
International Environmental Modelling and Software Society (iEMSs)
 7th International Congress on Environmental Modelling and Software

San Diego, California, USA, D.P. Ames, N. Quinn (Eds.)
http://www.iemss.org/society/index.php/iemss-2014-proceedings

Plug and Play Component Modeling — The
CSDMS2.0 Approach

James P Syvitski, Eric Hutton, Mark Piper, Irina Overeem, Albert Kettner, and

Scott Peckham
CSDMS Integration Facility, INSTAAR, University of Colorado, Boulder CO, 80309

(James.syvitski@colorado.edu)

Abstract: The CSDMS2.0 focus is on developing a software modelling
environment that offers the earth and ocean communities products to enable easier
penetration into the world of high performance computing, plug-and-play
component modelling, and access to vetted open source surface-dynamics
models. Protocols and standards define modelling interfaces, standard names,
service components, and DOIs labelling.

Keywords: Semantic mediation; model framework; model coupling.

1 INTRODUCTION

The Community Surface Dynamics Modeling System, or CSDMS, develops,
integrates, archives and disseminates software to define the earth’s surface
dynamics. CSDMS coordinates a large (67 country) international community in
building a toolbox of surface dynamics component models. The challenge
encapsulates the variety of users, the volunteer effort, and the hundreds of very
different models. The CSDMS Integration Facility develops the cyber-architecture
and framework, to populate a plug-and-play component-modeling environment,
able to operate within a cloud-sourced High Performance Computing environment.

2 WMT: THE CSDMS WEB MODELING TOOL

The CSDMS Web Modeling Tool (WMT) is the web-based successor to the
desktop Component Modeling Tool (Peckham et al., 2013). WMT provides a client-
side drag-and-drop graphical interface and a server-side database and application
programming interface (API) that allows users to build and run coupled surface
dynamics models on a high-performance computing cluster (HPCC) from a web
browser on a desktop, laptop or tablet computer. With WMT, a user can:

• Select a component model from a list to run in standalone mode,
• Build a coupled model from multiple components organized as nodes of a

tree structure,
• View and edit the parameters for these model components,
• Upload custom input files to the server,
• Save models to a server, where they can be accessed on any Internet-

accessible computer,
• Share saved models with others in the community, and
• Run a model by connecting to a remote HPCC where the components are

installed.
Although WMT is web-based, the building and configuration of a model can be
done offline. Reconnection is necessary only when saving a model and submitting
it for a run.

F. Author et al. / The title of the paper

2.1 Client Overview

WMT presents a streamlined graphical interface, consisting of three scrollable
panels, or views, and one menu (Fig. 1).

• Components view — a list of Common Component Architecture (CCA)
components (Armstrong et al., 1999) that are available on the HPCC.

• Model view — a component can be dragged from the Components view
into the tree structure of the Model view. Once in the tree, the component
displays its CCA uses ports as leaves on the tree. By adding other
components that provide ports for these open leaves, a coupled model can
be created. A component instance that provides feedback to the coupled
model is displayed as a link (e.g. CEM in Fig. 1).

• Parameters view — displays model parameters in the Model view for
viewing and editing. Type and range checks are performed immediately on
any parameter that is modified.

• Model menu — provides selections for opening, closing, saving, deleting
and running models. Models developed with WMT are currently saved to a
server at CSDMS. When a model run is initiated, the user is provided with
a list of available HPCC nodes on which it can be run, and prompted to
provide login credentials for the selected HPCC.

Figure 1. The WMT client, showing the construction of a coupled model.

A model run can be initiated and its status (uploaded, staged, launched, complete)
viewed; on completion, the model output can be retrieved by FTP.

2.2 Client Architecture

The WMT client is written with GWT (GWT Project, 2013), a toolkit for building
browser-based applications. Using GWT over native JavaScript offers the
advantage that the client code is written in Java, which allows the developer to
employ object-oriented design principles and mature Java development tools such
as Eclipse. GWT provides a development mode for rapid prototyping and
debugging, and a production mode, where the Java source is compiled to
JavaScript for deployment on the web. GWT is used in several Google projects,
and boasts a large user community. GWT is supported on all modern browsers,

F. Author et al. / The title of the paper

including Firefox, Internet Explorer (6+), Safari (5+), Chromium/Chrome and Opera.
The WMT client uses the model-view-presenter (MVP) pattern (Fowler, 2006):
• Model: The layer providing data for the application.
• View: The user interface for viewing and modifying the application data (Fig. 2).
• Presenter: The mediator between the Model and the View. Messages are

passed between View and Presenter, and between Model and Presenter, but
the View and Model are designed to have no knowledge of the other.

MVP architecture separates the domain logic of an application, where rules are set
for how data are stored and modified, from the client interface, where the user can
interact with the data. This separation of responsibilities makes it easier to test,
modify and maintain an application. MVP is particularly useful in applications that
have a graphical user interface, since the testing of the interface often must be
done manually (Wellman, 2008). The GWT Project recommends MVP for GWT
applications (GWT Project, 2010).

Figure 2. The Model-View-Presenter (MVP) architecture pattern is adapted from

Wellman (2008).

2.3 Server Overview

The WMT server is a RESTful (Fielding, 2000) web application that provides a
uniform interface through which client applications interact with the CSDMS model-
coupling framework. Although opaque to a client, behind the WMT server is a
layered system that consists of the following resources:

• A database server that contains component, model, and simulation
metadata

• One or more execution servers on which simulations are launched
• A data server from which simulation output is stored and can be

downloaded.

The database server provides, as JSON encoded messages, the component
metadata necessary for an end-user to couple components, and set input
parameters. The metadata includes descriptions of component exchange items,
uses and provides ports, as well as user-modifiable input parameters. It is held on
a server separate from the execution server so that it is easily and quickly
accessed without need to connect to a firewalled or inaccessible execution server.
Execution servers are computational resources that contain the software stack
needed to run a coupled or uncoupled model simulation. These servers can range
from large high performance computing clusters, to smaller web servers, or even to
an end-user’s personal computer. The requirements are only that the WMT server
has network access to the execution server and that the CSDMS software stack is
installed on the server. This includes the CCA-toolchain, the CSDMS framework
tools, and compiled shared libraries for each of the component models. Once a

F. Author et al. / The title of the paper

simulation completes, its output is packaged and uploaded to a data server where
it is stored and from which the end-user is able to download it as a single
compressed archive file.

2.4 Incorporating BMI Models into the CSDMS Modeling Framework

The CSDMS Basic Modeling Interface (BMI) specification (Peckham et al., 2013)
describes an application-programming interface (API) for scientific numerical
models. The interface identifies entry points into software components to provide a
calling application with the necessary level of control over the components that is
necessary for two-way model coupling. CSDMS as well as other modeling
frameworks, such as ESMF (Hill et al., 2004), OpenMI (Gregerson), and OMS
(David et al., 2002), have identified the minimum granularity of control to be an
interface that provides functionality to initialize, update, and finalize a component
model. BMI establishes precise names, calling signature and return types for each
of these functions in a language agnostic manner and also provides bindings for
each of the CSDMS supported languages (Python, C, C++, Fortran, Java).
Because modeling-coupling frameworks share this common requirement, any
model that exposes a BMI can be incorporated into any number of frameworks, not
just the CSDMS model-coupling framework.

A component model that strictly follows the BMI specification allows for a
streamlined workflow that enables it to function inside the CSDMS model-coupling
framework. Templates exist for each supported language, and consists of
boilerplate code that makes functions calls to CSDMS and CCA services but will
only access the underlying component model through BMI function calls. Wrapper
templates will never make reference to component-specific functions or data.
Rather, component control (initialize, update, finalize) and data access (getters,
setters) is always through BMI functions. Then, at run-time, these function
references are linked dynamically to the shared library that contains the compiled
BMI implementation for the appropriate component. BMI functions provide most
component metadata (names of input / output exchange items). Additional
metadata the CSDMS framework needs to incorporate a new component include:

• Source code: author(s), license, version, link to source code, etc.
• Input files: File templates that contain placeholders for adjustable

parameters
• Input parameters: description of user-adjustable input parameters

These additional source code metadata provide end users with standardized model
information. If a component requires input files to operate, the component
contributor must provide template versions of these files. Additionally, if the
contributor would like some of these parameters to be editable by an end user, the
template files should include placeholders for the adjustable parameters. A
placeholder is simply a key name, which refers to the parameter, enclosed in curly-
braces. Each input parameters must be described (float, int, string, etc.), along with
suggested ranges, and a short description of the parameter. This additional
metadata is used by various CSDMS tools to enhance the end-user experience
and help overcome the “black-box syndrome” that results from users running
models without being aware of the model’s inner workings.

3 CSDMS Standard Names and Model Metadata

In order to develop a modeling framework that would allow automated coupling of
models and data sets from different contributors, semantic mediation or matching is
required. Each model and data set uses its own terms or labels for input and output
variable names, often domain-specific or abbreviated. To ensure that one model’s
output variable is appropriate for use as another model’s input, a precise

F. Author et al. / The title of the paper

description of the variable, its units and certain other attributes are required. To
address this need, a semantic matching called the CSDMS Standard Names was
developed. These standardized names avoid domain-specific terms and
abbreviations, are based on a set of rules or conventions and are designed to
eliminate ambiguity. Contributors of models or data sets are asked to map each of
their own terms to the appropriate "long name" in the CSDMS Standard Names.
For models or data sets, this can be done by implementing a CSDMS Basic Model
Interface (BMI) that provides standardized self-description as well as model control
functions (i.e. initialize, update, finalize). The model control functions provide the
modeling framework with fine-grained control of the model and allow
heterogeneous models to be coupled within the CSDMS framework. Contributors
create the mapping (e.g. Python dictionary) from their model’s internal variable
names to CSDMS standard names, and supply information about the spatial grid,
time-stepping scheme, and assumptions.

The CSDMS Standard Names provide a comprehensive set of naming rules and
patterns for creating unique labels for model variables that are not specific to any
particular modeling domain. These naming conventions consist of an extensive set
of patterns that cover a wide variety of cases gleaned from models in the CSDMS
repository as well as from the CF Standard Names. They are designed to have
features such as parsability and natural alphabetical grouping. CSDMS Standard
Names for variables always consist of an object part and a quantity/attribute part
and the quantity part may have an operation prefix that can consist of multiple
operations. Unlike the CF Standard Names, assumptions and explanations are not
included in the name itself; they are instead selected from a standardized list and
specified with <assume> tags in a Model Metadata File (XML) that clarifies how a
given model uses the name. The additional metadata in this file supports the
names by including assumptions, units, equations used, boundary conditions,
object name source, geo-referencing information (e.g. standard ellipsoid, datum
and projection names), and so on, thereby fully describing the model and its
associated input and output variables.

At the highest level, CSDMS Standard Names (v. 0.7.1) consist of Model Variable
Names and Model Metadata Names, and consist of numerous supporting parts.
Model Variable names are constructed from valid Object Names, Operation Names
and Quantity Names, and the Quantity Names often include a Process Name.
Model Metadata Names attempt to provide complete metadata for describing key
attributes of a model other than the input and output variable names and are stored
in Model Metadata Files. The Model Metadata Names include additional metadata
to support the variable names, such as units, object name source and geo-
referencing data (e.g. standard ellipsoid, datum and projection names) and
different types of Assumption Names. For further detail, readers are referred to
http://csdms.colorado.edu/wiki/CSDMS_Standard_Names. Developers can
continue to use whatever variable names they want to in their model code or data
set, but must then "map" each of their internal variable names to the appropriate
CSDMS standard name in their BMI implementation.

3 CSDMS SERVICE COMPONENTS

CSDMS employs two versions of ESMF regridding tools, in combination with
CSDMS regridding tools. The serial version is used on single-processor
platforms; Message Passing Interface (MPI) is employed for use with multiple
processors. The parallel version of the mapper scales nearly linearly up to several
dozen processors. These mappers map elements from one unstructured grid to
another. While grid elements are typically either three or four sided, ESMF offers a
more general tool that supports polygonal cells with an arbitrary number of sides.
This makes it possible for a model that uses watershed polygons as its

F. Author et al. / The title of the paper

"computational cells" to obtain spatially interpolated rainfall data from a data source
that uses rectangular cells.

Earth surface process models may use fixed or adaptive time-stepping schemes,
and coupled models may use time-steps that are significantly different in size. A
snowmelt model may employ hourly time-steps and be coupled to a channelized
flow model that uses time-steps of several seconds. "Temporal misalignment" may
have unintended consequences. Application of a smooth interpolation function to
each of the state variables in the model with the larger time-step allows the smaller
time-step model to retrieve and use interpolated values that vary more smoothly
and which can be updated (with every time-step) with very low computational cost.
A new time interpolation service component is made available too components
run through the CSDMS WMT framework.

CSDMS has created file-writing tools for use within the CSDMS framework. The
new writer class receives data from a component model and outputs the data to
either a VTK file or a NetCDF file. VTK files are written in binary using the “new-
style” XML format for VTKs. For structured grids, NetCDF files follow the CF
conventions. Since there are currently no CF standards for storing unstructured
meshes in NetCDF format, we provide for an additional format: (1) Values of the x-
and y-coordinate for each node; (2) Array of integers as indices into data arrays for
each element of the mesh; and (3) Array of integers that indicate the shape of each
element (triangle, polygon, cube, etc.). Element types are defined in the same way
as the VTK standard. Variable values (at either nodes or elements) are then listed
with the same ordering as the x and y, or connectivity arrays.

4 BEYOND THE BLACK BOX MODEL

A “black box” model can be manipulated in terms of its input and then generates
output for a user without having knowledge of its internal workings or without being
able to get insight in the model engine, or its process routines. The model
algorithms and their implementation are then "opaque" or “black”. CSDMS strives
to take models and components beyond black box state. Science practice in
principle condemns a “black box”; it is of crucial importance to know the level of
process simplification within a model engine and the implementation into equations
and a numerical scheme. Without such transparency the analysis of model output
is of much less value.

CSDMS also offers web-based metadata on each model, submitted by the original
developers, and maintained as a wiki database and thus updatable by users
themselves. CSDMS maintains an online model repository where the original code
can be downloaded, viewed, compiled and run. The model engines are thus
available to any user. WMT components are documented in more detail on the
CSDMS wiki (Figs. 3 and 4). With WMT, a user can access: 1) more extensive
model description, 2) notes on input parameters, 3) key model equations, 4) notes
on coupling ports, and 5) essential references provided by the original developer.

Pedagogical research shows the importance of hands-on activities in learning
(Campbell et al., 2013). Students show significant learning gains when they work
with inquiry-based modules and receive instantaneous feedback (Fogleman et al.,
2011). The CSDMS Educational Working Group noted that hands-on modeling
labs are more valuable if they are combined with mathematical and physics
problems based on the careful analysis of the underlying model engine (Schwarz
et al., 2009). CSDMS offers an educational repository with modeling labs for
graduate and advanced undergraduate students. These labs support students to
run models, analyze output and highlight some critical aspect of the modeled
processes and model engine, the selection of which depend on the learning
objective and lesson plan.

F. Author et al. / The title of the paper

Figure 3. All components in the WMT have live links to online detailed

documentation maintained on the CSDMS wiki.

Figure 4. Detailed model description of the CEM-Coastline Evolution Model as

displayed within WMT.

5 DIGITAL OBJECT IDENTIFIERS FOR NUMERICAL MODELS

All code in CSDMS is open source (see Ince et al., 2012). Source code exposes
the scientific hypotheses embodied in a numerical model, and the solution to the
set of equations. Code transparency allows for full peer review and replication of
results — the foundation of modern science. Code transparency allows for reuse
in new and clever ways, and reduces redundancy. CSDMS ensures that model
developers receive recognition for their work, even when code is submitted and not
yet described in a scientific journal by adopting the Digital Object Identifier (DOI).
The DOI system provides a unique identification to content that is available on
digital networks. Since 2005 DOIs were made available for research data (Paskin,
2005). CSDMS is the first to assign Digital Object Identifiers (DOIs) to numerical
source code. The advantages of adopting a DOI system for models include:
• Guarantee credit to a model developer.
• Reuse and replication of research with direct access to a referenced code.
• Higher visibility — content with a DOI is 5 times more likely to deliver active

links.
• The opportunity for funding agencies to track usage, so to measure impact.

CSDMS collaborates with Integrated Earth Data Applications (IEDA), a formal
Publication Agent of the DOI system through the German National Library of
Science and Technology, to assign unique identifiers for those models that contain
metadata and are physically part of the CSDMS repository. An archive of all
numerical models of the CSDMS model repository that have a DOI, together with

F. Author et al. / The title of the paper

limited metadata and source code is provided to IEDA to guaranty access beyond
the CSDMS program; a DOI for an object is permanent, whereas its location and
other metadata may change in future. A new DOI is provided for each new version
of a model (i.e. major upgrade/version of the source code). CSDMS uses Apache
Subversion, better known as SVN, for tracking source code versioning and revision
control so that current and past releases and changes can be accessed through
the web. As of March 2014, 109 models within the CSDMS model repository have
a DOI. Model source code can be viewed as ‘data’ and therefore CSDMS endorses
citations defined by DataCite guidelines (Brase, 2010). Following these guidelines,
CSDMS strongly recommends the following structure for citing a model:
ModelDeveloper (PublicationYear). ModelName, ModelVersion. Identifier.

ACKNOWLEDGMENTS

The CSDMS Integration Facility operates under a continuing grant 0621695 from
the U.S. National Science Foundation.

REFERENCES

Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L., Parker,

S., Smolinski, B., 1999, Toward a common component architecture for high-
performance scientific computing. In: Proceedings of the 8th IEEE International
Symposium on High Performance Distributed Computing.

Brase, J., 2010, Datacite: A global registration agency for research data, Working
Paper Series des Rates für Sozial- und Wirtschaftsdaten, No. 149.

Campbell, K., Overeem, I., Berlin, M., 2013, Taking it to the streets: the case for
modeling in the geosciences undergraduate curriculum. Computers &
Geosciences 53, 123-128.

David, O., Markstrom, S.L., Rojas, K. W., Ahuja, L.R., Schneider, I. W., 2002, The
object modeling system. In: Ahuja, L.R., Ma, L., Howell, T. (Eds.), Agricultural
System Models in Field Research and Technology Transfer. Lewis Publ. CRC
Press, 317-331.

Fielding, R. T., 2000, Architectural styles and the design of network-based software
architectures. Doctoral dissertation, University of California.

Fogleman, J., McNeill, K., Krajcik, J., 2011, Examining the effect of teachers
adaptations of a Middle School Science Inquiry-Oriented Curriculum Unit on
Student Learning. Journal of Research in Science Teaching, 48,149-169.

Fowler, M., 2006, GUI Architectures http://martinfowler.com/eaaDev/uiArchs.html.
Gregerson, J.B., Gijsbers, P.J., Westen, S.J.P., 2007, OpenMI: open modeling

interface. Journal of Hydroinformatics 9 (3), 175-191.
GWT Project, 2010. MVP Architecture <http://www.gwtproject.org/articles/mvp-

architecture.html>.
Hill, C., DeLuca, C., Balaji, V., Suarez M., da Silva, A., 2004, The architecture of

the earth system modeling framework. Computing in Sci. & Engin. 6, 18-28.
Ince, D.C., Hatton, L., and Graham-Cumming, J., 2012, The case for open

computer programs. Nature, 482, 485-488.
Paskin, N., 2005. Digital Object Identifiers for scientific data. Data Science Journal,

4, 12-20.
Peckham, S.D., Hutton, E.W.H., Norris, B., 2013, A component-based approach to

integrated modeling in the geosciences: The design of CSDMS. Computers &
Geosciences 53, 3-13.

Schwarz, C.V., Reiser, B.J., Davis, E.A., Kenyon, L., Achér, A., Fortus, D.,
Shwartz, Y., Hug, B., and Krajcik, J.S. 2009, Developing a learning progression
for scientific modeling: Making scientific modeling accessible and meaningful for
learners. Journal of Research in Science Teaching, 46, 632-654.

Wellman, D., 2008, Google Web Toolkit: Writing Ajax Applications Test First. Better
Software Magazine, 26-32.

