
Linking Models: new componentized versions of
CSDMS models

By: Eric Hutton

CSDMS is the Community Surface Dynamics
Modeling System

(pronounced ˈsɪstәms)

Some proof of concept projects that are underway

Coastal Model Terrestrial Model

Marine Model Terrestrial Model

Hydrologic Model Terrestrial Model

Some proof of concept projects that are underway

Murray Coastal
Evolution Model HydroTrend

sedflux Child

TopoFlow GC2D

These models reflect the wide range of models in
our community

These 6 models represent:
•  6 authors
•  4 languages
•  4 domains
•  140,000 lines of source code

•  of a total of 215,000 in our repository
•  3 different grids

•  raster, non-uniform mesh, spatially averaged
•  2 different levels of model granularity

•  process and model

A standalone model is componentized by dividing
it into bits that perform tasks that other
components can use

Ini$al Standalone 
Model 

Ini$alize 

Set Value 

Run 

Finalize 

Get Value 

Another Component 

Another Component 

HydroTrend predicts the flux of water and sediment
at a river mouth

Precipitation

Snow Fall/Melt Rain Fall

Evaporation/Evapotranspiration

Glacier Storage/Melt
Glacier Advance/Retreat Groundwater Infiltration

Reservoirs Runoff/Discharge Lakes

Channel – Distributary
Channel Hydraulics Sediment Load

HydroTrend

HydroTrend predicts the flux of water and sediment
at a river mouth

HydroTrend:
•  10,500 lines of C code
•  Minimal command line interface
•  Input precipitation statistics
•  Output river discharge as binary hydrotrend file

Precipitation Hydrotrend

Channel
hydraulics

Sediment load

HydroTrend still predicts the flux of water and
sediment at a river mouth

HydroTrend:
•  11,300 lines of C code (8% increase – mostly new files)
•  API (IRF, and getters and setters)
•  Expanded CLI
•  GUI (within CCA)
•  CCA component

Checkout a version from our model repository:
> svn checkout https://csdms.colorado.edu/svn/hydrotrend

CEM predicts the distribution of sediment after it
enters the ocean

Sediment Load

Ocean Conditions

Coastal Evolution
Model

Sediment
Distribution

CEM predicts the distribution of sediment after it
enters the ocean

CEM:
•  4,300 lines of C code
•  No command line interface
•  No input files (hardcoded variables)
•  Constant sediment supply, wave angle characteristics
•  Output bathymetry as text file

CEM still predicts the distribution of sediment after
it enters the ocean

CEM after:
•  4,500 lines of C code (8% increase – mostly new files)
•  API (IRF, and getters/setters) – C, and Python
•  Library
•  Command line interface
•  GUI (within CCA)
•  CCA component
•  Output format CSV, BOV, netcdf

Checkout a version from our model repository:
> svn checkout https://csdms.colorado.edu/svn/deltas

A fully spatial hydrologic model with multiple
methods for modeling physical processes in
watersheds

A fully spatial hydrologic model with multiple
methods for modeling physical processes in
watersheds
TopoFlow is:

•  28,500 lines of IDL code

•  Component model

•  GUI

•  Input variables can be
scalar, time series, grid,
grid series

•  Output any variable as an
RTG binary file

•  Components are linked
within the topoflow
framework

TopoFlow was already a component based model
in the spirit of a plug-and-play framework

Degree‐Day None  Energy Balance Snowmelt 

None Priestley‐Taylor  Energy Balance Evapotran. 

Kinema$c Wave Dynamic Wave Chan. Flow  None 

Each method has a similar set of dialogs to specify or collect
input and output variables. Any process can be turned off.

TopoFlow still is a fully spatial hydrologic model
with multiple methods for modeling…

TopoFlow after:
•  33,058 lines of code (14% increase)
•  Component model
•  Python
•  Same output but saved as CSV, BOV, netcdf
•  No preprocessing tools yet

GC2D is a 2D valley glacier and ice sheet model

GC2D Before:
•  1500 lines of MATLAB code

•  No user interface

•  Input parameters hard wired in
code

•  Limited output variables/format

GC2D still is a 2D valley glacier and ice sheet
model

GC2D After:
•  1900 lines of Python code (25%)

•  Python process component

•  CCA Component

•  Input from config files

•  Output as BOV, netCDF, etc.

•  Added functionality: calculate melt
rates

Child is a landscape evolution model that delivers
sediment to the ocean

Precipitation

Topography
Child Model

Sediment load

Erosion rates

Child details:
•  39,000 lines of C++ code

•  Component model

•  User interface through input file

•  Lots of output variables as ASCII files

•  Calculations done on a non-uniform mesh

As the land rises, water erodes the landscape and
carries sediment to the ocean where it’s dumped

sedflux links component models to simulate the
growth of a continental margin.

sedflux provides a framework that keeps track of
stratigraphy

sedflux details:
•  70,000 lines of C code

•  Component model

•  User interface through input file, and command line

•  Lots of output variables as confusing binary data

•  Calculations done on a uniform mesh

Child does its calculations on an unstructured
mesh

Sedflux, like most of our models, uses a uniform
mesh

Perhaps the biggest challenge in this particular coupling will be grid
mapping.

Both Child and sedflux are components but they
have not been linked quite yet

As with our other components, both models:
•  Have an API (and so a library)

•  Can be run by CSDMS members remotely on beach

•  Can be run as a standalone model or as a component

•  Can be linked to other components (in other languages)

The CSDMS Modeling tool allows users to link
models through a graphical interface

Using this GUI, they can choose components from available palettes to
create their own, customized applications, and then run them on our
cluster. We have linked our GUI with VisIt to provide run-time
visualization.

Process components seem to be the most natural
level of granularity for model componentization.

Processes (such as infiltration) represent the “scale” at which modelers
are most likely to want to replace one approach with another. For
example, modelers very often want to compare different approaches
and algorithms with respect to speed, accuracy, scalability or realism.

Child 

sedflux 

VS

Surface Plume

Ocean Waves

Currents

Channel Avulsion

Lost in translation…

Converting models from one language to another is a complex task that
should be avoided whenever possible. Conversion tools usually cannot
fully automate the conversion process.

In conclusion,

Questions?

