SEDSIM, a brief overview

by Dan Tetzlaff
WesternGeco

SEDSIM Brief History

- Developed at Stanford in mid 1980's, under direction of John Harbaugh
- Subsequently improved and enlarged by many graduate students
- In 1990's continued as separate projects*
 - CSIRO SEDSIM (Australian consortium)
 - Texaco STRATSIM
 - Others, based on published source code

^{*} Correction: The program Dionisios (from Beicip/IFP) is NOT an offspring of SEDSIM

SEDSIM Principles

- 2+-D flow simulation (2D flow + depth)
- 3-D sedimentary deposits
- Multiple sediment types, continuous mix
- Particle-in-cell method:
 - Uses particles or "fluid elements" moving on a grid
 - Facilitates modeling of highly unsteady flow
 - Prevents numerical dispersion for sediment transport

Simplified Fluid Element Mechanism

SEDSIM Output Examples

Golden Meadow, LA, Deltaic System

SEDSIM Output Examples (Cont.)

Log Correlation Using SEDSIM

Chaotic Behavior in SEDSIM

After simulating several high-density turbidity currents, the model settles into a pattern that is neither cyclic nor totally disordered. Extremely small changes in input (left vs. right figure)will cause 10th flow to exit in different directions.

Selected SEDSIM References

- Martinez, P. A., and Harbaugh, J. W., 1993, Simulating nearshore environments, Pergamon Press, New York, 265 p.
- Merriam, D. F., and Davis, J. C., 2001, Geologic modeling and simulation, sedimentary systems, Kluwer Academic/Plenum Publishers, New York, 352 p. (in particular, pp. 45-70 & 71-98)
- Tetzlaff, D. A., and Harbaugh, J. W., 1989, Simulating Clastic Sedimentation, van Nostrand Reinhold, New York, 202 pp. (contains original source code)