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Abstract

A multi-dimensional numerical model for sediment transport based on the two-phase
flow formulation is developed. With closures of particle stresses and fluid-particle in-
teraction, the model is able to resolve processes in the concentrated region of sediment
transport and hence does not require conventional bedload/suspended load assumptions.
The numerical model is developed in three spatial dimensions. However, in this version,
the model is only validated for Reynolds-averaged two-dimensional vertical (2DV) for-
mulation (with the k − � closure for carrier flow turbulence) for sheet flow in steady and
oscillatory flows. This numerical model is developed via the open-source CFD library of
solvers, OpenFOAM and the new solver is called twoPhaseEulerSedFoam. This report
is written as the documentation of the open-source solver twoPhaseEulerSedFoam and it
includes the mathematical formulation, numerical methodology, model validation, instal-
lation procedures and model input/output.



Contents

1 Introduction 6

2 Model Formulations 9

2.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Inter-phase Momentum Transfer . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Fluid Turbulence Model . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Closures on Particle Stresses . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Numerical Method 18

3.1 Finite Volume Discretization . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Projection Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Sediment Concentration Equation . . . . . . . . . . . . . . . . . . . . . 21
3.4 Time Step Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 Program Outline and Flow Chart . . . . . . . . . . . . . . . . . . . . . . 23
3.6 A Summary of Major Modifications . . . . . . . . . . . . . . . . . . . . 24

4 Model Examples/Validations 25

4.1 Steady Sheet Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Oscillatory Sheet Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Conclusion and Future Work 31

6 Appendix 32

6.1 Installation and Compilation . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Model Input and Output . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

List of Figures

1 Schematic plot of sheet flow sediment transport with several vertical layers
signifying the transport dominated by different mechanisms . . . . . . . . 9

2 Flow chart of solution procedure . . . . . . . . . . . . . . . . . . . . . . 23
3 Model-data comparison for steady sheet flow of Sumer et al. (1996).

Panels (a1), (b1), (c1) ((a2), (b2), (c2) or (a3), (b3), (c3)) are results for
θ = 1.1 (θ = 1.68 or 2.2) . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3



4 Comparison of predicted (curves) and measured (symbol) concentration
profiles at four different instants for sheet flow of medium sand driven by
sinusoidal motion (T=5.0 sec and Um=1.5 m/s, O’Donoghue and Wright
(2004)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Comparison of concentration time series at three different vertical loca-
tions for sheet flow of medium sand driven by sinusoidal motion (T=5.0
sec and Um=1.5 m/s, O’Donoghue and Wright (2004)) . . . . . . . . . . 29

6 Snapshot of concentration field at (a) flow reversal (t=0 s) and (b) flow
peak (t=1.25 s) for sheet flow of medium sand driven by sinusoidal motion 29

7 Comparison of predicted (curves) and measured (symbols) concentration
profiles at four different instants for sheet flow of medium sand driven by
Stokes 2nd-order wave motion (T=7.5 sec, O’Donoghue and Wright (2004)) 30

8 Comparison of concentration time series at three different vertical loca-
tions for sheet flow of medium sand driven by Stokes 2nd-order wave mo-
tion (T=7.5 sec, O’Donoghue and Wright (2004)) . . . . . . . . . . . . . 30

4



List of Tables

1 List of coefficients in fluid turbulence closure . . . . . . . . . . . . . . . 13
2 Flow conditions in O’Donoghue and Wright (2004) . . . . . . . . . . . . 27

5



1 Introduction

Numerical models for coastal morphological evolution (Jacobsen et al., 2012; Warner
et al., 2008; Lesser et al., 2004), scour (Liu and Garcia, 2008) and bedform dynamics
(Marieu et al., 2008; Chou and Fringer, 2010) typically split the total sediment trans-
port into bedload and suspended load components. Invoking dilute flow assumptions,
suspended load transport is resolved in order to capture resuspension, advection, and de-
position driven by complex turbulent flows. However, the concentrated region of sediment
transport near the bed, often referred to as the bedload, cannot be resolved in this type of
models and semi-empirical parameterizations of bedload transport rate (Ribberink, 1998)
and pickup flux (Engelund and Fredsoe, 1976; van Rijn, 1984) are used to complete the
mathematical description. These semi-empirical parameterizations are often direct ex-
tension from simple flow conditions and hence many key assumptions are adopted (e.g.,
ignoring unsteadiness) when applied to coastal environments.

On the other hand, the two-phase flow approach can resolve concentrated region of sed-
iment transport (see Figure 1) by including closures of particle stresses and fluid-particle
interactions in the governing equations. In the past decades, several two-phase numerical
models have been developed, where the sediment phase is modeled either with an Eulerian
scheme (Dong and Zhang, 1999, 2002; Hsu et al., 2004; Li et al., 2008; Amoudry and Liu,
2009; Bakhtyar et al., 2010) or a Lagrangian scheme (Drake and Calantoni, 2001). These
two-phase models can resolve the full profiles of sediment transport without the need to di-
vide the transport into bedload and suspended load components. Using a two-phase model,
researchers can quantify the total transport load under waves driven by higher-order wave
statistics (Dong and Zhang, 2002; Hsu and Hanes, 2004; Calantoni and Puleo, 2006; Liu
and Sato, 2006), wave-induced boundary layer streaming (Yu et al., 2010; Kranenburg
et al., 2014) and wave-breaking turbulence (Scott et al., 2009). Two-phase models are
also used to improve the parameterization of pickup flux in suspended load module under
waves (Amoudry and Liu, 2010; Yu et al., 2012).

Most of the existing two-phase models are based on the Reynolds-averaged approach
and simplified into one-dimensional-vertical (1DV) formulation. 1DV models cannot cap-
ture the development of inhomogeneous flow features (e.g., bedforms), flow instabilities
and scour (Amoudry and Liu, 2009). Hence, existing two-phase models are restricted to
sheet flow applications where the ensemble-averaged flow field is more or less fully de-
veloped in the streamwise and spanwise directions. Moreover, 1DV model cannot resolve
three-dimensional (3D) turbulence and turbulence-sediment interaction. For example, in
the 1DV model of Kranenburg et al. (2014), they showed that model results are sensi-
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tive to the parameterization of turbulence-sediment interaction (damping of carrier flow
turbulence due to the presence of sediment). By invoking fine sediment assumption to fur-
ther simplify the two-phase equations, Penko et al. (2010) developed a 3D mixture model
that is able to resolve turbulence over evolving sand ripples. Similar turbulence-resolving
simulation model is developed by Ozdemir et al. (2010) to study the transition of flow
modes of fine sediment in the wave boundary layer due to turbulence-sediment interac-
tion. Although the mixture approach is further simplified from the complete two-phase
flow equations (Balachandar and Eaton, 2010), these two studies clearly demonstrate the
importance of resolving flow turbulence in sediment transport. Hence, we are motivated
to develop a three-dimensional two-phase model for sediment transport by extending the
existing 1DV modeling strategy.

We have recently developed a 3D model for sediment transport that solves the com-
plete Eulerian two-phase equations and this report is intended to describe this new model.
Although the numerical model is written in 3D, the current version of the model has only
been validated with 2DV Reynolds-averaged mode, which is presented later. The mathe-
matical formulation of the two-phase model developed here is similar to Hsu et al. (2004)
(see also Yu et al. (2010, 2012)), where the Eulerian two-phase flow equations for fluid
and sediment phases are solved. In the 2DV Reynolds-averaged formulation, we adopt the
k− � closure for carrier flow turbulence, which includes semi-empirical terms to represent
the damping of flow turbulence due to sediment. The kinetic theory of Lun et al. (1984)
is used for the closure of collisional particle stresses, and simple phenomenological clo-
sures (Johnson and Jackson, 1987; Srivastava and Sundaresan, 2003) are used for particle
stresses in the layer of enduring contact. The mathematical formulation is solved numer-
ically using the open-source CFD library of solvers, OpenFOAM. OpenFOAM includes
several multiphase flow modeling capabilities, such as bubbly flow (Rusche, 2002). Specif-
ically, a two-phase flow solver in OpenFOAM called, twoPhaseEulerFoam (Rusche, 2002;
Weller, 2002; Peltola, 2009) is adopted as the baseline. In the past several years, we de-
voted a considerable amount of efforts to improve the numerical stability of the solver and
to include additional capabilities needed for coastal sediment transport applications. This
document is intended to report the mathematical formulation of the Eulerian two-phase
model for sediment transport, the numerical methodology and new modifications made
to the twoPhaseEulerFoam solver provided by OpenFOAM. This new sediment transport
model is named twoPhaseEulerSedFoam.

Scientific progresses made in modeling coastal processes have been facilitated by the
development of open-source coastal modeling systems such as ROMS (Warner et al.,
2008), DELFT3D (Lesser et al., 2004), NearCom-TVD (Chen et al., 2014), and many
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others. These models allow field experimentalists to utilize sophisticated models as an
analytical tool to help to interpret observational data. Moreover, these open-source coastal
models also help theoreticians and small-scale modelers to test their hypotheses and new
parameterizations of processes that cannot be resolved in these large-scale models. How-
ever, for researchers studying small-scale, intra-wave coastal processes, such open-source
numerical model is lacking. Since the introduction of the CFD open-open source library
of solvers, OpenFOAM, developing open-source numerical modeling tool for small-scale
coastal applications has become much more convenient (e.g., see nearshore wave mod-
eling application by Jacobsen et al. (2012); Higuera et al. (2013)). To make a leap to
improve our capability in modeling critical sediment transport mechanisms, open-source
numerical modeling tools for small-scale processes must be made available to the research
community. This work is intended to address this critical research infrastructure issue in
the context of non-cohesive sediment.

This report is written as the documentation of the twoPhaseEulerSedFoam solver. The
remaining of this report is organized as follow. The mathematical formulation of the two-
phase sediment transport model is discussed in Section 2. The numerical methodology is
discussed in Section 3 with additional references associated with the original OpenFOAM
library of solvers provided. Model validation for the present 2DV Reynolds-averaged
formulation is presented in Section 4. Conclusion and future work is discussed in Section
5. The Appendix include procedures for the installation of the numerical model and model
input/output.
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2 Model Formulations

Drew (1983) has derived the Eulerian two-phase flow equations via averaging over car-
rier fluid and dispersed particles. The resulting governing equations for Eulerian two-
phase flow can be considered as the counterpart of the clear fluid Navier-Stokes equations.
Hence, in order to apply these equations to turbulent flow without resolving all the scales
of turbulence (larger than the grain scale), additional turbulence averaging or filtering is
necessary. Hsu et al. (2003, 2004) has developed an Eulerian turbulence-averaged two-
phase model to study sediment transport in sheet flow condition. In the present study, we
extend the two-phase flow formulation similar to Hsu et al. (2004) for multi-dimensional
sediment transport.

Figure 1: Schematic plot of sheet flow sediment transport with several vertical layers
signifying the transport dominated by different mechanisms

Figure 1 shows a schematic plot of sheet flow sediment transport with vertical layers
identified based on the dominant mechanisms. With the four-way coupled two-phase flow
formulation along with appropriate closure models, the resulting model can resolve the
full dynamics of sediment transport from the (porous) immobile bed, to the highly con-
centrated regions of transport dominated by enduring contact forces, to less dense region
dominated by particle collision and turbulent suspension, and to the dilute suspended load
region driven solely by flow turbulence. Particularly, the concentrated regions of sedi-
ment transport can be resolved by including closures of particle stresses and fluid-particle
interactions in the governing equations. Hence, using the two-phase modeling approach
for sediment transport, the resulting model does not require bedload/suspended load as-
sumptions, commonly adopted by the single-phase flow approach. More details of this
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modeling approach are discussed next.

2.1 Governing Equations

Although the present numerical model developed via the OpenFOAM numerical frame-
work is naturally three-dimensional, the present model is only validated with turbulence-
averaged two-dimensional vertical (2DV) formulation. Therefore, the governing equations
and closures discussed in this version (twoPhaseEulerSedFoam version 1) will be based
on the turbulence-averaged formulation. Assuming that there is no mass transfer between
the two phases, the mass conservation equations for fluid phase and sediment phase can
be written as:

∂(1− φ)

∂t
+

∂(1− φ)uf

i

∂xi

= 0 (1)

∂φ

∂t
+

∂φus

i

∂xi

= 0 (2)

where φ is the sediment volumetric concentration, uf

i
, us

i
are i component of fluid and

sediment phase velocities, respectively, and i = 1, 2, 3 represents streamwise, spanwise
and vertical components. The momentum equations for fluid and particle phases can be
written as:

∂ρf (1− φ)uf

i

∂t
+

∂ρf (1− φ)uf

i
uf

j

∂xj

= −∂(1− φ)pf

∂xi

+
∂(1− φ)τ f

ij

∂xj

+ρf (1− φ)gδi3 +M fs

i

(3)

∂ρsφus

i

∂t
+

∂ρsφus

i
us

j

∂xj

= −∂φpf

∂xi

− ∂ps

∂xi

+
∂τ s

ij

∂xj

+ ρsφgδi3 +M sf

i
(4)

where ρf , ρs are fluid and sediment density, respectively, gi is the gravitational accelera-
tion, pf is the fluid pressure and τ f

ij
is the fluid shear stress, which includes fluid viscous

stress and stresses associated with turbulence. Particle pressure ps and particle stress τ s
ij

are
calculated from kinetic theory of granular flow and phenomenological closure of frictional
contact stresses. M fs

i
and M sf

i
represent the inter-phase momentum transfer between fluid

phase and particle phase, and M fs

i
= −M sf

i
. Closures of the momentum transfer term and

the stress terms for sediment transport are discussed next.
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2.2 Inter-phase Momentum Transfer

In this framework of Eulerian two-phase flow formulation, both fluid and sediment phase
are considered as continuum, and the momentum of these two phases are coupled through
the inter-phase momentum transfer terms. The interaction between fluid phase and par-
ticle phase includes the drag force, the added mass force, the Basset force, the lift force
(Maxey and Riley, 1983) and the effect of turbulence fluctuations on the effective momen-
tum transfer. Typically, the drag force dominates in many sediment transport applications,
and hence for simplicity we neglect the other terms such as lift force, added mass force
and Basset force. In this version, the momentum exchange has the following form:

M fs

i
= −M sf

i
= −φβ(uf

i
− us

i
)− βφ∆uf

i
+ pf

∂(1− φ)

∂xi

(5)

The last term on the right-hand-side (RHS) of equation (5) is the inter-phase pressure cor-
rection term, and the first two terms are due to drag force. The first term on the RHS of
equation (5) represents averaged drag force due to mean relative velocity between fluid
and particle phases, and the second term is the correlation term of sediment concentration
and large-scale (larger than grain scale) fluid velocity fluctuations, often called turbulent
suspension. The turbulent suspension terms is obtained from the Reynolds averaging (de-
noted as overbar), and can be modeled using gradient transport assumption (McTigue,
1981):

φ∆uf

i
= −νft

σc

∂φ

∂xi

(6)

where νft is the turbulent viscosity to be calculated with a turbulence closure and σc is the
Schmidt number (see Table 1). For the closure of β, we adopt that suggested by Ding and
Gidaspow (1990), who combined Ergun (1952) for dense sediment concentration (φ ≥
0.2) and Wen and Yu (1966) for lower sediment concentration (φ < 0.2):

β =

�
150φνfρf

(1−φ)d2 + 1.75ρf |uf−u
s|

d
,φ ≥ 0.2

0.75Cdρ
f |uf−u

s|(1−φ)−1.65

d
,φ < 0.2

(7)

where d is the sediment diameter, and Cd is expressed as:

Cd =

�
24(1+0.15Re

0.687
p )

Rep
, Rep ≤ 1000

0.44, Rep > 1000
(8)

in which, Rep = (1−φ)|uf −us|d/νf is the particle Reynolds number, and νf is the fluid
molecular viscosity.
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2.3 Fluid Turbulence Model

Because the present model equations are obtained by averaging over turbulence, the stresses
are consisted of a large-scale component Rft

ij
(similar to Reynolds stress) and a small-

scale stress rf
ij

, which includes the viscous stress and an additional fluid stress at grain
scale (e.g., turbulence generated around individual particles). In the present study, stress
associated with grain scale turbulence is neglected. Thus, the total fluid stress is written
as:

τ f
ij
= Rft

ij
+ rf

ij
= ρf

�
νeff

�∂uf

i

∂xj

+
∂uf

j

∂xi

�
− 2

3
νeff

∂uf

k

∂xk

δij −
2

3
kfδij

�
(9)

where kf is the turbulent kinetic energy, and νeff = νf+νft is the fluid effective viscosity.
A modified k − � model (Hsu et al., 2004; Yu et al., 2010) is proposed to model the fluid
turbulence:

∂kf

∂t
+ uf

j

∂kf

∂xj

=
Rft

ij

ρf
∂uf

i

∂xj

+
∂

∂xj

��
νf +

νft

σk

�∂kf

∂xj

�
− �f − 2β(1− α)φkf

ρf (1− φ)

− 1

(1− φ)

νft

σc

∂φ

∂xj

(s− 1)gδj3

(10)

The balance equation for the rate of turbulent energy dissipation �f is assumed to be
similar to that of clear fluid, except for the extra dissipation mechanism due to particle
phase:

∂�f

∂t
+ uf

j

∂�f

∂xj

= C1�
�f

kf

Rft

ij

ρf
∂uf

i

∂xj

+
∂

∂xj

��
νf +

νft

σ�

�∂�f

∂xj

�
− C2�

�f

kf
�f

−C3�
�f

kf

2β(1− α)φkf

ρf (1− φ)
− C4�

�f

kf

1

(1− φ)

νft

σc

∂φ

∂xj

(s− 1)gδj3

(11)

where the parameter α is proposed to characterize the degree of particles following the
fluid velocity fluctuations and it can be quantified by the Stokes number St (Benavides
and van Wachem, 2008):

St =
τp
τl

(12)

where τp = ρs/β is the particle response time, τl = kf/(6�f ) is the characteristic time
scale of energetic eddies. Considering a given particle encounters an eddy on its path, if the
particle is of very small inertia (St � 1), the particle can follow the eddy motion closely. If
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Table 1: List of coefficients in fluid turbulence closure

Cµ C1� C2� C3� C4� σk σ� σc

0.09 1.44 1.92 1.2 0 or 1.0 1.0 1.3 1.0

St∼O(1), the eddy can cause a significant disturbance on the particles trajectory. Finally,
if St � 1, the particle can leave the swirling flow with its path hardly affected. Danon
et al. (1977) and Chen and Wood (1985) proposed an exponential function for α:

α = e−B·St (13)

where B is an empirical coefficient. The last term in equation (10) represents the ef-
fect of sediment-induced density stratification on turbulence. It is typically a dissipation
mechanism for the turbulent kinetic energy. According to the experimental evidence, it is
also possible that the presence of particle provides a generation mechanism of flow turbu-
lence. However, this is typically observed for very large Stokes number and this effect is
neglected here.

The turbulent eddy viscosity is calculated as:

νft = Cµ

(kf )2

�f
(14)

where Cµ is an empirical coefficient (see Table 1). The coefficients adopted here are
listed in Table 1. As in Hsu et al. (2004), due to the lack of sufficient experimental data
to provide appropriate empirical coefficients for particle-laden flow, the coefficients from
the clear fluid k − � model are used. For stable stratification C4� = 0 is used following
what typically used in stratified flow studies, however it is set to 1 for unstably stratified
condition. Moreover, following Hsu et al. (2004) the coefficient C3� is chosen to be 1.2
and the coefficient B is left as the only free parameter in the model to be calibrated with
measured data.

2.4 Closures on Particle Stresses

Following the conceptual plot shown in Figure 1, the closures of particle pressure and par-
ticle stresses include two components. For moderate sediment concentration, intergranular
interaction is assumed to be caused by binary collisions and a closure based on kinetic
theory is adopted. For large sediment concentration, binary collision eventually become
invalid and intergranular interaction is dominated by enduring contact/frictional forces
among particles. Hence, particle pressure and particle stress both consist of a collisional-
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kinetic component and a frictional component (Johnson and Jackson, 1987; Hsu et al.,
2004):

ps = psc + psf (15)

τ s
ij
= τ sc

ij
+ τ sf

ij
(16)

The collisional component based on the kinetic theory is first discussed. In the kinetic
theory, particle stress and particle pressure are quantified by particle velocity fluctuations
due to binary collisions. To quantify the strength of the particle velocity fluctuation, the
concept of granular temperature Θ is introduced (Jenkins and Savage, 1983) for dry granu-
lar flow consists of smooth, slightly inelastic, spherical particles. In the present two-phase
flow condition, we adopted the balance equation for granular temperature suggested by
Ding and Gidaspow (1990):

3

2

�∂φρsΘ
∂t

+
∂φρsus

j
Θ

∂xj

�
=

�
− pscδij + τ sc

ij

�∂us

i

∂xj

− ∂qj
∂xj

− γs + Jint (17)

where qj is the flux of granular temperature, γs is the energy dissipation rate due to inelastic
collision and Jint is the production (or dissipation) due to the interaction with the carrier
fluid phase.

Since the kinetic theory is based on the assumption of binary collision, we need to
introduce a function to describe the probability of the binary collision as a function of
particle concentration. This is the radial distribution function gs0. The basic requirement
of the radial distribution function is that gs0 is a function of sediment concentration φ, and
we need to ensure that gs0 goes to 1 when the φ approaches to 0, and gs0 goes to infinity
when the φ approaches the packing limit. In this study, we use the radial distribution
function for dense rigid spherical gases of Carnahan and Starling (1969):

gs0 =
2− φ

2(1− φ)3
(18)

It has been demonstrated that the formula of Carnahan and Starling (1969) under pre-
dicts gs0 when concentration φ > 0.57 (Ding and Gidaspow, 1990; Sinclair and Jackson,
1989). However, it is noted here that in the present study when φ > 0.57, the sediment
stress are dominated by enduring contact/frictional component and the collisional compo-
nent modeled by the kinetic theory reduces to zero at high concentration. Therefore, we
still adopt the radial distribution function of Carnahan and Starling (1969) for simplicity.

In the 1980s, dense phase kinetic theory of gases (Chapman and Cowling, 1970) was
applied to granular flow by many researchers (Jenkins and Savage, 1983; Lun et al., 1984).
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To apply the kinetic theory of granular flow to a wide range of particle concentration, Lun
et al. (1984) demonstrated that particle pressure and particle stress due to collision consist
of the kinetic part (similar to Reynolds stress) and a direct collisional part. In the present
study, we adopt the closure of particle pressure proposed later by Ding and Gidaspow
(1990):

psc = ρsφ[1 + 2(1 + e)φgs0]Θ (19)

where e is the coefficient of restitution during the collision. Similarly, the corresponding
particle stress is calculated by (Gidaspow, 1994):

τ sc
ij

= µsc
�∂us

i

∂xj

+
∂us

j

∂xi

�
+
�
λ− 2

3
µsc

�∂us

k

∂xk

δij (20)

The bulk viscosity is calculated as:

λ =
4

3
φ2ρsdgs0(1 + e)

�
Θ

π
(21)

The solid phase shear viscosity is calculated as the sum of kinetic shear viscosity and
collisional shear viscosity:

µsc = ρsd
√
Θ
�4
5

φ2gs0(1 + e)√
π

+

√
πgs0(1 + e)φ2

15
+

√
πφ

6
+

5

48

√
π

(1 + e)gs0

�
(22)

The closure of granular temperature flux is assumed to be analogous to the Fourier’s law
of conduction:

qj = −κ
∂Θ

∂xj

(23)

where the κ is the conductivity of granular temperature, calculated as

κ = ρsd
√
Θ
�2φ2gs0(1 + e)√

π
+

9
√
πgs0(1 + e)φ2

16
+

15
√
πφ

16
+

25

64

√
π

(1 + e)gs0

�
(24)

Jenkins and Savage (1983) were the first study to model the dissipation rate due to
inelastic collision. In this study, we use the closure later proposed by Ding and Gidaspow
(1990):

γs = 3(1− e2)φ2ρsgs0Θ
�4
d

�Θ
π

�1/2 −
∂us

j

∂xj

�
(25)
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Due to the presence of carrier fluid phase, carrier flow turbulence can also induce par-
ticle fluctuations. According to Ding and Gidaspow (1990) and the turbulence closure
discussed in the previous section, the fluid-particle interaction term can be expresses as:

Jint = φβ(2αkf − 3Θ) (26)

When the volumetric concentration of particles becomes close to random loose packing
(φ ≈ 0.57), particles are constantly in contact with each other, and particle energy can be
dissipated by friction between sliding particles (Tardos, 1997). Thus, when the sediment
concentration exceeds certain threshold value, frictional stress model need to be adopted.
Following Johnson and Jackson (1987), the frictional component of particle pressure is
calculated as:

psf =

�
0,φ < φf

F (φ−φf )m

(φmax−φ)n ,φ ≥ φf

(27)

where φf = 0.57, φmax = 0.635 and F , m and n are empirical coefficients to be discussed
later. The particle stress due to frictional effect is calculated by:

τ sf
ij

= µsf
�∂us

i

∂xj

+
∂us

j

∂xi

�
− 2

3
µsf

∂us

k

∂xk

δij (28)

where µsf is the frictional viscosity. Srivastava and Sundaresan (2003) combine the fric-
tional normal stress model of Johnson and Jackson (1987) and the frictional viscosity
model of from Schaeffer (1987). Thus, the friction viscosity is calculated by:

µsf =

√
2psf sin(θf )

2
�

Ss

ij
·Ss

ij

(29)

where Ss

ij
is the deviatoric part of strain rate tensor for sediment phase:

Ss

ij
=

1

2

�∂us

i

∂xj

+
∂us

j

∂xi

�
− 1

3

∂us

k

∂xk

δij (30)

In the above equation, θf is the angle of repose and is taken to be θf = 28◦ for sand.
In sediment transport, the frictional component of particle pressure and particle stress

play a definite role to ensure the existence of an immobile sediment bed and a low mo-
bility layer of enduring contact can be modeled (Hsu et al., 2004). Hence, the empirical
coefficients presented here are calibrated to ensure that a stable sediment bed can be estab-
lished below the mobile transport region. In the closure of particle pressure in the region
of enduring contact, the following values are adopted in this study: F = 0.05, m = 3,

16



n = 5. Notice that in the original model of Johnson and Jackson (1987) applied to debris
flow, these coefficients were suggested to be F = 0.05, m = 2 and n = 5. Therefore,
the present model applied to sediment transport in a bottom boundary layer gives similar
empirical values.

17



3 Numerical Method

The numerical implementation of the present formulations is based on an open-source
CFD library called OpenFOAM, which provides a variety of finite volume method (FVM)
libraries and solvers. OpenFOAM includes several single phase and multiphase flow mod-
eling capabilities. Specifically, a two-phase flow solver in OpenFOAM called, twoPhaseE-
ulerFoam (Rusche, 2002; Weller, 2002; Peltola, 2009) is adopted as the baseline. FVM
uses the integral form of the conservation equations, dividing the domain into small control
volumes (CV) and applying the conservation equation to each CVs. Volume and surface
integrals are approximated with adequate quadrature formulas considering the center of
the CV as the computational node and obtaining values at the CV faces through different
interpolation schemes using the nodal values. This procedure results in the definition of
one algebraic equation for each CV and leads to a conservative method by construction.

OpenFOAM uses the FVM over a collocated grid arrangement. The collocated ar-
rangement stores all dependent variables at the cell center and the same CVs are used for
all variables, so that the computational effort is minimized. A different approach is used in
the staggered grid arrangement where different variables can be defined on different grids.
Comparing to the staggered grid system, the main advantages of collocated arrangement
are a minimization of the computational effort since all variables are stored using the same
CV and an effective treatment of complex domains, especially with discontinuous bound-
ary conditions. In addition, the difficulties linked to the pressure-velocity coupling and
the consequent oscillations in the pressure fields are resolved through the Rhie and Chow
method (Rhie and Chow, 1983).

3.1 Finite Volume Discretization

The momentum equations in the conservative form (equation (3) and (4)) are expanded into
the non-conservative form for numerical convenience. For example, in fluid momentum
equation (3), expanding the left-hand-side (LHS) of equation and substituting equation (1)
into equation (3) yields the momentum equations in the non-conservative form:

∂uf

i

∂t
+ uf

j

∂uf

i

∂xj

= − 1

ρf
∂pf

∂xi

+
1

ρf (1− φ)

∂(1− φ)τ f
ij

∂xj

− φβuf

i

ρf (1− φ)
+ F f

i
(31)

where F f

i
= gδi3 + φβu

s
i

ρf (1−φ) +
β

ρf (1−φ)
ν
ft

σc

∂φ

∂xi
is a sum of gravitational term, drag term

and turbulent suspension term. The non-conservative form of the sediment momentum
equation can be derived in a similar way:
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∂us

i

∂t
+ us

j

∂us

i

∂xj

= − 1

ρs
∂pf

∂xi

+
1

ρsφ

∂τ s
ij

∂xj

− βus

i

ρs
+ F s

i
(32)

where F s

i
= − 1

ρsφ

∂p
s

∂xi
+ gδi3 +

βu
f
i

ρs
− β

ρsφ

ν
ft

σc

∂φ

∂xi
is a sum of particle pressure gradient,

gravitational term, drag term and turbulent suspension term. To illustrate the finite volume
discretization, we can take equation (31) as an example. Expanding the second term on
the RHS of equation (31), and substituting equation (9) yields:

1

ρf (1− φ)

∂(1− φ)τ f
ij

∂xj

=
νeff

(1− φ)

∂(1− φ)

∂xj

∂uf
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∂xj

+
νeff

(1− φ)

∂(1− φ)

∂xj

Tij

+
∂

∂xj

�
νeff

∂uf
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∂xj

�
+

∂Tij

∂xj

(33)

where Tij = νeff
∂u

f
j

∂xi
− 2

3

�
kf +

∂u
f
k

∂xk

�
δij . Through the above expansion, the first term

on the RHS of equation (33) can be combined with the convection term on the LHS of
equation (31). This diffusive term can avoid high fluctuations near sharp concentration
gradient, and make the solver more stable. As we will provide more details later, the stan-
dard PISO procedure is used in the present solver. The intermediate velocities are solved
from the momentum equation without the pressure gradient term, and then the velocities
are corrected after the pressure is solved to satisfy mass conservation. Firstly, equation
(31) without pressure gradient term can be further rearranged, and volume integral of the
divergence terms are transferred to surface integral over the control surface (CS) through
Gauss’s theorem. Thus, the following semi-discretized system of equations can be derived:

�

CV

∂uf∗
i

∂t
dV +

�

CS

uT

j
nju

f∗
i
dS − uf∗

i

�

CS

uT

j
njdS =

�

CS

νeff
∂uf∗

i

∂xj

dS

+

�

CS

TijnjdS +

�

CV

HidV

(34)

where nj is the jth component of the unit vector orthogonal to CS and directed outwards,
uT

j
= uf

j
− ν

eff

(1−φ)
∂(1−φ)
∂xj

, and Hi = F f

i
− φβu

f∗
i

ρf (1−φ) +
ν
eff

(1−φ)
∂(1−φ)
∂xj

Tij are source terms in the
momentum equations. The ∗ symbol represents intermediate quantities in the projection
scheme. A similar rearrangement can also be applied to the momentum equation for sed-
iment phase (equation (4)). The discretization for the other governing equations such as
equation (2, 10, 11, 17) are similar, and they are not repeated here.
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3.2 Projection Method

As mentioned before, the standard projection method is used to solve fluid and particle
velocities (Rusche, 2002; Weller, 2002; Peltola, 2009). Firstly, the intermediate veloci-
ties (uf∗

i
,us∗

i
) are calculated by the corresponding momentum equations without pressure

gradient terms:

uf∗
i

=
Af

Hi

Af

D

+
F f

i

Af

D

(35)

us∗
i

=
As

Hi

As

D

+
F s

i

As

D

(36)

where F f

i
and F s

i
are source terms defined in equation (31) and (32), Af

D
and Af

Hi
are

coefficient matrices arising from the discretization of fluid momentum equation (equation
(31)) without fluid pressure gradient term and F f

i
term. As

D
and As

Hi
are similar coef-

ficient matrices associated with sediment momentum equation (equation (32)) excluding
fluid pressure gradient term and F s

i
term. The reason for separating fluid pressure term

and source term (F f

i
and F s

i
) from the momentum equations is explained as follow: the

momentum equations are constructed using cell center variables, and it has been noticed
that treating gradient terms such as turbulent suspension and gradient of particle normal
stress and explicit drag terms at cell faces are beneficial for numerical stability. Thus, these
terms are not included in the construction of coefficient matrices Af

D
, Af

Hi
, As

D
and As

Hi
.

These intermediate velocities do not satisfy the mass conservation equations (equations
(1), (2)). To enforce mass conservation of each phase, the pressure equation is constructed
by considering the continuity equations for both phases. In the present model, method
of Rhie and Chow (1983) has been adopted for pressure equations to prevent velocity-
pressure decoupling and oscillation in pressure fields. The pressure equations are con-
structed using velocity flux field, thus the continuity equation is formulated at the cell
faces as

∂
�
(1− φf )Φf + φfΦs

�

∂xi

= 0 (37)

where the subscript f denotes variables interpolated to the cell faces, Φf and Φs are fluid
and sediment velocity fluxes at cell faces, respectively. Finally, the following pressure
equation can be obtained:

∂

∂xi

�� φf

ρs(As

D
)f

+
1− φf

ρf (Af

D
)f

�∂pf

∂xi

�
=

∂
�
(1− φf )Φf∗ + φfΦs∗�

∂xi

(38)
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where Φf∗ and Φs∗ are flux prediction by interpolating intermediate fluid velocity and
sediment velocity to the faces. After solving the pressure, the fluid and sediment velocities
are updated as

uf

i
= uf∗

i
− 1

ρfAf

D

∂pf

∂xi

(39)

us

i
= us∗

i
− 1

ρsAs

D

∂pf

∂xi

(40)

The resulting fluid phase and particle phase velocities now satisfy mass conservation.

3.3 Sediment Concentration Equation

Following the rearrangement of Weller (2002), the conservative form of sediment continu-
ity equation (2) can be written as

∂φ

∂t
+

∂φUi

∂xi

+
∂φ(1− φ)Uri

∂xi

= 0 (41)

where Ui = (1− φ)uf

i
+ φus

i
, and Uri = uf

i
− us

i
. In the second term, φ is bounded since

the mixture velocity U satisfy the mixture continuity equation exactly. In the third term,
the two phases are coupled implicitly through the presence of the relative velocity Ur, and
bounding of φ is achieved by using Ur in the convection scheme to interpolate φ to the
face (and use −Ur to interpolate (1 − φ) to the face). This treatment is quite diffusive if
first order differencing scheme is used. Hence, higher order differencing scheme should
be used.

3.4 Time Step Control

At the beginning of each cycle, the time step is adjusted such that it is sufficiently small
to ensure the stability of the numerical solution procedure. In the present two-phase flow
framework, the time step is usually constrained by the Courant number Co at a cell face:

Co = max
� ����

us

i
∆t

∆Li

���� ,

�����
uf

i
∆t

∆Li

�����

�
(42)
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where ∆Li is the ith component of vector between two neighboring cell centers. Since the
relative velocity is also important in the concentration equation, a Courant number based
on the relative velocity is also defined:

Cor =

�����
(us

i
− uf

i
)∆t

∆Li

����� (43)

The time step should be adjusted in a smooth fashion to ensure the numerical stability
as well as better convergence. Under-relaxation is proven to beneficial to achieve this
goal. Meanwhile, a maximum time step is also defined to avoid very large time step. This
control prescription is defined to be:

∆tn =

�
∆tt, Co > Cot or Cor > Cot

r

min
�
min

�
min

�
∆tt,∆to + 0.1∆tt

�
, 1.2∆to

�
,∆tm

�
, otherwise

(44)

where Cot and Cot
r

are the target Courant number for Co and Cor, respectively. ∆to

and ∆tn are time step of previous time step and new time step, respectively, ∆tt =

min
�

Co
t

Coo
, Co

t
r

Coor

�
∆to, and ∆tm is the maximum allowed time step.
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3.5 Program Outline and Flow Chart

Figure 2: Flow chart of solution procedure

The solution procedure is outlined in the Figure 2, and the sequence of solution is
summarized as follow:

(1) Initializations: initialize all the variables;
(2) Adjust the time step according to Courant number, Co < 0.3 and Cor < 0.1;
(3) Solve for sediment concentration, i.e., equation (41);
(4) Calculate β in the drag term, i.e., equation (7);
(5) Solving k − � equations in turbulence closure, i.e., equations (10, 11);
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(6) Solving granular temperature, i.e., equation (17);
(7) PISO-loop, solving velocity-pressure coupling:

(a) Calculate uf∗
i

,us∗
i

using equations (35, 36) without fluid pressure gradient term;
(b) Construct and solve the pressure equation (38);
(c) Correct fluid and particle velocities after solving pressure, i.e., equation (39,

40) and update fluxes;
(8) Output results at defined output sequences.

3.6 A Summary of Major Modifications

As mentioned before, the present numerical model is modified from the solver twoPhaseE-
ulerFoam (Rusche, 2002; Weller, 2002; Peltola, 2009). New terms are added so that the
model solves the model formulation presented in Section 2. The solution procedure is
also revised to make the solver more robust. For example, the fluid turbulence is updated
immediately after solving the sediment concentration field, and then the kinetic theory of
granular flow is solved. In this manner, the fluid and particle turbulence are better coupled.
Meanwhile, the concentration field is updated only once, and shared by all the subsequent
procedures.

The gradient terms such as turbulent suspension term and particle normal stress term
are treated at the cell faces. In this manner, the discretization of the gradients are performed
for each face, and it’s numerically more stable. Meanwhile, the drag terms due to mean
motions are treated implicitly. In the PISO loop, the explicit parts of drag terms are updated
after each inner loop, so that the Newton third law are satisfied and inter-phase coupling
are better resolved. Meanwhile, the production terms in k−� equations (equations (10) and
(11)) and granular temperature equations (equation (17)) are treated implicitly to ensure
numerical stability.

A frictional stress model named SrivastavaSundaresan is adopted for sediment trans-
port application. This model combines the frictional normal stress from Johnson and
Jackson (1987) and tangential stress model from Schaeffer (1987). This new model has
the capability to capture the transition of solid-like feature to fluid-like feature of the sed-
iment bed. This frictional stress is implemented explicitly in the sediment momentum
equation (4). Moreover, with this new frictional stress model, the sediment concentration
rarely exceeds the maximum packing limit (usually around 0.635).

Meanwhile, following Rhie-chow’s procedure of pressure correction with collocated
grids, the pressure field is solved using intermediate velocity flux field. After solving
for pressure field, pressure gradient are calculated at cell faces and then the velocity is
corrected. This procedure is taken here instead of directly reconstructing the flux field,
which is known to be highly dissipative.
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4 Model Examples/Validations

The model is first calibrated/validated with laboratory flume data of Sumer et al. (1996)
for sand transport in steady channel flow under sheet flow condition. Then, the calibrated
model is demonstrated to reproduce measured sheet flow data of O’Donoghue and Wright
(2004) for oscillatory flow.

4.1 Steady Sheet Flow

Comparing to Hsu et al. (2004), the present model adopted a new turbulence modulation
model in k − � equations as well as in the granular temperature equation. This model is
expected to be more robust in predicting the sediment suspension for a wider range of sed-
iment grain size. The numerical model is validated with sheet flow data driven by steady
channel flow measured by Sumer et al. (1996) for two types of sediment. Specifically,
the model coefficient B (see equation (13)) associated with turbulence modulation due to
sediment is calibrated using this dataset.

Conventionally, the non-dimensional bed shear stress, called the Shields parameter, is
used to quantify non-cohesive sediment transport. For steady channel flow, the Shields
parameter can be calculated using bottom stress (or friction velocity), sediment density
and diameter:

θ =
τb

(ρs − ρf )gd
=

u2
∗

(s− 1)gd
(45)

In the numerical simulation, the driven force is the streamwise pressure gradient, which
can be determined by the energy slope ξ in an open channel flow experiment:

1

ρf
∂p̄f

∂x
= −gξ (46)

In Sumer et al. (1996), the bed friction velocity u∗ is calculated using the energy slope ξ
and hydraulic radius rb associated with the flume:

u2
∗ = −gξrb (47)

The results of fine sand transport from Sumer et al. (1996) are presented here. When
using B = 0.15, we obtain good agreement with measured sediment concentration profile
for a range of Shields parameter fine sand. Figure 3 shows the model result from the
1DV model setup (only 1 grid points in streamwise and spanwise direction). For three
cases of fine sand (d=0.13 mm, s=2.65), it can be observed from panel (a1), (a2) and
(a3) in Figure 3 that the particle shear stress increases rapidly in the sheet layer until
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reaching the bed while the fluid shear stress drops sharply in the sheet flow layer and
becomes close to zero at the bed. The summation of particle shear stress and fluid (mostly
turbulent) shear stress gives the expected linear profile of total shear stress in a steady
channel flow. The comparisons of concentration profile are shown in panel (b1), (b2)
and (b3) in Figure 3. With the calibrated B = 0.15, the agreement between the model
results (curves) and measured data (symbols) is reasonably well for Shields parameter in
the range of 1.1 ∼ 2.2. Panel (c1), (c2) and (c3) shows the velocity profile of fluid (curves)
and sediment phase (circles), due to the lack of experimental data for velocity profile, the
validation is merely based on the concentration profiles.
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Figure 3: Model-data comparison for steady sheet flow of Sumer et al. (1996). Panels (a1),
(b1), (c1) ((a2), (b2), (c2) or (a3), (b3), (c3)) are results for θ = 1.1 (θ = 1.68 or 2.2)
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Table 2: Flow conditions in O’Donoghue and Wright (2004)

Flow condition T (s) A(m) a Um(m/s)
Sinusoidal 5 1.2 0.5 1.5

Asymmetric 7.5 1.5 0.63 1.5

4.2 Oscillatory Sheet Flow

O’Donoghue and Wright (2004) measured sediment concentration in both the bedload
and suspended load regions under oscillatory sheet flow for a range of flow condition and
three different grain sizes. This dataset has been used by many other researchers to validate
their models (Li et al., 2008; Chen et al., 2011; Yu et al., 2012) and it is used to validate
the present model. Medium sand (d = 0.28mm) under symmetric and asymmetric flow
conditions are modeled (see Table 2).

The oscillatory flow is driven by a mean streamwise pressure gradient. Outside the
wave boundary layer, the shear stress vanishes, and the momentum equation reduces to:

1

ρf
∂p̄f

∂x
= −∂U0

∂t
(48)

where U0 is the free stream velocity. For sinusoidal wave, U0 = Um sin(ωt), and Um is the
free-stream velocity magnitude. For asymmetric flow, the flow is forced by the second-
order Stokes wave motion:

U0 = U1 sin(ωt)− U2 cos(2ωt) (49)

where U1, U2 are velocity amplitudes for 1st and 2nd harmonics, ω = 2π/T is the wave fre-
quency, and T is the wave period. The flow asymmetry is defined as: a = Umax/(Umax −
Umin), in which Umax and Umin are maximum and minimum free-stream velocities, re-
spectively, and semi-excursion length A is calculated as A = U0/ω.

Medium Sand, sinuoidal wave, T = 5 s: In Figure 4, the concentration profiles
at maximum onshore (c) and offshore (e) velocities and flow reversals ((b) and (d)) are
compared with the experimental data of O’Donoghue and Wright (2004). Both 1DV (blue
solid curves) and 2DV (red dashed curves) results are shown. We can see that 1DV and
2DV results are almost identical and they both agree quite well with the measured data.
We like to note that this agreement is achieved with B = 0.15 without further tuning. It
is found that for medium sand grain, more sand is suspended during the flow peak (flow is
strong) than the flow reversal (flow is weak).

In Figure 5, the time series of concentration at three different vertical locations are
shown. Time series of concentration from dense region (panel a), close to initial bed level
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(panel b), and away from the initial bed level (panel c) are compared with measured data
from O’Donoghue and Wright (2004). The model is shown to predict the evolution of
concentration well at these representative locations. It is observed that sediment in the
dense region (see panel a) is eroded and suspended when the flow is intense (around flow
peak) and as a result, suspended sediment in dilute region (see panel c) becomes larger
around the flow peak. When the flow becomes weak, suspended sediment settles to the
bed, thus sediment concentration in dilute region reduces while bed level increase (see
panel a). 1DV (blue solid curves) and 2DV (red dashed curves) results are again very
similar.

Figure 6 shows 2DV model results for the contour of the concentration field during
(a) flow reversal and (b) flow peak. The arrows represent the velocity vectors, and the
length of the arrows scale with its magnitude. We can see that the concentration and ve-
locity are homogeneous in the streamwise direction, consistent with typical expectation of
turbulence-averaged sheet flow. This also explains the reason that 1DV and 2DV model
results are identical. It is commented here that the 2DV turbulence-averaged model results
can reproduce the expected homogeneous sheet flow in the streamwise direction suggest-
ing that the numerical solver is quite stable.

Medium Sand, 2nd-order Stokes wave, T = 7.5 s: Skewed free-stream velocity is
one of the main mechanisms driven onshore sediment transport. Concentration profiles
at the four representative phases are shown in Figure 7. The overall agreement between
measured data and model results are very good. Time series of concentration (Figure 8)
at three different locations are also compared well with measured data. Again, both 1DV
model results and 2DV model results are shown and they are basically identical.
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Figure 6: Snapshot of concentration field at (a) flow reversal (t=0 s) and (b) flow peak
(t=1.25 s) for sheet flow of medium sand driven by sinusoidal motion
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5 Conclusion and Future Work

A multi-dimensional two-phase Eulerian model for sediment transport has been devel-
oped based on the open-source CFD library, OpenFOAM. The mathematical formulation
follows the standard two-phase flow approach for sediment transport, and several mod-
ifications to the numerical solver are introduced to make the model more robust. This
model can be applied to study sediment transport under steady channel flow, sinusoidal
wave, 2nd-order Stokes waves, and wave plus current. Finally, this model is validated
by comparing the experimental data of steady channel flow and wave tunnels (sinusoidal
wave and 2nd-order Stokes wave), and good agreements have been achieved in terms of
the prediction of sediment concentration.

However, there are several limitations of this model and future work is required. For
example, this model is based on the k − � turbulence closure and model results are quite
sensitive to the closure coefficients. Future release will include 3D turbulence-resolving
sediment transport using the Large-eddy simulation approach. By introducing twoPhaseE-
ulerSedFoam as an open-source code, it is also our hope that more sediment transport re-
searchers will be involved in the future development of the model for more complete (or
alternative) model formulations and closures as well as wider sediment transport applica-
tions.
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6 Appendix

6.1 Installation and Compilation

This solver is modified based on the twoPhaseEulerFoam solver in OpenFOAM-2.1.0, so
make sure that OpenFOAM-2.1.0 has already been successfully installed, this version of
OpenFOAM can be found through the following link:

http://www.openfoam.org/archive/2.1.0/download/

After installing OpenFOAM-2.1.0, the new solver twoPhaseEulerSedFoam can be com-
piled through the following procedure:

(1) twoPhaseEulerSedFoam is distributed in a compressed file. To install and compile
the solver, first uncompress the package, the exacted files will be distributed in two new
directories: /twoPhaseEulerSedFoam and /Example, and three files: license, README
and User Manual.

(2) After uncompressing the .zip file, and copy the folder ’twoPhaseEulerSedFoam’ to
the directory: $FOAM APP/solver/multiphase/.

(3) Enter the directory of twoPhaseEulerSedFoam, and type the following command
to compile the solver:

./Allwmake
If OpenFOAM-2.1.0 has been successfully compiled, the new solver will start to com-

pile, and the compilation may take several minutes to complete.
(4) After the compilation, a new solver is generated by the name of twoPhaseEulerSed-

Foam.

6.2 Model Input and Output

The example cases can be found in the /example within the uncompressed folder. In the
example cases, one Steady channel flow case and two oscillatory flow cases can be found.
That is, the current solver can be used to simulate sediment transport under steady flow or
simple wave (sinusoidal and 2nd-order stokes wave). These flow conditions are driven by
pressure gradient force, which is defined in /constant/transportProperties:
// * * * * * * * * * * * following are for driving force * * * * * * * * * * * //

tilt tilt [ 0 0 0 0 0 0 0 ] 1; //tiled tube or not?
gradPAMP1 gradPAMP1 [ 1 -2 -2 0 0 0 0 ] ( 0 0 0 ); // pressure osci amp1
gradPAMP2 gradPAMP2 [ 1 -2 -2 0 0 0 0 ] ( 0 0 0 ); // pressure osci amp2
gradPOSC gradPOSC [ 1 -2 -2 0 0 0 0 ] ( 46.9899 0 0 ); // pressure osci real value
gradPMEAN gradPMEAN [ 1 -2 -2 0 0 0 0 ] (46.9899 0 0 ); //mean pressure
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oscpT oscpT [ 0 0 0 0 0 0 0 ] 20; // osci period
initTheta initTheta [ 0 0 0 0 0 0 0] 0; //initial deg

// * * * * * * definition of turbulence coefficient and others * * * * * //
SUS SUS [ 0 0 0 0 0 0 0 ] 1; //set to 1 to include turbulent suspension term, else

set to 0
C3ep C3ep [ 0 0 0 0 0 0 0 ] 1.2; //set the coefficient of C3 in epsilon equation */
C4ep C4ep [ 0 0 0 0 0 0 0 ] 0;
KE1 KE1 [ 0 0 0 0 0 0 0 ] 0; //density stra (Uf-Us), horizontal component
KE2 KE2 [ 0 0 0 0 0 0 0 ] 1; //set to 1 to include turbulence modulation
KE3 KE3 [ 0 0 0 0 0 0 0 ] 0; //turbulence generation, not included
KE4 KE4 [ 0 0 0 0 0 0 0 ] 1; //density stratification g
B B [ 0 0 0 0 0 0 0 ] 0.15; //turbulence modulation coefficient
alphaMinFriction alphaMinFriction [ 0 0 0 0 0 0 0 ] 0.57;

// * * * * * * * * * * * * end of definition * * * * * * * * * * * * * //

// * * * * * * * * * fluid and sediment properties * * * * * * * * * //
phasea
{

rho rho [ 1 -3 0 0 0 ] 2650; // sediment density
nu nu [ 0 2 -1 0 0 ] 2; // sediment viscosity, dummy
d d [ 0 1 0 0 0 0 0 ] 0.00013; // sediment grain size (m)

}

phaseb
{

rho rho [ 1 -3 0 0 0 ] 1000; // fluid density
nu nu [ 0 2 -1 0 0 ] 1.e-06; //fluid viscosity
d d [ 0 1 0 0 0 0 0 ] 0.00013; // fluid diameter, dummy

}
Cvm Cvm [ 0 0 0 0 0 ] 0; // virtual mass coefficient
Cl Cl [ 0 0 0 0 0 ] 0; // lift coefficient
Ct Ct [ 0 0 0 0 0 ] 0; // turbulence response coefficient, not considered
alphaAlpha alphaAlpha [ 0 0 0 0 0 ] 0; // contact angle, not considered

// * * * * * * * * * * * * end of definition in transportProperties* * * * * * * * * * * * * //

The coefficient and parameters in kinetic theory for granular flow are defined in /constant/

kineticTheoryProperties:
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kineticTheory on; // turn on kinetic theory for granular flow
equilibrium off; // turn off the equilibrium simplification of granular temperature

equation
e e [ 0 0 0 0 0 0 0 ] 0.8; // coefficient of restitution
alphaMax alphaMax [ 0 0 0 0 0 0 0 ] 0.635; // maximum sediment concentration

allowed
alphaMinFriction alphaMinFriction [ 0 0 0 0 0 0 0 ] 0.57; // threshold of enduring

contact region
DiluteCut DiluteCut [ 0 0 0 0 0 0 0 ] 1e-8; // kinetic theory is not calculated when

sediment concentration is below this value
ttzero ttzero [ 0 0 1 0 0 0 0 ] 0; // time start to relax kinetic theory to avoid initial

instability
ttone ttone [ 0 0 1 0 0 0 0 ] 0; // end time for the relaxation
MaxTheta MaxTheta [ 0 2 -2 0 0 0 0 ] 0.05; // max granular temperature allowed
Fr Fr [ 1 -1 -2 0 0 0 0 ] 0.05; // coefficient F in Johnson-Jackson model, equation

(27)
eta eta [ 0 0 0 0 0 0 0 ] 3; // coefficient m in Johnson-Jackson model, equation

(27)
p p [ 0 0 0 0 0 0 0 ] 5; // coefficient n in Johnson-Jackson model, equation (27)
phi phi [ 0 0 0 0 0 0 0 ] 28.0; // internal friction angle of sediment
KineticJ1 KineticJ1 [ 0 0 0 0 0 0 0 ] 1; // set to 1 to turn on the model 1 for Jint in

equation (17)
KineticJ2 KineticJ2 [ 0 0 0 0 0 0 0] 0; // set to 1 to turn on the model 2 for Jint in

equation (17)
KineticJ3 KineticJ3 [ 0 0 0 0 0 0 0] 0; // set to 1 to turn on the model 3 for Jint in

equation (17)
viscosityModel Gidaspow; // use Gidaspow’s model for particle viscosity
conductivityModel Gidaspow; // use Gidaspow’s model for particle conductivity
granularPressureModel Lun; // use Lun’s model for granular normal stress (colli-

sional part)

frictionalStressModel SrivastavaSundaresan; // use newly added frictional stress model
(frictional part)

radialModel CarnahanStarling; // use Carnahan Starling’s radial distribution model

HrenyaSinclairCoeffs // coefficient used in Hrenya and Sinclair’s model
{
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L L [ 0 1 0 0 0 0 0 ] 0.0005;
}

The other files in /constant/ are defined similar to twoPhaseEulerFoam, and the dis-
cussion is not repeated here, and the numerical schemes is defined in /system/fvScheme:
ddtSchemes
{

default CrankNicholson 0.5; // use Standard Crank Nicholson scheme for tem-
poral integration
}

gradSchemes
{

default Gauss linear; // defaultly use central difference scheme
}

divSchemes
{

default none;
div(phia,Ua) Gauss limitedLinearV 1; // use TVD schemes for the convection terms
div(phib,Ub) Gauss limitedLinearV 1;
div(phiRa,Ua) Gauss limitedLinearV 1;
div(phiRb,Ub) Gauss limitedLinearV 1;
div(phib,k) Gauss limitedLinear 1;
div(phib,epsilon) Gauss limitedLinear 1;
div(phib,beta) Gauss limitedLinear01 1;
div(phi,alpha) Gauss limitedLinear01 1;
div(phi,Theta) Gauss limitedLinear 1;
div(Rca) Gauss linear;
div(Rcb) Gauss linear;
div(phir,alpha) Gauss limitedLinear01 1;

}
laplacianSchemes
{

default none;
laplacian(nuEffa,Ua) Gauss linear corrected;
laplacian(nuEffb,Ub) Gauss linear corrected;
laplacian((rho*(1—A(U))),p) Gauss linear corrected;
laplacian(alphaPpMag,alpha) Gauss linear corrected;
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laplacian(Galphaf,alpha) Gauss linear corrected;
laplacian(DkEff,k) Gauss linear corrected;
laplacian(DkEff,beta) Gauss linear corrected;
laplacian(DepsilonEff,epsilon) Gauss linear corrected;
laplacian(DepsilonEff,beta) Gauss linear corrected;
laplacian(kappa,Theta) Gauss linear corrected;

}

interpolationSchemes
{

default linear;
}

snGradSchemes
{

default corrected;
}

fluxRequired
{

default no;
p ;

}

Only the important features are discussed here, and other coefficients such as /sys-
tem/fvSolution can be defines following the tutorial of OpenFOAM (http://www.openfoam.
org/docs/user/tutorials.php)

The output sequence control can be defined in /system/controlDict, and the results are
distributed in one folder named by output time or time step for each output. In each output,
the following files can be found:

alpha: sediment concentration field
epsilon: fluid turbulence dissipation rate
k: fluid turbulent kinetic energy
nutb: turbulent viscosity
Theta: sediment granular temperature
p: fluid pressure field
Ua: sediment velocity field
Ub: fluid velocity field
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U: mixture velocity field, φus + (1− φ)uf

Ur: relative velocity field, uf − us

phia: sediment velocity flux field
phib: fluid velocity flux field
mua: sediment viscosity field
pa: sediment normal pressure field (collisional part))
gradPs: sediment pressure gradient (collisional part)
gradPf: sediment frictional pressure gradient (frictional part)
Tauf: total fluid shear stress field
Taus: particle shear stress field (collisional part)
tmf: turbulence modulation parameter
susb: turbulent suspension term in fluid momentum equation
/uniform: folder to log time step and runTime
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