Water and Climate Modeling

Reed Maxwell^{1,2,3} Ian Ferguson^{1,3} Shadi Moqbel^{1,3} John Williams^{1,2,3} Steven Meyerhoff^{1,2,3} Erica Siirila^{1,2,3}

¹Department of Geology and Geologic Engineering ²Hydrologic Science and Engineering Program ³International Groundwater Modeling Center

02007 COC

COLORADOSCHOOLOFMINES

We use the coupled model PF.CLM

- PF.CLM= Parflow (PF) + Common Land Model (CLM) Kollet and Maxwell (2008), Kollet and Maxwell (2006), Maxwell and Miller (2005), Dai et al. (2003), Jones and Woodward (2001); Ashby and Falgout (1996)
- Surface and soil column/root zone hydrology calculated by PF (removed from CLM)
- Overland flow/runoff handled by fully-coupled overland flow BC in PF (Kollet and Maxwell, AWR, 2006)
- CLM is incorporated into PF as a module- fully coupled, fully mass conservative, fully parallel

Dynamically coupled, 2D/ 3D OF/LS/GW Model

COLORADOSCHOOLOF**MINES** engineering the way

Fully-coupled, HPC Model of the Hydrologic cycle.

Only "bedrock to top of the atmosphere" model in existence

•PF.WRF

- •ParFlow: parallel watershed model
- •Weather Research and Forecast (WRF) Community Mesoscale Atmospheric Model (NCAR)

•Multi-institutional, Interdisciplinary team

•Significant previous coupled model experience

This fully coupled model predicts variations in watershed response driven by atmospheric forcing and feedbacks.

> COLORADOSCHOOLOF**MINES** engineering the way

Stochastic Heterogeneous Hillslope Modeling

Methods

- 1. Ensembles of heterogeneous permeability generated through Turning Bands algorithm
- 2. Using ParFlow, we model surface runoff and infiltration after a rain storm
- 3. Particle Tracking methods will be used to determine travel times of rain particles on surface and in subsurface

Different saturation patterns based on heterogeneity Sponsor: NSF Hydrologic Sciences

Goals

- 1. Determine impacts of heterogeneous permeability on dispersion
- 2. Compare baseflow cases to non-baseflow cases
- 3. Generate accurate hydrograph separation
- 4. Upscale processes and parameters to larger scale model

COLORADOSCHOOLOF**MINES** engineering the way

Wind Energy Forecasting

PF.WRF is used to forecast wind availability and potential power output based on land – atmosphere feedbacks and regional-scale weather forecasts

- very high resolution, nested simulations
- studying ramping events

Sponsor: Department of Energy

Central Oklahoma domain used for climate change studies

Water Management and Local Climate Feedbacks

Impacts of groundwater pumping and irrigation on watershed processes and feedbacks on surface energy balance, landatmosphere interactions, and local and regional climate

California case studies

- Mountain Recharge
- Deep alluvial groundwater systems
- Multiple watersheds and scales

- Microcosm for many water related issues
- Pristine to urban gradient
- Bellwether for climate impacts

Central Valley Simulations

Drinking Water Risk Assessment of CO₂ leakage

Large, integrated project to determine drinking water risk from CO₂ leakage (and byproducts) into groundwater. End-to-end approach, including experiments and model simulations to indentify high and low risk leakage scenarios Stochastic, highly resolved approach, combining physical and geochemical heterogeneity via Lagrangian

approach