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Frameworks for Model Analysis

* Look for surprises

e Surprises can indicate
New understanding about reality
or
Model limitations or problems
* Fast methods are convenient -- enable routine

evaluation. Computationally frugal, parallelizable
methods




What do | mean by a modeling
framework?

* Methods used to
— Parameterize system characteristics
— Compare to data
— Adjust for data (calibration, tuning)
— Sensitivity analysis
— Uncertainty quantification
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What do | mean by a modeling
framework?

e Methods used to

— Parameterize system characteristics

— Compare to data
* Graphical
e Statistics like sum of squared residuals
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What do | mean by a modeling
framework?
Methods used to

— Parameterize system characteristics
— Compare to data

— Adjust for data (calibration, tuning)

Foglia et al, in preparation
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What do | mean by a modeling
framework?

e Methods used to

— Parameterize system characteristics
— Compare to data

— Adjust for data (calibration, tuning)
— Sensitivity analysis

. , Model runs
Linear confidence 100

—_ U nce rta|nty qua n‘hﬁ Cal'IOn O Nonlinear confidence 1,600

MNonlinear credible 480,000

Drawdown (m)

HO 3Z INT
Lu et al. 2012 WRR Name of alternative model




Common questions Frugal methods Demanding methods

Model Adequacy
1. How can many data types with  Error-based weighting and MOO, Pareto curve
. variable quality be included? SO0 or MAP
2_|s model misfit/overfit a RMSE, Nash-Sutcliffe MOO, Pareto curve
Ve rVI ‘ W O problem? Is the fit to prior graphs, R%, 5.2, 5,2
knowledge and data subsets Compare fit to a priori error
consistent? Are errors analysis using .2, 5.2

Gaussian?

fra I I l eWO r k 3. How nonlinear is the problem? Intrinsic nonlinearity, DELSA ~ DELSA, Explore objective function

Sensitivity and Uncertainty
Observations (Obs) €=» Parameters (Pars)

I I l et h O d S 4. What pars can and cannot be Scaled local stats (CSS, ID DoE, MoM(OAT, EE), eFAST

maw

estimated with the obs? PCC, etc.), SVD, Do Sobol’, RSA
MoM(OAT, EE)

5. Are any parts dominated by Scaled local stats (Leverage Cross validation
one obs and, thus, its error? DFBETAS)
6. How certain are the par Par uncertainty intervals Par uncertainty intervals
values?

Pro b I e mS . 7. Which obs are important and Scaled local stats (Leverage Cross validation

¢ unimportant to pars? Cook's D)
M anv m eth Od Towe r Of Parameters (Pars) €= Prediction (Preds)
y 8. Which pars are importantand  Scaled local stats (PSS, etc.), DELSA, eFAST, Sobol
B b |? unimportant to preds? DELSA
a e . 9. How certain are the preds? z/SDz, Pred uncertainty Pred uncertainty intervals, multi-
. intervals model analysis
-COIOssa I com p utah onNna I 10. Which pars contribute most Scaled local stats (PPR VOIl)  eFAST, Sobol

and least to the pred
uncertainty?

demands — Necessary?

Observations (Obs) €= Prediction (Preds)

11. Which existing and potential ~ Scaled local stats (OPR VOIIl)  Cross validation
obs are important to preds?

12. For multi-model analysis, Analyze model fit and Cross validation
which models are likely to estimated parameters, AIC

produce accurate preds? AlCc, BIC, KIC

Risk Assessment

13. What risk is associated with a Combine uncertainty analysis  Combine uncertainty analysis and
given decision strategy and set and scenario simulation scenario simulation. Cost function
of scenarios? Smooth cost function need not be smooth

A

Within this demanding
sis methods

14. What are decisions are Evolutionary multiobjective optimization

H i I I + 20 15’ G roun dwate r robust given a set of uncertain method use frugal model analy

scenarios?




Testing modeling frameworks

Test using cross-validation
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models to test methods
for the integrated model.




Maggia Valley, southern Switzerland

Series of studies to identify and test a computationally frugal
protocol for model development

1. Test frugal sensitivity analysis (SA) with cross-validation
— MODFLOW Model w stream (dry) (Foglia+ 2007 GW)
2. Demonstrate frugal optimal calibration method

— TOPKAPI Rainfall-Runoff model (Foglia + 2009 WRR)

3. Here - SA and calibration methods enable test of
computationally frugal model selection criteria
MODFLOW GW model (wet) (Foglia + 2013 WRR)

4. Integrated hydrologic model — SW and GW

Software: UCODE (Poeter + 2005, 2014)
MMA (MultiModel Analysis) (Poeter and Hill 2007)




Model outline and 35 Obs Locations
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Model structures

Streamflow Routing (SFR2) vs.
River (RIV)

Recharge
— Zero, constant, TOPKAPI

Bedrock boundary

— Old & New: Before and after
gravimetric survey.

— Depth in south x 2.

K

— Based on map of surficial
guaternary geology

— 5 combinations, from 1 parameter
to 6

64 alternative models
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Cross validation experiment

Flow data (use gains/losses)
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How important are the omitted observations in
the alternative models?

Use SA measure Ieverage for models calibrated with all 35 obs.
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How important are the omitted observations in
the alternative models?

Omitted obs are very.important to not.important.
Omitting these obs should provide a good test of
methods of analyzing alternative models
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Tests conducted

 Test model selection criteria AIC, BIC, and KIC
— Forund problems — especially for KIC

* Compared results with a basic premise related
to model complexity

— Led to some specific suggestions about model
development

— Present this part of the analysis here




Our results vs basic
premise?
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look like?

Number of head observation
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ldentify important parameters
Results from the integrated hydrologic model

Groundwater model + distributed hydrologic model +
new observations for low flows

Original R-R model

New integrated model

Observations

120 streamflows

618 streamflows
28 GW head observations

7 gain/loss observations

Parameters included in 4\ parameter types

6 SW parameter types (36 pars)

calibration 3 GW parameter types (6 pars)
Processes Rainfall-runoff model Rainfall-runoff model
Groundwater model
More frequent sampling for Low flows are still as important as
low flows is needed (Foglia+ high flows for many of the
Results 2009 WRR) parameters

Observations related to the
groundwater model are important
also for the rainfall-runoff model
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ldentify important parameters

GW observations are quite important to some of the SW parameters
SW obs are interpreted as GW flow (gain/loss) obs, which are important
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Conclusions from this test

The surficial geologic mapping did not provide
a useful way to parameterize the K

Sensitivity analysis can be used to determine
when the model detail exceeds what can be
supported by data.

Models unsupported by data are likely to have
poor predictive ability

5 suggestions for model development




Testing modeling frameworks

* Enabled by computationally frugal methods,
which are enabled by computationally robust

models
* This is where you, the model developers come

in!




Do your models have
numerical daemons???

Nash-Sutcliffe value
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ldentify important parameters

GW observations are quite important to some of the SW parameters
SW obs are interpreted as GW flow (gain/loss) obs, which are important
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Perspective

* |[n 100 years, we may very well be thought of
as being in the Model T stage of model
development

* A prediction: In the future, simply getting a
close model fit will not be enough. It will also
be necessary to show what obs, pars, and
processes are important to the good model
fit.

This increased model transparency is like the
safety equipment in automobile development.




| am looking for a test case

* Test a way to detect and diagnose numerical
daemons.

* High profile model applications preferred.




AGU: New Technical Committee on
Hydrologic Uncertainty

SIAM: New SIAM-UQ section and journal







Quantifying Uncertainty

* Lu Ye Hill 2012 WRR

* |[nvestigate methods that take 10s to 100,000s
of model runs (Linear to MCMC()

* New UCODE_2014 with MCMC supports these
ways of calculating uncertainty intervals




Test Case

MODFLOW

3.8 km x 6 km x 80m
Top: free-surface
No-flow sides, bottom

Obs: 54 heads, 2 flows,
lake level, lake budget

Parameters:

5 for

* recharge

KRB

e confining unit KV

* net lake recharge,

e vertical anisotropy
K:1(HO), 3(3Z), or 21 (INT)
Data on K at yellow dots
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Calibrated model, Predictions, Confidence Intervals

. . Model runs
Linear confidence 100

0 Nonlinear confidence 1,600
Nonlinear credible 430,000
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Lesson about uncertainty
» May be more important to consider the uncertainty

from many models than use a computationally
demanding way to calculate uncertainty for one model




