
RiverTools: From Concept
to “Commercial Success”

Scott D. Peckham

University of Colorado at Boulder
Scott.Peckham@colorado.edu

Community Sediment Model Workshop
Boulder, February 20, 2002

Maintaining “Big Code”

Project Planning (flowcharts, future wish lists)

Problem ownership

Internal consistency

Debugging: Test cases that test all “extreme cases”

Documentation

Backward compatibility issues

Code Readability
There are a number of simple “tricks” or programming habits that
make code much more readable. This makes it MUCH easier to
understand, modify, maintain and debug. (Both for others and for
yourself in 6 months.)

(1) Blow-by-blow in-code documentation
(2) Logical clustering of lines separated by white space
(3) Consistent indentation
(4) Use of Boolean variables for IF & CASE statements
(5) Logical variable names; underscores between words
(6) Small (sometimes tiny) modules that do one thing well
(7) Complete avoidance of GOTOs
(8) Naming conventions for functions and procedures

(e.g. list = Ellipsoid_List(), d = Distance(x,y),
The “Verb_Adverb_Noun” convention: Close_All_Files

Boolean Variables & Readability

A Boolean variable is one that takes on one of two possible
values or states, such as 0 or 1, True or False, Yes or No,
On or Off.

Examples:

(1) ERROR = (nlayers lt 0)
(2) DONE = (n eq 1000) OR ERROR
(3) ONSCREEN = (x gt xmin) AND (x lt xmax) AND

(y gt ymin) AND (y lt ymax)
(4) NEGATIVE = (value lt 0)
(5) VALID = NOT(ERROR) AND (value lt 100000)
(6) ALIVE = (base_ID gt 0)
(7) IN_RANGE = (value gt 0) AND (value lt 10)
(8) READABLE = (nlines lt 10) AND (GOOD_NAMES)

A Snippet of IDL Code
function Lines_In_File, filename

;----------------------------------
;Open the input text file
;----------------------------------
openr, unit, filename, /get_lun

;--
;Count number of lines in file
;--
line = ‘’
n_lines = 0L
while NOT(EOF(unit)) do begin

readf, unit, line
n_lines = (n_lines + 1L)

endwhile

;-----------------------------
; Close the input file
;-----------------------------
free_lun, unit

RETURN, n_lines
END; Lines_In_File

Things to notice in this simple example:

(1) EOF function appears as a Boolean
variable in the while loop.

(2) Logical variable names
(3) Logical function name; underscores
(4) Blow-by-blow documentation
(5) Indented while loop

The “Lines_In_File” function could be
called on the IDL command line (or from
another IDL procedure) as follows:

IDL> my_file = ‘Thesis.txt’
IDL> n_lines = Lines_In_File(my_file)
IDL> print, n_lines

Data Types
Proper choice of data type is a key consideration in terms
of both efficiency and avoidance of “strange bugs”.

Large floating point numbers are “further apart” than
small ones.

E.g. Since 32-bit filesystems use long integers to track file
pointer position in files, they have a filesize limit of 2.1 GB.

Machine-dep.d * b^qmaxb^qmin8 bytesdouble
Machine-dep.c * a^pmaxa^pmin4 bytesfloat

2^31 = 2,147,483,6482^31 - 1-(2^31)4 byteslong
2^15 = 32,7682^15 - 1-(2^15)2 bytesinteger

2^8 = 2562^8 - 101 bytebyte

NotesMaximumMinimumRAM UsedName

Structures vs. Arrays
Structures are like flexible data types for storing the various“attributes”
of some “entity”. An array of structures would be a good way to store
the “attributes” of all employees in a company or all books in a library.

Structures are available in almost every modern programming language
and are the concept upon which object oriented programming is based.

Using arrays of structures when appropriate makes code MUCH easier
to maintain and to extend when you think of something new to add.

Examples:

employee = {name:’John’, age:28, height:5.9, salary:40000.0,
start_date:’May 5, 1995’, SSN:’561-42-6051’}

print, employee.age

circle = {x0:1.5, y0:2.0, radius:5.0, color:’blue’}

book = {title:’Tale of Two Cities’, author:’Charles Dickens’,
n_pages:400, publisher:’John Wiley’}

RAM vs. File I/O
Accessing information stored in RAM is typically about 100
times faster than accessing information stored in a file.

However, the amount of hard disk space available for storing
files is typically 100 to 200 times more than the amount of RAM.

“Virtual memory” or “paging” is an OS trick for handling more
data than will fit into RAM. Not always best to leave this to OS.

10010011990

100100,0001,0002003

10010,0001001998

1001,000101994

100100.11985

HD / RAM RatioHard Drive (MB)RAM (MB)Year

File Format Issues
Spatial data is often stored in large 2D arrays or “raster grids.”
This data may be saved in a file for archiving or for transfer
between machines.

People are often inclined to save 2D arrays as text in ASCII files.
The main reason is they want to have the option of visually
inspecting the data values. This is fine for small grids (say, less
than 100 rows and columns) but is not a good idea for large grids.

When raster data is stored in binary files, it takes up much less
space on your hard drive and can be read into RAM much more
quickly. (ASCII to binary conversion is a very slow process.)

You can still visually inspect data values using “zoom tools” in
raster GIS programs such as RiverTools.

Portability of ASCII and Binary files; Byte order and EOL issues.

ASCII header files & binary data files vs. all-in-one files

Efficient Algorithms
The algorithm that is used to solve a particular problem can make
an enormous difference in program speed.

The “computational cost” of an algorithm is measured in terms
of the number of “units,” n, that must be “examined” or handled.

Examples:

FFT algorithm: O(n*log(n)) vs. O(n^2)
If n = 10^6, 30 secs vs. 2 weeks CPU time

Sorting algorithms: Brute force method: O(n^2)
Quicksort usually O(n*log(n)), O(n^2) worst.
Heap sort has worst case of O(n*log(n))

Finding entry in a sorted list: O(log(N)) (e.g. phone book)

Convex hull of n points: O(n^2) vs. O(n*log(n))

Graphical Interface Design
Extendible designs

Droplists

Options menus (e.g. Right Click concept)

Context-specific help

Constrain input to valid values

User friendliness

A Few Other Issues

(1) Testing and debugging (it never ends)
(2) Pointers to avoid passing/copying large arrays
(3) Small, reusable modules that aren’t hardwired to

a particular application or situation.
(4) Vector vs. Raster issues
(5) Pre- and post-processing utilities
(6) Graphical output utilities (e.g. JPG, BMP, PS)
(7) Inclusion of graphical options in code
(8) High-level languages like IDL, Matlab, Mathematica
(9) Supporting various data formats

Summary
Some important things to think about when writing a big
application or “toolkit” are the following:

Project Planning
Modular Design
Extendability
Code Readability
Boolean Variables
Data Types
Structures vs. Arrays
RAM vs. File I/O
File Format Issues
Efficient Algorithms
Graphical Interface Design
Documentation
Testing and Debugging

RiverTools: From Concept
to “Commercial Success”

Scott D. Peckham

University of Colorado at Boulder
Scott.Peckham@colorado.edu

Community Sediment Model Workshop
Boulder, February 20, 2002

RiverTools: From Concept
to “Commercial Success”

Scott D. Peckham

University of Colorado at Boulder
Scott.Peckham@colorado.edu

Community Sediment Model Workshop
Boulder, February 20, 2002

