Process Ecology: A Step Beyond Physics

> Robert E. Ulanowicz Arthur R. Marshall Laboratory University of Florida

Community Surface Dynamics Modeling System 2020 Virtual Annual Meeting May 20, 2020

Physics is inadequate to deal with:

•History Dimensionality •Logic • Sufficiency Contingency

Dimensionality

Physics ~ **Objects moving to reversible** *timeless* **laws**

VS.

Life ~ Configuration of irreversible *temporal* processes

Laws are logically equivalent to operations on homogeneous sets.

N for ecosystems often > 100 or 1,000

Sufficiency?

Roughly N! boundary value statements

 $100! \sim 9.3 \times 10^{157}$

But only 10⁸¹ simple particles in *entire* universe!

=> Boundary value is "unprestateable" (Kauffman)

Networks as Matrices

Flows Matrix

	1	2	3	4
1	0	140	0	50
2	0	0	60	80
3	0	0	0	65
4	30	70	15	0
Import	200	0	100	0
Tot. In	230	210	175	195

Dietary Matrix [G]

	1	2	3	4
1	0	0.667	0	0.256
2	0	0	0.343	0.411
3	0	0	0	0.333
4	0.13	0.333	0.086	0
Import	0.87	0	0.571	0
Diet	1.0	1.0	1.0	1.0

Indirect Dependencies

Striped Bass (a midwater predator) depends indirectly on zooplankton for 65.8 % of sustenance..

Bluefish (a bottom predator) depends indirectly on zoopankton for only 28.7% of its sustenance.

Effective Trophic Positions

Trophic ranking	Effective trophic level	Trophic ranking	Effective trophic level
1. Phytoplankton	1.00	19. Nereis	3.00
Dissolved organic carbon	1.00	20. Macoma spp.	3.00
3. Suspended POC	1.00	 Crustacean deposit feeders 	3.00
Sediment POC	1.00	22. Ctenophores	3.03
Benthic diatoms	1.00	23. Fish larvae	3.16
Suspended POC bacteria	2.00	Alewife and blue herring	3.16
Sediment POC bacteria	2.00	25. Shad	3.16
Free bacteria	2.00	26. Sca nettle	3.44
9. Oysters	2.08	27. Blue crab	3.51
10. Mya arenaria	2.09	28. Weakfish	3.84
 Misc. suspension feeders 	2.09	29. Striped bass	3.87
12. Zooplankton	2.16	30. Hogchoker	3.91
Meiofauna	2.67	31. White perch	3.98
Ciliates	2.75	32. Flounder	3.99
Menhaden	2.77	33. Spot	4.00
16. Bay anchovy	2.84	Croaker	4.00
17. Heterotrophic microflagellates	3.00	35. Catfish	4.00
18. Misc. polychaetes	3.00	36. Bluefish	4.59

Linear Trophic Pyramid

Aggregate Cycling in Chesapeake Mesohaline

Shannon Diversity

$$H = -\sum_{i,j} p_{ij} \log(p_{ij}) \ge 0$$

$$p_{ij} \sim \left(\frac{T_{ij}}{T_{...}}\right)$$

$$H = -\sum_{i,j} \left(\frac{T_{ij}}{T_{..}}\right) \log\left(\frac{T_{ij}}{T_{..}}\right)$$

Has Complementary Components

$$H = -\sum_{i,j} \left(\frac{T_{ij}}{T_{..}}\right) \log\left(\frac{T_{ij}}{T_{..}}\right)$$

$$H = \sum_{i,j} \left(\frac{T_{ij}}{T_{..}} \right) \log \left(\frac{T_{ij}T_{..}}{T_{i.}T_{.j}} \right) - \sum_{i,j} \log \left(\frac{T_{ij}^2}{T_{i.}T_{.j}} \right)$$

 $H = A + \Phi$

 $(A, \Phi both \ge 0)$

Cluster in "Window of Vitality"

Changing T_{ij} to Optimize Fitness

$$\begin{aligned} \frac{\partial F}{\partial T_{ij}} &= F' \frac{\partial a}{\partial T_{ij}} = 0 \\ \text{or} \\ \frac{\partial F}{\partial T_{ij}} &= \frac{F'}{C} \left\{ \log \left[\frac{T_{ij}T_{..}}{T_{i.}T_{.j}} \right] + a \log \left[\frac{T_{ij}^2}{T_{i.}T_{.j}} \right] \right\}, \\ \text{where } F' \text{ is the derivative of } F \text{ with respect to } a, \text{ i.e.,} \\ F' &= -ea \left[\frac{\log(a)}{\log(e)} + 1 \right]. \end{aligned}$$

A Third Window

Natural Life beyond Newton and Darwin

Robert E. Ulanowicz

Templeton Foundation Press, 2009