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Modeling the source: Outline

1) Hillslopes and channels: function and coupling

2) Tectonics, climate, lithology, topography,and sediment
fluxes: Quantitative framework and first-order linkages

3) Process-based models
» Soil (or sediment) production
e Sediment transport
e Catchment-averaged predictions
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Hillslope processes:
\ 1. Control the pace and character of sediment
flux into channel networks

Dive;rgent or 2. Determine landscape morphology (e.g., relief) |
planar

landforms

Channel networks:
Set the lower boundary condition to which
hillslopes adjust
Transfer sediment produced by hillslope
processes

Convergent
terrain



Framework for process-
based prediction of
sediment fluxes
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Soil (or debris)
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P = soil production

q, = sediment flux

h = soil thickness

z. = surface elevation

U = rock uplift (or baselevel lowering)

ut

q,and P depend on:
 Topography

e Climate & Biology
e Lithology

e Tectonic forcing

e Human activity




Sediment delivery Roering,
N 2008

predictions:
1) Spatially explicit
2) Catchment-averaged

| Coulthard et al., 2002
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e For constant climate, biology, and lithology, relief increases
with rock uplift

e Landsliding limits topographic development

e Sediment delivered to channels will be fresher and coarser
along this continuum



(a) Low variability

First-order linkages

« Ultimately, hillslope erosion rate is set by |
baselevel lowering o]

« Climate/biology/lithology set the
hillslope form required to supply sediment
and keep pace with baselevel lowering
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- Process-form connection
. : (b) High variability Tucker & Bras,
-> Mechanistic understanding 2000, WRR

-> Predictive capability for interpreting |
sedimentary record (especially variations) ol

* Thus, the direct influence of climate,
biology, and lithology on sediment yield Is 0o
elusive: These factors should be
Incorporated through process models -
(g, and P) i eiors
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* Do fluctuating climate states
generate greater sediment yield
than the mean of those states?

« Are hillslopes in a perpetual state
of adjustment?
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. . Western U.S. &
Models: Soil production Australia
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* What controls peak production rates uc; Sands
and the functional form? \

* What controls the production of
landslide-prone material (i.e., 10,
strength reduction via weathering)? ¢ : ] ’ s
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— Thickness of bedrock

dizrupted by tresa throw
- Trae dansity
Bedrock erosion rate

0 Soil thickness

Soil production (mm/y)

Humped soil production
emerges from forest dynamics:
* tree-driven bedrock disturbance

decreases as soils thicken
* tree density increases as soils
thicken

Mudd and Gabet, 2010, JGR
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Models: Sediment transport into channels

e Disturbance-driven (e.g., bioturbation, frost processes)
e Landsliding (e.g., rockfalls, debris flows, deep-seated slides)
e Overland flow erosion (e.g., wash, rills, gullies)

q; = f(slope, upslope area, soil thickness)

Note: Functional relationships for climate, biology, and
lithology are unknown



Disturbance-driven
transport varies
nonlinear with slope

~ KS
s = 12(5/5,)2

K = f (power from disturbance
agents & soil thickness)
S. = Critical slope

Sediment flux
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Experimental, field, and morphologic evidence
(Gabet, 2000, 2003; Pelletier, 2007, 2009; Roering,
1999, 2001, 2005, 2008)

How does K vary with climate, lithology,
and biology?
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Catchment-averaged .
nonlinear model o]

_ KS 1) steady-state S
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Models: Landslide transport

requirements (Stark, 2009)

1. Trigger event spatial and temporal
distribution (e.g., rainfall, EQ)

2. Number and volume distribution of
landslides generated per event

3. Delivery of landslide debris into
channels

Pore pressure
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Densmore,

A statistical approach for landslides 1998 B
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e Landslide volumes are limited by topography (relief and drainage density)
e Can statistical properties be used to estimate sediment yields?
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Eel River, CA




Erosion-topography relationship for earthflow-prone terrain

Earthflow transport
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Conclusions

~* When hillslopes and channels are coupled:
| — Baselevel lowering ope erosion

) Functlonal relatlon
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Real transport is stochastic ! __
In press

(e.g., landslides, tree throw)

e Statistical approach
e Continuum models
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Combined sediment delivery (m3/a)

Temporal variations
in sediment delivery

Annual sediment delivery from 15 earthflows
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Including Lonepine

Excluding Lonepine

e Steadily decreases since 1960’s

* Lonepine slide dominates in
early 1990’s

Lonepine earthflow:
Active 1981-1998 b/c of
railroad operations

1940




Debris flow valley networks

In slope-area space, debris flow networks
steepen and curve with increasing erosion rate

Theoretical and empirical evidence

Stock & Dietrich (2003, 2006)
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