Exploring Delta Morphodynamics Using the CSDMS BMI to Couple Fluvial and Coastal Processes

Katherine Ratliff

US EPA Office of Research and Development

Center for Environmental Solutions and Emergency Response

ratliff.Katherine@epa.gov

Why Deltas?

- Densely populated
 - -25% of world's population
 - –large cities
- Agriculture & resources (e.g., oil, gas, groundwater)
- Transportation and trade
- Anthropogenic influence (e.g., climate, land-use change)
- Increasingly vulnerable

River Channel Avulsions

- Dictates location of sediment delivery to coast
- Sets delta lobe size

New Delta Evolution Model

- Large spatial scales & long time scales
- Generalized & scale invariant
- Based on couplings using the CSDMS BMI

River Avulsion and Floodplain Evolution Model (RAFEM)

- Cell width >> channel width
- Steepest-descent river course (Jerolmack and Paola, 2007)
- Diffusion of river profile (Paola et al., 1992; Paola 2000)
- Subsidence (here, uniform)
- New land behind shoreline = marsh (maintains elevation)
- Sea-level rise related erosion (Wolinsky and Murray, 2009)

plan view

Ratliff, Hutton, and Murray, 2018 JGR-ES

Avulsions in RAFEM

- River aggrades; becomes 'perched' above floodplain
- Triggered by normalized super-elevation ratio (Heller and Paola, 1996; Mohrig et al., 2000)
- Avulsion successful if shorter (& steeper) new path (Slingerland and Smith, 2004; Hoyal and Sheets, 2009)
- Unsuccessful avulsion → crevasse splay

Ratliff, Hutton, and Murray, 2018 JGR-ES

- Conserves nearshore sediment
- Alongshore sediment transport
- Gradients \rightarrow erosion & accretion
- Wave climate & shadowing

Coastline Evolution ModelWave climate:(CEM)

- A (0-1): Asymmetry
- U (0-1): Diffusivity

Ashton and Murray, 2006

WH* = 0.1, A = 0.5, U = 0.3 No sea-level rise

backwater length = channel depth / slope

WH* = 0.3, A = 0.5, U = 0.3 No sea-level rise

backwater length = channel depth / slope

Critical SER = 1

Wave climate dictates delta morphology

fluvial dominance ratio (Nienhuis et al., 2015):

$$R = \frac{Q_r}{Q_{s,max}}$$

Small WH* → Waves have little effect on shape

Large WH* → •U < 0.5: flattening •U > 0.5: cuspate

Avulsion Time Scales

Bigger waves:

- Smaller U → avulsions take longer because river progradation inhibited
- Bigger U → avulsions occur more quickly

Smaller waves: wave climate diffusivity not as important

Higher SLRR* accelerates avulsions for diffusively wave dominated deltas, but not for 10^{-3} R > 1 or R < 1 with bigger U

Avulsion Length Scale

Ganti et al., 2016

Most avulsions (in nature and lab) scale with backwater length $L_B \approx$ channel depth / channel slope

RAFEM-CEM Avulsion Length Scale

Is this geometry realistic?

- Extracted 'distal' floodplain elevation profiles from rivers (using 15km buffer)
- Recent major avulsions:
 - Lafourche avulsion site
 - Bengal Basin upper delta plain
- Floodplain slope upstream of avulsion node greater than downstream slope
 - Mississippi River: > 6x
 - Brahmaputra River: ~2.5x
- Floodplain diffuses more slowly than river profile? (like in RAFEM)

Autogenic Variability

- Steady external forcings
- Storage and release cycles drive sediment delivery to coast
- Impacts delta stratigraphy
- Management implications

Thank You

https://github.com/katmratliff/rafem https://csdms.colorado.edu/wiki/Model:RAFEM

Katherine Ratliff ratliff.katherine@epa.gov

NSF

