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The problem – US flood river risk
• Substantial losses each year

• Average annual damage 1903-
2014 = ~$5Bn

• (NWS data for river flood, not 
including coastal events, actual 
losses at 2014 prices)

• ~100 fatalities a year on average, 
with no trend over the same 
time

• Significant social disruption
• National Flood Insurance 

Programme costs $190M p.a. and is 
$25Bn in debt

• Recent events have raised public 
awareness of the issue



US Flood losses – National Weather Service data
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• Over the last 20 years remote 
sensing has revolutionized flood 
modelling
• From early work at reach scales with 

LiDAR data ….
• to global data sets enabling 

continental and global models at 
<100m resolution

Flood modelling





• Whole US model
• DEM from US National Elevation 

Dataset (NED)
• 30m resolution
• All river channels explicitly 

represented
• Boundary conditions from 

regional flood frequency analysis 
of rainfall and flow 

• Includes US Army National Levee 
Dataset

• 10 return periods from 5 to 1000 
years







Validation – Memorial day, Houston 2015



• 1984 properties defined as being inundated with flood waters.
• Event magnitude estimates range from 100-500 year event 

depending on exact location.
• Hit rate of 70% and 91% for the 100 year and 1000 year hazard 

layers respectively.

Layer Captured Missed Hit Rate %

20YR 683 1301 34

100YR 1391 593 70

1000YR 1818 166 91

100-500YR observed 
event magnitude 



Global model validation: FEMA

• An amalgamation of local studies 
carried out by FEMA to determine 
the 1 in 100-year flood extent

• Re-sampled to 90m resolution

• Unexamined areas: both declared 
and undeclared

• Lack of headwater area coverage 
problematic

• Analysis performed in Google Earth 
Engine

Over prediction ?

No data ?





Hite Rate = 81%
84% for catchments >80 
km2

86% for ‘high quality’ 
FEMA data at all scales

CSI = 59%

Global model validation: FEMA

Köppen-Geiger zones
Temperate = 84%
Arid = 73%
Continental = 78%

Temperate

Continental

Arid

Tropical

Polar



Catchment-scale validation: USGS 1D models

• Isolated local modelling 
studies – usually a few 
kilometres of a single 
stream

• 10 sites with 100-year 
simulations

• 3 further sites with 
events of varying 
magnitude



LOCATION HIT RATE (%)
Albany, GA 93.8

Columbus, IN 83.3
Greenville, SC 99.7

Hattiesburg, MS 93.7
Lincolnshire, IL 81.8

Minneapolis, MN 91.0
Ridgewood, NJ 88.6
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LOCATION HIT RATE (%)
1 in 500

Battle Creek, MI 90.7



LOCATION HIT RATE (%)
1 in 10

Harrisburg, PA 95.1



LOCATION HIT RATE (%)
1 in 500

Killbuck, OH 94.3



• Hazard
• Flooded area

• Exposure
• Value of buildings 

within floodplain
• Number of people 

within floodplain
• Vulnerability

• Potential damages

Basics of risk calculation



• ~30m resolution flood 
hazard model of CONUS 
(Wing et al., 2017)

Wing, O. E. J. et al. (2017), Validation of a 30 m resolution flood hazard model of the 
conterminous United States, Water Resour. Res., 53, 7968–7986, doi:10.1002/2017WR020917.

Hazard data



• EPA EnviroAtlas
dasymetric population 
map

• Assigns 2010 census 
populations to 30m pixels 
based on land-use and 
slope

Socio-economic data



• FEMA National Structure 
Inventory

• Information on over 100M 
buildings in the CONUS:
• Location
• Value
• Type
• Number of storeys
• Presence of basement

Socio-economic data



• National Land Use 
Database (Theobold, 
2014)

• Indicates developed 
areas across the CONUS

Theobold, D. M. (2014), Development and Applications of a Comprehensive Land Use 
Classification and Map for the US, PLOS ONE, 9(4), e94628, doi:10.1371/journal.pone.0094628.

Socio-economic data



• EPA Integrated Climate 
and Land Use Scenarios 
(ICLUS) project

• Projects population and 
land use change up to 
2100:
• SSP2 = tracks US census

projection
• SSP5 = high growth case

EPA (2016), Updates to the Demographic and Spatial Allocation Models to Produce Integrated 
Climate and Land Use Scenarios (ICLUS) Version 2. EPA/600/R-16/366F, National Center for 
Environmental Assessment, Washington, DC.

Future projections



• Simple relationship 
between water depth and 
% damage to an asset 
obtained from USACE

• Specific function for each 
building type when used 
with FEMA NSI

Vulnerability functions



• Simple relationship 
between water depth and 
% damage to an asset 
obtained from USACE

• Generalised curve used 
for ICLUS projections

Future vulnerability functions



• Present-day
Return 
Period

Exposure 
(millions)

Exposure 
(%)

1 in 50 33.5 11.0
1 in 100 40.8 13.3
1 in 500 61.4 20.0
FEMA 

(1 in 100) 13.0 4.2

Aqueduct 
(1 in 100) 15.7 5.1

Population exposure



Return 
Period

Exposure 
(millions)

Exposure 
(%)

1 in 100 40.8 13.3
FEMA 

(1 in 100) 13.0 4.2

Aqueduct 
(1 in 100) 15.7 5.1

. 

www.floods.wri.org

Winsemius, H. C. et al. (2013), A framework for global river flood 
risk assessments, Hydrol. Earth Syst. Sci., 17, 1871–1892, 
doi:10.5194/hess-17-1871-2013.

Ward, P. J. et al. (2013), Assessing flood risk at the global scale: 
model setup, results, and sensitivity, Environ. Res. Lett., 8, 
doi:10.1088/1748-9326/8/4/044019.

Population exposure



• SSP2 2050
Return 
Period

Exposure 
(millions)

Exposure 
(%)

1 in 50 51.3 13.1
1 in 100 61.2 15.6
1 in 500 86.8 22.2

Population exposure



• SSP2 2050

• Changes from present-
day (100-year floodplain)
• 20.4M (↑ 50%)

Return 
Period

Exposure 
(millions)

Exposure 
(%)

1 in 50 51.3 13.1
1 in 100 61.2 15.6
1 in 500 86.8 22.2

Population exposure



• SSP2 2050

• Changes from present-
day (100-year floodplain)
• 2.3pp ↑ in proportion of 

total population

Return 
Period

Exposure 
(millions)

Exposure 
(%)

1 in 50 51.3 13.1
1 in 100 61.2 15.6
1 in 500 86.8 22.2

Population exposure



• SSP2 2100
Return 
Period

Exposure 
(millions)

Exposure 
(%)

1 in 50 63.1 13.9
1 in 100 74.8 16.4
1 in 500 104.5 23.0

Population exposure



• SSP2 2100

• Changes from present-
day (100-year floodplain)
• 34.0M (↑ 83%)

Return 
Period

Exposure 
(millions)

Exposure 
(%)

1 in 50 63.1 13.9
1 in 100 74.8 16.4
1 in 500 104.5 23.0

Population exposure



• SSP2 2100

• Changes from present-
day (100-year floodplain)
• 3.1pp ↑ in proportion of 

total population

Return 
Period

Exposure 
(millions)

Exposure 
(%)

1 in 50 63.1 13.9
1 in 100 74.8 16.4
1 in 500 104.5 23.0

Population exposure



• Present-day

• 100-year developed 
floodplain = approx. the 
land area of Georgia

Return 
Period

Dev. Area 
(km2)

Exposed 
assets ($tn)

Potential 
dmg ($tn)

1 in 50 140,657 4.6 0.9
1 in 100 157,430 5.5 1.2
1 in 500 203,775 8.2 1.9

Asset exposure and risk



• SSP2 2050

• 100-year developed 
floodplain = approx. the 
land area of S. Dakota

Return 
Period

Dev. Area 
(km2)

Exposed 
assets ($tn)

Potential 
dmg ($tn)

1 in 50 174,989 6.9 1.5
1 in 100 195,981 8.1 1.7
1 in 500 251,702 11.3 2.7

Asset exposure and risk



• SSP2 2100

• 100-year developed 
floodplain = approx. the 
land area of Kansas

Return 
Period

Dev. Area 
(km2)

Exposed 
assets ($tn)

Potential 
dmg ($tn)

1 in 50 192,417 8.3 1.7
1 in 100 215,900 9.8 2.1
1 in 500 276,956 13.6 3.2

Asset exposure and risk



• SSP2 2100

• 100-year newly 
developed floodplain = 
approx. the land area of 
W. Virginia

Return 
Period

Dev. Area 
(km2)

Exposed 
assets ($tn)

Potential 
dmg ($tn)

1 in 50 192,417 8.3 1.7
1 in 100 215,900 9.8 2.1
1 in 500 276,956 13.6 3.2

Asset exposure and risk



Conclusions

• Developed a whole US flood inundation model with skill 
approaching that local bespoke simulations

• Intersecting simulations with high resolution population data 
shows exposed population and assets are ~3x higher than 
previous estimates

• Socio-economic change alone will increase the proportion of US 
population at risk during the C21st

• Climate change will undoubtedly amplify these effects further
• Now need to move away from ‘constant return period in space’ 

hazard layers to properly estimate flood risk



Spare slides



Catchment-scale validation: USGS 1D models

LOCATION
HIT RATE (%)

1 in 5 1 in 10 1 in 50 1 in 100 1 in 500
Battle Creek, MI - 81.9 84.3 88.1 90.7
Harrisburg, PA - 95.1 92.3 88.7 86.1
Killbuck, OH 78.1 81.8 90.2 91.9 94.3



Traditional flood hazard assessment

• Return period flows from gauge 
data

• Reach scale hydraulic models
• Large scale hazard maps then 

‘stitch together’ the results of 
many local studies
• E.g. FEMA Special Flood Hazard Areas

• Spatially invariant return period  
assumption breaks down at large 
scales



• Over large scales the event return 
period varies in space
• Known as the ‘flood footprint’

• Often ignored in many large scale 
analyses

• Gauge time series not long enough 
to sample all possible footprints

• Use conditional stochastic 
simulation to generate a bigger 
sample of plausible event 
footprints

Event footprints



The problem

• For a T year return period flow at gauging site X	, $%&, what is the 
probability distribution of flow at gauge Y , i.e. Pr($+| $%&)	for	all	
Y1,2 …. n	

• Multi-site conditional probability statistical methods are well 
known, but not previously applied at continental scales for 
thousands of gauges
• Cross-correlation between all gauges gives a large compute problem
• Large climatic differences at continental scales
• Multiple flood generating mechanisms



Heffernan, J.E. and Tawn, J.A. (2004). A conditional 
approach for multivariate extreme values. J. R. 
Statist. Soc. B, 66, Part 3, 497–546.

Method



Gauge preparation



Spatio-temporal dependence

See also poster H21J-1615 by Quinn et al

a. Define marginals at each gauge b. Compute spatio-temporal connections between gauges for flows 
Above Q99 threshold



Spatio-temporal dependence

See also poster H21J-1615 by Quinn et al

c. Define dependence structure



Spatio-temporal dependence
c. Define dependence structure



• Given gauge dependence structure 
we can simulate event footprints 
at any given conditioning site

• Need a structure to interpolate 
over
• Use HydroBasins Level 8 and 10 units
• Interpolate gauge return period 

values to these units
• Build footprint using pre-computed 

set of return period hazard layers 
from the Fathom Global US 30m 
hydraulic model

Generate event catalogues

Level 3

Level 5 Level 8



Example event footprint



• Test 1: observed vs. modelled 
extreme value CDFs
• For a given CDF quantile (0.5 in this 

case) does the dependence structure 
in the synthetic event ensemble 
match the observations?

• Test 2: Independent events
• Extract all independent events > 1 in 

5 year return period in USGS record
• Simulate same record length many 

times using the stochastic method
• Mean error in no. of events and no. 

of gauges hit is <5%

Validation



Event animation



Costs of avoidance


