Coupling geodynamics and surface processes

Phaedra Upton¹ Peter O Koons², Sam Roy², Nick Richmond²

¹GNS Science, Lower Hutt, New Zealand; ²University of Maine, Orono, ME

Coupling geodynamics and surface processes

- Largely focusing on collisional settings
 - High erosion, uplift rates
 - Mostly supply limited
 - Rock available to surface
- Modelling processes and materials
- Conceptual framework

Coupling geodynamics and surface processes

- Largely focusing on collisional settings
 - High erosion, uplift rates
 - Mostly supply limited
 - Rock available to surface
- Modelling processes and materials
- Conceptual framework

Photo: Danilo Hegg, Southern Alps Photography

- We want to examine the intersection of:
 - Geodynamics: forces associated with deep Earth processes
 - Geomorphology: shaping of the Earth's surface
 - ... in dynamic environments with complex and competing interactions:

Lloyd Homer, GNS

Kali Gandaki River, Nepal. Christoff Andermann

- We want to examine the intersection of:
 - Geodynamics: forces associated with deep Earth processes
 - Geomorphology: shaping of the Earth's surface
 - ...in dynamic environments with complex and competing interactions:

Constructive and destructive forces acting on geological materials with varying strength profiles:

- Topographic (slope and load)
- Fluvial (river-generated)
- Glacial
- Tectonic
- Seismic
- and more

- We want to examine the intersection of:
 - Geodynamics: forces associated with deep Earth processes
 - Geomorphology: shaping of the Earth's surface
 - ...in dynamic environments with complex and competing interactions:

Constructive and destructive forces acting on geological materials with varying strength profiles:

- Topographic (slope and load)
- Fluvial (river-generated)
- Glacial
- Tectonic
- Seismic
- and more

- We want to examine the intersection of:
 - Geodynamics: forces associated with deep Earth processes
 - Geomorphology: shaping of the Earth's surface
 - ...in dynamic environments with complex and competing interactions:

Constructive and destructive forces acting on geological materials with va

- Topographic (slope and load) _____.
- Fluvial (river-generated)
- Glacial
- Tectonic
- Seismic
- and more

- We want to examine the intersection of:
 - Geodynamics: forces associated with deep Earth processes
 - Geomorphology: shaping of the Earth's surface
 - ...in dynamic environments with complex and competing interactions:

Constructive and destructive forces acting on geological materials with varying strength profiles:

- Topographic (slope and load)
- Fluvial (river-generated)
- Glacial
- Tectonic
- Seismic
- and more

Southern Alps Moderate - steep slopes Rain 5-10 m/yr Schist and greywacke >2000 t/km²/yr

Fiordland

Near vertical slopes Rain ~12 m/yr Granite <200 t/km²/yr

Huntington & Klepeis (2018) Challenges and opportunities for research in tectonics

Cohesion \rightarrow erodibility, fracture spacing \rightarrow grainsize

(Roy et al., 2016)

Cohesion \rightarrow erodibility, fracture spacing \rightarrow grainsize

(Roy et al., 2016)

Cohesion \rightarrow erodibility, fracture spacing \rightarrow grainsize

(Roy et al., 2016)

Erosion with heterogeneous erodibility, grainsize

Normalized knickpoint migration rate

Mean % time bedrock is armored

Roy et al., 2015, 2016

CHILD ± variable erodibility coupled to Geodynamic model

Topography and relief

Modeled Observed P-wave velocity from least compressive stress seismic refraction surveys at surface 2 5 km s⁻¹ 0.0 0.7 Mpa 3 1 4 **Local Gravitational Stress Regional Tectonic Stress** d а Boulder Creek CZO, Colorado, USA $\sigma^* = 0.2$ 50 m Increasing $\sigma^* =$ ь $\sigma^* = 1.2$ Calhoun CZO, South Carolina, USA 50 m C $\sigma^{*} = 3.2$ Pond Branch, Maryland, USA 50 m

St Clair et al. compare calculated stresses with rock damage measured by seismic reflection survey

Tectonic stresses interact with the topography to influence

- Bedrock disaggregation
- Groundwater flow

20 m

20 m

20 m

- Chemical weathering
- Depth of critical zone

Huntington & Klepeis (2018) Challenges and opportunities for research in tectonics after St Clair et al. (2015)

GNS Science

Sutherland et al. 2018, Nature

Topography and relief can rotate the stress tensor

- Influences type of faulting – thrust vs strikeslip vs normal
- Influences where deformation takes place
- Deformation weakens the rock, influences where erosion may occur

Upton et al. 2018 New Zealand Journal of Geology and Geophysics

Failure Earth Response Model (FERM)

FERM uses a Mohr-Coulomb approach to failure of Earth materials wherein failure occurs if the local differential stress (τ) exceeds the local strength (C) of the Earth material.

Failure Earth Response Model (FERM)

For each point:

- 1. Sum all stresses: <u>Geomorphic</u> (slope and inertial), <u>Tectonic</u> (Static and potentially Dynamic) into a single Total Stress tensor
- 2. Describe Earth failure using effective stress formulation (potential to include local fluid pressure)
- 3. We can distinguish shear and tensile failure states
- 4. Solve in 3D using FLAC^{3D} in these examples. (no transport yet)

Koons et al. 2013; Koons and Upton in prep

Example: Rock erosion and stress orientation as function of ice velocity

- In absence of ice, $\sigma_1 \sim$ parallel to slope
- Ice load with no velocity; $C:\tau > 1$ beneath ice; Non-ice erodes more quickly
- Increasing velocity; Weak zones fail and are eroded; Asperities increasingly dominate
- Transition between slope and ice are sites where rapid failure occurs

Challenges/Opportunities

Timeframes

- Long term tectonics: $10^3 10^6$ yr
- Dynamic (seismicity): sec min
- Landscape processes: sec 10³ yr
- Weather/Climate: days 10⁴ yr
- Imposing realistic surface processes onto FERM
 - Estimating stresses generated by stream hydrodynamics
 - Including other components such as tools

Challenges/Opportunities

- Timeframes
 - Long term tectonics: $10^3 10^6$ yr
 - Dynamic (seismicity): sec min
 - Landscape processes: sec 10³ yr
 - Weather/Climate: days 10⁴ yr
- Imposing realistic surface
 processes onto FERM
 - Estimating stresses generated by stream hydrodynamics
 - Including other components such as tools

Hydraulic Forces with Smoothed Particle Hydrodynamics (SPH) A tool to derive the fluvial contribution to the total stress state of dynamic landscapes

Image Credit: Crespo et al., 2015

FEA Solution

- FERM is presently implemented in FLAC^{3D} (Fast Lagrangian Analysis of Continua in 3 Dimensions), a commercial FEA solver traditionally used for geotechnical investigations
- Strength heterogeneities can be defined by fracture networks which interconnect weak zones

Challenges/Opportunities

- Timeframes
 - Long term tectonics: $10^3 10^6$ yr
 - Dynamic (seismicity): sec min
 - Landscape processes: sec 10³ yr
 - Weather/Climate: days 10⁴ yr
- Imposing realistic surface processes onto FERM
 - Estimating stresses generated by stream hydrodynamics
 - Including other components such as tools

Some implications:

Topography records inherited mechanical anisotropy: valleys, cols are weak, high points are strong

Steep stress gradients at margins (eg ice/slope) lead to greater erosion/incision at these locations

Tectonic stresses and strain are modified by ice

- stablising effect of the ice load
- destablising effect of ice velocity increasing shear stresses

Glacial erosion in the presence of tectonic strain is more efficient that in non-tectonic regions – easier for the stresses to overcome the strength of the rock

Pore pressure fluctuations important and can be incorporated into FERM

Erosion rates are dominated by defect presence and exhumation.

