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The problem — US flood river risk

* Substantial losses each year

e Average annual damage 1903-
2014 = ~S5Bn

* (NWS data for river flood, not
including coastal events, actual
losses at 2014 prices)

e ~100 fatalities a year on average,
with no trend over the same
time

 Significant social disruption

* National Flood Insurance
Programme costs $190M p.a. and is
$25Bn in debt

* Recent events have raised public
awareness of the issue




US Flood losses — National Weather Service data
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Flood modelling

e Over the last 20 years remote
sensing has revolutionized flood
modelling

* From early work at reach scales with
LiDAR data ....

e to global data sets enabling
continental and global models at
<100m resolution
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e Whole US model

e DEM from US National Elevation
Dataset (NED)

e 30m resolution

* All river channels explicitly
represented

* Boundary conditions from
regional flood frequency analysis
of rainfall and flow

* Includes US Army National Levee
Dataset

e 10 return periods from 5 to 1000
years
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Validation — Memorial day, Houston 2015
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Keegans Bayou

» Entire channel: at or above 1% (100-yr)
» Keegans to Dairy Ashford: near .2% (500-yr)

Event Date \

Peak: 80.7 ft, 4 am
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* 1984 properties defined as being inundated with flood waters.

* Event magnitude estimates range from 100-500 year event
depending on exact location.

* Hit rate of 70% and 91% for the 100 year and 1000 year hazard
layers respectively.

event magnitude




Global model validation: FEMA

* An amalgamation of local studies
carried out by FEMA to determine
the 1 in 100-year flood extent

* Re-sampled to 90m resolution

e Unexamined areas: both declared
and undeclared

* Lack of headwater area coverage
problematic

* Analysis performed in Google Earth
Engine

Over prediction ?
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Global model validation: FEMA

Hite Rate = 81%

84% for catchments >80
km?2

86% for ‘high quality’
FEMA data at all scales

CSI =59%

Koppen-Geiger zones
Temperate = 84%
Arid = 73%
Continental = 78%




Catchment-scale validation: USGS 1D models

* |solated local modelling
studies — usually a few
kilometres of a single
stream

e 10 sites with 100-year
simulations

e 3 further sites with
events of varying
magnitude
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HIT RATE (%)
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HIT RATE (%)

LOCATION 1in 500

Killouck, OH 94.3




Basics of risk calculation

« Hazard

* Flooded area

« EXposure

* Value of buildings
within floodplain

*  Number of people
within floodplain

* Vulnerability

« Potential damages




Hazard data

e ~30m resolution flood
hazard model of CONUS
(Wing et al., 2017)

Wing, O. E. J. et al. (2017), Validation of a 30 m resolution flood hazard model of the
conterminous United States, Water Resour. Res., 53, 7968—7986, doi:10.1002/2017WR020917.



Socio-economic data

EPA EnviroAtlas
dasymetric population
map

Assigns 2010 census
populations to 30m pixels
based on land-use and
slope



Socio-economic data

FEMA National Structure
Inventory

* |nformation on over 100M
buildings in the CONUS:

 Location

Value

Vv St_Name REL1 22051 00039070

(Derived)
> (Actions)
St_Name REL1 22051 00039070 [ Val u e
CBFips 220510242011035
DamCat Public
OccType REL1
N_Stories 1 [ Ty p e
Basement No
BldgType Masonry
Found_Ht 1.00000000000
Val_Struct 741000.00000000000 ° N u m b e r Of Sto reys
Val_Cont 741000.00000000000
Val_Other 0.00000000000
Val_vehic 69826.00000000000
MedYrBit 1954 .
o resence or basemen
Found_Type Slab
PostFirm 0
Teachers 0
Students 0
SchoolName
Pop2pmU65 5.0000000000

Pop2pm08&5 1.0000000000
Pop2amUé5 0.0000000000
Pop2amO65 0.0000000000




Socio-economic data

 National Land Use
Database (Theobold,
2014)

 Indicates developed
areas across the CONUS

Theobold, D. M. (2014), Development and Applications of a Comprehensive Land Use
Classification and Map for the US, PLOS ONE, 9(4), €94628, doi:10.1371/journal.pone.0094628.



Future projections

(|:] Naturalwater [ | Exurban, low )
- Reservoirs, canals - Exurban, high
[:] Wetlands [:] Suburban
D Conservation - Urban, low
B rvoer Il uroan, high
[ Grazing [ commercial
[ Pasture I incustrial
I cropland B instiutional
[ mining, barren |l Transportation

\- Parks, open space

/ T

EPA (2016), Updates to the Demographic and Spatial Allocation Models to Produce Integrated
Climate and Land Use Scenarios (ICLUS) Version 2. EPA/600/R-16/366F, National Center for
Environmental Assessment, Washington, DC.

EPA Integrated Climate
and Land Use Scenarios
(ICLUS) project

Projects population and
land use change up to

2100:

« SSP2 =tracks US census
projection

e SSP5 = high growth case



Vulnerability functions
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« Simple relationship

between water depth and
% damage to an asset
obtained from USACE

Specific function for each
building type when used
with FEMA NSI



Future vulnerability functions

« Simple relationship
. between water depth and

. % damage to an asset
) obtained from USACE
« Generalised curve used
for ICLUS projections
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Population exposure

* Present-day

Return Exposure | Exposure
25 Period (millions) (%)
°°°°°° " 1in 50 33.5 11.0
1in 100 40.8 13.3
1in 500 61.4 20.0
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Population exposure
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Winsemius, H. C. et al. (2013), A framework for global river flood
risk assessments, Hydrol. Earth Syst. Sci., 17, 1871-1892,
doi:10.5194/hess-17-1871-2013.

Ward, P. J. et al. (2013), Assessing flood risk at the global scale:
model setup, results, and sensitivity, Environ. Res. Lett., 8,
doi:10.1088/1748-9326/8/4/044019.



Population exposure

SSP2 2050

Exposure
)

Return Exposure
Period (millions)

1in50
1in 100
1in 500

51.3
61.2
86.8

13.1
15.6
22.2



Population exposure

Present-day 2050

e

Population exposed to 1 in 100-year flood per 10 km?2

0 5,000 10,000

« SSP2 2050

Return Exposure | Exposure
Period (millions) (%)

1in 50 51.3 13.1
1in 100 61.2 15.6
1in 500 86.8 22.2

« Changes from present-
day (100-year floodplain)
e 20.4M (1 50%)



Population exposure

Present-day

Population exposed to 1 in 100-year flood per 10 km?2

5,000 10,000

« SSP2 2050
Period (millions) (%)
1in 50 51.3 13.1
1in 100 61.2 15.6
1in 500 86.8 22.2

« Changes from present-
day (100-year floodplain)
« 2.3pp 1 In proportion of
total population



Population exposure

SSP2 2100

Exposure
)

Return Exposure
Period (millions)

1in50
1in 100
1in 500

63.1
74.8
104.5

13.9
16.4
23.0



Population exposure

Present-day
G p HE S

« SSP2 2100

Return Exposure | Exposure
Period (millions) (%)

1in 50 63.1 13.9
1in 100 74.8 16.4
1in 500 104.5 23.0

« Changes from present-
day (100-year floodplain)
« 34.0M (1 83%)



Population exposure

Present-day

« SSP2 2100

Return Exposure | Exposure
Period (millions) (%)

1in 50 63.1 13.9
1in 100 74.8 16.4
1in 500 104.5 23.0

« Changes from present-
day (100-year floodplain)
« 3.1pp 1 In proportion of
total population



Asset exposure and risk

* Present-day

"1 Return | Dev. Area | Exposed | Potential
Period (km?2) |assets (Stn)| dmg (Stn)
1in50 140,657 4.6 0.9

1in100 157,430 5.5 1.2
1in500 203,775 8.2 1.9

* 100-year developed
floodplain = approx. the
land area of Georgia




Asset exposure and risk

« SSP2 2050

~': Return | Dev. Area | Exposed | Potential
Period (km?2) |assets (Stn)| dmg (Stn)
1in50 174,989 6.9 1.5

1in100 195,981 8.1 1.7
1in500 251,702 11.3 2.7

* 100-year developed
floodplain = approx. the
land area of S. Dakota




Asset exposure and risk

« SSP2 2100

": Return | Dev. Area | Exposed Potential
Period (km2)  |assets ($tn) dmg ($tn)
1in 50 192,417

1in100 215,900 9.8 2.1
1in 500 276,956 13.6 3.2

* 100-year developed
floodplain = approx. the
land area of Kansas




Asset exposure and risk

« SSP2 2100

": Return | Dev. Area | Exposed Potential
Period (km2)  |assets (Stn) dmg ($tn)

1in50 192,417
1in100 215,900 9.8 2.1
1in 500 276,956 13.6 3.2

* 100-year newly
developed floodplain =
approx. the land area of

W. Virginia




_ University of [£]
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* Developed a whole US flood inundation model with skill
approaching that local bespoke simulations

* |ntersecting simulations with high resolution population data
shows exposed population and assets are ~3x higher than
previous estimates

* Socio-economic change alone will increase the proportion of US
population at risk during the C21t

* Climate change will undoubtedly amplify these effects further

* Now need to move away from ‘constant return period in space’
hazard layers to properly estimate flood risk



Spare slides



Catchment-scale validation: USGS 1D models

HIT RATE (%)

| wTRATE()
S

Battle Creek, Ml - 81.9 84.3 88.1 90.7
Harrisburg, PA - 95.1 92.3 88.7 86.1
Killbuck, OH 78.1 81.8 90.2 91.9 94.3



Traditional flood hazard assessment

* Return period flows from gauge
data

* Reach scale hydraulic models

* Large scale hazard maps then
‘stitch together’ the results of
many local studies

* E.g. FEMA Special Flood Hazard Areas

e Spatially invariant return period
assumption breaks down at large
scales




Event footprints

* Over large scales the event return Observed Precipitation |\
: . . Aug. 24- 30, 2005
period varies in space e,
* Known as the ‘flood footprint’

* Oftenignored in many large scale
analyses

* Gauge time series not long enough
to sample all possible footprints

e Use conditional stochastic
simulation to generate a bigger
sample of plausible event
footprints

NOAA/NW!
% CLIMATE PREDICTION CENTER




The problem

* Fora T year return period flow at gauging site X, Q%, what is the
probability distribution of flow at gauge Y, i.e. Pr(Q, | Q) for all

Y, g,

* Multi-site conditional probability statistical methods are well
known, but not previously applied at continental scales for

thousands of gauges
* Cross-correlation between all gauges gives a large compute problem

 Large climatic differences at continental scales
* Multiple flood generating mechanisms



Method

Hurricane Fran
September 4-8, 1996
1554 sites

Maximum: 16.00"
Big Meadows, VA

Heffernan, J.E. and Tawn, J.A. (2004). A conditional
approach for multivariate extreme values. J. R.
Statist. Soc. B, 66, Part 3, 497-546.

Gauge Preparation
Import gauges

QC gauges
Infill missingdata |

Filter gauges

4

[ Spatio-temporal dependence N

Marginal thresholds

*  Define threshold

¢ Produce semi-parametric distribution
Dependence thresholds

*  Define threshold

*  Define multivariate dependence structuy

NS ‘ §

Generate event catalogues

Define expected number of events per year within region

Utilise dependence information to simulate N event footprints
+ Likelihood of a given gauge being the largest is used to define
the number of times of condition upon that gauge

4

KGenerate areal flood depths and Iosses\

Interpolation
* Point data to accumulation units

Extract Fathom hazard layers
* Corresponding to interpolated R period surfaces

Extract economic losses

* USA asset information and depth damage functions
\ « OQverlay with extracted inundation extend / depth /




Gauge preparation
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Spatio-temporal dependence

a. Define marginals at each gauge b. Compute spatio-temporal connections between gauges for flows
‘ — Above Q99 threshold

: === Empirical distribution

osss m=s= GP Distribution

_ -
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r
[

Empirical

2R

Model

See also poster H21J-1615 by Quinn et al



Spatio-temporal dependence

c. Define dependence structure

® River Gauge
Upstream Accumulation
| 150
1174
1297
1420

4 E 1e+03
10 20 30 40km

See also poster H21J-1615 by Quinn et al



Spatio-temporal dependence

c. Define dependence structure

x10°
35

11523000

* Observed

+ Modelled

11516530 x10*



Generate event catalogues

* Given gauge dependence structure
we can simulate event footprints
at any given conditioning site

* Need a structure to interpolate
over
* Use HydroBasins Level 8 and 10 units

* Interpolate gauge return period
values to these units

e Build footprint using pre-computed - \( @ Legend
set of return period hazard layers et
from the Fathom Global US 30m o S

hydraulic model



Example event footprint

Legend

Gauge Return Level

e 0.0-01

© 0.1-125

12.5 - 25.0

© 25.0-375

e 37.5-50.0
HAZ unit Return Level
o
[1125
[ 125
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B 50
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Validation

e Test 1: observed vs. modelled
extreme value CDFs

‘Event' CDF comparison, observed Vs modelled (0.6 quantile)
T T T I T T T

200 |
* For a given CDF quantile (0.5 in this 50 10t quantile = -7%
th ila = NO
case) does the dependence structure 160 ggth 33::3::; g;:
in the synthetic event ensemble 140
match the observations? 2"
0100
(0]
e Test 2: Independent events 80
* Extract all independent events > 1 in b
. . 40-
5 year return period in USGS record N
* Simulate same record length many 4
. . . 025 -02 -015 -01 -0.05 0 _ 0.05 0.1 0.15 0.2 0.25
times using the stochastic method Error (fraction)

e Mean error in no. of events and no.
of gauges hit is <5%



Event animation




Costs of avoidance
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Ratio of 1 in 100-year flood damage in newly developed,
currently unprotected natural floodplains to acquisition
cost per 100 km?in 2050 under SSP2

0 <1 10 50 100



