'MARSSIM' LANDSCAPE EVOLUTION MODEL August, 2020

Alan D. Howard

Department of Environmental Sciences University of Virginia 291 McCormick Rd, P.O. Box 400123 Charlottesville, VA 22904-4123 253 Clark Hall (434) 924-0563 (434) 981-2035 CELL (434) 982-2137 FAX alanh@virginia.edu ahoward@psi.edu

This is the documentation for a landform evolution model variously termed DELIM and MARSSIM the publications listed below. The model is built upon the landform evolution model first described by Howard (1994). The core model primarily focuses on landform evolution at relatively long temporal scales (relative to the timescale for noticeable landform change) through fluvial and mass wasting processes. The program is designed be computationally efficient such that individual runs can be done on a modern microcomputer in no more than a few tens of hours. The more recent additions to the model have focused on processes relevant to planetary landscapes, including lava flows, groundwater seepage and sapping, impact cratering, surface-normal accretion and ablation, and volatile redistribution by radiation-induced sublimation and recondensation. Individual process formulations vary from completely heuristic to modestly mechanistic. Important limitations for some potential applications are the assumption of a single representative bed material grain size in the fluvial system and no tracking of internal stratigraphy of sedimentary deposits (except for total thickness and surface morphology). Some stratigraphic information can be gleaned by frequent reporting of elevation changes through time on sedimentary deposits.

The package includes 6 directories:

accessory_programs: See accessory_programs below documentation: This file and the GUI interface with its subdirectories execution_directory_files: the parameter files, example files for a simple simulation, clearerode.sh (linux) and clearerode.(windows) erases any lingering files from previous runs. runname.sh (linux) rinname.bat (windows) renames output files to have a six letter/number prefix (from the command line) and creates a zipped archive. ERODE.STOP.NO, ERODE.STOP, and ERODE.STOP.YES for controlling program execution.

parameter_files: Another copy of the default parameter files
real_craters: A directory containing the files necessary to simulate new craters
 using martian fresh craters

source_files: The source files for MARSSIM plus example compilation and files for linux using intel fortran. This uses the –fast option which requires static clib libraries. If these are not installed substitute –O3 for -fast. For debugging substitute –g for –fast.

This package also includes a GUI interface to documentation and parameter editing. This interface consists of the python program *interface.py* which interfaces with the tkinter and tk modules of the base distribution of Python3. To use the interface you must have interface.py in a directory with the full set of parameter files plus two subdirectories, doc and backup. The doc subdirectory has all the explanatory text files supplying the documentation. The backup directory can initially be empty but will a repository for edited version of the 13 parameter files included with the distribution. To use the program the entire folder AppJar must be copied to the lib directory of the Python 3 distribution. This is a public domain interface to tkinter. The simplest way to use *interface.py* is to open a terminal (linux) or Command Prompt (Windows) in an environment with execution paths to the Python 3 package and change to the directory containing interface.py and its subdirectories. Type *idle* or *idle3* and open the *interface.py* program and then run the program. Two main tabs appear. The initiallydisplayed tab, DOCUMENTATION, has buttons which bring up windows containing documentation about various aspects of the MARSSIM package. Just click on the X or the red dot (Mac OS) on the title bar to close any open window. The EDIT PARAMETERS tab displays the names of the 13 parameter files and three other buttons. The Parameter Editing and Description button describes the functionality of this part of the interface and should be read before opening individual parameter files. The Read parameter files from a directory button can be used to transfer all the parameter files to the directory including *interface.py*, and similarly Write parameter files to a *directory* can be used to transfer the edited parameter files to a MARSSIM execution directory. These directories must exist prior to reading or writing. Because the edited file are stored in the interface directory, be sure to invoke Write parameter files to a *directory* into the program execution directory. Clicking on any of the parameter files opens an editing and documentation window containing the parameter file in 3 columns. The leftmost column contains the numerical parameters in an editable window. The second column brings up a subwindow with detailed information about the role of the parameter, permissible values, and in some cases hints about the appropriate value range for the parameter. The third column is a short identification of the parameter. If you edit a parameter and want to save its value, be sure to click the *Save* button at the bottom of the window, because saving is not done automatically. The third main tab RUN MARSSIM is incomplete and may be eliminated. Even if the GUI interface is not used for parameter editing, the detailed parameter documentation for each parameter file contains important information for using MARSSIM and about the inner workings of the program. A table describing the role of individual parameters is also included in the present document, although the GUI version descriptions are considered to be the definitive documentation.

In addition to this document and the GUI interface, the program source code contains numerous comments within the source files. If martian fresh craters are to be used to simulate new crater morphology, see the discussion at the end of this document.

The process formulation is described in the following publications:

- 1994 Howard, A.D., A detachment-limited model of drainage basin evolution, *Water Resources Research*, Vol. 30, No. 7, p. 2261-2285.
- 1997 Howard, A. D., Badland morphology and evolution: Interpretation using a simulation model. *Earth Surface Processes and Landforms*, v. 22, 211-227.
- 1999 Howard, A.D., Simulation of Gully Erosion and Bistable Landforms, book chapter, in *Incised River Channels*, edited by S. Darby and A. Simon, John Wiley & Sons, p. 277-300 & plates.
- 1999 Howard, A. D., Simulation of lava flow inundation on Martian cratered terrain, Lunar and Planetary Science Conference XXX, Abstract 1112. http://www.lpi.usra.edu/publications/meetingpubs.shtml
- 2004 Forsberg-Taylor, N.K., Howard, A.D. and Craddock, R.A., Crater degradation in the Martian Highlands: morphometric analysis of the Sinus Sabaeus region and simulation modeling suggest fluvial processes, *Journal of Geophysical Research*, *Planets*.109, E05002, doi:10.1029/2004JE002242.
- 2004 Fagherazzi, S., Howard, A. D., and Wiberg, P. L., Modeling fluvial erosion and deposition on continental shelves during sea level cycles. *Journal of Geophysical Research*, v. 109, doi:10.1029/2003JF000091.
- 2004 Howard, A. D., Simple non-fluvial models of planetary surface modification, with application to Mars, Lunar and Planetary Science Conference XXXV, Abstract 1054. http://www.lpi.usra.edu/publications/meetingpubs.shtml
- 2007 Howard, A. D., Simulating the development of martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing, *Geomorphology*, v. 91, p. 332-363.
- 2008 Howard, A. D., and Moore, J. M., Sublimation-driven erosion on Callisto: A landform simulation model test. *Geophysical Research Letters*, v. 35, L03203, doi:10.1029/2007GL032618.
- 2008 Luo, W., and Howard, A. D., Computer simulation of the role of groundwater seepage in forming Martian valley networks, *Journal of Geophysical Research*, *Planets*, vol. 113, E05002, doi:10.1029/2007JE002981.

- 2009 Barnhart, C. J., Howard, A. D., Moore, J. M., Long-term precipitation and latestage valley network formation: Landform simulations of Parana Basin, Mars, *Journal of Geophysical Research Planets*, vol. 114, E01003, doi:10.1029/2006JE003122.
- 2011 Matsubara, Y., Howard, A. D., Drummond, S. A., Hydrology of early Mars: Lake basins, *Journal of Geophysical Research*, 116, doi:10.1029/2010JE003739.
- 2012 Howard, A. D., and Tierney, H.E., Taking the measure of a landscape: Comparing simulated and natural landscapes in the Virginia Coastal Plain, USA., *Geomorphology* 137, p. 27-40.
- 2012 Howard, A. D., Moore, J. M., Schenk, P. M., White, O. L., and Spencer, J. Sublimation-driven erosion on Hyperion. Topographic analysis and landform simulation model tests. *Icarus*, 220, 268-276.
- 2016 Howard, A. D., Breton, S. and Moore, J. M, Formation of gravel pavements during fluvial erosion as an explanation for persistence of ancient cratered terrain on Titan and Mars, *Icarus*, 270, 100-113, <u>http://dx.doi.org/10.1016/j.icarus.2015.05.034.</u>
- 2017 Moore, J. M., Howard, A. D., Umurhan, O.M. and 13 additional authors, Sublimation as a landform-shaping process on Pluto, *Icarus*, 287, 320-333, doi:10.1016/j.icarus.2016.08.025.
- 2018 Matsubara, Y., Howard, A. D., Irwin, R. P. III, Constraints on the Noachian paleoclimate of the martian highlands from landscape evolution modeling, *Journal of Geophysical Research, Planets,* 123, 2958-2979, doi:10.1029/2018JE005572
- In addition, the following document, included with the distribution, summarizes most of the model components and also includes two unpublished sections on dimensionless scaling and two schemes for measuring the relative amounts of surface modification by various processes (fluvial transport, mass wasting, eolian deposition, and impact cratering).
- 2002 Howard, A.D., Simulation models for landform evolution on early Mars: Cratering, lava emplacement, eolian modification, weathering, mass wasting, mass flow, and fluvial processes. *[Marsmodel.pdf, included in distribution]*

The program is coded in standard Fortran 90 in free-form format. It has been successfully compiled with a number of compilers, including *Intel Fortran* (Windows and Linux), *PGI Fortran* (linux), and the public-domain *gfortran*. The *Intel Fortran* and the Linux environments are recommended for fastest execution times. The program runs in a command-line environment (Command Prompt window in Windows, Terminal window in Linux). The following programs and files are included with the distribution (subroutines and functions in the various files are indicated in bold):

marssim_program_v4.doc - this document

Source files (files include subroutines t	hat are generally grouped by process or function) :	
global_variables.f90	Definition of global variables. These are grouped into	
	several modules related to particular process suites. Most	
	matrices are defined as allocatable arrays whose size is	
	determined at runtime by the input files. Only matrices	
	used for the selected processes are actually allocated.	
main_program.f90	This is the main program (program marssim), which	
	opens output files, initializes the program, conducts the	
	iterations, and closes the program.	
	<pre>setup_fluvial_slope_erosion initializes several initial</pre>	
	variables and matrices.	
	do_fluvial_and_slope is called each iteration when	
	fluvial and/or slope erosion is modeled to invoke the	
	processes. It also calls various routines at set intervals	
	to report on process rates and landform states and to	
	write data files.	
	finalize_fluvial_slope_erosion closes down the fluvial	
	and slope modeling parts of the program, summarizes	
	the system state, and writes out and closes output files.	
	report_max provides debugging information if calls to	
	it are embedded in the source files.	
Initial_and_boundary_conditions.f90	<pre>read_input_parameters performs as suggested, as well</pre>	
	as allocating matrices, reading in the initial elevations	
	plus any other necessary input files from	
	MARSSIM_INITIAL_BOUNDARY_CONDITIONS.PRM.	
	The subroutine initialize_variables initializes a number	
	of variables and small matrices primarily used for fluvial	
	and mass wasting erosion and file output. In addition it	
	sets up lookup tables for rates of mass wasting and rock	
	weathering as functions of local gradient. If a time-	
	varying ocean level is specified, it reads in the requisite	
	file of levels and times.	
	normal_random_deviate,	
	lognormal_random_deviate,	
	lognormal_random_deviate1,	
	exponential_distribution, and rrand generate random	
	numbers following the indicated probability	
	distributions (rrand provides uniformly distributed	
	numbers between zero and one)	
	boundary_conditions is called each iteration to control	
	base level as a function of time (for simulations with an	
	eroding lower boundary) and performs any rock	
	deformation.	

	determine erodibility is called if rock resistance varies
	through 3-D space. It calls read erodibility to read
	rock resistance from an input file, ' <i>resist.in</i> '
	determine erosion rate is called if process parameters
	change abruptly at set time intervals.
	make event is called at set times if some abrupt change
	in the system state is desired. For example, changing
	certain process parameters or leveling part of the
	landscape by simulated wave erosion (as included in the
	source file). This routine would typically be tailored to
	specific landform evolution scenarios.
	find ocean elevation determines the relative level of
	the ocean if it is time-varying.
	change flow direction is used if flow across alluvial
	surfaces or deltas has a memory requiring a probabilistic
	event to change (e.g., avulsions of birdfoot deltas)
	setup events is called at the beginning of the program if
	specified changes are to be introduced during the
	simulation. The routine make event effects the changes.
	determine cratering rate can change the background
	cratering rate during the simulation if so programmed.
	allocerror stops the program if allocatable variables are
	not successfully initialized.
fluvial_slope_erosion.f90	This contains the main subroutines for fluvial and mass
fluvial_slope_erosion.f90	This contains the main subroutines for fluvial and mass wasting erosion.
fluvial_slope_erosion.f90	wasting erosion. read_bedrock_channel_parameters reads parameters
fluvial_slope_erosion.f90	wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file
fluvial_slope_erosion.f90	wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i> .
fluvial_slope_erosion.f90	wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file BEDROCK_CHANNEL_PARAMETERS.PRM. read_alluvial_channel_parameters
fluvial_slope_erosion.f90	<pre>wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file BEDROCK_CHANNEL_PARAMETERS.PRM. read_alluvial_channel_parameters from ALLUVIAL_CHANNEL_PARAMETERS.PRM</pre>
fluvial_slope_erosion.f90	<pre>wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file BEDROCK_CHANNEL_PARAMETERS.PRM. read_alluvial_channel_parameters reads parameters from ALLUVIAL_CHANNEL_PARAMETERS.PRM governing alluvial sediment transport and deposition in</pre>
fluvial_slope_erosion.f90	<pre>wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file BEDROCK_CHANNEL_PARAMETERS.PRM. read_alluvial_channel_parameters reads parameters from ALLUVIAL_CHANNEL_PARAMETERS.PRM governing alluvial sediment transport and deposition in streams and bodies of water.</pre>
fluvial_slope_erosion.f90	 wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i>. read_alluvial_channel_parameters reads parameters from <i>ALLUVIAL_CHANNEL_PARAMETERS.PRM</i> governing alluvial sediment transport and deposition in streams and bodies of water. fluvial_detachment determines the local fluvial
fluvial_slope_erosion.f90	 wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i>. read_alluvial_channel_parameters reads parameters from <i>ALLUVIAL_CHANNEL_PARAMETERS.PRM</i> governing alluvial sediment transport and deposition in streams and bodies of water. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear
fluvial_slope_erosion.f90	 wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i>. read_alluvial_channel_parameters reads parameters from <i>ALLUVIAL_CHANNEL_PARAMETERS.PRM</i> governing alluvial sediment transport and deposition in streams and bodies of water. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine
fluvial_slope_erosion.f90	 wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i>. read_alluvial_channel_parameters reads parameters from <i>ALLUVIAL_CHANNEL_PARAMETERS.PRM</i> governing alluvial sediment transport and deposition in streams and bodies of water. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. It also
fluvial_slope_erosion.f90	 wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i>. read_alluvial_channel_parameters reads parameters from <i>ALLUVIAL_CHANNEL_PARAMETERS.PRM</i> governing alluvial sediment transport and deposition in streams and bodies of water. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. It also implements the various options for modeling channel
fluvial_slope_erosion.f90	 wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i>. read_alluvial_channel_parameters reads parameters from <i>ALLUVIAL_CHANNEL_PARAMETERS.PRM</i> governing alluvial sediment transport and deposition in streams and bodies of water. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. It also implements the various options for modeling channel bed erosion
fluvial_slope_erosion.f90	 wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i>. read_alluvial_channel_parameters reads parameters from <i>ALLUVIAL_CHANNEL_PARAMETERS.PRM</i> governing alluvial sediment transport and deposition in streams and bodies of water. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. It also implements the various options for modeling channel bed erosion do_the erosion is the master subroutine coupling fluvial
fluvial_slope_erosion.f90	 wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i>. read_alluvial_channel_parameters reads parameters from <i>ALLUVIAL_CHANNEL_PARAMETERS.PRM</i> governing alluvial sediment transport and deposition in streams and bodies of water. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. It also implements the various options for modeling channel bed erosion do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass
fluvial_slope_erosion.f90	 wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i>. read_alluvial_channel_parameters reads parameters from <i>ALLUVIAL_CHANNEL_PARAMETERS.PRM</i> governing alluvial sediment transport and deposition in streams and bodies of water. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. It also implements the various options for modeling channel bed erosion do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each
fluvial_slope_erosion.f90	 wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i>. read_alluvial_channel_parameters reads parameters from <i>ALLUVIAL_CHANNEL_PARAMETERS.PRM</i> governing alluvial sediment transport and deposition in streams and bodies of water. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. It also implements the various options for modeling channel bed erosion do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It
fluvial_slope_erosion.f90	 wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i>. read_alluvial_channel_parameters reads parameters from <i>ALLUVIAL_CHANNEL_PARAMETERS.PRM</i> governing alluvial sediment transport and deposition in streams and bodies of water. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. It also implements the various options for modeling channel bed erosion do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the overall time increment if fluvial and slope
fluvial_slope_erosion.f90	 wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i>. read_alluvial_channel_parameters reads parameters from <i>ALLUVIAL_CHANNEL_PARAMETERS.PRM</i> governing alluvial sediment transport and deposition in streams and bodies of water. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. It also implements the various options for modeling channel bed erosion do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the overall time increment if fluvial and slope erosion is modeled. It also does elevation changes by
fluvial_slope_erosion.f90	 wasting erosion. read_bedrock_channel_parameters reads parameters governing bedrock channel evolution from the file <i>BEDROCK_CHANNEL_PARAMETERS.PRM</i>. read_alluvial_channel_parameters reads parameters from <i>ALLUVIAL_CHANNEL_PARAMETERS.PRM</i> governing alluvial sediment transport and deposition in streams and bodies of water. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. It also implements the various options for modeling channel bed erosion do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the overall time increment if fluvial and slope

	or bedrock, in normal or accelerated state of erosion, if
	the erosion is in a surface crust).
	write_debug and print_around are called for
	debugging purposes.
	local_values calculates fluvial process variables at
	individual matrix locations.
mass_wasting.f90	read_mass_wasting_parameters inputs parameters
	governing mass wasting from the file
	MASS WASTING PARAMETERS.PRM.
	do mass wasting is called by do the erosion to
	determine the rate of mass wasting on regolith-covered
	slopes and to route weathered debris on rock slopes to
	the nearest downslope non-bedrock location.
	rapid creep is a lookup function for the rate of mass
	wasting as a function of local gradient.
	rock mass wasting is a lookup function for the rate of
	mass wasting of bedrock slopes as a function of local
	gradient
sediment_routing.f90	Contains several routines associated with transport and
seatment_routing.j90	-
	deposition of alluvium in channels, fans, and deltas.
	find_downstream_location is used to determine the
	next location downstream for routing of sediment.
	write_debug_data does as it says.
	sediment_transport_flux determines the rate of
	sediment transport as a function of gradient, flow
	properties, and sediment characteristics.
	equilibrium_sediment_gradient determines the steady-
	state alluvial gradient corresponding to specified values
	of bedload flux and local discharge.
	<pre>sediment_flux_divergence is called by do_the_erosion</pre>
	and determines the rate of change in alluvial surface
	elevation as a function of the spatial divergence of
	sediment transport.
	route sediment is called by do the erosion and
	determines changes in alluvial surface elevation by
	routing sediment at an equilibrium gradient through
	channels, across fans, or on deltas. The procedures and
	assumptions are presented in Howard (1994). This
	subroutine is called multiple times during an iteration
	for each location where a bedrock channel debouches on
	to an alluvial surface.
	smoothsed is optionally called each iteration to
	cosmetically smooth out the sediment surface calculated
	by route_sediment .
	check_if_change_flow_direction is optionally called
	within individual iterations to change the flow directions

	on alluvial surfaces resulting from the route sediment	
	subroutine.	
	print_sediment_diagnostics does as indicated.	
weathering.f90	This subroutine weathers rocks.	
	read_weathering_parameters inputs the parameters	
	governing rock weathering from the file	
	WEATHERING PARAMETERS.PRM.	
	calculate_divergence is called by do_weathering to	
	determine local slope divergence. It is based on the local	
	and 8 surrounding points.	
	new_calculate divergence uses 25, 49, or 81 points to	
	calculate local divergence if called with NN=5,7, or 9.	
	Thus it determines divergence over a broader spatial	
	scale than calculate_divergence.	
	do_weathering weathers the bedrock surface both for	
	locations with exposed bedrock (<i>is_rock_surface</i> true)	
	and for regolith-covered locations. If it is a regolith-	
	covered surface it increases the thickness of the regolith	
	(<i>regolith</i> takes a positive value indicating regolith	
	thickness in this case). If it is a bedrock surface <i>regolith</i> takes a negative value indicating the rate of bedrock	
	weathering. For bedrock surfaces weathering rates can	
	be determined by slope steepness and local divergence	
	(e.g., exfoliation) as well as solar radiation (on planetary	
	surfaces), groundwater seepage rates, and glacial	
	erosion. If it is a regolith-covered surface the rate of	
	weathering of the bedrock surface can either be a	
	negative exponential function of regolith thickness or a	
	humped function of regolith thickness (chemical	
	weathering). For glacial flow modeling, eolian	
	deposition and erosion, ablation and condensation the	
	material eroded, deposited, or flowing is labeled as	
	regolith.	
	find_depression just determines if the location is a local	
	elevation minimum.	
gradient_and_flow_directions.f90	gradient_and_flow_direction determines local	
	topographic gradients (<i>d8_gradient</i>) and downstream	
	flow directions (<i>flow_direction</i>). The latter is negative for local topographic minima and is unity for fixed	
	boundary locations.	
flow_routing.f90	This routes runoff across the landscape. There are two	
	implementations, 1) drainage basin area flow routing	
	water under either hyperarid conditions (where runoff	
	disappears instantly in depressions) or fully wet	
	conditions (no evaporation or infiltration –	
	<i>complete_runoff</i> is true), or 2)	
	· · · · · · · · · · · · · · · · · · · 	

	drainage_basin_lake_flow which accounts for partial
	runoff from uplands and evaporation from lakes.
	read_flow_parameters reads the file
	FLOW_PARAMETERS.PRM containing parameter
	values related to flow routing.
	discharge_from_cell determines the flux of water from
	each simulation cell, which can be a function of local
	slope divergence, seepage from groundwater, or state of
	accelerated erosion. Usually it is just proportional to
	cell area.
	is it submerged determines whether individual cells
	are under water.
	drainage basin area flow does the flow routing,
	determining drainage areas and flow amounts within the
	drainage network, as well as routing sediment through
	the bedrock channel portions of the network (where
	transport rates are assumed to be very rapid compared to
	the simulation time step). Lake elevations and outlet
	locations are determined (if <i>complete_runoff</i> is true) and
	channel width is determined as a function of local
	discharge.
	basin_report is used for debugging.
	drainage_basin_lake_flow functions like
	drainage_basin_area_flow except for partially filled
	lakes and conditional lake overflow depending upon the
	evaporation rate.
	drawline and drawsline are used to connect inflows to
	lakes to their exit in order to create images of the flow
	network.
	pelagic deposit deposits suspended sediment in lakes.
	It also diffuses the deposited sediment to create a
	smooth basin floor.
	check_flow_path is a debugging routine
groundwater_flow.f90	This routes groundwater as DuPuit (horizontal
	unconfined) flow as a function of assigned infiltration
	rate, aquifer depth, and permeability. Steady flow is
	assumed. The rate of seepage back to the surface is
	determined. This seepage can optionally contribute to
	(or dominate) surface flows and increase rock
	weathering rates (see Luo and Howard, 2008)
	read_groundwater_parameters inputs parameters
	from GROUNDWATER_PARAMETERS.PRM.
	exponential_hydr_cond_grndwtr calculates the
	groundwater flow under the assumption that
	permeability decreases exponentially with depth beneath
1	the surface.

	constant hydr cond grndwtr calculates the
	groundwater flow assuming a constant thickness,
	constant permeability aquifer.
impact_cratering.f90	Geometrically simulates impact cratering using random
	spatio-temporal impacts following a given production
	function and crater geometry. See Forsberg Taylor et
	al. (2004) and Howard (2007). If desired new craters can
	be modeled after the topography of selected fresh
	martian craters.
	read_cratering_parameters inputs parameters from <i>CRATERING PARAMETERS.PRM</i> .
	do impact cratering is the master routine called for
	each simulated impact, calling the other routines.
	get crater size determines the crater size as a function
	of the production function.
	find modification range determines how far out from
	the impact site that ejecta deposition must be modeled
	find_impact_site determines where in X-Y space the
	impact occurs
	create_crater does the heavy shoveling, transporting,
	and ejecta spreading if craters are geometrically
	modeled.
	add_central_peak optionally adds a central peak to
	craters in the gravitational regime.
	find_reference_elevation determines the average
	ground location into which the crater is excavated.
	create_sediment_cover optionally sets the crater ejecta
	to be considered sediment rather than rock or regolith.
	create_real_crater if selected, uses a database of
	martian fresh crater topography to create a new crater at
1 (1 (0.0	a specified location and crater diameter.
lava_flows.f90	This simulates episodic lava flows from multiple
	specified vents. There is some documentation in the
	file.
	read_lava_parameters reads parameters governing
	lava flows from LAVA_FLOW_PARAMETERS.PRM.do lava flows is the main subroutine.
	find active lava sites determines where on lava flows
	new lava extension can occur
	find lava start place determines where a new flow
	starting from a vent goes
	find next lava site determines where the next cell to
	be occupied by the flow is.
eolian_erosion_deposition.f90	This heuristically models eolian landform mantling. See
conun_croston_ucpostiton.j>0	Forsberg-Taylor et al. (2004). Some of the routines and
	parameters are shared with surface erosion deposition
	parameters are shared with surface_crosion_ucposition

	routines.
	read eolian parameters reads parameters from
	EOLIAN PARAMETERS.PRM.
	do eolian change is the main subroutine.
	exposure determines the degree to which a given
	location is "exposed" or "sheltered" from the wind.
	total exposure is an alternate method for determining
	"exposure"
surface exception demonstrian f00	This routine includes heuristic modeling of surface-
surface_erosion_deposition.f90	normal erosion or deposition on planetary surfaces.
	read accretion ablation parameters reads values
	from ACCRETION ABLATION PARAMETERS.PRM.
	do accretion ablation models surface-normal or
	vertical uniform addition or removal of sediment from a
	surface.
	do exposure dependent creep models mass wasting
	where the creep diffusivity depends upon the surface
	exposure (as in the eolian modeling) as well as gradient
	find top exposure index is another method for
	determining "exposure"
	setup distance weighting sets up a matrix of weights
	that decrease as a negative exponential from the given
	location
	rad erode heuristically models solar-induced
	sublimation from planetary surfaces by reflected-
	reemitted IR radiation. See Howard and Moore (2008)
	and Moore et al., (2017).
	deposit_ice heuristically models ice accretion on
	surfaces not exposed to reflected solar radiation.
	find rad change determines the sublimation rate at a
	given location.
mass_flow.f90	This models flow and optionally erosion by deep mass
	flows, either through Bingham flow incorporating a
	yield stress or through Glen Flow glacial flow. The
	model is limited to depth-averaged flow.
	read_mass_flow_parameters reads in the parameters
	from <i>MASS_FLOW.PRM</i> , including selecting Bingham
	versus Glen Law flow.
	do_bingham_mass_flow routes mobile material via
	Bingham rheology.
	do_glen_law_flow routes mobile material via Glen's
	Law rheology with a specified stress exponent.
gravel_transport_and_abrasion.f90	This models gravel transport and abrasion through a
	fluvial network and evolves surface topography using
	multiple gravel grain sizes. This is a 2D implementation
	of the Gary Parker model AgDegNormGravMixPW. As

	implemented it does not readily interact with other
	process components other than flow routing and
	gradient_and_flow_directions
	read_gravel_transport_parameters inputs values from
	<i>GRAVEL MIXURE.PRM.</i>
	gravel_mixture_initialize sets up the gravel simulation.
	gravel_mixture_transport is called to do the transport
	and abrasion.
	find_shields_stresses calculates the shield number for
	gravel transport.
	find_load calculates the transport rate for each size
	range
	gg calculates the function G.
	ggwc calculates the function ggwc
	find omega1 and find omega2 calculate the omega
	variable.
	find new elevation calculates evolves the transport
	flux and determines changes in bed elevation.
	write_output_gravel outputs gravel state variables.
	real write outputs matrices
	write sediment flux episodically outputs sediment
	flux.
summary_statistics.f90	Calculates a variety of morphometric parameters on
summary_statistics.j>0	simulated landscapes. Designed primarily for fluvially-
	eroded landscapes with near-steady-state topography.
	moments sums the first four moments of passed values
	reset_moments zeros out the moment vector
	calculate_moments calculates the first four statistical
	moments (mean, variance, skewness, kurtosis) of values
	passed in an X-Y array
	<pre>print_moments prints out the calculated moments</pre>
	find_topographic_extrema identifies the total number
	of summits, sinks, and saddles on a topographic surface
	calculate_topo_divergence prints the moments of
	planform and profile curvature, gradient divergence, and
	ln(area/gradient).
	<pre>print_morphometry summarizes various statistical</pre>
	characteristics of a simulated landscape
	print_simulation_information episodically reports on
	the statistical characteristics of a simulation, including
	rates of landform modification
	print variable summaries calculates correlations and
	anova relationships between simulation state and rate
	variables as well as percentile distribution values for a
	number of state variables
	correlate finds the correlation between two matrices
	correlate mus die correlation between two matrices

	print bedrock statistics finds correlations between	
	rate processes and topographic properties.	
	print rate statistics summarize the rates of landform	
	modification	
	slope_runoff_characteristics prints information on the	
	spatial distribution of runoff if slope-dependent runoff is	
	selected.	
channel_properties.f90	channel properties summarizes representative stream	
	profiles within the simulation domain	
stream_network_properties.f90	summarize channels calculates a number of classic	
	measures of channel network geometry. For specifics	
	see the source file.	
	percentiles calculates the 16 th , 25 th , 50 th , 75 th and 84 th	
	percentile values of a vector	
determine_stream_network.f90	find stream network calculates and prints information	
J	about stream network geometry, working together with	
	summarize channels	
write_debug_information.f90	print debugging data does as it says, and utilizes a	
	number of associated routines:	
	print_integer_matrix_data	
	print basin information	
	print logical matrix data	
	print real matrix data	
	summarize matrix data	
	summarize regolith data	
	summarize_logical_matrix	
read_and_write_data_files.f90	As the name suggests, most data input and output is	
v	done through these subroutines. Most read or write	
	values of a single matrix. Includes the following,	
	mostly self-explanatory subroutines. Most of the output	
	files are written in asci 'append' format at set intervals	
	during the simulation. Each write outputs the matrix	
	dimensions, mx and my, and then the data by the pseudo	
	code	
	do i=1,mx	
	do j=1,my	
	write data(i,j)	
	enddo	
	enddo	
	read_erosion_mask reads a binary file with the same	
	spatial dimensions as the simulation that can be used to	
	restrict erosion and deposition to specific locations	
	within he spatial domain.	
	read_alluvial_locations	
	write_exposure outputs values of the local "exposure"	
	to eolian erosion and deposition.	

read_bistable_locations	
read_bedrock_locations	
read_sediment_base	
read_elevations	
read_regolith_thickness	
read_deformation	
write_debug_info	
<pre>write_gradient_info (just a shell)</pre>	
write_alluvial_locations	
write_bedrock_locations	
write_lake_info	
write_erosion_depth_index	
write accelerated erosion state	
write sediment base	
write avalanche flux	
write regolith thickness	
write deformation	
write rock resistance	
write_elevation_matrix	
write data sample	
write_report	
write image	
write shaded relief image in PGM format	
write groundwater flow	
write groundwater elevation	
find groundwater flux	
write mass flux	
write_mass_nux write routed discharge	
output binary data (writes in binary format rather	
than ascii)	
write_discharges	
write_submerged_locations	
write_crater_sites	
grad_disch_write	`
write_color_shaded_relief_image (not presently used)
write_lava_info	
write_lava_ages	
write_final_state Writes asci files of the final states of	
elevations, regolith thickness, sedbase, sedcover,	
bedrock	
write_net_change_matrices outputs, at the end of the	
simulation, the net changes in several state variables, a	1
labeled as 'cumulative'.	

Input files:

INELEV.DAT -initial elevations for the simulation It, and most other data files read or written by the program, is read by the following pseudocode:

read (indata,*) mx,my !the x and y dimensions of the simulation domain do i=1,mx do j=1,my read(indata,*) elevation(i,j) !elevation is the surface elevation at location i,j enddo enddo

1:

MARSSIM_INITIAL_BOUNDARY_CONDITIONS.PRM - the master parameters for the simulations.

Parameters for specific processes are read from the following files. Each of these files must be present in the execution directory.

Additional files may be needed depending upon the processes being simulated..

- 2: BEDROCK_CHANNEL_PARAMETERS.PRM
- 3: ALLUVIAL_CHANNEL_PARAMETERS.PRM
- 4: FLOW_PARAMETERS.PRM
- 5: WEATHERING_PARAMETERS.PRM
- 6: ACCRETION_ABLATION_PARAMETERS.PRM
- 7: **CRATERING_PARAMETERS.PRM**
- 8: EOLIAN_PARAMETERS.PRM
- 9: **GRAVEL_MIXTURE.RM**
- 10: **GROUNDWATER_PARAMETERS.PRM**
- 11: LAVA_FLOW_PARAMETERS.PRM
- 12: MASS_FLOW.PRM
- 13: MASS_WASTING.PRM

ERODE.STOP -This file is read every 10 iterations, reading a single integer. If it is 1 the program stops and writes out files, otherwise if 0 the program continues. To stop the program in mid-simulation without discarding results, copy ERODE.STOP.YES to ERODE.STOP. But be sure to copy ERODE.STOP.NO to ERODE.STOP before the next simulation.

For simple simulations of upland drainage basin evolution, *INELEV.DAT* and parameter files are all the files that are needed. Other files will be needed depending upon processes being simulated depending upon the processes being simulated:

RESIST.IN -a 3-D matrix of rock resistance

INREG.DAT	-initial conditions for regolith thickness	
INRATES.DAT	-reads time-varying simulation parameters	
	-allows specification of rivers entering the domain from outside	
EVENTS.PRM	- specifies the time of specified programmed "events"	

CRATER_EVENTS_PRM – Locations and sized of simulated craters. Additional files are needed if fresh martian craters are used to represent new craters.

REAL_CRATERS.TXT - a database of fresh martian craters. The content of this file depends upon the scale, CELL-SIZE of the simulation.

GRAVEL_VALUES.TXT - parameter values for simulations with multiple gravel grain sizes **LAVA SOURCES.TXT** - Locations of lava sources within simulation domain in i,j pairs

OCEANLEVELS.DAT - times and levels of the ocean if variable ocean elevations are modeled

SURFACE CRUST.DAT - spatial distribution of initial surface crust thicknesses if modeled

- **SPATIAL_VARIATION.DAT** the spatial variation in runoff coefficients and/or weathering rates if variable runoff or variable weathering is modeled.
- **Output files** (most are written in subroutines in *read_and_write_data_files.90* see the program routines for formatting and further explanation most of these consist of several concatenated records of data output at intervals during the simulation in the same general format as *inelev.dat* relatively important output files are indicated in bold italics). Some files will not be created unless the appropriate processes are included in the simulation, and some may be created but not written to.
- **BASIN.LST** -a text file that summarizes the simulation parameters plus a good bit of data on the progress of the simulations and a variety of rate-process information
- *OUTELEV.DAT* -a text file of the surface elevations written at various times during the simulation. This file usually includes several sequential datasets.
- *ALLUVIAL.DAT* -an ascii file of 0's to indicate locations that are bedrock channels, and 1's for alluvial channels
- DISCHARGE????.RAW raw image files of the logarithm of discharges within the drainage network. Normalized so that low discharges are black, highest is white. The dimensions of these images equals that of the elevation matrix.

BEDROCK.DAT -an ascii file of 0's for regolith-covered locations, and 1's for bare bedrock

SUBMERGE????.RAW - raw image files indicating submerged (black) and unsubmerged (white) locations. The dimensions of these images equals that of the elevation matrix.

SUBMERGED.DAT-an ascii file of 1's for underwater locations, otherwise 0's for subaerial

- *EROSION_DEPTH_INDEX.DAT* -if variable rock resistance is used, this is the z-index of the surface in the 3-D rock resistance file
- *OUTBASE.DAT* the elevation of the bottom of alluvial deposits, or, where they are absent, the land surface elevation.

REGOLITH.DAT -the regolith thickness

- *DEFORM.DAT* -if the rocks are actively deformed, writes the total amount of deformation during the simulation
- *RESIST.OUT* -writes the erosional resistance for rocks at the surface (for variable rock resistance is a slice through resist.in

REPORT.PRN -a record of relief and erosion rate

RECORD.DAT -a record of several variables expressing the progression towards a steadystate landscape

SUMMARY.DAT - some of the data printed out in basin.lst, but in bare-bones format

STATISTICS.PRN - writes a sampling of the simulation state for emergent points at intervals

during the simulation

CHANNEL.DAT -information on stream channels

CRATER.DAT -information about individual simulated impact craters

- *RELELE???.RAW* -files consisting of raw b&w images of surface elevation- scaled so that the lowest elevation is black and the highest is white. The dimensions of these images equals that of the elevation matrix.
- *TOPO.DAT* -a file that gives information on the elevation range corresponding to the images in *relele???.raw*
- **BSHADE????PGM** -shaded relief images of the surface topography, output in sequential order during the simulation and periodic intervals. Can be put together in Adobe Photoshop to make a movie. If periodic boundary conditions are used these files can paste strips from the opposite side in order to better portray the topography if selected. If neither boundary is periodic the image size is (2*(MX-1), 2*(MY-1), If the image is periodic in, say, the X dimension, then the horizontal image size increases to 2*(MX-1)+2*(MX/2+2) and similarly if the image is periodic in the Y dimension.
- ATPRESENT.PGM: The most recent shaded relief file. Useful for monitoring the progression of the simulation
- BISTABLE.DAT output file of locations that are (1) and are not (0) in the accelerated erosion state.

DEBUG.PRN - A file of debugging data written by **write_debug**

SOURCE.DAT - A file of stream source information written by **stream_network_properties** if it is utilized

QQ.DAT -if groundwater flow is simulated, is the matrix of groundwater discharges

EWATER.DAT -if groundwater flow is simulated, is the water table elevation

- ACTIVE.DAT -if groundwater sapping is simulated, is locations that are presently undergoing sapping erosion.
- LAVA.DAT -if lava flows are simulated, whether lava has been deposited at that location
- LACTIVE.DAT -if lava flows are simulated, is the locations where lava flows are active
- LAGE.DAT -if lava flows are simulated, is the age since the last lava was deposited at that location.
- EOLIAN.DAT -if eolian deposition is simulated, is the amount of eolian deposition or erosion

BINGHAM FLUX.DAT - if Bingham mass flow is modeled, gives the flux magnitude

GLEN FLUX.DAT – If Glen Law flow is selected gives the mass flux.

- SEDFLUX.DAT Spatial distribution of sedement flux during multi-size gravel simulations
- DSGS.DAT Spatial distributions of the 50th percentile grain sizes during multi-size gravel simulations
- D90.DAT Spatial distribution of D90 grain sizes during multi-size gravel simulations
- SANDFRACTION.DAT The amount of transported sediment than gravel during multi-size gravel simulations
- SEDTEMP.DAT detailed information about sediment routing if write_sediment_diagnostics is True.
- *EXPOSURE.DAT* information about the initial relative exposure of locations for eolian or sublimation modeling
- AVALANCHE.DAT Avalanche flux rates if mass wasting avalanching and erosion is modeled

- CHPROP.PRN Information about channel properties at regular locations if printing morphometric data is selected
- CUMULATIVE_...DAT -net changes in state variable matrices during the simulation. Exact name and number of files depends upon which processes are simulated. See the subroutine write_net_change_matrices for details.
- FINAL_...DAT These are the final values of state variables. Useful to analyze simulation results and to use to continue a simulation. See the subroutine write_final_state for details.
- BINARY_....DAT if selected these are cumulative binary output files of surface elevation, stream discharges, lake locations, and impact crater events. This was specifically included to permit making movie files of landform evolution. See the subroutine output_binary_data for details.

Accessory Programs:

- *extract.F* -reads *outelev.dat* and extracts a specific output record to write out in the file *lastelev.dat*
- *tosurfer.F* -like *extract.F*, but outputs an ascii ".grd" file for input into the commercial program **Surfer**.
- *matrix_2D.F90* -makes a pseudo-random 2-D matrix to be input as initial elevations. See the program for documentation. Output file is named *matrix_2D.out*. A shaded-relief image *m3dshade.raw* is also created.
- matrix_3D.F90 -makes a pseudo-random 3-D "cube", primarily for use as rock resistance input. See the program for documentation. Output file is named matrix_3D.out, and is a direct-access, unformatted file. For use as rock resistance input, rename this file to resist.in . See the program and boundary_conditions.F90 for how to create and read the file.
- *rescale.f90* –this takes the output from the matrix_2D program and rescales the matrix to a given elevation range or a given maximum gradient and optionally adds an overall slope to the topography
- *clearerode.bat* -This is an MSDOS batch file that deletes most files left over from previous runs. Since most of the output is appended to any existing files, run this before you start a new run.
- *runname.bat* -This is a MSDOS batch file that renames output files from the program to a single prefix with a variety of suffixes and moves most of them to a ".zip" file. Requires pkzip.exe to be in executable path. The batch file requires a 6 digit alphanumeric code in the command line that uniquely identifies the run, e.g. *runname abcdef*, followed for the next run by, say, *runname abcdeg*. It does not incorporate the image (*.raw and *,pgm) files in the zip file.
- *pkzip.exe* command-line archiving utility for Windows– needs to be in your search path in order to run *runname.bat.* use *zip* in Linux

A BLANK PAGE FOLLOWS, but continue on to the parameter file documentation

MARSSIM PARAMETER FILES The parameter input files for the MARSSIM Landform Evolution Model

Most parameters and variables for individual runs are in the *marssim.prm* file, which should be edited for individual runs. The left column shows typical values for input parameters and the right column shows the variable names that are read as input (in bold). Many of the input variables are switches to turn on or off particular features. In general 1 indicates yes (.true.) and 0 indicates no (.false.). Logical variables that are set in response to the switches are shown in bold between square brackets. If particular portions of the simulation program are turned off (e.g., in the third input line) then the values for the controlling variables for that process suite are read in but not used. Program units (unless otherwise noted) are in kg, m, s. Erosion rates are expressed in (m/yr) and iterations are expressed in (years/iteration).

MARSSIM_INITIAL_BOUNDARY_CONDITIONS.PRM	

4632819 – ISEED	ISEED, A integer random seed
1 - NEW SIMULATION	These select various major model components,
1 - SWITCH FOR FLUVIAL AND SLOPE MODELING	in order (0=don't, 1=do):
0 - SWITCH FOR IMPACT CRATER MODELING	INEW_SIMULATION
0 - SWITCH FOR LAVA FLOW MODELING	[NEW_SIMULATION]
0 - SWITCH FOR EOLIAN PROCESSES	0 = continuation run; 1=new
0 - SWITCH FOR A GLOBAL OCEAN LEVEL	IDOEERODE
0 - SWITCH FOR ABLATION/ACCRETION MODELING	[FLUVIAL_AND_SLOPE_MODELING]
0 - SWITCH FOR LAKE EVAPORATION MODELING	1 = fluvial and slope erosion
0 - SWITCH FOR AVALANCHE ROUTING AND EROSION	IDOCRATER
0 - SWITCH FOR MASS FLOW MODELING (BINGHAM OR GLENS LAW FLOW)	[MODEL_IMPACT_CRATERING]
	0 = NO impact cratering
	IDOLAVA
	[MODEL_LAVA_FLOWS]
	0 = NO lava inundation
	IDOEOLIAN
	[MODEL_EOLIAN_CHANGES]
	0 = NO eolian deposion
	IDOOCEAN
	[MODEL_OCEAN_LEVEL]
	0 = DON'T have an ocean

	IDOACCRETION
	[MODEL ACCRETION AND ABLATION]
	0 = NO accretion modeling
	IDOLAKES
	[MODEL_LAKE_EVAPORATION]
	0 = No modeling runoff and evaporation with lakes
	IDOAVALANCHE
	[DO_AVALANCHE]
	0 = No avalanche modeling
	IDOMASSFLOW
	[USE_MASS_FLOW]
	1 = Do model mass flow
500 - MX	MX - NUMBER OF COLUMNS IN DEM
500 - MY	MY - NUMBER OF ROWS IN DEM
100 - MZ	MZ - NUMBER OF VERTICAL CELLS (NOT GENERALLY
40.0 - CELL SIZE	USED)
1.0 - VERTICAL SCALING	INPUT_CELL_SIZE - THE CELL DIMENSION, IN
1.0 - CONVERT TO METERS	WHATEVER UNITS
	VERTICAL_SCALING_FACTOR - THE VERTICAL SCALE
	UNIT, IN WHATEVER UNITS (NEEDS TO BE SAME
	UNITS AS INPUT_CELL_SIZE)
	CONVERT_TO_METERS - WHAT IS NEEDED TO
	MULTIPLY INPUT_CELL_SIZE AND
	VERTICAL_SCALING_FACTOR TO GET TO METERS,
	WHICH IS THE INTERNAL PROGRAM SCALE
0 - SWITCH FOR TIME-VARYING PARAMETERS	IUSEVARRATEUSE
0 - DO EVENTS	[VARIABLE_EROSION_RATE]
	- 0 IF MODEL PARAMETERS ARE CONSTANT, 1 IF
	THEY VARY THROUGH TIME IN A SPECIFIED MANNER
	(ALMOST ALWAYS ZERO)
	DO_EVENTS - IF >0 THEN SIMULATION INCLUDES
	EVENTS AT SPECIFIC TIMES AS SPECIFIED IN
	EVENTS.PRM.
1.0 - DEFAULT CHANNEL TIMESTEP	CHANNEL_TIMESTEP_SCALING
0.3 - MINIMUM_TIME INCREMENT	[DEFAULT_CHANNEL_TIMESTEP]
0.3 - MAXIMUM TIME INCREMENT	MAXIMUM_TIME_INCREMENT

<pre>0 - SWITCH FOR HAVING SEDIMENT FLUX CONTRON TIMESTEP 1.0E+07 - SEDIMENT YIELD TIMESTEP FACTOR 25 - HORIZONTAL (I) LOCATION OF DEBUGGINS WINDOW 50 - VERTICAL (J) LOCATION OF DEBUGGINS WINDOW 4 - NO. OF HORIZONTAL CELLS 15 - CENTER (I,J) AND SIZE (NI,NJ) OF DEBUG WINDOW 0 - DO DEBUGGIN PRINTOUT</pre>	MINIMUM_TIME_INCREMENT THESE CONTROL SIMULATION TIME STEPS. EXPERIMENT TO SEE HOW LARGE THESE CAN BE BEFORE INSTABILITY SETS IN (UNITS IN YEARS) ICENT JCENT IWIDTH JWIDTH IF THINGS GO WRONG, THE RANGE OF DEM CELLS
	FOR WHICH DEBUG INFO IS PRINTED IXDEBUG [DO_DEBUGGING] - PRINT OUT DEBUGGING INFO (GENERALLY DON'T USE)
0 - 0=no, 1=do morphometric stats	STATISTDO [DO_MORPHOMETRY] IF MORPHOMETRIC STATISTICS ARE TO BE CALCULATED SET TO 1.
0 - PRINT REPEAT EDGES FOR PERIODIC BOUNDARIES	SHADE_BORDER_INDEX. If 1 then the
0 - USE A FIXED SUN ANGLE	BSHADE????.PGM files have a border from the
0.47 - SUN ANGLE GRADIENT	opposite side for periodic boundaries. This
	allows better visualization of connections
	across borders. FIXED_SUNANGLE_INDEX If 0 then shaded relief
	FIXED_SUNANGLE_INDEX If 0 then shaded relief images use grazing illumination of steepest
	slope, if 1 then the illumination angle is
	set by SUN_ANGLE_GRADIENT
0 - HORIZONTAL_LOWER_BOUDNARY IF 1, OTHERWISE 0	IHORIZONTAL_LOWER_BOUNDARY
0.0 - RATE OF LOWERING OF HORIZONTAL LOWER BOUNDARY	[HORIZONTAL_LOWER_BOUNDARY] - USED IF THE
0 - INDEX FOR A HON-ERODING LOWER BOUNDARY 1=YES	SOUTHERN BOUNDARY IS LEVEL (ONLY USED IF
1 - INDEX FOR A HORIZONTAL PERIODIC BOUNDARY 1=YES	NON-PERIODIC LOWER BOUNDARY CONDITIONS)
1 - INDEX FOR A VERTICAL PERIODIC BOUNDARY 1=YES	INON_ERODING_LOWER_BOUNDARY
0 - INDEX FOR FIXED EXTERNAL BOUNDARIES 1=YES	[NON_ERODING_LOWER_BOUNDARY] - USED IN
	CONJUNCTION WITH A LEVEL LOWER BOUNDARY
	USEYPERIODIC
	[IS_Y_PERIODIC] - ZERO IF NOT VERTICAL
	PERIODIC BOUNDARIES, ONE OTHERWISE
	USEXPERIODIC
	[IS_X_PERIODIC] - ZERO IF NOT HORIZONTALLY

	DEDIODIO ONE OBUERNICE
	PERIODIC, ONE OTHERWISE.
	IMPORTANT: THE USUAL TWO COMBINATIONS OF
	THESE PARAMETERS THAT ARE USED ARE:
	1 1 0 1 0(FOR NON-VERTICALLY PERIODIC
	SIMULATIONS)
	0 0 1 1 0 (FOR DOUBLY-PERIODIC BOUNDARY
	CONDITIONS)
	USEFLOWBOUND
	[DO_FLOW_BOUNDARIES]- USED WHEN ALL
	BOUNDARIES ARE POTENTIAL FLOW EXITS AND NON-
	ERODING (FOR EXAMPLE, WHEN SIMULATING
	EVOLUTION OF A RECTANGULAR REGION EXTRACTED
	FROM A LARGER DOMAIN). WHEN USED, IT SETS
	THE VALUES OF THE PREVIOUS FOUR PARAMETERS
	TO 0 0 0 (ALL FALSE)
******************************** OUTPUT AND RECALCULATION TIMING ************************************	
0 - STARTING_ITERATION	STARTING_ITERATION
0.0 - INITIAL TIME	PRESENT_TIME (YEARS)
	GENERALLY THESE ARE BOTH ZERO FOR NEW
	SIMULATION RUNS
10000000 - MAXIMUM NUMBER OF ITERATIONS	SIMULATION RUNS MAXIMUM_ITERATION - THIS IS THE MAIN
10000000 - MAXIMUM NUMBER OF ITERATIONS 1.6e+25 - MAXIMUM ELAPSED TIME TIME	
	MAXIMUM_ITERATION - THIS IS THE MAIN
	MAXIMUM_ITERATION - THIS IS THE MAIN VARIABLE DETERMINING THE LENGTH OF THE
	MAXIMUM_ITERATION - THIS IS THE MAIN VARIABLE DETERMINING THE LENGTH OF THE PROGRAM RUN. SET TO A LARGE NUMBER IF
	MAXIMUM_ITERATION - THIS IS THE MAIN VARIABLE DETERMINING THE LENGTH OF THE PROGRAM RUN. SET TO A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY
	MAXIMUM_ITERATION - THIS IS THE MAIN VARIABLE DETERMINING THE LENGTH OF THE PROGRAM RUN. SET TO A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_SIMULATION_TIME
	MAXIMUM_ITERATION - THIS IS THE MAIN VARIABLE DETERMINING THE LENGTH OF THE PROGRAM RUN. SET TO A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_SIMULATION_TIME MAXIMUM_SIMULATION_TIME - THE MAXIMUM TIME,
	MAXIMUM_ITERATION - THIS IS THE MAIN VARIABLE DETERMINING THE LENGTH OF THE PROGRAM RUN. SET TO A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_SIMULATION_TIME MAXIMUM_SIMULATION_TIME - THE MAXIMUM TIME, IN YEARS, THAT THE SIMULATION CAN RUN.
	MAXIMUM_ITERATION - THIS IS THE MAIN VARIABLE DETERMINING THE LENGTH OF THE PROGRAM RUN. SET TO A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_SIMULATION_TIME MAXIMUM_SIMULATION_TIME - THE MAXIMUM TIME, IN YEARS, THAT THE SIMULATION CAN RUN. USUALLY A LARGE NUMBER IF TERMINATION IS TO
1.6e+25 - MAXIMUM ELAPSED TIME TIME	MAXIMUM_ITERATION - THIS IS THE MAIN VARIABLE DETERMINING THE LENGTH OF THE PROGRAM RUN. SET TO A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_SIMULATION_TIME MAXIMUM_SIMULATION_TIME - THE MAXIMUM TIME, IN YEARS, THAT THE SIMULATION CAN RUN. USUALLY A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_ITERATION
1.6e+25 - MAXIMUM ELAPSED TIME TIME	MAXIMUM_ITERATION - THIS IS THE MAIN VARIABLE DETERMINING THE LENGTH OF THE PROGRAM RUN. SET TO A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_SIMULATION_TIME MAXIMUM_SIMULATION_TIME - THE MAXIMUM TIME, IN YEARS, THAT THE SIMULATION CAN RUN. USUALLY A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_ITERATION ELEVATION_PRINT_INTERVAL
1.6e+25 - MAXIMUM ELAPSED TIME TIME	MAXIMUM_ITERATION - THIS IS THE MAIN VARIABLE DETERMINING THE LENGTH OF THE PROGRAM RUN. SET TO A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_SIMULATION_TIME MAXIMUM_SIMULATION_TIME - THE MAXIMUM TIME, IN YEARS, THAT THE SIMULATION CAN RUN. USUALLY A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_ITERATION ELEVATION_PRINT_INTERVAL HOW MANY ITERATIONS BETWEEN WRITING OUT A
1.6e+25 - MAXIMUM ELAPSED TIME TIME 10000 - ELEVATION_PRINT_INTERVAL	MAXIMUM_ITERATION - THIS IS THE MAIN VARIABLE DETERMINING THE LENGTH OF THE PROGRAM RUN. SET TO A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_SIMULATION_TIME MAXIMUM_SIMULATION_TIME - THE MAXIMUM TIME, IN YEARS, THAT THE SIMULATION CAN RUN. USUALLY A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_ITERATION ELEVATION_PRINT_INTERVAL HOW MANY ITERATIONS BETWEEN WRITING OUT A LOT OF INFO
1.6e+25 - MAXIMUM ELAPSED TIME TIME 10000 - ELEVATION_PRINT_INTERVAL	MAXIMUM_ITERATION - THIS IS THE MAINVARIABLE DETERMINING THE LENGTH OF THEPROGRAM RUN. SET TO A LARGE NUMBER IFTERMINATION IS TO BE CONTROLLED BYMAXIMUM_SIMULATION_TIMEMAXIMUM_SIMULATION_TIME - THE MAXIMUM TIME,IN YEARS, THAT THE SIMULATION CAN RUN.USUALLY A LARGE NUMBER IF TERMINATION IS TOBE CONTROLLED BY MAXIMUM_ITERATIONELEVATION_PRINT_INTERVALHOW MANY ITERATIONS BETWEEN WRITING OUT ALOT OF INFOOUTPUT_PRINT_INTERVAL
1.6e+25 - MAXIMUM ELAPSED TIME TIME 10000 - ELEVATION_PRINT_INTERVAL	MAXIMUM_ITERATION - THIS IS THE MAIN VARIABLE DETERMINING THE LENGTH OF THE PROGRAM RUN. SET TO A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_SIMULATION_TIME MAXIMUM_SIMULATION_TIME - THE MAXIMUM TIME, IN YEARS, THAT THE SIMULATION CAN RUN. USUALLY A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_ITERATION ELEVATION_PRINT_INTERVAL HOW MANY ITERATIONS BETWEEN WRITING OUT A LOT OF INFO OUTPUT_PRINT_INTERVAL HOW OFTEN TO SUMMARIZE SIMULATION PREOGRESS.
<pre>1.6e+25 - MAXIMUM ELAPSED TIME TIME 10000 - ELEVATION_PRINT_INTERVAL 10000 - OUTPUT_PRINT_INTERVAL</pre>	MAXIMUM_ITERATION - THIS IS THE MAIN VARIABLE DETERMINING THE LENGTH OF THE PROGRAM RUN. SET TO A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_SIMULATION_TIME MAXIMUM_SIMULATION_TIME - THE MAXIMUM TIME, IN YEARS, THAT THE SIMULATION CAN RUN. USUALLY A LARGE NUMBER IF TERMINATION IS TO BE CONTROLLED BY MAXIMUM_ITERATION ELEVATION_PRINT_INTERVAL HOW MANY ITERATIONS BETWEEN WRITING OUT A LOT OF INFO OUTPUT_PRINT_INTERVAL HOW OFTEN TO SUMMARIZE SIMULATION PREOGRESS. GENERALLY SHOULD BE THE SAME AS ELEVINTERVAL

	AREAS. LEAVE AT 1
	RECACLULATE_DISCHARGE_INTERVAL Usually set
	to 1, but can be increased to shorten
	simulation time with some loss of fidelity.
20 - WRITE_CHANGE_INTERVAL	WRITE_CHANGE_INTERVAL
	HOW OFTEN TO PRINT OUT INFORMATION ON THE
	RATE OF CHANGE IN GRADIENTS AND FLOW
	DIRECTIONS. LEAVE AS IS
5 - KWRITE, MIN. CONV. CHAN. PLOT	KWRITE - THIS HAS TO DO WITH THE DEFINITION
1=0;2=.1;3=.2;4=.4,5=.8;6=1.6	OF WHERE CHANNELS START IN MORPHOMETRIC
	PRINTOUTS.
1 - WRITE_ABSOLUTE_ELEVATION, 0=RELATIVE, 1 = ABSOLUTE	ONEONLY
	[WRITE_ABSOLUTE_ELEVATION]
	WHETHER TO WRITE OUT RELATIVE OR ABSOLUTE
	ELEVATIONS. GENERALLY LEAVE AS IS (ABSOLUTE
	ELEVATIONS)
10000 IMAGE_OUTPUT_INTERVAL	IMAGE_OUTPUT_INTERVAL
5 - DIVERGENCE_INTERVAL	- HOW OFTEN TO PRINT OUT SHADED RELIEF
	IMAGES
	DIVERGENCE_INTERVAL - LEAVE AS IS
1 - SWITCH FOR WRITING BINARY OUTPUT FILES 1=YES, 0-NO	WRITE_BINARY_IMAGE_FILE
******************************* RANDOM VARIATION OF SIMULATION PARAMETERS ***	*
0	CONTROLS RANDOM VARIATION OF DISCHARGE AND
1	CRITICAL SHEAR STRESS
1.0	RANDTHRESHUSE
2.0	[RANDOM_CRITICAL_SHEAR] - USE (>0) IF SHEAR
1.0 - RANDOM_CRITICAL_SHEAR, USE_RANDOM_DISCHARGE,	RESISTANCE OF SURFACE IS CONSIDERED TO VARY
CRITICAL_SHEAR_VARIABILITY, DISCHARGE_COEFF_VARIATION, OMEGA_WEIGHT	RANDOMLY THROUGH TIME, GENERALLY KEEP AT
	ZERO
	RANDDISCHUSE
	[USE_RANDOM_DISCHARGE] - USE (>0) IF
	SUCCESSIVE RUNOFF EVENTS ARE CONSIDERED TO
	VARY RANDOMLY USING A LOGNORMAL
	DISTRIBUTION.
	CRITICAL_SHEAR_VARIABILITY - SCALING FOR
	RANDOM CRITICAL SHEAR

	OF DISCHARGE, ASSUMING LOGNORMAL
	DISTRIBUTION
	OMEGA_WEIGHT - KIND OF LIKE A HURST
	PARAMETER GOVERNING INHERITANCE FROM PAST
	VALUE. KEEP AT UNITY FOR NO INHERITANCE.
	VILION. REEL AT ONTET FOR NO IMPRETATE.

0 - DO ROCK AND SURFACE DEFORMATION 1=YES, 0=NO	DEFORMUSE
1.0 - PARAMETER GOVERNING RATE OF DEFORMATION	DEFORMSCALE
	STUB FOR INCLUDING ROCK DEFORMATION - NOT
	CURRENTLY IMPLEMENTED.
********************** OCEAN PROCESS PARAMETERS ************************************	
0 - VARIABLE_OCEAN_ELEVATION	IOCEANVAR
	[VARIABLE_OCEAN_ELEVATION] >0 IF THERE IS A
	TEMPORALLY-VARYING OCEAN LEVEL.
	IF IT IS VARIABLE, THEN THE TIMES AND
	RESPECTIVE SEA LEVELS ARE READ IN FROM
	OCEANLEVELS.DAT
0 - USE EROSION MASK	Generally set at zero. If set to 1 a binary
	mask is read in which inhibits erosion and
	mass wasting at cells with values less than
	127.

0 - YSE SPATIAL VARIATION	SPATIAL_VARIATION_USE >0 if spatially-
	varying runoff rate or weathering rate is
	used. If it is, then the following matrix
	of relative spatial rates is read in:
	SPATIAL_VARIATION.DAT
FLOW_PARAMETERS.PRM	

0 - USEWET (0 for dry 1 for wet depressions that overflow)	USEWET
1 - RESCALE_DISCHARGES	[COMPLETE_RUNOFF] - 0 IF ALL DEPRESSIONS ARE
	INFINITE SINKS OF WATER, 1 IF ALL
	DEPRESSIONS FILL WITH WATER AND OVERFLOW
	MOST MARS SIMULATIONS HAVE USED 0 HERE, BUT
	SOME SIMULATIONS WITH NON-PERIODIC BOUNDARY
	CONDITIONS USE UNITY (IF USEWET IS SET TO

	UNITY WITH DOUBLY PERIODIC BOUNDARY
	CONDITIONS AT LEAST ONE INFINITE SINKHOLE
	NEEDS TO BE SPECIFIED)
	IQCONSTANT
	[RESCALE_DISCHARGES] - IF THIS IS GREATER
	THAN ZERO THEN EFFECTIVE DISCHARGES ARE
	RESCALED AS A POWER FUNCTION OF CONTRIBUTING
	AREA. (E.G. $Q = K A^{*}E$), WHERE, TYPICALLY
	(0.5 < E < 1.0).
0 - USE_RANDOM_FLOWROUTING (0 = determinstic d8, 1 = random d8)	RANDDIRUSE [USE_RANDOM_FLOWROUTING]
0 05E_KANDOM_FILOWKOOTING (0 = deterministic do, i = random do)	IF GREATER THAN ZERO FLOW DIRECTIONS HAVE A
	RANDOM COMPONENT. GENERALLY LEAVE AT ZERO
3.0e-05 - DISCHARGE_CONSTANT	DICHARGE CONSTANT
0.7 - DISCHARGE EXPONENT	DISCHARGE EXPONENT
	CONTROLS HYDROLOGY THROUGHOUT DRAINAGE
	SYSTEM WHEN IQCONSTANT>0,
	DISCHARGE=DISCHARGE_CONSTANT*AREA**DISCHARGE
	_EXPONENT (M**3/S).
	THE VALUES HERE ARE FOR TYPICAL TERRESTRIAL
	DRAINAGE NETWORKS FOR MEAN ANNUAL FLOOD
0.0 - AREAFACTOR (0.0 to -1.0	AREAFACTOR
0.000025 RAINDEPTH	RAINDEPTH
1.0 - RAINSD	RAINSD
	GENERALLY NOT USED
0 - USE DIVERGENCE DEPENDENT RUNOFF (1-YES, 0-NO)	VARYIELDUSE
0.0 DIVERGENCE FOR MEAN RUNOFF	[DIVERGENCE_DEPENDENT_RUNOFF]
1.0 HIGH DIVERGENCE RUNOFF PARAMETER	MEAN_CONVERGENCE_RUNOFF
0.2 - LOW DIVERGENCE RUNOFF PARAMETER	HIGH_CONVERGENCE_RUNOFF
1.0 - DIVERGENCE SCALE PARAMETER	LOW_CONVERGENCE_RUNOFF
1 - RANGE IN NUMBER OF CELLS OVER WHICH DIVERGENCE IS CALCULATED	USED IF RUNOFF DEPTH FUNCTIONALLY DEPENDS ON
	TOPOGRAPHIC CONVERGENCE.
0 - DO SPATIALLY-VARYING DISCHARGE	DO_SPATIAL_RUNOFF. If this is selected, then
0.2 - SCALE FACTOR FOR LOWEST RUNOFF	the matrix SPATIAL_VARIATION is used to
1.6 - SCALE FACTOR FOR HIGHEST RUNOFF	calculate local runoff rates, scaled by the
	two parameters LOW_RUNOFF_SCALE and
	HIGH_RUNOFF_SCALE. The matrix values might
	be based on, e.g. elevations, or relative

	slopes. Note that DO_SPATIAL_VARIATION must also be true to invoke spatially-varying runoff.
0 - INDEX FOR RUNOFF DIFFER FOR SEDIMENT VERSUS NON-SEDIMENT SURFACE	SEDIMENT_DEPENDENT_RUNOFF_USE. If true,
(0= N,1=YES)	multiply runoff on sediment-covered regions
1.5 - FACTOR FOR RUNOFF FOR SEDIMENT COVERED AREAS	by SEDIMENT_RUNOFF_FACTOR.
0 - USE REGOLITH-DEPTH DEPENDENT RUNOFF (0=NO, 1=YES	REGOLITH_DEPTH_RUNOFF_USE. If use, runoff
1.5 - FACTOR FOR RUNOFF FOR BEDROCK AREAS	for bedrock locations is multiplied by
O - USE REGOLITH_DEPTH DEPENDENT RUNOFF	RUNOFF_SCALE_BEDROCK, but if regolith
0.2 - FACTOR FOR RUNOFF FOR DEEP REGOLITH	covered, runoff is determined by the
0.1 - RUNOFF DEPTH DECAY RATE FOR REGOLITH	regolith depth thruout the
	RUNOFF_SCALE_DEEP_REGOLITH and the
	RUNOFF_DEPTH_DECAY_RATE
0 - USE GRADIENT-DEPENDENT RUNOFF	
0.1 - SLOPE GRADIENT FOR MEDIAN RUNOFF	
2.0 - SLOPE RUNOFF SCALE FACTOR	
1 - NUMBER OF ITERATIONS BETWEEN EVAPORATION RECALCULATION	NCALCEVAP
20 - NUMBER OF ITERATIONS BETWEEN CHANGING EVAPORATION RATE	NCHANGEEVAP
2.5 - MEAN X-RATIO	X-RATIO_MEAN
0.0 - STANDARD DEVIATION OF X-RATIO	X-RATIO_STANDARD_DEVIATION
	USED IF LAKE EVAPORATION IS MODELED,
	NCALCEVAP IS HOW MANY ITERATIONS BETWEEN
	RECALCULATING EVAPORATION RATES.
	NCHANGEEVAP IS HOW MANY ITERATIONS BETWEEN
	STOCHASTIC CHAGES IN EVAPORATION RATES.
	EVAPORATION_MEAN IS THE MEAN YEARLY
	EVAPORATION DEPTH (M).
	EVAPORATION_STANDARD_DEVIATION IS THE S.D.
	OF MEAN EVAPORATION DEPTH.
1 - MODEL PELAGIC DEPOSIION IN LAKES	IMODEL_PELAGIC_DEPOSITION
0.5 - FRACTION OF DELIVERED SEDIMENT THAT IS WASHLOAD	[MODEL_PELAGIC_DEPOSITION]
0.2 - AMOUNT OF "CREEP-LIKE" DIFFUSIVITY IS USED IN PELAGIC DEPOSITION	WASHLOAD_FRACTION
25.0 - MINIMUM SIZE OF DEPRESSIONS (IN NUMBER OF CELLS) FOR PELAGIC	PELAGICCREEP
DEPOSITION	IF IMODEL_PELAGIC_DEPOSITION IS GREATER THAN
	ZERO, DEPOSITION OF SUSPENDED SEDIMENT IN
	ENCLOSED BASINS IS MODELED.
	WASHLOAD_FRACTION IS THE FRACTION OF

	SEDIMENT DELIVERED TO BASINS THAT IS
	DEPOSITED AS PELAGIC SEDIMENT.
	PELAGICCREEP (A DIFFUSIVITY) DETERMINES HOW
	MUCH POST-DEPOSIION DIFFUSION OCCURS IN
	RECENTLY-DEPOSITED PELAGIC SEDIMENT.
0 - HAVE_INFLUENT_RIVERS (0 FOR NO INCOMING RIVERS, 1 FOR INCOMING	DOINRIVER
RIVER(S))	[HAVE_INFLUENT_RIVERS]
	IF DOINRIVER IS GREATER THAN ZERO, RIVERS
	ENTER THE SIMULATION DOMAIN WITH SPECIFIED
	LOCATION, DISCHARGE, AND SEDIMENT LOAD.
	MOSTLY USED TO SIMULATE COASTAL-CONTINENTAL
	SHELF ENVIRONMENTS. IF THERE ARE IFLUENT
	RIVERS THEIR LOCATION, DISCHARGE, AND
	SEDIMENT LOAD IS READ FROM `inriver.prm'.
	USUALLY ZERO.
BEDROCK_CHANNEL_PARAMETERS.PRM	

0 - DO_FLUVIAL_DETACHMENT(0,1 DONT,DO	DETACHUSE
1 - EXPLICIT_CHANNEL_BED_STATE (0= IMPLICIT, 1= EXPLICIT)	[DO_FLUVIAL_DETACHMENT] - LEAVE AT UNITY FOR
	ALMOST ALL TYPES OF SIMULATIONS EXCEPT WHEN
	FLUVIAL EROSION, TRANSPORT, AND DEPOSITION
	ARE NOT BEING MODELED WHEREAS SLOPE
	PROCESSES ARE.
	BEDEXPLICIT
	[EXPLICIT_CHANNEL_BED_STATE] - GREATER THAN
	ZERO FOR EXPLICIT MODELLING OF REGOLITH
	DEPTH (INCLUDING BARE ROCK) - USED IN
	HOWARD, 2007. IF ZERO, REGOLITH DEPTH IS
	IMPLICITLY MODELED AS IN HOWARD, 1994.
0 - IFLUXDEPENT 0=STREAM POWER, 1= SKLAR BED ABRASION, 2= WHIPPLE	THREE MODELS CAN BE USED FOR BEDROCK CHANNEL
FLUX-BASED INCISION	EROSION, THE HOWARD MODEL, SKLAR, AND
1.0 - SKLAR ROCK_TENSILE_STRENGTH (MPa)	WHIPPLE.
1.15E-2 - SKLAR MULTIPLICATIVE CONSTAT	IFLUXDEPEND
0 - USE SHEAR RATIO IN SKLAR DENOMINATOR 0=NO, 1=YES	[USE_SKLAR_BED_ABRASION]
1 - SATURATION FACTOR 0=SKLAR PARABOLIC, 1=TUROWSKI EXPONENTIAL	[USE_WHIPPLE_BED_ABRASION]
	- 0 FOR HOWARD MODEL
	1 FOR SKLAR SALTATION

	2 FOR WHIPPLE SALTATION
	ROCK_TENSILE_STRENGTH - TENSILE STRENGTH OF
	BEDROCK IF SALTATION MODEL IS USED
	SKLAR_FACTOR : Multiplicative constant in
	Sklar bedload incision
	SHEAR RATIO: 0= IGNORE SATURATION EFFECT,
	1=USE
	SATURATION FACTOR: IF SATURATION FACTOR IS
	USED, 0=SKLAR PARABOLIC, 1=TUROWSKI
	EXPONENTIAL
0.5 - BEDROCK_DISCHARGE_EXPONENT	BEDROCK_DISCHARGE_EXPONENT - USED FOR STREAM
1.0 - BEDROCK_GRADIENT_EXPONENT	POWER DETACHMENT MODEL
	BEDROCK_GRADIENT_EXPONENT - USED FOR STREAM
	POWER MODEL, THAT IS RATE OF BEDROCK EROSION
	IS PROPORTIONAL TO
	DISCHARGE**BEDROCK_DISCHARGE_EXPONENT *
	GRADIENT**BEDROCK_GRADIENT_EXPONENT
1.0E-04 - BEDROCK_ERODIBILITY	BEDROCK_ERODIBILITY - BEDROCK ERODIBILITY
0.03 - MANNING'S N	FOR STREAM POWER MODEL - COULD VARY IN
3.7 - GRAVITATIONAL CONSTANT	NATURAL LANDSCAPES OVER ORDERS OF MAGNITUDE
1000.0 - FLUID DENSITY	FROM 10**-2 TO 10**-8
	MANNING - MANNING'S N
	GRAVITY - 3.7 FOR MARS
	9.8 FOR EARTH (M/S**2)
	FLUID DENSITY: 1000.0 FOR DILUTE WATER FLOW
0.0 - DETACHMENT_CRITICAL_SHEAR	DETACHMENT_CRITICAL_SHEAR USE A NON-ZERO
	VALUE IF SHEAR STRESS IN STREAM POWER MODEL
	MUST EXCEED A CRITICAL VALUE. UNITS IN
	(KG/(M*SEC**2).
10.0 - REGOLITH_ERODIBILITY_FACTOR	REGOLITH_ERODIBILITY_FACTOR - HOW MUCH MORE
10.0 - REGOLITH_CRITICAL_SHEAR_FACTOR	ERODIBLE IS WEATHERED REGOLITH THAN BEDROCK
	(MINUMUM VALUE OF UNITY)
	REGOLITH_CRITICAL_SHEAR_FACTOR - BY WHAT
	RATIO IS THE CRITICAL SHEAR FOR REGOLITH
	DETACHMENT LESS THAN FOR BEDROCK. GENERALLY
	SET TO SAME VALUE AS
	REGOLITH_ERODIBILTY_FACTOR

5.0 - CHANNEL WIDTH CONSTANT,	CHANNEL WIDTH CONSTANT
0.5 - CHANNEL WIDTH EXPONENT	CHANNEL WIDTH EXPONENT
	THESE DETERMINE HOW CHANNEL WIDTH DEPENDS
	UPON DISCHARGE, GENERALLY AS A FUNCTION OF
	MEAN ANNUAL DISCHARGE.
	WIDTH=CHANNEL WIDTH CONSTANT * DISCHARGE **
	CHANNEL WIDTH EXPONENT (M)
0 - VARIABLE VEGETATION RESISTANCE	ITAUAREA - 0 IF VEGETATION COVER DOES NOT
200.0 - UPLAND CHANNEL EROSION RESISTANCE	INFLUENCE CHANNEL EROSION, OTHERWISE 1.
1.0 - SOWNSTREAM CHANNEL EROSION RESISTANCE	(SEE HOWARD&TIERNEY (2012) FOR DETAILS
3000.0 - MINIMUM TRANSITION AREA	[VARIABLE VEGETATION RESISTANCE]
60000.0 - MAXIMUM TRANSITION AREA	VEGETATION UPLAND RESITANCE
	VEGETATION_CHANNEL_RESISTANCE
	VEGETATION_AREA_MINIMUM
	VEGETATION_AREA_MAXIMUM
	THESE PARAMETERS ARE ONLY USED IF VEGETATION
	INFLUENCE ON EROSION IS BEING MODELED. IF
	ITAUAREA GREATER THAN ZERO, THEN VEGETATION
	MODELING IS USED. SHEAR STRESS IN UNITS OF
	(KG/(M*SEC**2). THE CRITICAL SHEAR FOR
	REGOLITH DETACHMENT VARIES FROM
	VEGETATION_UPLAND_RESISTANCE TO
	VEGETATION_CHANNEL_RESISTANCE AS
	CONTRIBUTING AREA (M**2) GOES FROM
	VEGETATION_AREA_MINIMUM TO
	VEGETATION_AREA_MAXIMUM

0 - BISTABLE_FLUVIAL_EROSION (>0=YES)	HIGHRATEUSE
0 - USE_BISTABLE_BEDROCK (>0=YES)	[BISTABLE_FLUVIAL_EROSION]
10.0 - LOW_EROSION_THRESHOLD	BEDROCKHIGH
15.0 - HIGH_EROSION_THRESHOLD	[USE_BISTABLE_BEDROCK]///EROSION///
0.5 - EROSION RATE CHANGE LAG	LOW_EROSION_THRESHOLD
10.0 - BISTABLE CRITICAL SHEAR	HIGH_EROSION_THRESHOLD
1.0 - BISTABLE RUNOFF FACTOR	EROSION_RATE_CHANGE_LAG
5.0 - BISTABLE BEDROCK ERODIBILITY	BISTABLE_CRITICAL_SHEAR
	BISTABLE_RUNOFF_FACTOR
	BISTABLE_BEDROCK_ERODIBILITY
	USED FOR MODELING OF GULLIES - SEE Howard
	(1999)

0 - USE VARIABLE WEATHERING AND ERODIBILITY VARIATION (0=NO, 1=YES)	VARIABLE_ROCK_RESISTANCE_USE - If this is
0 - SCALED ROCK ERODIBILITY - 0= ABSOLUTE VALUES OF ERODIBILITY, 1=	activated, rock resistance to weathering and
RANDOM	fluvial erosion is used.
1.0 - RESISTANCE_VARIABILITY	SCALED_ROCK_ERODIBILITY if this is 0 a 3-D
0.5 - VERTICAL_RESISTANCE_SCALING	cube of rock resistance values is opened
	(RESIST.IN) and is used to determine rock
	resistance to weathering and fluvial
	erosion. The resistance file is direct
	access. If this is 1 rock resistance is
	random.
	RESISTANCE_VARIABILITY determines the
	magnitude of rock resistance variability
	VERTICAL_RESISTANCE_SCALING
	ONLY USED FOR 3-D VARYING ROCK RESISTANCE,
	SCALE HORIZONTAL TO VERTICAL SCALES (1.0 IF
	EOUAL).
	3D rock resistance has not been tested in
	the current model version - use with caution
0 - CRUST USE (1= SURFACE RESISTANT CRUST, 0 = NONE	CRUSTUSE
0.01 - SURFACE_LAYER_THICKNESS (METERS)	[RESISTANT_SURFACE_LAYER]
20.0 - SURFACE LAYER RESISTANCE	ONE THING TO EXPERIMENT WITH TO SIMULATE THE
	EFFECT OF DEVELOPMENT OF A DURICRUST
	CRUSTUSE - SET TO 1 TO SIMULATE A DURICRUST
	CROBIODE DEL IO I TO DIMULATE A DURICRUBI

	SURFACE_LAYER_THICKNESS - CRUST THICKNESS IN
	INPUT CELL SIZE UNITS.
	SURFACE_LAYER_RESISTANCE - RELATIVE CRUST
	SHEAR STRESS FACTOR (>1 FOR A RESISTANT
	CRUST)
	SEE BARNHART ET AL. (2009) FOR AN EXAMPLE OF
	USING A RESISTANT CRUST
ALLUVIAL_CHANNEL_PARAMETERS.PRM	
*************************** ALLUVIAL CHANNEL PARAMETERS ************************************	
0 - WRITE_SEDIMENT_DIAGNOSTICS	ISEDDEBUG
	[WRITE_SEDIMENT_DIAGNOSTICS]
	SET TO ONE IF DETAILED SEDIMENT ROUTING
	INFORMATION IS TO BE PRINTED
1 - DO SEDIMENT TRANSPORT (0=NO, 1=YES)	ISEDIMENT
1 - DO SEDIMENT ROUTING (0=NO, 1=YES)	[DO_SEDIMENT_TRANSPORT] If set to zero
0 - DO ALLUVIAL SEDIMENT DIFFUSION (0=NO, 1=YES)	alluvial sediment transport is not modeled
0 - USE NO_FLUX_LOWER_BOUNDARY (0=NO, 1=YES)	ISEDROUTE
	[DO_SEDIMENT_ROUTING] Sediment routing
	assumes sediment transport is done with the
	gradient being adjusted for equilibrium
	transport with the supplied bedload and
	discharge. See Howard (1994) for details.
	ISEDDIFFUSE
	[DO_SEDIMENT_DIFFUSION] Finite difference
	alluvial sediment transport modeling is
	highly finicky - requires a very small time
	increment - the use of sediment routing is
	preferred
	IREFLECT
	[NO_FLUX_LOWER_BOUNDARY]
	IF ALLUVIAL CHANNELS, DELTAS, AND FANS ARE
	MODELED SET ISEDIMENT TO ONE.
	ISEDROUTE IS GREATER THAN UNITY IF SEDIMENT
	ROUTING DEPOSITION IS USED
	IREFLECT IS GREATER THAN ONE IF THE LOWER
	BOUNDARY IS A NO-SEDIMENT-FLUX BOUNDARY
	(I.E., AGGRADING).
	(I.L., AGGRADING).

1 - DO_ALLUVIAL_SMOOTHING	SMOOTHSEDUSE
0 - DO_ALLUVIAL_REROUTING	[DO_ALLUVIAL_SMOOTHING]
0.02 - ALLVIUM_SMOOTHING_FACTOR	NEWDIRECTIONUSE
	[DO_ALLUVIAL_REROUTING]
	ALLUVIUM_SMOOTHING_FACTOR
	THESE GOVERN SMOOTHING OF ALLUVIAL
	DEPOSITIONAL SURFACES (FANS AND DELTAS)
	DURING DEPOSITION. SMOOTHING IS USED IN
	SMOOTHSEDUSE IS GREATER THAN ZERO. IF
	NEWDIRECTIONUSE IS GREATER THAN ZERO
	DIRECTION OF FLOW ACROSS A FAN OR DELTA CAN
	CHANGE WITHIN A SINGLE ITERATION.
	ALLUVIUM_SMOOTHING_FACTOR GOVERNS HOW MUCH
	SMOOTHING OCCURS.
	IF USEWET IS ZERO THEN USE THE FOLLOWING
	VALUES: 1 1 0.02
	IF USEWET IS UNITY THEN USE THE FOLLOWING: 1
	0 0.02
0 - IREADALLUV (0=NO INITIAL ALLUVIUM, 1= READ IN ALLUVIAL	IREADALLUV
THICKNESS)	GENERALLY ZERO BUT GREATER THAN ZERO IF
	ALLUVIUM THICKNESS IS READ IN AT BEGINNING
	OF SIMULATION .
1 - USE_AN_OCEAN (MODEL DELTAS - >0 to use)	WATERUSE
-50000.0 - OCEAN_ELEVATION,	[USE_AN_OCEAN]
0.2 - DELTA_FORESET_GRADIENT	OCEAN_ELEVATION (IN INPUT CELL SIZE UNITS)
	DELTA_FORESET_GRADIENT
	IF DELTAS ARE MODELED (WHEN USEWET IS UNITY)
	SET WATERUSE TO 1). USUALLY LEAVE AS IS.
	IF YOU ARE MODELING A GLOBAL OCEAN, YOU CAN
	SET OCEAN_ELEVATION TO YOUR ASSUMED OCEAN
	LEVEL, OTHERWISE SET IT TO A VERY LOW VALUE.
	DELTA_FORESET_GRADIENT IS THE FORESET BED
	GRADIENT.

0.5 - SEDIMENT_1_EXPONENT	SEDIMENT 1 EXPONENT
0.3 - SEDIMENT_2_EXPONENT	SEDIMENT_2_EXPONENT
0.6 -EFFECTIVE_DISCHARGE_RATIO	EFFECTIVE_DISCHARGE_RATIO
0.7 - SEDIMENT_GRADIENT_EXPONENT	THESE PARAMETERS ARE THE SEDIMENT TRANSPORT
1.5 - SEDIMENT_TRANSPORT_EXPONENT	RELATIONSHIP - SEE MODEL DOCUMENTATION and
40.0 - TRANSPORTFACTOR	Howard (1994, 2007)
0.02 - FLOW_FRACTION	SEDIMENT_GRADIENT_EXPONENT
	SEDITMENT_TRANSPORT_EXPONENT
	TRANSPORTFACTOR
	FLOW_FRACTION
	OF THESE FACTORS ONLY ONE IS GENERALLY
	CHANGED, AND THAT IS TRANSPORTFACTOR
	TRANSPORTFACTOR=40.0 FOR SAND BED
	TRANSPORTFACTOR=8.0 FOR GRAVEL BED
	FLOW_FRACTION SHOULD BE CHANGED TO UNITY IF
	EROSION BY GROUNDWATER SEEPAGE IS BEING
	MODELED. SEE MODEL DOCUMENTATION
0.35 - SEDIMENT_POROSITY	SEDIMENT_POROSITY
2.65 - SEDIMENT_SPECIFIC_GRAVITY	SEDIMENT_SPECIFIC_GRAVITY
0.0002 - GRAIN_SIZE	GRAIN_SIZE
0.05 - TRANSPORT_CRITICAL_DIM_SHEAR	TRANSPORT_CRITICAL_DIM_SHEAR
	OF THESE FACTORS ONLY ONE IS GENERALLY
	CHANGED, AND THAT IS GRAIN_SIZE. I HAVE
	DONE SIMULATIONS FOR SAND (0.0002) AND FOR 2
	CM GRAVEL (0.02). SEE MODEL DOCUMENTATION
0 - STICKY_SEDIMENT_ROUTING (0 normal, 1 "sticky")	STUCKYUSE
5.0 - STICKY_ROUTING_CRITICAL_VALUE	[STICKY_SEDIMENT_ROUTING]
	STICKY_ROUTING_CRITICAL_VALUE
	GENERALLY NOT USED. EXPERIMENT FOR MORE
	GENERALLY NOT USED. EXPERIMENT FOR MORE BIRDFOOT-LIKE DELTAS
0.2 - BEDLOAD_FRACTION	
0.2 - BEDLOAD_FRACTION	BIRDFOOT-LIKE DELTAS
0.2 - BEDLOAD_FRACTION	BIRDFOOT-LIKE DELTAS BEDLOAD_FRACTION
0.2 - BEDLOAD_FRACTION	BIRDFOOT-LIKE DELTAS BEDLOAD_FRACTION THE FRACTION OF ERODED SEDIMENT THAT IS
0.2 - BEDLOAD_FRACTION WEATHERING_PARAMETERS.PRM	BIRDFOOT-LIKE DELTAS BEDLOAD_FRACTION THE FRACTION OF ERODED SEDIMENT THAT IS TRANSPORTED AS BEDLOAD. USED FOR CALCULATION
	BIRDFOOT-LIKE DELTAS BEDLOAD_FRACTION THE FRACTION OF ERODED SEDIMENT THAT IS TRANSPORTED AS BEDLOAD. USED FOR CALCULATION OF ALLUVIAL CHANNEL GRADIENTS.

0.03 - WEATHER DECAY RATE	PER YEAR OF BARE ROCK WEATHERING
1.0 - INITIAL REGOLITH THICKNESS	WEATHER DECAY RATE - HOW RAPIDLY WEATHERING
1,0 - VOLUME CHANGE COERRICIENT	RATE DECREASES WITH INCREASING REGOLITH
	THICKNESS - BASED UPON TERRESTRIAL VALUES
	INITIAL_REGOLITH_THICKNESS - INITIAL
	REGOLITH THICKNESS, IN METERS
	VOLUME_CHANGE_COEFFICIENT. If >1.0 regolith
	expands in volume relative to rock during
	weathering, if <0 regolith volume less than
	rock.
0 - USE TWO-TERM WEATHERING	WEATHER2USE
1.0 - TERM 2 RATE	[TWO_TERM_WEATHERING]
1.0 - TERM 2 DEPTH RATE DECAY	WEATHERING_TERM_2
	WEATHERING_DECAY_2
	IF WEATHER2USE IS GREATHER THAN ZERO A
	"HUMPED" WEATHERING FUNCTION IS MODELED
0 - DO WEATHERING BY SEEPAGE FLUX (>0 FOR SEEPAGE-DEPENDENCE)	ISEEPAGEWEATHER
0.001 - SEEPAGE_WEATHERING_SCALING	[SEEPAGE_WEATHERING]
1.0 - SEEPAGE_WEATHERING_EXPONENT	SEEPAGE_WEATHERING_SCALING
	SEEPAGE_WEATHERING_EXPONENT
	IF MODELING SEEPAGE-INDUCED WEATHERING SET
	FIRST NUMBER TO UNITY
	ONLY USED IF SEEPAGE FLOW IS MODELED
2.7 - CRITICAL_BEDROCK_GRADIENT	CRITICAL_BEDROCK_GRADIENT
1.0 - WEATHER MULT	WEATHER_MULT
0.0 - WEATHER_DIVERGENCE	WEATHER_DIVERGENCE
	CONTROLS WEATHERING OF EXPOSED BEDROCK
	CRITICAL_BEDROCK_GRADIENT IS THE MAXIMUM
	BEDROCK SLOPE STEEPNESS. WEATHER_MULT SCALES
	RATE OF BEDROCK MASS WASTING
	WEATHER_DIVERGE IF GREATER THAN ZERO,
	RATE OF BEDROCK WEATHERING DEPENDS UPON
	TOPOGRAPHIC DIVERGENCE.
0 - READREGOLITH (>0 read in initial regolith thickness)	READREGOLITH
	KEEP AT ZERO
0 - USE SPATIALLY-VARYING RUNOFF	SPATIAL_WEATHERING_USE IF > 0 THEN
0.5 - LOWEST WEATHERING RATE RELATIVE TO ROCK_WEATHERING_RATE	WEATHERING RATES VARY SPATIALLY PROPORTIONAL

1.5 - HITHESE WEATHERING RATE RELATIVE TO ROCK_WEATHERING_RATE	TO VALUES IN THE SPATIAL_VALUES MATRIX
	RANGING BETWEEN LOW_WEATHERING_SCALE AND
	HIGH_WEATHERING_SCALE. NOTE THAT
	SPATIAL_VARIATION_USE MUST BE >0 TO USE.
MASS_WASTING_PARAMETERS.PRM	

1 - DO_MODEL_SLOPES (0 FOR NO SLOPE EROSION MODELLING, OTHERWISE 1 TO	ISLOPEUSE
MODEL)	[DO_MODEL_SLOPES
	This models shallow mass wasting - creep and
	shallow rapid mass wasting. For deep flows
	use the MASS_FLOW module
0.02 - SLOPE_DIFFUSIVITY	SLOPE_DIFFUSIVITY - determines the relative
	rate of downslope creep. Generally I have
	used values between 0.0002 and 0.02
	(M**2/YR)
1.0 - ALVCREEPFAC (PROPORTION OF SLOPE CONSTANT IN ALLUVIAL CREEP)	ALVCREEPFAC - RELATIVE DIFFUSIVITY OF
	ALLUVIUM MASS WASTING TO SLOPE MASS WASTING
	- GENERALLY SET TO UNITY.
1 - CRITICAL_GRADIENT_USE (1 = CRITICAL GRADIENT, 0 = NO CRITICAL	CRITICAL_GRADIENT_USE
GRADIENT)	[USE_CRITICAL_SLOPE_GRADIENT]
1 - ROERING_USE (1=USE ROERING FORMULA, 0=USE HOWARD)	ROERING_USE
	[USE_ROERING_MASS_WASTING]
	ALLOWS A THRESHOLD MAXIMUM SLOPE GRADIENT IN
	REGOLITH - IF SET TO ZERO, ONLY LINEAR CREEP
0 - USE DEPTH-DEPENDENT CREEP	[DEPTH-DEPENDENT-CREEP]It this is selected
0.1 = CREEP RATE HALF DEPTH	then the creep rate depends on regolith
	depth with de depth to where the creep
	declines by a factor of two being set by
	CREEP_RATE_HALF_DEPTH
0.8 - CRITICAL_SLOPE_GRADIENT	CRITICAL_SLOPE_GRADIENT
	MAXIMUM STABLE REGOLITH GRADIENT
3.0 - SLOPE_GRADIENT_EXPONENT	SLOPE_GRADIENT_EXPONENT
	VALUE FOR HOWARD TWO-TERM RELATIONSHIP
0.025 - MAXIMUM_DIFFUSIVITY_INCREASE	MAXIMUM_DIFFUSIVITY_INCREASE
	SETS MAXIMUM INCREASE IN MASS WASTING FLUX
	SETS MAXIMUM INCREASE IN MASS WASTING FLUX AS GRADIENTS APPROACH CRITICAL VALUE

	NEAR-FAILURE MASS WASTING CONSTANT IN HOWARD
	MASS WASTING MODEL
1 - ROUTE REGOLITH OVER BEDROCK	If this is selected regolith is transported
	"instantaneously" across bedrock hillslope
	exposures. This is the default
1.0 - AVALANCHE RATE COEFFICIENT	If avalanche erosion modeling is selected in
1.0 - AVALANCHE SLOPE EXPONENT	the MARSSIM INITIAL BOUNDARY CONDITIONS.PRM
1.0 - AVANANCHE_FLUX_EXPONENT	then the rate of bedrock scour is scaled by
0.0 - AVALANCHE_CRITICAL_VALUE	the AVALANCHE_RATE_COEFFICIENT times the
	slope gradient times the routed regolith
	flux raised to their exponent values less
	any critical erosion value.
0.0 - MINIMUM_BEDROCK_GRADIENT	If MINIMUM_BEDROCK_GRADIENT is greater than
0.0 - MINIMUM_ROUTING_GRADIENT	0.0 then slopes gentler than this are
	considered to be regolith covered
	If MINIMUM_ROUTING_GRADIENT is greater than
	0.0 then slopes less than this do not have
	"instantaneous" regolith routing.
GROUNDWATER_PARAMETERS.PRM	

0 - MODEL_GROUNDWATER (>0=YES)	SEEPUSE
5 - SEEPAGE_ITERATION_INTERVAL	[MODEL_GROUNDWATER] - IF ZERO NO SEEPAGE
0 - PERMEABILITY_RESCALING	MODELING, IF UNITY, SEEPAGE MODELLING.
0 - SHOW_GROUNDWATER_CALCULATIONS	SEEPAGE_ITERATION_INTERVAL. ITERATIONS
1 - EXPONENTIAL_PERMEABILITY_DECAY	BETWEEN RECALCULATION OF GROUNDWATER FLOW.
	For description, see Luo and Howard (3008).
	IWATERLOWER
	[PERMEABILITY_RESCALING] IF >0 THEN
	PERMEABILITY IN EXPONENTIAL VERTICAL DECAY
	OF PERMEABILITY IS SCALED TO THE PRESENT
	LAND SURFACE ELEVATION, OTHERWISE TO THE
	ORIGINAL LAND SURFACE ELEVATION AT THE START OF THE SIMULATION
	ISHOWCALC
	[SHOW_GROUNDWATER_CALCULATIONS]
	[SHOW_GROUNDWATER_CALCULATIONS] IEXPFLOW
	[EXPONENTIAL_PERMEABILITY_DECAY] IF >0, THEN
	[EARONEMITAL_FERMEADIDITI_DECAI] IF >0, INEN

	PERMEABILITY DECAYS WITH DEPTH BELOW
	SURFACE, OTHERWISE PERMEABILITY IS CONSTANT
	THROUGH A FINITE-THICKNESS AQUIFER.
10.0 - YEARLY RECHARGE	YEARLY RECHARGE (M/YR)
0.0012 FLUID VISCOSITY	VISCOSITIY (OF FLUID - Water on Earth,
1.0 - DARCIES	Methane on Titan)
200.0 - GROUNDWATER DEPTH SCALE	DARCIES (PERMEABILITY EXPRESSED IN DARCIES)
1.0 - GROUNDWATER FLOW FRACTION	GROUNDWATER DEPTH SCALE. FOR EXPONENTIAL
1.0 - INITIAL_GROUNDWATER_DEPTH	PERMEABILITY IS THE DEPTH TO HALF-VALUE OF
1.0 - EPOWER	PERMEABILITY (M). FOR CONSTANT PERMEABILITY
1.0 - EPOWER	IT IS THE AQUIFER THICKNESS.
	GROUNDWATER_FLOW_FRACTION THE AMOUNT OF
	GROUNDWATER FLOW RELATIVE TO SURFACE FLOW.
	SET TO UNITY FOR ALL GROUNDWATER FLOW.
	INITIAL GROUNDWATER DEPTH INITIAL DEPTH
	BENEATH THE LAND SURFACE FOR CALCULATION OF
	STEADY-STATE GROUNDWATER SURFACE
	EPOWER POWER USED IN DEPTH DECAY OF
	PERMEABILITY. FOR NORMAL EXPONENTAIL DECAY,
	EPOWER IS UNITY.
4000 - MAXIMUM GROUNDWATER ITERATIONS	MAXIMUM GROUNDWATER ITERATIONS. MAXIMUM
— — —	NUMBER OF ITERATIONS PERMITTED IN
0.0001 - MAXIMUM_GROUNDWATER_ERROR	CALCULATING STEADY-STATE GROUNDWATER TABLE
1.95 - GROUNDWATER_RELAXATION_COEFFICIENT	
	MAXIMUM_GROUNDWATER_ERROR MAXIMUM RESIDUAL
	ERROR IN CALCULATING STEADY-STATE
	GROUNDWATER TABLE
	GROUNDWATER_RELAXATION_COEFFICIENT S.O.R.
	COEFFICIENT
0 - USE_GROUNDWATER_FLUX 0=NO 1=YES	QQUSE
0 - SEEPAGE_AVERAGING 0=NO 1=YES	[USE_GROUNDWATER_FLUX]IF EQUALS ZERO, THE
	GROUNDWATER FLOW TERM USED FOR SEEPAGE
	CALCULATIONS OF SURFACE FLOWS AND WEATHERING
	RATE IS THE GROUNDWATER FLUX DIVERGENCE
	(SEEPAGE RATE TO SURFACE), OTHERWISE IT IS
	THE GROUNDWATER FLOW RATE PER UNIT AQUIFER
	WIDTH.
	IDIVAVG

	[SEEPAGE_AVERAGING] IF GREATER THAN ZERO, THE GROUNDWATER FLOW TERM USED IN FURTHER CALCULATIONS IS A NINE-POINT AVERAGE VALUE OF RAW CALCULATED VALUES
EOLIAN_PARAMETERS.PRM	

1.0 - EOLIAN_EVENT_PROBABILITY	EOLIAN_EVENT_PROBABILITY PROBABILITY OF AN EOLIAN DEPOSITION/EROSION EVENT PER UNIT TIME (YEAR OR ITERATION) For description se Forsberg, et al., (2004)
<pre>1.0 - EOLIAN_TIME_INCREMENT 0 - USE_TOTAL_EXPOSURE (0 = YES, 1 = ONLY VISIBLE) 1 - DEFAULT_EOLIAN_PROCESS (0=NORMAL TO SURFACE, 1 VERTICAL)</pre>	EOLIAN_TIME_INCREMENT SCALES THE OVERALL EOLIAN EROSION/DEPOSITION RATE IUSETOTALEXPOSE [USE_TOTAL_EXPOSURE] IF >0 ALL CELLS WITHING THE CALCULATION WINDOW ARE USED TO COMPUTE THE 'EXPOSURE INDEX', AND IF ZERO ONLY CELLS VISIBLE TO THE LOCAL CELL ARE USED. IUSENORMAL [DEFAULT_EOLIAN_PROCESS] IF >0 THEN EOLIAN EROSION AND DEPOSITION OCCUR NORMAL TO THE TOPOGRAPHIC SURFACE, OTHERWISE EROSION AND DEPOSITION ARE MODELED AS VERTICAL ADDITIONS OR SUBTRACTIONS.
-0.01 - MINIMUM_EOLIAN_DEPOSIT_RATE 1.0 - MAXIMUM_EOLIAN_DEPOSIT_RATE	MINIMUM_EOLIAN_DEPOSIT_RATE CAN BE NEGATIVE (IF EOLIAN EROSION OF EXPOSED LOCATIONS) MAXIMUM_EOLIAN_DEPOSIT_RATE GENERALLY UNITY AND SCALED BY EOLIAN_TIME_INCREMENT DETERMINES EOLIAN_CONSTANT_1 AND EOLIAN_CONSTANT_2
3 - ICHOOSE 0 - DO_ONLY_EOLIAN_DEPOSITION	<pre>ICHOOSE DETERMINES THE MEANING OF THE NEXT TWO PARAMETERS THAT ARE READ: 1: EXPOSE-PARAMETER#1 = EXPOSURE_10_PERCENT EXPOSE-PARAMETER#2 = EXPOSURE_90_PERCENT 2: EXPOSE-PARAMETER#1 = EXPOSURE_50_PERCENT EXPOSE-PARAMETER#2 = EXPOSURE_90_PERCENT 3: EXPOSE-PARAMETER#1 = ZERO_PERCENT_EXPOSURE EXPOSE-PARAMETER#2 = EXPOSURE_90_PERCENT</pre>

EXI THESE EOLIAN EOLIAN TO THU If DO then of	POSE-PARAMETER#1 = RATE0 POSE-PARAMETER#2 = EXPOSURE_50_PERCENT ARE USED TO DETERMINE N_CONSTANT_3 DEFINING THE SHAPE OF THE N EROSION/DEPOSITION CURVE AS RELATED E EXPOSURE INDEX. _ONLY_EOLIAN_DEPOSITION is set to 1 only locations with modeled deposition odeled - that is, no eolian erosion is ad
THESE EOLIAN EOLIAN TO THU If DO then of are mo	ARE USED TO DETERMINE N_CONSTANT_3 DEFINING THE SHAPE OF THE N EROSION/DEPOSITION CURVE AS RELATED E EXPOSURE INDEX. _ONLY_EOLIAN_DEPOSITION is set to 1 only locations with modeled deposition odeled - that is, no eolian erosion is
EOLIAN EOLIAN TO THN If DO then of are mo	N_CONSTANT_3 DEFINING THE SHAPE OF THE N EROSION/DEPOSITION CURVE AS RELATED E EXPOSURE INDEX. _ONLY_EOLIAN_DEPOSITION is set to 1 only locations with modeled deposition odeled - that is, no eolian erosion is
EOLIA TO TH If DO_ then o are mo	N EROSION/DEPOSITION CURVE AS RELATED E EXPOSURE INDEX. _ONLY_EOLIAN_DEPOSITION is set to 1 only locations with modeled deposition odeled - that is, no eolian erosion is
TO THU If DO_ then o are mo	E EXPOSURE INDEX. _ONLY_EOLIAN_DEPOSITION is set to 1 only locations with modeled deposition odeled - that is, no eolian erosion is
If DO_ then of are mo	_ONLY_EOLIAN_DEPOSITION is set to 1 only locations with modeled deposition odeled - that is, no eolian erosion is
then of are mo	only locations with modeled deposition odeled - that is, no eolian erosion is
are mo	odeled - that is, no eolian erosion is
	E-PARAMETER#1
	E-PARAMETER#2
	NCE_DECAY_FACTOR THIS DETERMINES HOW
	LY THE WEIGHTING OF SURROUNDING CELLS
	LCULATION OF THE 'EXPOSURE INDEX'
0 - WRITE OUT INITIAL EXPOSURE DATA DECAYS	S WITH DISTANCE
	TING_CALCULATION_DISTANCE THIS SETS THE
MAXIM	UM DISTANCE (IN NUMBER OF CELLS) THAT
ELEVA	TIONS ARE USED TO CALCULATE THE
'EXPOS	SURE INDEX'. THESE TWO TERMS ARE ALSO
USED I	IN DOING ACCRETION/ABLATION MODELING
MAXIM	UM CALCULATION DISTANCE IS FARTHEST
DISTAJ	NCE THAT WEIGHTING CAN USE
WRITE	OUT INITIAL EXPOSURE DATA FILE IF >0
LAVA_FLOW_PARAMETERS_PRM	

3 - NUMBER_OF_LAVA_SOURCES NUMBER	R_OF_LAVA_SOURCES
HOW MA	ANY SOURCES (VENTS, VOLCANOES) ARE
PRESEJ	NT ON THE SURFACE
For de	escription, see Howard (1999)
	EVENT_PROBABILITY PROBABLILITY OF A
LAVA	FLOW EVENT DURING A SINGLE ITERATION
0.01 - MINIMUM_LAVA_FLOW_SLOPE MINIMU	UM_LAVA_FLOW_SLOPE THIS IS THE MINIMUM
GRADI	ENT FOR LAVA FLOW AT THE FLOW SOURCE
0.01 LAVA_FLOW_THICKNES LAVA_I	FLOW_THICKNESS (M)ASSUMED THICKNESS OF
INDIV	IDUAL LAVA FLOW DEPOSITS
0.002 - MINIMUM_FLOW_THICKNESS MINIM	UM_FLOW_THICKNESS (M) MINIMUM THICKNESS

	OF A LAVA FLOW THAT CAN FLOW INTO AN
	ADJOINING CELLS
100 - NEW_SEGMENT_INTERVAL	NEW_SEGMENT_INTERVAL THE NUMBER OF
	ITERATIONS BETWEEN CHANGEOVER BETWEEN
	DIFFERENT FLOW SOURCES
12500 - SOURCE_CHANGE_INTERVAL	SOURCE_CHANGE_INTERVAL THE NUMBER OF
	ITERATIONS BETWEEN CHANGEOVER BETWEEN
	DIFFERENT FLOW SOURCES
0.0001 - ERUPTION_STOP_PROBABILITY	ERUPTION_STOP_PROBABLILITY THIS IS THE
	PROBABILITY, PER ITERATION, THT THE EXISTING
	FLOW WILL SOLIDIFY AND STOP BEING ACTIVE.
	IF THIS HAPPENS A NEW FLOW STARTS AT THE
	SOURCE
0.005 - NO_FLOW_PROBABILITY - PROBABILITY OF FLOW CEASING	NO_FLOW_PROBABILITY THE OWER LIMIT OF
	PROBABLITY FOR A CELL TO BE A SOURCE FOR A
	NEW FLOW SEGMENT. IF THE PROBABLILITY DROPS
	BELOW THIS VALUE THEN THE CELL IS NO LONGER
	CONSIDERED TO BE A POSSIBLE FLOW SOURCE
28.0 - LAVA_GRADIENT_WEIGHT	LAVA_GRADIENT_WEIGHT A PARAMETER THAT
	DETERMINES HOW MUCH THE GRADIENT BETWEEN THE
	EDGE OF A FLOW AND THE NEIGHBORING POINT
	DETERMINES THE PROBABILTY OF FLOW IN THAT
	DIRECTION
0.14 - LAVA_DURATION_WEIGHT	LAVA_DURATION_WEIGHT THIS DETERMINES HOW
	RAPIDLY A NEW CELL DIMINISHES IN PROBABILITY
	THAT IT CAN BE THE SOURCE OF A FLOW INTO A
	NEIGHBORING CELL
CRATERING_PARAMETERS.PRM	L
**************************************	IMPACT_PROBABILITY THE PROBABILITY OF AN
2.5e-03 - IMPACT_PROBABILITY 0 - IFOLD 0=N0 1=YES	IMPACT_PROBABILITY THE PROBABILITY OF AN IMPACT EVENT (PER YEAR).
0 - IS_REGOLITH_CRATER CRATERPROB 0=N0 1=YES IFOLD 0=hard, 1=soft	For description see Forsberg-Taylor et al
1 - CRATER EDGE ABORT	(2004) and Howard (2007)
1 - CRAIER EDGE ABORT 10000.0 - MINUMUM SIZE OF HARD CRATER	IFOLD
1 - CPRRECT BIAS (0=NO 1=YES)	[DO_EJECTA_WRAPAROUND] IF >0 AND IF THE
1 – MAKE CENTRAL PEAK (0=NO 1=YES)	DOMAIN IS BOTH X AND Y PERIODIC, THEN EJECTA
	DEPOSITION CAN CARRY OVER ONTO THE OPPOSITE
	DEFORTION CAN CAULT OVER ONTO THE OFFORTE

	SIDE
	CRATER_EDGE_ABORT - If this is set to unity
	and fixed flow boundaries are selected in
	MARSSIM_INITIAL_BOUNDARY_CRATERS.PRM then
	crater impacts whose center would lie
	outside the simulation domain are not
	modeled.
	ISOFTCRATER
	[IS_REGOLITH_CRATER] IF >0 THEN CRATER
	SLOPES AND EJECTA ARE SOFT (REGOLITH) -
	OTHERWISE CONSIDERED TO BE INITIALLY BEDROCK
	MINIMUM_HARD_DIAMETER BELOW THIS VALUE ALL
	CRATER EJECTA IS CONSIDERED "SOFT"
	CORRECT BIAS IF ?O CRATER MORPHOLOGY IS
	ADJUSTED SO THAT NO NET ELEVATION OCCURS
	MAKE CENTRAL PEAK IF >0 THEN A CENTRAL PEAK
	IS SIMULATED FOR LARGER CRAERS
12.20 - LARGE_CRATER_DEPTH_SCALE	LARGE_CRATER_DEPTH_SCALE
0.49 - LARGE_CRATER_DEPTH_EXPONENT	LARGE_CRATER_DEPTH_EXPONENT
0.79 - LARGE_CRATER_RIM_SCALE	LARGE_CRATER_RIM_SCALE
0.6 - LARGE_CRATER_RIM_EXPONENT	LARGE_CRATER_RIM_EXPONENT
7000.0 - TRANSITION DIAMETER	TRANSITION_DIAMETER between simple and complex
	BASED UPON SCALING OF FRESH IMPACT CRATERS IN
2.54 - SMALL_CRATER_DEPTH_SCALE	SMALL_CRATER_DEPTH_SCALE
0.67 - SMALL_CRATER_DEPTH_EXPONENT	SMALL_CRATER_DEPTH_EXPONENT
1.93 - SMALL_CARATER_RIM_SCALE	SMALL_CRATER_RIM_SCALE
0.52 - SMALL_CRATER_RIM_EXPONENT	SMALL_CRATER_RIM_EXPONENT
	SEE ABOVE
0.64 - LARGE_CRATER_SHAPE_SCALE	LARGE_CRATER_SHAPE_SCALE
0.13 - LARGE_CRATER_SHAPE_EXPONENT	LARGE_CRATER_SHAPE_EXPONENT
0.73 - SMALL_CRATER_SHAPE_SCALE	SMALL_CRATER_SHAPE_SCALE
0.113 - SMALL_CRATER_SHAPE_EXPONENT	SMALL_CRATER_SHAPE_EXPONENT
	SEE ABOVE
2.0 - CRATER_FREQUENCY_EXPONENT FOR PRODUCTION FUNCTION	CRATER_FREQUENCY_EXPONENT
0.35 - FREQUENCY_CUTOFF_SCALING	FREQUENCY_CUTOFF_SCALING
	SEE ABOVE
4000.0 - SMALLEST_POSSIBLE_CRATER	SMALLEST_POSSIBLE_CRATER

4000.0 - SMALLEST_MODELED_CRATER	SMALLEST MODELED CRATER
50000.0 - LARGEST_MODELED_CRATER	LARGEST MODELED CRATER
	THESE CAN VARY DEPENDING UPON THE SCALE OF
	THE SIMULATION (GENERALLY IN METERS).
	GENERALLY KEEP MINDIAM AT ABOUT 4*(CELL
	SCALE) AND MAXDIAM AT ABOUT 0.5 * CELL SCALE
	* MX
0.05 - EJECTA_THICKNESS_VARIABILITY	EJECTA_THICKNESS_VARIABILITY
0.0 - NOISED	NOISESD
	SEE ABOVE
0.9 - INHERITANCE_PARAMETER	INHERITANCE_PARAMETER
0.36 - MAXIMUM_RIM_GRADIENT	MAXIMUM_RIM_GRADIENT
1.0 - FRACTION OF EXCAVATED EJECTA IS RETAINED IN EJECA SHEET	SEE ABOVE
9.0 - INHERIT EXPONENT	EJECTA_FRACTION_RETAINED For large bodies
	that will typically be 1.0, For small,
	airless bodies that may be <1.0
	INHERIT EXPONENT
5.902 - PEAK HEIGHT SCALE	Parameters to model central peaks
0.51 – PEAK HEIGHT EXPONENT	-
0.177 – PEAK DIAMETER SCALE	
1.05 – PEAK DIAMETER EXPONENT	
1 - USE REAL CRATERS (0=ONLY SIMULATED 1=USE MARTIAN FRESH CRATERS	If selected then a database of martian fresh
1.2 - RADIUS_MAX_INHERIT	craters in the diameter range of 15-100 km
2.0 - RADIUS_MAX_USE	are used to simulate new fresh impacts.
15000.0 - MINIMUM_REAL_CRATER_DIAMETER	See the discussion of using real crater
100000.0 - MAXIMUN_REAL_CRATER_DIAMETER	modeling at the bottom of this file.
3.0 - COSINE POWER	
ACCRETION_ABLATION_PARAMETER	S.PRM
********************* ACCRETION PARAMETERS ************************************	
-0.4 - ACCRETION_RATE	ACCRETION_RATE
	RATE OF NON-FLUVIAL AND NON-EOLIAN SURFACE
	ACCRETION AND DEGRADATION. See Howard and
	Moore (2008) and Howard et al. (2012) for
	explanation.
0 - EXPOSURE_DEPENENT_CREEP	EXPOSECREEPUSE
1 - USE_SOLAR_RADIATION	[EXPOSURE_DEPENDENT_CREEP] >0 IF THE MASS
1 - USE TOP EXPOSURE	WASTING CREEP RATE DEPENDS UPON 'EXPOSURE'

	DADIARION HOR
0 - USE_INVERSE_EXPOSURE	RADIATION_USE
1 - SMOOTH_EXPOSURE VALUES	[USE_SOLAR_EROSION]IF >0 SUBLIMATION DUE
	TO REFLECTED RADIATION IS MODELED.
	USE_TOP_EXPOSURE If selected exposure values
	Are calculated only for cells visible
	To the target cell.
	USE_INVERSE_EXPOSURE Changes the sign of
	Calculated exposure values.
	SMOOTH_EXPOSURE_VALUES used 9-point
	Smoothing of calculated exposure values
0.1 - RADIATION RATE CONSTANT	RAD_CONST SCALES RATE OF RADIATION-DEPENDENT
2.0 - RADIATION SOURCE FACTOR	SUBLIMATION/DEPOSITION
-0.45 - THRESHOLD DEPOSITION CONVEXITY	RAD_DUST_FACTOR RELATIVE AMOUNTS OF RE-
0.0 - RADIATION_DEPOSITION_RATE	EMITTED THERMAL RADIATION FROM DUST-COVERED
1.0 - FRACTIONAL DEPOSITION VOLUME	SURFACES RELATIVE TO BEDROCK SURFACES
0 - USE REGOLITH ABLATION	RAD_THRESH_CONVEXITY CRITICAL VALUE OF
	EXPOSURE INDEX FOR REDEPOSITION OF
	SUBLIMATED ICE
	RAD_DEPOSIT_RATE RATE SCALING FOR
	REDEPOSITION OF SUBLIMATED ICE ON LESS-
	EXPOSED SURFACES
	USE_REGOLITH_ABLATION If set to 1 regolith
	covered locations are subject to ablation,
	if set to 0 only bedrock can be ablated.
MASS_FLOW.PRM	-
1 - MASS FLOW TYPE (0=NO FLOW, 1=BINGMAM FLOW, 2-GLEN-LAW FLOW	MASS FLOW TYPE - 0 means deep mass flows are
0.0000001 - FLOW DIFFUSIVITY	not modeled, 1 uses Bingham flow rheology,
35.0 - YIELD PARAMETER FOR BINGHAM FLOW	and 2 uses Glen's Law rheology. Only
0.0 - MASS FLOW EROSION RATE	"regolith" is susceptible to flow
5000.0 - BINGHAM FLOW MAXIMUM THICKNESS	FLOW_DIFFUSIVITY - the multiplicative factor
1000.0 - MASS FLOW MATERIAL DENSITY	governing flow rates.
	YIELD_PARAMETER for Bingham Flow. This
	determines the lower limit of shear stress
	permitting flow.
	MASS FLOW EROSION RATE is a multiplicative
	factor used in calculation of basal/lateral
	erosion by mass flows

0.0 - EXPONENT FOR FLUX IN BASAL EROSION 0.0 - EXPONENT FOR FLOW DEPTH IN BASAL EROSION 0.0 - EXPONENT FOR SURFACE SINE IN BASAL EROSION	BINGHAM FLOW MAXIMUM THICKNESS. Regolith below this maximum value is considered to be immobile. Set to a large value if all regolith is mobile MASS FLOW MATERIAL DENSITY - If water ice, this will be ~1000 kg m-3 These are unused in the present version.
0.0 - MASS FLOW CRITICAL VALUE 0.0 - CRITICAL MASS FLOW THICKNESS 100.0 - CRITICAL BASAL EROSION FLOW THICKNESS 200.0 MAXIMUM BASAL EROSION DEPTH	<pre>MASS FLOW CRITICAL VALUE if this is greater Than zero, regolith lying above this depth Will Be immobile. CRITICAL MASS FLOW THICKNESS. If the total Regolith thickness is less than this value Then the regolith is not modeled to be Mobile. MAXIMUM BASAL EROSION DEPTH = not used, but If implemented in future version will Set a minimum flow depth for basal erosion To occur.</pre>
0 - SCHEME FOR DETERMING FLOW DEPTH AT A LOCATION 0 - USE A TIME INCREMENT SCALED TO FLOW DEPTH CHANGE 4.0 - TARGET MAXIMUM ELEVATION CHANGE PER ITERATION GRAVEL_MIXTURE.	FLOW DEPTH SCHEME- See the GUI description or the description in mass_flow.f90. FLOW DEPTH DEPENTENT TIME INCREMENT: If this is set to unity, then the simulation timestep is set by MAXIMUM ELEVATION CHANGE PER ITERATION. PRM
<pre>0 - DO GRAVEL MODELING 0 - PRINT SIMULATION DETAILS 0 - USE WIDTH-RELATIVE CALCULATIONS 1 = EQUATION SELECTOR (1-Gary Parker, 3- Wilcock) 36 - STRAIN CURVE SIZE</pre>	See Howard et al. (2016) and the references to papers by Parker and Cui et al, as Parker morphodynamics ebook site: <u>http://hydrolab.illinois.edu/people/parkerg/</u> morphodynamics_e-book.htm

12 - GRAIN ARRAY SIZE	
2.0 ROUGHNESS_FACTOR	See the above papers/ebook and the
1.0 ACTIVE LAYER FACTOR	descriptions in the GUI version of the
0.1 - MANNICG COEFFICIENT	documentation.
1 - UPWIND COEFFIENT	
0.5 - AGGRADATION COEFICIENT	
0.05 - INTERMITTENCY	
1.0E-14 - SEDIMENT CONSTANT	
0.0 - MUD FRACTION	
0.03 - ABRASION COEFFICIENT	
0.0 - DELAY WEIGHT	
100 - ITERATIONS PER MASTER SIMULATION ITERATION	

Types of boundary conditions

Boundary conditions are set by *marssim.prm* with the following parameters read in the given order (in input 1 means they are true, 0 for false):

HORIZONTAL_LOWER_BOUNDARY NON_ERODING_LOWER_BOUNDARY USE_Y_PERIODIC USE_X_PERIODIC USE_FLOW_BOUNDARIES

Specific sets of these are generally used together. If USE_Y_PERIODIC is true the top and bottom boundaries are periodic – elevations are assumed to be accordant across these boundaries and materials (water or sediment) exiting one boundary enter the opposite side at the same X coordinate. The situation is the same for USE_X_PERIODIC. A simple type of simulation utilizes a horizontal lower boundary with a constant rate of lowering through time (for example, to simulate steady-state landscapes. In this case the boundary condition line would either be:

11000 (if the lateral boundaries are non-periodic)

or

11010 (if the lateral boundaries are X-periodic)

In either of these cases the top boundary is no-flux (generally becoming a drainage divide) and the rate of erosion is set by the parameter BOUNDARY_LOWERING_RATE read from *marssim.prm*.

Another common type of boundary is where both X and Y edges are periodic. This eliminates artificial lateral drainage divides. This would be used with BOUNDARY_LOWERING_RATE of zero. In this case the input line is: 00110

There is a caveat in using doubly-periodic boundaries. One either must use hyperarid flow conditions (all surface flows disappear in depressions) such that MODEL_LAKE_EVAPORATION is false (0) in line 3 of the marssim.prm file and COMPLETE_RUNOFF is false in line 24. Alternatively, set MODEL_LAKE_EVAPORATION to true and specify a non-zero lake relative lake evaporation rate (EVAPORATION_MEAN) in line 29. Also make sure that the initial input elevations (*inelev.dat*) are doubly periodic.

Another type of boundary condition occurs if a portion of a larger real landscape is being simulated. This would in general only be used if no appreciable flows enter the simulation domain from outside. Because downstream flow controls are important in fluvial networks the most reasonable boundary condition to set is that all the lateral boundaries are non-eroding. Erosion of streams and slopes near the lateral boundaries will not be realistic, but under appropriate conditions the evolution of the interior of the landscape can be simulated for reasonable lengths of times. See, for example, Barnhart et al. (2008). In this case the input boundary condition line would be:

00001

Finally streams with specified discharge and sediment load can be specified to enter a top or lateral boundary by setting HAVE_INFLUENT_RIVERS to true (1) in line 31 of *marssim.prm*. In that case, the influent river parameters are read from the file *inriver.prm*. See Fagherazzi et al. (2004).

THE PRESENT DISTRIBUTION DOES NOT YET INCLUDE THE EXAMPLE SIMULATIONS. THE TEXT IS GREYED OUT

Example Simulations. Summary output is included from a number of simulations that illustrate most of the processes and scenarios to which the program has been used in the past. All include the relevant *marssim.prm* file, the *inelev.dat* file of initial elevations, the final output elevation file, *outelev.dat* (sometimes including intermediate results), and one or more shaded relief image files *bshade???.raw* showing the initial and final topography. Some include additional output or derived information files, including animated *.GIF* files. The simulations are in the zip file *representative_simulations.zip* in separate directories. Because of a few recent model changes and bug fixes, the output files, especially when stochastic forcing is used (e.g., impact craters, variable discharges, lava flows...). Each of these packages is summarized below:

TERRESTRIAL APPLICATIONS:

Simple_steady_state: A near-steady-state landscape produced by constant lowering of the lower boundary and laterally-periodic boundaries. In this simulation regolith and bedrock have identical erodibilities. Fluvial sediment transport is not modeled.

Resistant_bedrock: Another near-steady-state simulation but the regolith is 10 times more erodible than bedrock. Fluvial sediment transport is not modeled. For this run morphometric information was created in the *basin.lst* and other files in this directory by running the simulation for an additional 100 iterations.

Critical_shear_stress: Another near-steady-state simulation in which bedrock and regolith are equally erodible but a critical shear stress is required for detachment. Fluvial sediment transport is not modeled.

Pediment: In this case erosion of the steady-state landscape of the resistant-bedrock case is continued with a constant elevation lower boundary and sediment transport is modeled. A pediment develops and expands as the slopes and headwater channels continue to erode.

Gully: This is an example of accelerated erosion instigated by a temporary reduction in the critical shear stress for detachment. The initial landscape is the critical_shear_stress endpoint. A gully system develops and expands in low-order tributaries. See Howard (1999). Because the lower portions of the existing slopes were near the maximum critical gradient, slopes adjacent to gullies are not greatly steepened in this example in contrast to the simulations in Howard (1999).

Coastal: This simulation incorporates three additional capabilities of the model. The simulation models evolution of a landscape in coastal plain sediments adjacent to the Potomac River in Virginia. The first is a time-varying sea level which acts as the base level for the system. The timeline of relative land-sea elevation changes is read from *oceanlevels.dat*, which includes both a detailed sea level curve for the past 3.5 ma (corrected for the Potomac river not fully responding to lowstands) and long-term uplift of the region. See *oceanlevels.tif*. The second model feature is heuristic modeling of the effect of vegetation in retarding erosion of the soft

coastal plain sediment. A critical shear stress decreases in magnitude from high near divides to low in headwater channels. The third model feature are "events" occurring twice within the simulation that instantaneously plane off portions of the landscape near the lower boundary (the modeled Potomac River). This is assumed to correspond to short periods during sea level highstand where wave erosion caused erosional planation. The whole evolution of the landscape is shown in the animated gif, *coastal.gif*. The target natural landscape (near Colonial Heights) is shown in colonial_image.

Bedrock: This simulation illustrates a circumstance where bedrock erodibility locally becomes small enough that bedrock becomes exposed. A 3-D file of rock resistance is read in as a direct-access file. The resistance of the rock to both weathering and to fluvial detachment is assumed to vary directly in response to the values of rock resistance (which follow a 3-D pseudo-fractal, lognormal distribution). The direct access file is *resist.in*. The file *regolith.dat* gives the state of regolith thickness during the simulation (positive values are thickness of regolith cover, negative values are, for exposed bedrock, the weathering rate, which is assumed to increase without limit as a limiting slope steepness is approached). *Resist.out* gives 2-D timelines of the effective rock resistance at the surface. *Bedrock.dat* shows timelines of exposed bedrock (1) and regolith-covered slopes (0). An animated shaded-relief movie of the simulation is provided as *resistant.gif. BSHADE150_additional.tif* shows the endpoint of a simulation with a different *resist.in* file. The 3-D fractal resistance values are generated by *matrix_3D.F90*.

An additional application of the model to simulate dissection of continental shelves, imposition of inflowing rivers across model boundaries, and on-shelf delta evolution is illustrated in Fagherazzi et al. (2004) but not included in the package.

PLANETARY SIMULATIONS

Lava: In this simulation lava emerges from a single vent and, through multiple shallow lava flows, inundates the landscape. The model is briefly explained in the Howard (1999) LPSC abstract and internally in the subroutines.

Eolian: In this simulation a cratered surface is differentially blanketed with eolian deposits. This is a heuristic model which assumes the most rapid deposition occurs in depressions and valleys. Hills and summits can optionally be wind-eroded. See Forsberg-Taylor et al. (2004).

Large_crater: This just shows how the program can be used to create a simulated saturationcratered surface. In this case starting from a flat initial surface. The cell size is 400x400 m. Crater shapes are scaled to Mars.

Small_crater: Like the previous case but the cell size is 100x100 m.

Callisto: This is a simulation of landform evolution on the Jovian satellite Callisto. It is assumed that sublimation (primarily by reradiated solar IR) creates a dusty mantle subject to creep and that some of the ice reprecipitates on convex parts of the landscape (primarily crater rims). See Howard and Moore (2008). In the colored tif images white is exposed, volatile-rich bedrock, purple are dust-mantled parts of the landscape, and yellow is mantled with

reprecipitated ices.

Accretion: In this simulation a cratered surface is coated with deposited ice or dust. Accumulation is assumed to occur normal to the surface (uniform accrescence), thus eventually creating rounded, donut-like crater rims. See the Howard (2004) LPSC abstract. Not included is the possibility of complementary simulations of uniform removal (ablation) of a surface.

Non-Linear creep: In the two simulations (convexity-enhanced and convexity-retarded) a cratered surface is subjected to creep in which the diffusivity is a function of local landform convexity as measured by "exposure" as in the eolian modeling.

The remainder of the models illustrates modification of cratered surfaces by fluvial erosion. The first three modify a sloping, cratered surface under various assumptions about the hydrologic and sedimentologic setting. The second three show various degrees of interaction of fluvial erosion with continuing impact cratering. Similar simulations to the preceding are included in Howard (2007). The final two simulations illustrate erosion by groundwater seepage. For similar simulations see Luo and Howard (2008).

arid_slope: A sloping cratered surface is fluvially eroded under hyper-arid hydrologic conditions (all discharge disappears when reaching depressions). Sediment accumulates within craters.

Steady_evaporation: As above, but evaporation within lakes is modeled. The evaporation ratio is a steady 2.5. Note the formation of crater-fringing interior deltas.

variable_evaporation: As above, but evaporation within lakes is modeled. The evaporation rate varies stochastically, so that lake levels, and the associated deltaic deposits occur at various elevations and earlier delta deposits are partially eroded during lower lake levels.

pelagic_sedimentation: Lake evaporation is modeled with a constant value relative to runoff, but 50% of sediment eroded from uplands is assumed to be suspended/wash load deposited in the submerged basin centers. The deposited sediment is diffused to give a smooth deposit.

fluvial_no_cratering: A cratered surface is fluvially modified under hyper-arid hydrologic conditions. Note the doubly-periodic boundary conditions.

fluvial_slow_cratering: Fluvial modification of the initial cratered surface is affected by a slow rate of continuing impact cratering. An intermediate cratering rate is in **fluvial_moderate_cratering**.

fluvial_rapid_cratering: As above but with a higher relative rate of impact cratering diminishes the ability of fluvial erosion to create integrated drainage networks.

Deep_seepage: Fluvial erosion is by seepage produced by groundwater seeps. In order to create seepage erosion, even for sand, a high recharge rate and strongly permeable substrate is required. (similar to some Floridian seepage networks). In this simulation seepage is primarily limited to the interior of craters (at least initially).

Shallow_seepage: As above, but with a combination of higher recharge and lower permeability, so that seeps occur at topographically higher locations and dissection is more widespread.

USING FRESH MARTIAN CRATERS IN SIMULATING NEW CRATERS

If the option is selected to use the topography from real martian craters to represent new impacts (see CR37x) then a database of topography of real martian then a database of topography of real martian fresh craters is used for newly-generated craters, but only if the crater is in the size range 15000 to 100000 meter crater diameter. The use of real craters gives a cosmetically more realistic simulation, but also the craters tend to have wider rim regions than geometrically simulated craters. An important limitation concerns using the MOLA DEMs for the selected CELL SIZE for the simulation. The distribution includes topographic databases for CELL SIZE of 1000m, 750m, 500m and 300m. Because of the resolution limits of the MOLA topography, use of this dataset is not useful for CELL SIZE less than 300m. When a crater diameter for simulation is selected, either randomly or set by scheduled events, The topography for a natural crater closest in size to the crater size being simulated is utilized. The orientation of the real crater DEM (N,S,E.or W) is selected randomly. The natural craters that have been selected have some background topography, so that the natural crater topography exterior to the crater rim is blended with the pre-existing topography of the simulation. Use of real craters requires several data files be available REAL CRATERS.TXT is the list of the names and diameters of the natural crater database and must be in the execution directory. The first line of this file is the absolute file system path to the directory containing the topographic datasets for the natural craters. There are four real craters text files, REAL CRATERS-300.TXT, REAL CRATERS-500.TXT, REAL CRATERS-750.TXT, and REAL CRATERS-1000.TXT. The version of the TXT file appropriate to the simulation CELL SIZE should be copied to REAL CRATERS.TXT in the execution directory. The parameters used to place fresh craters onto the simulation surface use the following parameters from the CRATERING PARAMETERS.PRM file:

 $R_m = \text{RADIUS}_MAX_INHERIT$ $R_u = \text{RADIUS}_MAX_USE$ $\beta = \text{COSINE}_POWER$ D = simulated crater diameterR = simulated crater radius = D/2

Between the center of the crater and $R_m * R$ the real crater morphology is used to create the simulated crater after accounting for the mean elevation of the simulated terrain and compensating for any regional tilt of the real crater topography. Between $R_m * R$ and $R_u * R$ the influence of the real crater morphology on modifying the pre-existing surface elevations drops off as:

 $\cos(\pi^*(R-R_m^*R)/((R_u^*R-R_m^*R)^*2))^{\beta}$