Modelling suspended sediment loads: Insight into the past and future of the Waipaoa catchment, North
Island, New Zealand
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INTRODUCTION HYDROTREND

Climate-driven hydrological model (Syviski et al., 1998)
Waipapa Sedimentary System

Deforested and steep hillsopes composed of weak mudstone and argillite lithologies. . ey o
Precipitation

$ A

Vigorous maritime climate.

One of the highest sediment yields on Earth. Snow Fall/Melt Rain Fall
Mean annual suspended sediment yield of 6780 t km yr-!, compared with ~1000 tonne 'g ‘ ‘
km-2 yr! prior to anthropogenic influences. o Evaporation/Evapotranspiration
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We are using HydroTrend to help us understand: S | Glacier Storage/Melt Groundwater Infiltration
I | Glacier Advance/Retreat
How the sediment flux has changed through time? ‘ ‘
1. From the Last Glacial Maximum to the present day.
2. As a result of deforestation. Reservoirs |®®| Runoff/Discharge |  Lakes
3. Has the catchment reached saturation with respect to transporting sediment? ‘ ‘
What records can we use to investigate the past climate/sediment signals? . Channel - Distributary
| o : Sediment Load
. . o ” =g t Sediment load Channel Hydraulics
How might the sediment flux change with climate change? Pacific Plate

. D
How do events (storms and earthquakes) affect the sediment load? e

CLIMATE AND EROSION FACTOR INPUT

Lake Tutira Core

Calculated from mid-shelf core, MD972121 (Carter et al., 2002) Syvitski and Milliman (2007) Human Influenced Erosion Factors
Estimate 100 yearly average rainfall based on the storminess as shown by the thickness and

number of storm layers

Sea Surface Temperatures
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Using a relationship between sea surface temperature (SST), 7000 yrs ago Tutira Annual Rainfallin 100 yr bins Today = ALk ¥
|and temperature tOday and DI’OSt et a|’S (2007) LGM Cllmate 1900 Stormy stormy Fig. 2 Marine core P69, percentage pollen diagram. Selected taxa only. Pollen sum: all taxa excluding spores and extinct types.
model, we use SST as a proxy for temperature and 1800
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precipitation in the Waipaoa from 22 ka to the present day.
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We then test the validity of using SST as a proxy for rainfall by

approximating rainfall from storm layers in sediment cores 1900 _ _ _
from Lake Tutira (Page et al., 2010). This record goes back e s g s 8 8 B 8 8 &8 § &8 ° | Present day | Pre-_Anthropogemc Influences .Last Glacial Maximum

¢ ¢ ¥ 8 I § § 8§ & § T 3 4 Waipapa Ej, = 8, Sheep farming Waipapa Ej, =1, nearly 100% Waipapa E;, ~ 4, grasses and
almost 7ka. S & § § 8 g8 8 g8 g g8 § 8§ = )

@ 8 & § 5 & & & & =07 and forest clearance forest cover shrubs dominate the landscape.

<

ears

Rivers carry significant bedload

MODEL RESULTS

Precipitation proxies: comparison of SST (red) and Lake Tutira storms (blue)
results shown as 100 year running averages

Previous work - deforestation signal (Kettner et al. 2007) Increasing variability in precipitation, modelled over 500 years
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Esimated rainfall from Lake Tutira in 100 year bins

LGM bedload, coarser than today despite lower overall sediment yield
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Simulated suspended sediment discharge (Mt yr'1)
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Red = climate is based on the SST, temperature and precipitation
Blue = climate is based on SST (temperature) and Lake Tutira (precipitation)
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Could this be due to a snowmelt event during the LGM spring?
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Peaks in precipitation are matched by peaks in the blue predicted suspended sediment load.
Models looking at the effect of lower winter temperatures

The overall pattern matches the predictions using SST temperature reasonably well. A high in

Model #2 - Includes . Modelled suspended sediment (Mt yr-T) SST at ~5.2ka (1) is not matched by storm layers in Lake Tutira or alternatively the lows in the 10— modelled bedload (kg/sec), shown monthly
] ) 22 ka = now SST (2) and Lake Tutira (3) are slightly offset from one another. This is possible if one or both of il
Changes in erosion due to 167 Including erosion/deforestation effects the age models are uncertain at this time. September

changing veggetation

. Today
cover and deforestion

Much of the variation in the SST model comes from HydroTrend’s climate model, which has
been run over 500 years for these simulations. We nned to take care not to over interpret these
results. Trends are more useful than actual values.
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° model from Drost et al. (2007).
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Blue = constant low erosion

Red = erosion based on %grass vs %trees
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Simulated suspended sediment discharge (Mt yr'1)

- AR _ o TV} It is possible that the coarse bedload
" * a seen in the W1 sediments could have
. . been transported during the springmelt.
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LGM to present day suspended sediment load in the Waipaoa What would be the sediment response to a large earthquake in the Waipaoa catchment? Summary:

Today the Waipaoa River carries more sediment than at anytime during the past 22ka, including the Last Glacial Maximum Strong ground shaking Return times of strong ground shaking Erodibility has a much more significant influence on

(LGM). (Moditied Mercalli Intensity) Catchment MM7 | MM8 MM9 MM10 sediment load than climate variability (see also Gomez et
M7.4, ~630 Wai 1 2 1 -

At LGM the watershed was larger, the climate was colder and drier and the vegetation a mixture of grasses and scrubs. These | yre s 30 620 0,000 al. 2009).

factors combine to give a predicted suspended sediment load that was approximately a third to a half of what it is now. Litchfield et al. (2009)

As a first approximation, SST appears to be a reasonable

Larger watershed = higher discharge and higher suspended sediment load : L
proxy for onland climate approximations.

Colder climater - reduced weathering and availability of material to be eroded

Drier climate = less water to transport material to the ocean

LGM vegetation = native grasses and shrubs leave the landscape more vunerable to erosion than full forest cover but
less vunerable than todays situtation of 95% deforestation, short introduced grasses and sheep farming.

M6.8 1932 (Wairoa)

A drier, more variable climate will increase the significance
of climate events.

Climate change scenarios suggest that the Waipaoa is likely to become warmer and slightly drier (Gomez et al., 2009; IPCC
2001). An increase in the temperature will enhance weathering and hence erosion. A decrease in the precipitation will reduce
the amount of sediment transported by the system. However, changes in erodibilty due to vegetation changes are significantly
more dramatic than changes due to the climate. Gomez et al. (2009) show that predicted increase in sediment yield from the
worse case climate change scenarios can be offset but a 35% increase in forests within the catchment.

An earthquake is likely to increase sediment flux but by how
much is uncertain. Observations of sediment yields from
Haiti following the 2010 Mw 7.1 earthquake may be the
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o b at high dischange suggests best proxy for the Waipaoa catchment given the similar
Even if the amount of precipitation does decrease with climate change, it is predicted that the unpredictibility of storms and the —"E; : _ %‘%"f | the system is transport-limited deforestation histories.
number of large storms will increase. The models show that a decrease in precipitation but an increase in variability leads to = mﬂﬂg . % ol not supply-limited.
lower sediment yields but a higher percentage of sediment being transported during major storm events. Again these effects can -% 100¢ B i . :
be mitigated by increasing forest planting within the catchment. E g} e, e + Waipaoa :
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Haiti would be the place to look following the January 2010 earthquake.



