Package ‘reservoir’

July 23, 2015

Type Package

Title Tools for Analysis, Design, and Operation of Water Supply
Storages

Version 1.0.0
Date 2015-07-23

URL https://github.com/swd-turner/reservoir

Description Measure single-storage water supply system performance using resilience, reliability,
and vulnerability metrics; assess storage-yield-reliability relationships;
determine no-fail storage with sequent peak analysis; optimize release
decisions using deterministic and stochastic dynamic programming; evaluate
inflow persistence using the Hurst coefficient.

License GPL (>=2)
LazyData yes
Imports gtools, stats
NeedsCompilation no

Author Sean Turner [aut, cre],
Stefano Galelli [aut]

Maintainer Sean Turner <swd.turner@gmail.com>
Repository CRAN
Date/Publication 2015-07-23 07:16:21

R topics documented:

Rippl . . . e

vield

https://github.com/swd-turner/reservoir

Index 12

dp Dynamic Programming

Description
Determines the optimal sequence of releases from the reservoir to minimise a penalty cost function
based on water supply defict.

Usage

dp(Q, capacity, target, S_disc = 1000, R_disc = 10, loss_exp = 2,
S_initial = 1, plot = TRUE, rep_rrv = FALSE)

Arguments
Q vector or time series object. Net inflows to the reservoir.
capacity numerical. The reservoir storage capacity (must be the same volumetric unit as
Q and the target release).
target numerical. The target release constant.
S_disc integer. Storage discretization—the number of equally-sized storage states. De-
fault = 1000.
R_disc integer. Release discretization. Default = 10 divisions.
loss_exp numeric. The exponent of the penalty cost function—i.e., Cost[t] <- ((target -
release[t]) / target) N **loss_exp**). Default value is 2.
S_initial numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The
default value is 1.
plot logical. If TRUE (the default) the storage behavior diagram and release time
series are plotted.
rep_rrv logical. If TRUE then reliability, resilience and vulnerability metrics are com-
puted and returned.
Value

Returns the time series of optimal releases and, if requested, the reliability, resilience and vulnera-
bility of the system.
References

Loucks, D.P., van Beek, E., Stedinger, J.R., Dijkman, J.P.M. and Villars, M.T. (2005) Water re-
sources systems planning and management: An introduction to methods, models and applications.
Unesco publishing, Paris, France.

See Also

sdp for Stochastic Dynamic Programming

Hurst 3

Examples

storage_cap <- 4 * mean(aggregate(ResX_inflow.ts)) # set storage ratio of 4 years
demand <- 0.8 * mean(ResX_inflow.ts) # set draft ratio of 0.8
optimal.releases <- dp(ResX_inflow.ts, capacity = storage_cap, target = demand)

Hurst Hurst coefficient estimation

Description

Hurst coefficient estimation.

Usage

Hurst(Q)

Arguments

Q vector or annualized time series object. Net inflows or streamflow totals.

Value

Returns an estimate of the Hurst coefficient, H (0.5 <H < 1).

References

H.E.Hurst (1951) Long-term storage capacity of reservoirs, Transactions of the American Society
of Civil Engineers 116, 770-808.

Pfaff, B. (2008) Analysis of integrated and cointegrated time series with R, Springer, New York.
[p.68]

Examples

Q_annual <- aggregate(ResX_inflow.ts) #convert monthly to annual data
Hurst(Q_annual)

4 reservoir

reservoir reservoir: Tools for Analysis, Design, and Operation of Water Supply
Storages

Description

Measure single reservoir performance using resilience, reliability, and vulnerability metrics; com-
pute storage-yield-reliability relationships; determine no-fail Rippl storage with sequent peak anal-
ysis; optimize release decisions using determinisitc and stochastic dynamic programming; evaluate
inflow characteristics.

Analysis and design functions

The Rippl function executes the sequent peak algorithm to determine the no-fail storage for given
inflow and release time series. The storage function gives the design storage for a specified time-
based reliability and yield. Similarly, the yield function computes yield given the storage capacity.
The rrv function returns three reliability measures, relilience, and dimensionless vulnerability for
given storage, inflow time series, and target release. Users can assume Standard Operating Policy,
or can apply the output of sdp analysis to determine the RRV metrics under different operating
objectives. The Hurst function estimates the Hurst coefficient for an annualized inflow time series.

Optimization functions

Users may specify a loss exponent parameter for supply deficits and then optimize reservoir release
decisions using Dynamic Programming (dp) or Stochastic Dynamic Programming (sdp). There is
also an option to simulate the output of sdp using the rrv function to validate the policy under
alternative inflows or analyze reservoir performance under different operating objectives.

Examples

1. Express the distribution of Rippl storage for a known inflow process...

a) Assume the inflow process follows a lognormal distribution
(meanlog = @, sdlog = 1):
X <= rlnorm(1200)

b) Convert to a monthly time series object beginning Jan 1900
(ts objects are not required for most functions in "reservoir”)
x <- ts(x, start = c(1900, 1), frequency = 12)

c) Begin reservoir analysis... e.g., compute the Rippl storage
x_Rippl <- Rippl(x, R = rep(mean(x) * 0.7, length = length(x)))
no_fail_storage <- x_Rippl$Rippl_storage

d) Resample x and loop the procedure multiple times to get the

distribution of no-failure storage for the inflow process assuming
constant release (R) equal to 70 percent of the mean inflow.
no_fail_storage <- vector("numeric”, 500)

for (i in 1:length(no_fail_storage)){

ResX_inflow.ts 5

X <= ts(rlnorm(1200), start = c(1900, 1), frequency = 12)
no_fail_storage[i] <- Rippl(x, R = rep(mean(x) * 0.7,
length = length(x)),plot = FALSE)$Rippl_storage

}

hist(no_fail_storage)

2. Trade off between annual reliability and vulnerability for a given system...

a) Define the system: inflow time series, storage, and target release.
inflow_ts <- ResX_inflow.ts

storage_cap <- 2 * mean(aggregate(inflow_ts)) #Storage ratio = 2

demand <- 0.8 * mean(inflow_ts)

b) define range of loss exponents to control preference of high reliability
(low loss exponent) or low vulnerability (high loss exponent).
loss_exponents <- c(0.5, 0.75, 0.9, 1.0, 1.1, 1.25, 1.5, 1.75, 2)

c) set up results table

pareto_results <- data.frame(matrix(ncol = 2, nrow = length(loss_exponents)))
names(pareto_results) <- c("reliability”, "vulnerability")
row.names(pareto_results) <- loss_exponents

d) loop the sdp function through all loss exponents and plot results

for (loss_f in loss_exponents){

sdp_temp <- sdp(inflow_ts, capacity = storage_cap, target = demand, rep_rrv = TRUE,

S_disc = 200, R_disc = 20, plot = FALSE, loss_exp = loss_f)
pareto_results$reliability[which(row.names(pareto_results)==loss_f)] <- sdp_temp$annual_reliability
pareto_results$vulnerability[which(row.names(pareto_results)==1loss_f)] <- sdp_temp$vulnerability

}
plot (pareto_results$reliability,pareto_results$vulnerability, type = "b", 1ty = 3)

ResX_inflow.ts Reservoir X inflow time series 1964 - 2014 (monthly)

Description

Reservoir X inflow time series 1964 - 2014 (monthly)

Format

time series object

Author(s)

Sean Turner

Source

www . bom.gov.au/water/hrs/

www.bom.gov.au/water/hrs/

6 Rippl

Examples

plot(ResX_inflow.ts)

Rippl Rippl analysis

Description
Computes the Rippl no-failure storage for given time series of inflows and releases using the sequent
peak algorith.

Usage
Rippl(Q, R, double_cycle = FALSE, plot = TRUE)

Arguments
Q a time series or vector of net inflows to the reservoir (volumetric).
R a time series or vector of target releases (volumetric). Must be the same length

as Q.

double_cycle logical. If TRUE the Q and R time series will be replicated and placed end-to-
end to double the simulation. Recommended if the critical period occurs at the
end of the sequence.

plot logical. If TRUE (the default) the storage behavior diagram is plotted.

Value

Returns the no-fail storage capacity and corresponding storage behaviour time series.

References

Rippl, W. (1883) The capacity of storage reservoirs for water supply, In Proceedings of the Institute
of Civil Engineers, 71, 270-278.

Thomas H.A., Burden R.P. (1963) Operations research in water quality management. Harvard Water
Resources Group, Cambridge

Loucks, D.P, van Beek, E., Stedinger, J.R., Dijkman, J.P.M. and Villars, M.T. (2005) Water re-
sources systems planning and management: An introduction to methods, models and applications.
Unesco publishing, Paris, France.

Examples

define a release vector for a constant release equal to 70 % of the mean inflow
release <- rep(mean(ResX_inflow.ts) * 0.7, length(ResX_inflow.ts))
no_fail_storage <- Rippl(ResX_inflow.ts,release)

rrv Reliability, resilience, and vulnerability analysis

Description
Computes time-based, annual, and volumetric reliability, as well as resilience and dimensionless
vulnerability for a single reservoir.

Usage

rrv(Q, R_target, capacity, double_cycle = FALSE, plot = TRUE,
S_initial = 1, policy = NULL)

Arguments
Q time series or vector. The net inflows to the reservoir.
R_target time series or vector. The target release. Must be the same length as Q.
capacity numerical. The reservoir capacity. Should be same volumetric unit as Q and R.

double_cycle logical. If TRUE the input series will be replicated and placed end-to-end to
double the simulation. (Recommended if the critical period occurs at the end of
the recorded inflow time series)

plot logical. If TRUE (the default) the storage behavior diagram and release time
series are plotted.
S_initial numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The
default value is 1.
policy list. The output of the SDP function. The default is (NULL) is Standard Oper-
ating Policy.
Value

Returns reliability, resilience and vulnerability metrics based on supply deficits.

References

McMahon, T.A., Adeloye, A.J., Zhou, S.L. (2006) Understanding performance measures of reser-
voirs, Journal of Hydrology 324 (359-382)

Examples

Determine the reliability, resilience and vulnerability for reservoir on Holland Creek
demand <- rep(@0.8 * mean(ResX_inflow.ts), length = length(ResX_inflow.ts))

storage_cap <- 2*mean(aggregate(ResX_inflow.ts)) # 2 years' storage

rrv(ResX_inflow.ts, R_target = demand, capacity = storage_cap)

sdp

sdp

Stochastic Dynamic Programming

Description

Derives the optimal release policy based on storage state, inflow class and within-year period.

Usage

sdp(Q, capacity, target, S_disc = 1000, R_disc = 10, Q_disc = c(@, 0.2375,
0.475, ©.7125, 0.95, 1), loss_exp = 2, S_initial = 1, plot = TRUE,
tol = 0.99, rep_rrv = FALSE)

Arguments

Q

capacity

target

S_disc

R_disc

Q_disc
loss_exp
S_initial
plot

tol

rep_rrv

Value

time series object. Net inflows to the reservoir.

numerical. The reservoir storage capacity (must be the same volumetric unit as
Q and the target release).

numerical. The target release constant.

integer. Storage discretization—the number of equally-sized storage states. De-
fault = 1000.

integer. Release discretization. Default = 10 divisions.

vector. Inflow discretization bounding quantiles. Defaults to five inflow classes
bounded by quantile vector c(0.0, 0.2375, 0.4750, 0.7125, 0.95, 1.0).

numeric. The exponent of the penalty cost function—i.e., Cost[t] <- ((target -
release[t]) / target) N **loss_exp**). Default value is 2.

numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The
default value is 1.

logical. If TRUE (the default) the storage behavior diagram and release time
series are plotted.

numerical. The tolerance for policy convergence. The default value is 0.990.

logical. If TRUE then reliability, resilience and vulnerability metrics are com-
puted and returned.

Returns a list that includes: the optimal policy as an array of release decisions dependent on storage
state, month/season, and current-period inflow class; the Bellman cost function based on storage
state, month/season, and inflow class; the optimized release and storage time series through the
training inflow data; the flow discretization (which is required if the output is to be implemented in
the rrv function); and, if requested, the reliability, resilience, and vulnerability of the system under
the optimized policy.

storage

References

Loucks, D.P., van Beek, E., Stedinger, J.R., Dijkman, J.P.M. and Villars, M.T. (2005) Water re-
sources systems planning and management: An introduction to methods, models and applications.
Unesco publishing, Paris, France.

Gregory R. Warnes, Ben Bolker and Thomas Lumley (2014). gtools: Various R programming tools.
R package version 3.4.1. http://CRAN.R-project.org/package=gtools

See Also

sdp for deterministic Dynamic Programming

Examples

storage_cap <- 4 * mean(aggregate(ResX_inflow.ts)) # set storage ratio of 4 years
demand <- 0.8 * mean(ResX_inflow.ts) # set draft ratio of 0.8
optimal.releases <- sdp(ResX_inflow.ts, capacity = storage_cap, target = demand)

storage

Storage-Reliability-Yield (SRY) relationships: Storage computation

Description

Returns the required storage for given inflow time series, yield, and target time-based reliability.
Assumes standard operating policy. Storage is computed iteratively using the bi-section method.

Usage

storage(Q, yield, reliability, profile = rep(1, frequency(Q)), plot = TRUE,
S_initial = 1, max.iterations = 50, double_cycle = FALSE)

Arguments

Q

yield
reliability
profile

plot
S_initial

max.iterations

double_cycle

the net inflows to the reservoir. This must be a time series object or vector of the
net inflow volumes.

numerical. (must be same volumetric unit as Q and R).
numerical. (must be same volumetric unit as Q and R).

a vector of factors with length = frequency(Q). Represents within-year demand
profile. Defaults to constant release if left blank.

logical. If TRUE (the default) the storage behavior diagram and release time
series are plotted.

numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The
default value is 1.

Maximum number of iterations for yield computation.

logical. If TRUE the input series will be replicated and placed end-to-end to

double the simulation. (Recommended if the critical period occurs at the end of
the recorded inflow time series)

10 yield

Value

Returns the required storage capacity necessary to supply specified yield with specified reliability.

Examples

Determine the required storage for 95 % reliability and yield equal to 80 % of the mean inflow.
storage(ResX_inflow.ts, yield = 0.8*mean(ResX_inflow.ts), reliability = 0.95)

yield Storage-Reliability-Yield (SRY) relationships: Yield computation

Description

Returns the yield for given inflow time series, reservoir capacity, and required time-based reliability.
Assumes standard operating policy. Yield is computed iteratively using the bi-section method.

Usage

yield(Q, capacity, reliability, profile = rep(1, frequency(Q)), plot = TRUE,
S_initial = 1, max.iterations = 50, double_cycle = FALSE)

Arguments

Q a time series or vector of net inflows to the reservoir.

capacity numerical. (must be same volumetric unit as Q and R).

reliability numerical. (must be same volumetric unit as Q and R).

profile a vector of factors with length = frequency(Q). Represents within-year demand
profile. Defaults to constant release if left blank.

plot logical. If TRUE (the default) the storage behavior diagram and release time
series are plotted.

S_initial numeric. The initial storage as a ratio of capacity (0 <= S_initial <= 1). The

default value is 1.
max.iterations Maximum number of iterations for yield computation.

double_cycle logical. If TRUE the input series will be replicated and placed end-to-end to
double the simulation. (Recommended if the critical period occurs at the end of
the recorded inflow time series)

Value

Returns the storage behaviour time series for the no-failure (Rippl) reservoir given net inflows Q
and target release R.

yield

Examples

Compute yield for ©0.95 reliability
yield_ResX <- yield(ResX_inflow.ts, capacity = 100000, reliability = 0.95)
Compute yield for quarterly time series with seasonal demand profile

quarterly.ts <- aggregate(ResX_inflow.ts, nfrequency = 4)
yield_ResX.quart <- yield(quarterly.ts,
capacity = 100000, reliability = 0.9, profile = c(0.8, 1.2, 1.2, 0.8))

11

Index

dp, 2,4
Hurst, 3, 4

reservoir, 4

reservoir-package (reservoir), 4
ResX_inflow. ts, 5

Rippl, 4,6

rrv, 4,7

sdp, 2,4,8,9
storage, 4,9

yield, 4, 10

12

	dp
	Hurst
	reservoir
	ResX_inflow.ts
	Rippl
	rrv
	sdp
	storage
	yield
	Index

