig. 2.4-1e). Under this
circumstance, the fluxes are given by

n- [qu —Dh- V(pC)] Bank2 = Mqasz =85,pC° (2.8.5)
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where M. ”? is the source rate of the i-th species in the canal from the overland via bank 2, which
appeared in Eq. (2.5.30) [M/t/L],

When the water surface in the canal is above the bank (Figs. 2.4-1f and 2.4-1.g), the flow direction

can be either from the overland into the canal or from the canal into the overland depending on the
flow dynamics in the overland and in the canal. If the state variable is discontinuous, the fluxes are

n:[qpC —-Dh-V(pC)]

Bank2 = ]‘/[c,.w2 =5, %[(1+Sign (Sz ))pco +(1—Sign (Sz ))pC":| (2.8.6)

If the state variable is continuous, we impose the continuity of the state variable to yield the fluxes

n-[qoC —Dh-V(pC)]

_ 0s2 o
Bank2 — MC, and C

g2 =C° (2.8.7)

Because kinetic variables E are chosen as the primary variables in the transport module, for reactive
chemical transport, the interfacial boundary conditions in terms of species concentrations must be
transformed into those in terms of kinetic variables. Since reaction networks in overland and
river/stream/canal networks are identical, every corresponding kinetic variable in the overland and
river/stream networks contains the same mobile portion. Thus, one simply replaces pC with E" in

Egs. (2.8.1) through (2.8.7). For completeness of this report, these equations are listed below.
For couling via bank 1:

When the water surface in the overland regime is above the top of the levee and in the canal is below
the top of the levee (Fig. 2.4-1b), the flow is from the overland to river network and thus the
transport is also one way from the overland to river network. The flux of the i-th kinetic variables
are given by

n-[qE" - Dh-VE" |

Bank1 — ]ME‘DS1 =S5, (Eim )0 (2.8.8)

When the water surface in the overland regime is below the top of the levee and in the canal is above
the top of the levee (Fig. 2.4-1c¢), the flow is from the canal to overland and thus the transport is one
way from the canal to overland, the flux of the i-th kinetic variable is given as

n-[qE ~Dh-VE' ||, =M, =S, (E") (2.8.9)

1

When the water surfaces in the overland and canal are above the top of the levee (Fig. 2.4-1d), flow
direction can e either from the overland to the canl or from the canal to the overland depending on
the flow dynamics in the overland and in the canal. If the state variable E is discontinues at the
interface of the canal and overland, the fluxes are given by

c

n-[qE] =Dh-VE ||, =M, =S, %[(l—i—sign(S, )(E) +(1-sign(s,))(E") } (2.8.10)

If the state variable E is continuous, the fluxes are modeled by imposing its continuity to yield the
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fluxes

1

n-| £ - Dh-VE |

BanklZMELOSl and (E'm)o

Bank1 — (E[m )C (2.8.11)

In Equations (2.8.8) through (2.8.11), E" is the concentration of the mobile portion of the i-th
kinetic variable [M/L?], (El.’" )a is the value of £" in the overland water at the interface [M/L?], and
M, ! is the source of the kinetic variable E; in the canal from the overland via bank 7 [M/t/L], which

appeared in Eq. (2.5.44), and (E,.’” )C is the value of E" in the canal water at the interface.

For couling via bank 2:

When a levee is not present on the bank of the canal (right column in Fig. 2.4-1), there are two
possibilities on the interactions between overland and river transport. If water surface in the canal
falls below the bank, the flux is either zero if the overland flow is not present or is nonzero and
directed from the overland into the canal if overland flow is present (Fig. 2.4-1e). Under this
circumstance, the fluxes are given by

n-[qE - Dh-VE]']

Bank2 ~ A/[E‘OS2 =5, (Eim )0 (2.8.12)

When the water surface in the canal is above the bank (Figs. 2.4-1f and 2.4-1g), the flow direction
can be either from the overland into the canal or from the canal into the overland depending on the
flow dynamics in the overland and in the canal. If the state variable is discontinuous, the fluxes are

n-[qE] - Dh-VE]]

1

sz =M "= S, %[(Hsign(Sz))(Ei”’ ) +(1-sign(s,))(E" )‘} (2.8.13)

If the state variable is continuous, we impose the continuity of the state variable to yield the fluxes

n- [qum —Dh- VEim] Bank2 = Z‘/IE,GS2 and (Eim )0 Bank2 = (Eim )C (2.8.14)

In Equstions (2.8.12) through (2.8.14), M, ** is the source of the kinetic variable E; in the canal from
the overland via bank 2 [M/t/L], which appeared in Eq. (2.5.44).

2.8.2 Coupling between Subsurface and Overland Transport

The coupling of overland and subsurface transport is through the exchange of dissolved species only.
Sediments, particulate species, and precipitated species in the overland flow will not exchange with
adsorbed/ion exchanged and precipitated species in the subsurface flow. If the concentrations of
dissolved chemicals in overland water and subsurface water at the ground surface are discontinuous,
the chemical flux is given by
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s

n-[Vp,C"=0D-V(p,C") ]| =M, = %[ (1+sign(s,))p,(C") +(1—sign(SI))pw(C,.W)o} (2.8.15)

where (Ciw )0 1s the concentration of the i-th dissolved species in the overland water and (Cl.w)s is the
concentration of the i-th dissolved species of subsurface water at the interface and M o 1S mass rate
of the source of the i-th dissolved species in overland from subsurface media [M/t/L*], which
appeared in Eq. (2.6.31). Ifthe concentrations are continuous, we impose the continuity of dissolved
concentration to yield the fluxes

n- |:Vpiciw - (91) ' v(piciw)] = Mc’fd and (Ciw )X on the interface (Cz " )0 (208-16)

The transforemation of the interfacial boundary conditions, Eq. (2.8.15) and (2.8.16), to those in
terms of kinetic variables is not straightforward because the reaction networks for the subsurface and
overland may not be identical. If every kinetic-variable in the subsurface corresponding to that in
the overland contains the same dissolved aqueous species, then the transformation is straightforwd
as

w w S . w)® . w\?
n-[VE'-0D-V(E")]=M,, = 7’[ (1+sign(S,))(E") +(1-sign(S,))(E") } (2.8.17)
for the case when the state variables are discontinuous, and

s

n-[VE'- 6D-V(E")|=M,, and (E")

on the interface (Ez ! )0 (2.8.18)

for the case when the state variables are continuous. In Equstions (2.8.17) and (2.8.18), (E[W )0 is the

concentration of the dissolved portion of i-th kinetic variables in the overland water and (E ! )S is the

concentration of the dissolved portion of the i-th kinetic variable in subsurface water at the interface
and M " 1s the mass rate of the source of the i-th kinetic variable in overland from subsurface media

[M/t/L?], which appeared in Eq. (2.6.46).

It should be kept in mind that (E, )D and (El.w )S (and as a matter of fact(Eiw)) must have the same
dissolved species content for Equations (2.8.17) and (2.8.18) to be valid. Otherwise, the coupling in

terms of kinetic-variables requires further elaborations that will be addressed in Section 2.8.4.
2.8.3 Coupling between Subsurface and River/Stream/Canal Transport
Similar to the coupling between subsurface and overland, the transport between subsurface and canal

is coupled and the fluxes between two media depend on if the dissolved concentration is continuous
or not. For the case of discontinuous chemical concentration, the flux is given by
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n-(Vp,C"~0D-Vp,C")= %((1 +sign(neV)) p, (C") +(1-sign(n-V))p, (C))

v

(2.8.19)

( 1 + sign n-V))pw (C,.W)S + (1 — sign (n-V))pw (C,.W)c) dpP
where (Cl. " )S and(C,. " )C are the concentrations of the i-th dissolved species in the subsurface and canal

waters. If the concentration is continuous, we impose its continuity to yield the flux

[n(Vp,C"=0D-V(p,C")dP=M." and (C")

Wi i

e = (G ) (2.8.20)

P

where M, is mass rate of the source of the i-th dissolved species in canal from subsurface media
[M/t/L].

Similar to the coupling between subsurface and overland flows, the transforemation of the interfacial
boundary conditions, Eq. (2.8.19) and (2.8.20), to those in terms of kinetic variables is not
straightforward because the reaction networks for the subsurface and river/stream newtworks may
not be identical. If every kinetic-variable in the subsurface corresponding to that in the river/stream
contains the same dissolved aqueous species, then the transformation is straightforwd and is given in
Egs. (2.8.21) and (2.8.22), respectively, for the cases of discontinuity and conctinuity, respectively,
in species concentrations,

n(VE'-6D-VE')= “'2V ((1+Sign(n-V))(El.w)s+(1—sign(n-V))(Eiw)c)

=L

(2.8.21)

( 1 + sign n-V))(E ) + (1 - sign(n-V))(Eiw)c)dP

and
j n-(VE' —0D-V(E")YP=M," and (E')

P

on the interface (Ez “’)C (2.8.22)

where( E" ) and(E,.“')C are the concentration of the dissolved portion of i-th kinetic variables in the

subsurface and canal.

It should be kept in mind that (Eiw)c and (E[W )S (and as a matter of fact(E,.W)) must have the same
content of dissolved species for Equations (2.8.21) and (2.8.22) to be valid. Otherwise, the coupling

in terms of kinetic-variables requires further elaborations that will be addressed in Section 2.8.4.
2.8.4 Coupling of Reactive Transport between Groundwater and Surface Transport

Since reaction networks for groundwater and surface waters (in overland and river/stream flows) are
likely to be different, the continuity of species fluxes and the continuity of species concentration or
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the formulation of species fluxes must be transformed from those in terms of species concentration
to those in terms of kinetic variables.

After decomposition of reaction networks, kinetic-variables and their corresponding dissolved
portion are simply defined as linear combination of species

{E}, =[AL{C},, {E"}, =[B]{C}, and {E} =[A]{C},, {E"}, =[B]{C},  (2.8.23)

where the subscript g denotes the groundwater system; the subscript s denote the surface water
system; {E} and {E"} are the vectors of size M; and [A] and [B] are the decomposed unit matrices
of'size M x M. It is noted that the i-th reaction extent, £;, is an equilibrium variable if its evolution is
governed by an indepdendnt equilibrium raeaction and a set of linearly depending kinetic reactions;
a kinetic variable if by an independent kinetic reaction and a set of linearly dependent kinetic
reactions; a component if its concentration remains constant (Fang et al., 2003). Inverting Eq.
(2.8.23), we have

{C}, =[A],{E}, and {C} =[A] {E}, (2.8.24)
Continuity of flux of all aqueous requires

n- (V{Ew}g ~6D-V{E"}, ) =n- (V[B]g {C"}, —6D-V[B], {C”‘}g),
thus  n-(V{E"}, —0D-V{E"} )=n-(V[B] {C"}, - 6D-V[B] {C"},) (2.8.25)
=n-(V[B],[A],"{E}, - 6D V[B],[A] '{E},)

Continuity of aqueous speces require

{E"}, =[B],{C"}, =[B],{C"}, =[B],[A], ' {E}, (2.8.26)
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