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1. Introduction
Proximity of the St. Elias Mountains to the coastline assures that the majority of gla- 3 . O bse Wat' ons an d Res U Its

5. A New Volume Estimate 6. Glacial Intervals and Channel Inception

cially eroded sediment is deposited in the Gulf of Alaska, much of it in the deepwater S‘;’;:ngf:::;e'\
Suryeyor Fan.. A long-offset 2D seismic reflection st_udy, gcquireq in 2008, Iin'ked to ool | Surveyor Channe.l o _ W pesm—— | / Alsek Leg E We calculated Surveyor Fan sediment volume based on thickness measured between *Proximity of Surveyqr qnd Chirikof Channel upslope heads to.shelfal sea yalleys (Fig. 1) suggests tributaries
previous studies of Surveyor Fan sediment cores, yields information on margin pro- Sk fromesst *Upper channel (Fig. 4): distinct levees, reflectors that tum down into e Yarytat Leg seafloor and basement on all available seismic reflection profiles. developed once glacial ice carved valleys to shelf edge, focusing fan sed. input to only a few shelf-edge loca-
cesses, erosion, climate events, orogenesis, and exhumation. The results of this the channel flank, some sidewall failure, reflection truncation (Figs. 5, 5.0 s = . L tions.
study will add to the existing body of work on climate-dominated tectonic systems, ————sah 7), and in the thickest section of the Surveyor Fan. ‘ *We estimate the volume of the Surveyor Fan to be ~6.8x10° km®, comparable to the ,
and demonstrate how such a system can not only transform the orogen, but the s 5 Middle channel (Fig. 4): typically less channel fill than upper channel size of the Amazon Fan, and making it the fourth largest fan body by volume after the Glacial Interval A
entire margin from source to sink. s S and less distinct or no levees (Fig. 8). | 55 s~ 334 Bengal, Indus and Amazon Fans (Curry et. al, 2003). *Glacial int. A may not be severe enough to drive glaciers across the full shelf. Early Alsek Leg only present
1l SLe N S *Lower channel (Fig. 4): little to no historical channel fill, no down- ' S - in proximal fan: sea valley maybe not necessary to form this proto Surveyor Channel (Fig. 13a, b).
;’ "‘ < 6.5 s REm o — =z turned reflectors at sidewall, no levees, and occurs much lower in stra- — == B ik BB e P A s T S 140° W kilometers L . : S
2] o . et = 2 SRR tigraphy than upstream channel sections (Fig. 10b). 60s- R T e R MR I U e L D St s S s B =180300 *Glacial int. A and resulting proto Surveyor Channel (Fig. 13b) and depocenter shift (Fig. 12a to 12b) could
B~y - ~ 2 R e SRS T L Ui T A AN T g e S T S e . . . == P is, ' ~ Sequence | | be responsible for angular discordance and a large change in seismic amplitude in strata across the I-1l seq.
~ | - R — N e SRR L S, s S AR e S GRS S b LR SR «Two main Surveyor Channel tributaries: Yakutat and Alsek Legs s = boundary.
- » e S 1Y N e e 2 e S I e L Il B e Ry e i e e Y R TN P T : : >~ SH 2
- a A e A R R R SN NI B AT CEE R R S SR R USSR 2 TR (Figs. 1, 7). Yakutat Leg related to Yakutat Sea Valley and Malaspina “basement “Z. ° thickness (m) .
- 50 mm/yr Figure 4. Seismic reflection profile showing interpreted sequences and approx. correlation to Deep and Hubbard Glaciers. Alsek Leg related to Alsek Sea Valley and gla- G Glacial Interval C
‘ Sea Drilling Project (DSDP) Site 178. See Fig. 3 for line location. Vertical axis in two-way travel cial system s ,’i‘?‘«% . . . . o "
time. Vertical exaggeration ~35:1 assuming 2000 m/s sediment acoustic velocity. (USGS Survey ' 2 SRR ‘Increased sedimentation associated with the glacial int. C was extreme, shifting from ~750 to 2000

mg/(cm?k.y.) in the distal fan (Rea and Snoeckx, 1995).

+All tributary leg channel fill deposits except for the Alsek first appear in the sediment record near the se-
quence lI-lll boundary (Fig. 7) in the upper channel, and the Alsek Leg appears at |I-lll sequence boundary
in all but the most shelf-proximal seismic lines (Fig. 9).

Fes9) .-Alsek Leg channel fill deposits f'r.St appear at I-ll sequence boundary Figure 5. Seismic reflection profile showing interpreted sequences and migration of the Yakutat Leg
Chirikof !n the upper channel, demonstrating that, ? Ievged channel has been of the Surveyor Channel. See Fig. 3 for line location. Vertical axis in two-way travel time. Vertical ex-
Channel in place since onset of sequence Il deposition (Fig. 9); however, down- aggeration ~20:1 assuming a 2000 m/s sediment acoustic velocity. (USGS Survey L378)

stream in the middle channel where Alsek and Yakutat Legs have

merged to form main trunk, channel fill deposits first appear at Il-1l|

boundary (Fig. 8a).

*We interpret this to indicate that glacial int. C was impetus for further channel growth across the Surveyor
Fan (Fig. 13b, ¢), and pronounced aggradation and progradation of the channel levees in sequence Il (Fig.
12b, c).

Pacific plate \CD
> gt > Channel Migration Surveyor Channel og Necessity of shelf-edge glaciation
A Patton- Y . : e : : : S e :
_; 2N-Murray €amount Chain | ; Ya'fu.tat L.eg.. _only Ieg thgt o West Leg // upper channel /Su/-\rveyo\r A <>// -No .observed reguo.nal'g,equenc.e associated wuth g[acnal int. B.'We suggest thgt sed. Qstrubutuon during gla-
o [ 150 km ol exhibits significant historic NW - SE Sy v A cial int. B was not significantly different than glacial int. A. The increase in sedimentation was not enough to
"Q — — ! 2 l t l t Ch l ¥ s - R Icy EaSt Leg 0 Fan J J et . . . . . . . . .
53 18'3" N 53 1941 aieéral movement. Lhanne PPEERT ———ro > , Meek L , WIS spur a major change in fan sed. distribution, as observed with glacial int. C.
. . . . . . fill deposits migrated 35 km T e NP - Yakutat Leg sekieg aoRt e B o Further evidence for necessity of shelf-edge glaciation for major channel formation in the Surveyor Fan.
Figure 1. 3D perspective bathy/topo view of the southern Alaska margin, showing tectonic southeast upsection (Figs. SE o et R N _\_ _ : . =
$Oundari;2 acr;\_d the _Sl_lf;eyor Fan lnThlgh-reS- ?athyme‘:tg- /;SV- AlsekSSea \<{alley;YBT- Bering 5, 9). 5.0 s e 2 = S Lk s VSR i o8 A RIS - «Channel fill of Icy Legs exhibits change in acoustic character, from high amplitude channel-fill deposits to lat-
rough; GS- Glacomini Seamount; KI- Kayak Trough; PS- Pamplona Spur, YAK- Yakutat ter- 6.0 s— __ o : : Figure 11. Isopach map showing Surveyor Fan sediment thickness, estimated Surveyor Fan erally continuous turbidite drapes (Fig. 7). We interpret the boundary between as a “shutting off’ of the Icy
rane; YSV- Yakutat Sea Valley. Plate boundaries (Gulick et al., 2007); high-resolution bathym- : M t t of R TS o e e ) A : . :
) - igration occurs east or a Ry bound d dashed | d line | ed in calcul d bound d | East and West Legs
, L : . Fow S LS oundary (red dashed line), and seismic line location used in calculation and boundary study (purple gs.
etry (Gardner et al.,, 2006); remaining bathymetry (Smith and Sandwell, 1997); Yakutat terrane e substantial basement high E5Sequence Il 2rasis line). KiI- Kodiak Island; KT- Kayak Trough; BT- Bering Trough; YSV- Yakutat Sea Valley *The glacial system upstream of Pamplona Troughs may have become extinct or merged with Bering system
motion relative to North America (Elliott et al., 2010); Pacific plate motion (Kreemer et al., 2003). 6.5 s—faaiacsy Y S HR R S NS5 Fia. 9). The hiah underli ,-;-w;‘},«w;-’ A ' ’ ’ ' ’ 9 : y P P ) 9 y : , 9 T g Sy '
e TR RS RN e :gg:';*s-,;fvf' ,t“;’.‘, TR U R ( 'g- h)‘ € 'Qd Unf er 'ez o e e, A e b s it CNANNE L A s . T o Ilcy Legs’ shut down further supports necessity of shelf-edge glaciers to begin and maintain the Surveyor
. _ R bt 1 4 fOASTE Uit AR Mpyea o basement R LoEr REhr T~y  a bathymetric ridge forme T e ONIAP s ey o B S s g e e ¥ I S S L e O LS e e el S Rt Ch |
magn?tlc DSDP 178 Line 13 - T ) - o o — {' ' —— _— b Saaianbnan ) e :\. e o T e e i s N NS E g W henad . A “' _‘ - N ‘- 7 S e s ..'E"“‘f‘\. '-_ ","',.}-" .,.',_'.;‘:;..'-" annel.
stabpraphy  Thickness S &y Figure 6. Seismic reflection profile showing interpreted sequences and migration of the Yakutat Leg of the Surveyor Chan- ~ DY @ sediment wedge that . |~ - e aea ChANNel igration 2 gz ' o
n s—— Om it nel. GASZ- Gulf of Alaska Shear Zone (e.g., Gulick et al., 2007). See Fig. 3 for line location. Vertical axis in two-way travel ~ has aggraded and grown to S : - R R R
Zl| & X Se time. Vertical exaggeration ~8:1 assuming a 2000 m/s sediment acoustic velocity. (STEEP Survey) the southeast. = o R L N R R 3
Q| 5 : ence i Figure 2. Lithology/age % g -
3 i froi ol for Deep Sea D *Yakutat Leg migration cor X5 £ e -
o + [SozsMa 2" 1100m control for Deep Sea Drill- g mig RTINS N * 2 t A A  Yakutat collision ~ 10 Ma - Glacial Interval A~5.5Ma | B Glacial Interval A: tidewater glaciation ~ 5.5 Ma
d g Ja = 1:07 Ma [ |ng PijeCt (DSDP) Slte Sw Surveyor Channel NE responds tO depocenter :~A)’§equen§e “ 3 p S "' 5 4 " ?‘:: ..' - T .,..“"'_".‘ » _:.-'\:A .J".'. 5 ;‘:‘ ¥y 3 ")",. Ve eV ‘_- > ' ¥ > i - * 3 ‘_'_“.» ;) > :v_:' . \' P =
2| ozoome  Fizes 178. Modified from Lagoe middle channel = growth observed on the T e 1 N e M R P A T RSP P eolh i Sy 7R
= |ormmiosma  |.c{z0m Seavencel et al. (1993). Partial seis- main trunk e R two-way travel time thick- 6.0 s SEaasr el A b bl kil o Bt P S L T e e LA o S e O S s SR P L
‘ : mic section from line 13 of 3.0 W e R T AL PN Bt X, AT s e Lt P
w (e , 2 ness maps for sequence |l B o L R R LA R P N L Srare 2 AR AR FAN AR,
zZ -3.1+0.1 Ma t - 1989 USGS surve F689 e ' ~ ‘Sequence | . Y e T e e A T 2. o e s ) o 5 gy
&S <o+ < Firstappearance (Fig. 4); seismic gata in T = A and IlI (Fig. 12). B O R BASE (s A T A by oy WSl 7%
of 8 300m of ice-rafted 9. 4 . B e A G d R e S R LT basement s AT U
" L8 3 : debris (IRD) .. two-way travel time. —dow e oy e g equence L D 60 Q_-:__:___%S-‘@ N R L e AR o R R S oy )50 AT
< 49201 e ==} S “Ar°Ar ages: Hogan et al. . g R o T e ' - | h T ' T D
:\? "_ N (1978). Magnetic polarity S R G L-.,.;.f.‘-::___.;;,‘j\ e e e oA v—‘i Figure 7. .Seismic .reﬂectior? profile §howin.g i_nterpreted sequences and Fhe four main t-ributary legs of the Surveyor Chaq-
. ' wm -"\:::.;\‘- stratigraphy: von Huene et SRR ; e e T N e %p;’%g;&e" 5 nel. See Fig. 3 for line location. Vertical axis in two-way travel time. Vertical exaggeration ~50:1 assuming 2000 m/s sedi-
Z=I8 | al (1973). Seismic veloci- Biveass o~ 8 - O3 S ment acoustic velocity. (USGS Survey F789) TagEg] Ve tico Time
—0.520.1 e = Sequence |  ZRINS ties: Shipboard Scientific T i AR S NN PP, ok §:~.§ % o ...~ | Regional Sequence Boundaries o, orth | Thicknesg(ms)
€1 ?l‘ Yo ':"' :-\- > ;"' :.av /.t;’t‘\/tt‘a‘::-’: e :"‘f; el _k ‘ 1 ' l
' S00m S Party (1973). o SR st el L *Sequence I-Il boundary occurs at ~330 m depth in the plate W plate o
= o) e R R R R DSDP 178 core, dated at ~1 Ma based on “Ar/*°Ar dating of Surveyor Channel Neutian Treheh Yakutat terrane Aleutian Tre b Yakutat terrane
S SRS SN GRE oA W | et e SR Il Sk ' . .. .. v ‘
S 600 m v e Ao T 5;, \5*?.: s \"i{z;‘ ash layers (Hogan et al., 1978) (Fig. 2), making it coincident upper channe Surveyor Channel ' < .
=| -+ ashbed | B IR R Y A e with the onset of glacial int. A. There is no observed change 600
22 i Fons | S et —==] i lithology across the I-Il boundary at DSDP 178 Sy upper channel
[ sandstone ° P e IR Surveyor Channel 9y Yy ' -NW Leg . SEfa5s 800
B | canic rock 700 m TR0, S SW middle channel NE _ Y e e g e SR e o Yakutat Leg Alsek Leg o C Glacial Interval C: glacial intensification ~1 Ma 1000
CJ mudrock, M 2 main trunk —_ . *Sequence |I-lll boundary occurs at 130 m depth in the D o e A R SRt T SR N e
diatomaceous ) v N - : , A S I N Y PR e e . W < S
ooze - - DSDP 178 core, dated at ~1 Ma based on magnetic polarity ' ran s R B S R R U AL S B L e o B quence NI 50s ~1200
basement e strat. (von Huene et al., 1973a) (Fig. 2), making it coincident ' $ e 2 o]
il with the onset of glacial int. C. The II-lll boundary is 10 m S A T

. . : . - 5 . BOERRE R e T R N o -~ 2 ,',:~‘ i ‘;’: ' T ' .i"",'." 1.‘(:,.. R &:’a.:“"_'“‘k"“‘:"-’t'se' uent‘é.‘li;i'
= above a change in fan lithology from abundant diamictite to s R LR At SO AS L S e N R e e e N T s L S SN e s i

EAT e A , e ) 97 Figure 12. Isopach maps of (A) sequence |, Pacific plate formation - ~4.9 Ma, (B) sequence I,
"7 Sequence ll | less diamictite (Shipboard Scientific Party, 1973).

~ 49 -0.9 Ma, and (C) sequence lll, ~1 Ma - present. Seismic reflection data tracklines used
in calculation are shown in (D). ASV- Alsek Sea Valley; BT- Bering Trough; KT- Kayak Trough;
YSV- Yakutat Sea Valley.

*Both sequence boundaries are synchronous with doubling

in terrig. sed. flux observed at ODP 887 at ~5 Ma and ~1 Ma. R R S SIS
2 J basement high: \.
formation on depth, lithology, and age control (Fig. 2) for sequences observed in fan. e N e A AR M) S e e, WBE S +Terrig. sed. flux at ODP 887 also doubles at glacial int. B % | S 5%

Core Data 2 i Data

*DSDP 178: source of limited age control using magnetic polarity stratigraphy (von Huene et R A O e e s g o E Nt
al., 1973) and “Ar/*’Ar dating of volcanic ash layers (Hogan et al., 1978). Only source of in- N AL I AR ;S A SRR, X T et N e RN I

-
~ L

D ) North
America / America

plate 1" 7 : plate
Yakutat terrane ~ 2 S Yakutat terrane

7. Glacial vs. Fluvial

A

P e AU N S B st SO Sa A (Rea and Snoeckx, 1995), but no observed regional se- 2 ; O S o e e ,’,.’b- t
i S S L S R quence boundary or change in lith. that could be interpreted ' R S RN AL R ik G SRS e et R AL LI
as onset of glacial int. B. Therefore, sequence Il includes Figure 9. Seismic reflection profile showing interpreted sequences and four main tributary legs of the Surveyor

<D Sersimic caehymetric Data the middle channel section of the Surveyor Channel. See Fig. 3 for line locations. Vertical glacial int. Aand B. Channel. Also evident is the basement high and sediment wedge that influenced migration of the Yakutat Leg. GASZ-

«2008 NSF STEEP MCS dataset, R/V Langseth *100 m? resolution data obtained in axds I tWO-Wa : : : : : : . ) ) . : L . livered sediment directly to slope at a glacial maximum.
. ) . ) . -way travel time. Vertical exaggeration (A) ~70:1 and (B) ~35:1 assuming 2000 Gulf of Alaska Shear Zone (e.g., Gulick et al., 2007). See Fig. 3 for line location. Vertical axis in two-way travel time. ) ) " ) .
*2004 |ODP site survey MCS dataset, RIV Ewing 2005 for United Nations Convention m/s sediment acoustic velocity. (USGS Survey F689) Vertical exaggeration ~35:1 assuming 2000 m/s sediment acoustic velocity. (USGS Survey F689) *In spite of location and ability to bypass sediment to slope, glacial sea valleys may

*1970's USGS MCS datasets: G175, L378, L677  on Law of the Sea (Gardner et al., Figure 13. Schematic illustration of Surveyor Fan and southern Alaska margin sedimentary evolution over the last 10 Myr. Terrig- not be a direct proxy for fluvially-influenced shelf canyons.
«1980's USGS single-channel datasets: F186, enous sediment depocenter distribution represented by brown area on the seafloor. For simplicity, successive time steps do not *In glacial systems, sed. flux is greatly reduced during interglacial compared to gla-

FO88, F689, F789 show plate motion. cial maxima, whereas a fluvial system could have a relatively constant sed. flux

s - _ . | _ 4 Tectonic Control on Channel Position from highstand to lowstand (Covault and Graham, 2010).

*ODP 887: provides control within the fan for identifying relative changes in sedimentation
rates and timing of climatic and tectonic events (Rea and Snoeckx, 1995).

*Sea valleys/troughs remnants of cross-shelf glacial transit: in the past, glaciers de-

*We suggest that sea valleys may bypass some sed. during interglacial times, but

«Zone of extension, flanked by the Kodiak-Bowie Seamount 8 C onc | us | ons overall provide increased shelf accommodation space (e.g., Bering Trough,
Chain to the north and the Patton-Murray Seamount Chain to R N A oA 2one of extension - Worthington et al., 2010).
the south, contains majority of lower Surveyor Channel (Fig. L . o . . ‘Max. sed. delivery to fan occurs during glacial maxima due to associated increase
4)- heavily faulted and regionally extensive (Fig. 10). 1) T_hlckemng of sequences into Yakutat shelf is evidence of long-term connection of Surveyor Fan to St. Elias in glacial erosion.
O Y Nl B HER o . sediment sources. *Therefore, Surveyor system after glacial interval A has been built by periodic sed.

*The zone of extension and Aleutian Trench combined give PR R sl BN S R U RN . Surveyor Channel AR S ) Sy 2) <Glacial int. A reorganized fan sediment distribution by spurring Surveyor Channel genesis. pulses associated with glacial maxima, and has a shorter “active’ life than a fluvial
the lower channel section the highest axial gradient of any | N R R T | FiliRea m D~ SyRes s XU R *Glacial int. C extended Surveyor Channel across Alaskan Abyssal Plain by pushing glaciers to the shelf system with a coeval origin.
Surveyor Channel section (Ness and Kulm, 1973). However, lower channel VR R Once )3 edge and increasing the sed. flux to unprecedented levels.

some channel fill is recorded in the erosional lower section of - g T £ 2P N s et RN
RodiaicBowic Seamotin: Chigin the Surveyor Channel (Fig. 10b).
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3) Correlation of glacial int. C and the MPT to the II-lll sequence boundary supports the Berger et al. (2008) hy-

pothesis that MPT was a threshold where climate, compared to exhumation, started dominating erosion in the References *This workis a manuscript in review with Geosphere. Acknowledgments
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Figure 3. 3D perspective view showing tracklines of 2D seismic reflection surveys and ocean drill *The curent channel fill therefore could be an accumsation B
sites used in this study. High-res. bathymetry: Gardner et al. (2006): remaining bathymetry: Smith and of fill since the last glacial event, or represent an amalgama- Figure 10. Seismic reflection lines (A) 21 from 1988 USGS Survey F988, and (B) 13 from 1989 USGS R A e A NS G N AT SORE RS REA N T SR bathymetric low that funnels the lower Surveyor Channel to the Aleutian Trench. Shipboard Scientific Party, Ini. Rep. DSDP Leg 18, 1973. lowing for funding and data: _

Sandwe" (1997). ASV. A|sek Sea Va"ey‘ BT_ Bering Trough; DSDP_ Deep Sea Dn"'ng Project: GS- thﬂ Of IntefglaClal deOSltS that Were nOt fU||y erOded durlng Survey F689 The 'ower SeClion Of the Surveyor Channe| ﬂows through the center Ofa zone Of extenSion e o ' . Smith and Sandwell. Scienoe, 1997. Ay

. h : : : : : : : : : o~ i i lirich, U.Florida MS thesis, 2010. =" =
Giacomini Seamount; KT- Kayak Trough; ODP- Ocean Drilling Program; TF- Transition Fault; YAK- glacial maxima. flanked by the Kodiak-Bowie and Patton Murray Seamount Chains. See Fig. 3 for line locations. Vertical 7) We provide an updated estimate of Surveyor Fan volume at ~6.8x10° km®, making it the fourth largest fan \L,Jo:;u;.e 2?2: , m?. %f;fsoggg Leg 18, 1973. 7L USGS

Yakutat terrane; YSV- Yakutat Sea Valley. exaggeration is ~70:1 assuming a 2000 m/s sediment acoustic velocity. body by volume after the Bengal, Indus and Amazon Fans. Worthington et al., Tectonics, in press.
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