Alan D. Howard

Department of Environmental Sciences University of Virginia 291 McCormick Rd, P.O. Box 400123 Charlottesville, VA 22904-4123 205 Clark Hall (434) 924-0563 (434) 982-2137 FAX alanh@virginia.edu Webpage: http://erode.evsc.virginia.edu

This is the documentation for a landform evolution model variously termed DELIM and MARSSIM the publications listed below. The model is built upon the landform evolution model first described by Howard (1994). The core model primarily focuses on landform evolution at relatively long temporal scales (relative to the timescale for noticeable landform change) through fluvial and mass wasting processes. The program is designed be computationally efficient such that individual runs can be done on a modern microcomputer in no more than a few tens of hours. The more recent additions to the model have focused on processes relevant to planetary landscapes, including lava flows, groundwater seepage and sapping, impact cratering, surface-normal accretion and ablation, and volatile redistribution by radiation-induced sublimation and recondensation. Individual process formulations vary from completely heuristic to modestly mechanistic. Important limitations for some potential applications are the assumption of a single representative bed material grain size in the fluvial system and no tracking of internal stratigraphy of sedimentary deposits (except for total thickness and surface morphology). Some stratigraphic information can be gleaned by frequent reporting of elevation changes through time on sedimentary deposits. The process formulation is described in the following publications:

- 1994 Howard, A.D., A detachment-limited model of drainage basin evolution, *Water Resources Research*, Vol. 30, No. 7, p. 2261-2285.
- 1997 Howard, A. D., Badland morphology and evolution: Interpretation using a simulation model. *Earth Surface Processes and Landforms*, v. 22, 211-227.
- 1999 Howard, A.D., Simulation of Gully Erosion and Bistable Landforms, book chapter, in *Incised River Channels*, edited by S. Darby and A. Simon, John Wiley & Sons, p. 277-300 & plates.
- 1999 Howard, A. D., Simulation of lava flow inundation on Martian cratered terrain, Lunar and Planetary Science Conference XXX, Abstract 1112. http://www.lpi.usra.edu/publications/meetingpubs.shtml

- 2004 Forsberg-Taylor, N.K., Howard, A.D. and Craddock, R.A., Crater degradation in the Martian Highlands: morphometric analysis of the Sinus Sabaeus region and simulation modeling suggest fluvial processes, *Journal of Geophysical Research*, *Planets*.109, E05002, doi:10.1029/2004JE002242.
- 2004 Fagherazzi, S., Howard, A. D., and Wiberg, P. L., Modeling fluvial erosion and deposition on continental shelves during sea level cycles. *Journal of Geophysical Research*, v. 109, doi:10.1029/2003JF000091.
- 2004 Howard, A. D., Simple non-fluvial models of planetary surface modification, with application to Mars, Lunar and Planetary Science Conference XXXV, Abstract 1054. http://www.lpi.usra.edu/publications/meetingpubs.shtml
- 2007 Howard, A. D., Simulating the development of martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing, *Geomorphology*, v. 91, p. 332-363.
- 2008 Howard, A. D., and Moore, J. M., Sublimation-driven erosion on Callisto: A landform simulation model test. *Geophysical Research Letters*, v. 35, L03203, doi:10.1029/2007GL032618.
- 2008 Luo, W., and Howard, A. D., Computer simulation of the role of groundwater seepage in forming Martian valley networks, *Journal of Geophysical Research*, *Planets*, vol. 113, E05002, doi:10.1029/2007JE002981.
- 2009 Barnhart, C. J., Howard, A. D., Moore, J. M., Long-term precipitation and latestage valley network formation: Landform simulations of Parana Basin, Mars, *Journal of Geophysical Research Planets*, vol. 114, E01003, doi:10.1029/2006JE003122.
- In addition, the following document, included with the distribution, summarizes most of the model components and also includes two unpublished sections on dimensionless scaling and two schemes for measuring the relative amounts of surface modification by various processes (fluvial transport, mass wasting, eolian deposition, and impact cratering).
- 2002 Howard, A.D., Simulation models for landform evolution on early Mars: Cratering, lava emplacement, eolian modification, weathering, mass wasting, and fluvial processes. *[Marsmodel.pdf, included in distribution]*

The program is coded in standard Fortran 90 in free-form format. It has been successfully compiled with a number of compilers, including *Intel Fortran* (windows and linux), *PGI Fortran* (linux), and the public-domain *gfortran*. The program runs in a command-line environment (Command Prompt window in Windows, Terminal window in Linux). The

following programs and files are included with the distribution (subroutines and functions in the various files are indicated in bold):

Marssim_program.doc - this document

Source files These are distributed in *source_files.zip*. (files include subroutines that are generally grouped by process or function) :

generally glouped by process of tu	
program_global_variables.f90	Definition of global variables. These are grouped into
	several modules related to particular process suites. Most
	matrices are defined as allocatable arrays whose size is
	determined at runtime by the main input file
	(marssim.prm). Only matrices used for the selected
	processes are actually allocated.
main_program.f90	This is the main program (program marrsim), which
	reads in parameters, opens output files, initializes the
	program, conducts the iterations, and closes the program.
	In addition, this file contains the subroutine
	read input parameters which performs as suggested, as
	well as allocating matrices, reading in the initial
	elevations plus any other necessary input files.
initialize variables.f90	The subroutine initialize variables initializes a number
<u> </u>	of variables and small matrices primarily used for fluvial
	and mass wasting erosion and file output. In addition it
	sets up lookup tables for rates of mass wasting and rock
	weathering as functions of local gradient. If a time-
	varying ocean level is specified, it reads in the requisite
	file of levels and times.
	normal random deviate, lognormal random deviate,
	normal_random_deviace, iognormal_random_deviace,
	lognormal random deviate1.
	lognormal_random_deviate1, exponential_distribution, and rrand generate random
	exponential_distribution, and rrand generate random
	exponential_distribution, and rrand generate random numbers following the indicated probability distributions
	exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between
erosion iterations f00	exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between zero and one).
erosion_iterations.f90	 exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between zero and one). These subroutines are concerned with fluvial and mass
erosion_iterations.f90	 exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between zero and one). These subroutines are concerned with fluvial and mass wasting processes.
erosion_iterations.f90	 exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between zero and one). These subroutines are concerned with fluvial and mass wasting processes. setup_fluvial_slope_erosion initializes several initial
erosion_iterations.f90	 exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between zero and one). These subroutines are concerned with fluvial and mass wasting processes. setup_fluvial_slope_erosion initializes several initial variables and matrices.
erosion_iterations.f90	 exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between zero and one). These subroutines are concerned with fluvial and mass wasting processes. setup_fluvial_slope_erosion initializes several initial variables and matrices. do_fluvial_and_slope is called each iteration when
erosion_iterations.f90	 exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between zero and one). These subroutines are concerned with fluvial and mass wasting processes. setup_fluvial_slope_erosion initializes several initial variables and matrices. do_fluvial_and_slope is called each iteration when fluvial and/or slope erosion is modeled to invoke the
erosion_iterations.f90	 exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between zero and one). These subroutines are concerned with fluvial and mass wasting processes. setup_fluvial_slope_erosion initializes several initial variables and matrices. do_fluvial_and_slope is called each iteration when fluvial and/or slope erosion is modeled to invoke the processes. It also calls various routines at set intervals to
erosion_iterations.f90	 exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between zero and one). These subroutines are concerned with fluvial and mass wasting processes. setup_fluvial_slope_erosion initializes several initial variables and matrices. do_fluvial_and_slope is called each iteration when fluvial and/or slope erosion is modeled to invoke the processes. It also calls various routines at set intervals to report on process rates and landform states and to write
erosion_iterations.f90	 exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between zero and one). These subroutines are concerned with fluvial and mass wasting processes. setup_fluvial_slope_erosion initializes several initial variables and matrices. do_fluvial_and_slope is called each iteration when fluvial and/or slope erosion is modeled to invoke the processes. It also calls various routines at set intervals to report on process rates and landform states and to write data files.
erosion_iterations.f90	 exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between zero and one). These subroutines are concerned with fluvial and mass wasting processes. setup_fluvial_slope_erosion initializes several initial variables and matrices. do_fluvial_and_slope is called each iteration when fluvial and/or slope erosion is modeled to invoke the processes. It also calls various routines at set intervals to report on process rates and landform states and to write data files. finalize_fluvial_slope_erosion closes down the fluvial
erosion_iterations.f90	 exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between zero and one). These subroutines are concerned with fluvial and mass wasting processes. setup_fluvial_slope_erosion initializes several initial variables and matrices. do_fluvial_and_slope is called each iteration when fluvial and/or slope erosion is modeled to invoke the processes. It also calls various routines at set intervals to report on process rates and landform states and to write data files. finalize_fluvial_slope_erosion closes down the fluvial and slope modeling parts of the program, summarizes the
erosion_iterations.f90 boundary conditions.f90	 exponential_distribution, and rrand generate random numbers following the indicated probability distributions (rrand provides uniformly distributed numbers between zero and one). These subroutines are concerned with fluvial and mass wasting processes. setup_fluvial_slope_erosion initializes several initial variables and matrices. do_fluvial_and_slope is called each iteration when fluvial and/or slope erosion is modeled to invoke the processes. It also calls various routines at set intervals to report on process rates and landform states and to write data files. finalize_fluvial_slope_erosion closes down the fluvial

	intervals or during each iteration that control changes of
	boundary conditions, including process rates and
	programmed"events".
	boundary_conditions is called each iteration to control base level as a function of time (for simulations with an
	eroding lower boundary) and performs any rock
	deformation.
	determine erodibility is called if rock resistance varies
	through 3-D space. It calls read erodibility to read rock
	resistance from an input file, ' <i>resist.in</i> '
	determine erosion rate is called if process parameters
	change abruptly at set time intervals.
	make_event is called at set times if some abrupt change
	in the system state is desired. For example, changing
	certain process parameters or leveling part of the
	landscape by simulated wave erosion (as included in the
	source file). This routine would typically be tailored to
	specific landform evolution scenarios.
	find_ocean_elevation determines the relative level of the
	ocean if it is time-varying.
	change_flow_direction is used if flow across alluvial
	surfaces or deltas has a memory requiring a probabilistic
	event to change (e.g., avulsions of birdfoot deltas)
fluvial slope erosion.f90	This contains the main subroutines for fluvial and mass
fluvial_slope_erosion.f90	This contains the main subroutines for fluvial and mass wasting erosion.
fluvial_slope_erosion.f90	wasting erosion. fluvial_detachment determines the local fluvial bedrock
fluvial_slope_erosion.f90	wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress
fluvial_slope_erosion.f90	wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the
fluvial_slope_erosion.f90	wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables.
fluvial_slope_erosion.f90	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial
fluvial_slope_erosion.f90	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting,
fluvial_slope_erosion.f90	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration,
fluvial_slope_erosion.f90	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the
fluvial_slope_erosion.f90	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the overall time increment if fluvial and slope erosion is
fluvial_slope_erosion.f90	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the overall time increment if fluvial and slope erosion is modeled. It also does elevation changes by fluvial and
fluvial_slope_erosion.f90	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the overall time increment if fluvial and slope erosion is modeled. It also does elevation changes by fluvial and slope processes during each iteration and controls changes
fluvial_slope_erosion.f90	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the overall time increment if fluvial and slope erosion is modeled. It also does elevation changes by fluvial and slope processes during each iteration and controls changes in state (whether locations are alluvial or bedrock, in
fluvial_slope_erosion.f90	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the overall time increment if fluvial and slope erosion is modeled. It also does elevation changes by fluvial and slope processes during each iteration and controls changes in state (whether locations are alluvial or bedrock, in normal or accelerated state of erosion, if the erosion is in
fluvial_slope_erosion.f90	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the overall time increment if fluvial and slope erosion is modeled. It also does elevation changes by fluvial and slope processes during each iteration and controls changes in state (whether locations are alluvial or bedrock, in normal or accelerated state of erosion, if the erosion is in a surface crust).
fluvial_slope_erosion.f90	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the overall time increment if fluvial and slope erosion is modeled. It also does elevation changes by fluvial and slope processes during each iteration and controls changes in state (whether locations are alluvial or bedrock, in normal or accelerated state of erosion, if the erosion is in
fluvial_slope_erosion.f90 mass_wasting.f90	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the overall time increment if fluvial and slope erosion is modeled. It also does elevation changes by fluvial and slope processes during each iteration and controls changes in state (whether locations are alluvial or bedrock, in normal or accelerated state of erosion, if the erosion is in a surface crust). write_debug and print_around are called for debugging
	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the overall time increment if fluvial and slope erosion is modeled. It also does elevation changes by fluvial and slope processes during each iteration and controls changes in state (whether locations are alluvial or bedrock, in normal or accelerated state of erosion, if the erosion is in a surface crust). write_debug and print_around are called for debugging purposes. do_mass_wasting is called by do_the_erosion to determine the rate of mass wasting on regolith-covered
	 wasting erosion. fluvial_detachment determines the local fluvial bedrock and regolith erosion rates as a function of shear stress and/or abrasion. It calls local_values to determine the spatial variability of controlling variables. do_the erosion is the master subroutine coupling fluvial erosion, sediment transport and deposition, mass wasting, weathering, and seepage weathering for each iteration, calling a number of the other subroutines. It controls the overall time increment if fluvial and slope erosion is modeled. It also does elevation changes by fluvial and slope processes during each iteration and controls changes in state (whether locations are alluvial or bedrock, in normal or accelerated state of erosion, if the erosion is in a surface crust). write_debug and print_around are called for debugging purposes. do_mass_wasting is called by do_the_erosion to

	rapid_creep is a lookup function for the rate of mass
	wasting as a function of local gradient.
	rock_mass_wasting is a lookup function for the rate of
	mass wasting of bedrock slopes as a function of local
	gradient
sediment_routing.f90	Contains several routines associated with transport and
	deposition of alluvium in channels, fans, and deltas.
	find_downstream_location is used to determine the next
	location downstream for routing of sediment.
	write_debug_data does as it says.
	sediment_transport_flux determines the rate of sediment
	transport as a function of gradient, flow properties, and
	sediment characteristics.
	equilibrium_sediment_gradient determines the steady-
	state alluvial gradient corresponding to specified values of
	bedload flux and local discharge.
	<pre>sediment_flux_divergence is called by do_the_erosion</pre>
	and determines the rate of change in alluvial surface
	elevation as a function of the spatial divergence of
	sediment transport.
	route_sediment is called by do_the_erosion and
	determines changes in alluvial surface elevation by
	routing sediment at an equilibrium gradient through
	channels, across fans, or on deltas. The procedures and
	assumptions are presented in Howard (1994). This
	subroutine is called multiple times during an iteration for
	each location where a bedrock channel debouches on to
	an alluvial surface
	smoothsed is optionally called each iteration to
	cosmetically smooth out the sediment surface calculated
	by route sediment.
	check_if_change_flow_direction is optionally called
	within individual iterations to change the flow directions
	on alluvial surfaces resulting from the route sediment
	subroutine.
	print sediment diagnostics does as indicated.
weathering.f90	This subroutine weathers rocks.
,, ee	calculate divergence is called by do weathering to
	determine local slope divergence.
	do weathering weathers the bedrock surface both for
	locations with exposed bedrock (<i>is rock surface</i> true)
	and for regolith-covered locations. If it is a regolith-
	covered surface it increases the thickness of the regolith
	(<i>regolith</i> takes a positive value indicating regolith
	thickness in this case). If it is a bedrock surface <i>regolith</i>
	takes a negative value indicating the rate of bedrock
	iakes a negative value mulcating the fate of Deurock

weathering. For bedrock surfaces weathering rates can be determined by slope steepness and local divergence (e.g., exfoliation) as well as solar radiation (on planetary surfaces) and groundwater seepage rates. If it is a regolith-covered surface the rate of weathering of the bedrock surface can either be a negative exponential function of regolith thickness or a humped function of regolith thickness (chemical weathering). find_depression just determines if the location is a local elevation minimum.
gradient_and_flow_direction determines local
topographic gradients (<i>d8_gradient</i>) and downstream flow directions (<i>flow_direction</i>). The latter is negative for local topographic minima and is unity for fixed boundary locations.
This routes runoff across the landscape under either hyperarid conditions (where runoff disappears instantly in depressions) or fully wet conditions (no evaporation or infiltration – <i>complete_runoff</i> is true). discharge_from_cell determines the flux of water from each simulation cell, which can be a function of local slope divergence, seepage from groundwater, or state of accelerated erosion. Usually it is just proportional to cell area. is_it_submerged determines whether individual cells are under water. drainage_basin_area_flow does the flow routing, determining drainage areas and flow amounts within the drainage network, as well as routing sediment through the bedrock channel portions of the network (where transport rates are assumed to be very rapid compared to the simulation time step). Lake elevations and outlet locations are determined (if <i>complete_runoff</i> is true) and channel width is determined as a function of local discharge. basin_report is used for debugging.
This is a more sophisticated (albeit computationally slower) flow routing routine that allows for evaporation in lakes and lake overflow that is conditional on the balance of runoff and evaporation (see Howard, 2007). drainage_basin_lake_flow functions like drainage_basin_area_flow except for the conditional lake overflow. drawline and drawsline are used to connect inflows to lakes to their exit in order to create images of the flow network. pelagic deposit deposits suspended sediment in lakes. It

[also diffuses the deposited sediment to create a smooth
	basin floor.
	check_flow_path is a debugging routine
groundwater_flow.f90	This routes groundwater as DuPuit (horizontal
grounuwater_jtow.j>0	unconfined) flow as a function of assigned infiltration
	rate, aquifer depth, and permeability. Steady flow is
	assumed. The rate of seepage back to the surface is
	determined. This seepage can optionally contribute to (or
	dominate) surface flows and increase rock weathering
	rates (see Luo and Howard, 2008)
	exponential hydr cond grndwtr calculates the
	groundwater flow under the assumption that permeability
	decreases exponentially with depth beneath the surface.
	constant hydr cond grndwtr calculates the
	groundwater flow assuming a constant thickness, constant
	permeability aquifer.
impact_cratering.f90	Geometrically simulates impact cratering using random
	spatio-temporal impacts following a given production
	function and crater geometry. See Forsberg Taylor et al.
	(2004) and Howard (2007).
	do_impact_cratering is the master routine called for
	each simulated impact, calling the other routines.
	get crater size determines the crater size as a function of
	the production function.
	find modification range determines how far out from
	the impact site that ejecta deposition must be modeled
	find impact site determines where in X-Y space the
	impact occurs
	create crater does the heavy shoveling, transporting, and
	ejecta spreading.
	find_reference_elevation determines the average ground
	location into which the crater is excavated.
lava_flows.f90	This simulates episodic lava flows from multiple specified
	vents. There is some documentation in the file.
	do_lava_flows is the main subroutine.
	find_active_lava_sites determines where on lava flows
	new lava extension can occur
	find_lava_start_place determines where a new flow
	starting from a vent goes
	find_next_lava_site determines where the next cell to be
	occupied by the flow is.
eolian_erosion_deposition.f90	This heuristically models eolian landform mantling. See
	Forsberg-Taylor et al. (2004).
	do_eolian_change is the main subroutine.
	exposure determines the degree to which a given location
	is "exposed" or "sheltered" from the wind.

	total_exposure is an alternate method for determining "exposure"
surface_erosion_deposition.f90	This routine includes heuristic modeling of surface- normal erosion or deposition on planetary surfaces. do_accretion_ablation models surface-normal or vertical uniform addition or removal of sediment from a surface. do_exposure_dependent_ creep models mass wasting where the creep diffusivity depends upon the surface exposure (as in the eolian modeling) as well as gradient find_top_exposure_index is another method for determining "exposure" setup_distance_weighting sets up a matrix of weights that decrease as a negative exponential from the given location rad_erode heuristically models solar-induced sublimation from planetary surfaces by reflected-reemitted IR radiation. See Howard and Moore (2008). find_rad_change determines the sublimation rate at a given location deposit_ice heuristically models ice accretion on surfaces
summary_statistics.f90	 not exposed to reflected solar radiation. Calculates a variety of morphometric parameters on simulated landscapes. Designed primarily for fluvially-eroded landscapes with near-steady-state topography. moments sums the first four moments of passed values reset_moments zeros out the moment vector calculate_moments calculates the first four statistical moments (mean, variance, skewness, kurtosis) of values passed in an X-Y array print_moments prints out the calculated moments find_topographic_extrema identifies the total number of summits, sinks, and saddles on a topographic surface calculate_topo_divergence prints the moments of planform and profile curvature, gradient divergence, and ln(area/gradient). print_morphometry summarizes various statistical characteristics of a simulated landscape print_simulation_information episodically reports on the statistical characteristics of a simulation state and rate variables as well as percentile distribution values for a number of state variables correlate finds the correlation between two matrices

	processes and topographic properties.
	print rate statistics summarize the rates of landform
	modification
	modification
channel_properties.f90	channel_properties summarizes representative stream
	profiles within the simulation domain
stream_network_properties.f90	summarize_channels calculates a number of classic
	measures of channel network geometry. For specifics see
	the source file.
	percentiles calculates the 16 th , 25 th , 50 th , 75 th and 84 th
	percentile values of a vector
determine stream network.f90	find_stream_network calculates and prints information
	about stream network geometry, working together with
	summarize channels
write debug information.f90	print debugging data does as it says, and utilizes a
_ 0_ 0	number of associated routines:
	print_integer_matrix_data
	print basin information
	print logical matrix data
	print real matrix data
	summarize matrix data
	summarize regolith data
	summarize logical matrix
read and write data files.f90	As the name suggests, most data input and output is done
alternate read and	through this subroutine. Most read or write values of a
write data files.f90	single matrix. The default version of this file
v	(<i>read and,f90</i>) uses F90 standard non-advancing
	output to write binary image files, whereas
	(<i>alternate_read_andf90</i>) uses the non-standard \$
	output control. The difference is that the default version
	appends a CRLF pair to the end of each image file,
	whereas the \$ output does not. Includes the following,
	mostly self-explanatory subroutines:
	read_alluvial_locations
	read_bistable_locations
	read_bedrock_locations
	read sediment base
	read_regolith_thickness
	read_deformation
	write_debug_info
	write_gradient_info (just a shell)
	write_alluvial_locations
	write_bedrock_locations
	write_lake_info
	write_erosion_depth_index
	write_accelerated_erosion_state

write_sediment_base
write_regolith_thickness
write_deformation
write_rock_resistance
write first data matrix
write_second_data_matrix
write_data_sample
write_report
write image
write_shaded_relief_image
write groundwater flow
write groundwater elevation
find groundwater flux
write routed discharge
write submerged locations
grad disch write
write color shaded relief image
write lava info
write lava ages

Input files:

inelev.dat -initial elevations for the simulation It, and most other data files read or written by the program, is read by the following pseudocode:

read (indata,*) mx,my !the x and y dimensions of the simulation domain do i=1,mx do j=1,my read(indata,*) elevation(i,j) !elevation is the surface elevation at location i,j enddo enddo

-all the master parameters for the simulations

- *erode.stop* -This file is read every 10 iterations, reading a single integer. If it is 1 the program stops and writes out files, otherwise if 0 the program continues. To stop the program in mid-simulation without discarding results, copy *erode.stop.yes* to *erode.stop*. But be sure to copy *erode.stop.no* to *erode.stop* before the next simulation.
- *clearerode.bat* -This is an MSDOS batch file that deletes most files left over from previous runs. Since most of the output is appended to any existing files, run this before you start a new run.
- *runname.bat* -This is a MSDOS batch file that renames output files from the program to a single prefix with a variety of suffixes and moves most of them to a ".zip"

file. Requires pkzip.exe to be in executable path. The batch file requires a 6 digit alphanumeric code in the command line that uniquely identifies the run, e.g. *runname abcdef*, followed for the next run by, say, *runname abcdeg*. It does not incorporate the image (*.raw) files. This batch file requires the shareware program *pkzip.exe* be in the search path. Presumably any command-line zip utility could be substituted.

- For simple simulations, *inelev.dat* and *marssim.prm* are all the files that are needed, but for some simulations, depending on switches set in *marssim.prm*, the following may be needed:
- *resist.in* -a 3-D matrix of rock resistance

continue.dat -a file containing the state of the simulation at the close of the simulation (the implementation is not up-to-date and should not be used in the present release)

- *inreg.dat* -initial conditions for regolith thickness
- *inrates.dat* -reads time-varying simulation parameters

inriver.prm -allows specification of rivers entering the domain from outside

- events.prm specifies the time of specified programmed "events"
- **Output files** (most are written in subroutines in *read_and_write_data_files.90* see the program routines for formatting and further explanation most of these consist of several concatenated records of data output at intervals during the simulation in the same general format as *inelev.dat* relatively important output files are indicated in bold italics). Some files will not be created unless the appropriate processes are included in the simulation, and some will be created but not written to.
- *basin.lst* -a text file that summarizes the simulation parameters plus a good bit of data on the progress of the simulations and a variety of rate-process information
- *outelev.dat* -a text file of the surface elevations written at various times during the simulation. This file usually includes several sequential datasets. However, other simulation variables can also be written to this file if desired. Controlled by the input vector *writetype* read in in *marssim.prm*
- *continue.dat* -a binary file of most simulation variables to be used to restart the simulation (not up-to-date in this release do not use)
- *alluvial.dat* -an ascii file of 0's to indicate locations that are bedrock channels, and 1's for alluvial channels
- discharge???.raw raw image files of the logarithm of discharges within the drainage network. Normalized so that low discharges are black, highest is white. The dimensions of these images equals that of the elevation matrix.
- *bedrock.dat* -an ascii file of 0's for regolith-covered locations, and 1's for bare bedrock
- *submerge???.raw* raw image files indicating submerged (black) and unsubmerged (white) locations. The dimensions of these images equals that of the elevation matrix.

submerged.dat-an ascii file of 1's for underwater locations, otherwise 0's for subaerial

erosion_depth_index.dat -if variable rock resistance is used, this is the z-index of the surface in the 3-D rock resistance file

- *outbase.dat* the elevation of the bottom of alluvial deposits, or, where they are absent, the land surface elevation.
- regolith.dat -the regolith thickness
- *deform.dat* -if the rocks are actively deformed, writes the total amount of deformation during the simulation
- *resist.out* -writes the erosional resistance for rocks at the surface (for variable rock resistance is a slice through resist.in
- *report.prn* -a record of relief and erosion rate
- *record.dat* -a record of several variables expressing the progression towards a steady-state landscape
- summary.dat some of the data printed out in basin.lst, but in bare-bones format
- *statistics.prn* writes a sampling of the simulation state for emergent points at intervals during the simulation
- *channel.dat* -information on stream channels
- crater.dat -information about individual simulated impact craters
- *relele???.raw* -files consisting of raw b&w images of surface elevation- scaled so that the lowest elevation is black and the highest is white. The dimensions of these images equals that of the elevation matrix.
- *topo.dat* -a file that gives information on the elevation range corresponding to the images in *relele???.raw*
- bshade???.raw -shaded relief images of the surface topography, output in sequential order during the simulation and periodic intervals. Can be put together in Adobe Imageready to make a movie. If periodic boundary conditions are used these files past strips from the opposite side in order to better portray the topography. If neither boundary is periodic the image size is (2*(MX-1), 2*(MY-1), If the image is periodic in, say, the X dimension, then the horizontal image size increases to 2*(MX-1)+2*(MX/2+2) and similarly if the image is periodic in the Y dimension.
- grad_disch.dat file summarizing gradient and discharge within the matrix at the close of the simulation - to have this printed out change writedetail to true in finalize_fluvial_slope_erosion
- state.dat file summarizing flow directions, elevation, gradients, etc at the close of the simulation - to have this printed out change writedetail to true in finalize_fluvial_slope_erosion
- *bistable.dat* output file of locations that are (1) and are not (0) in the accelerated erosion state.
- *debug.prn* A file of debugging data written by **write_debug**
- *source.dat* A file of stream source information written by **stream_network_properties** if it is utilized
- *qq.dat* -if groundwater flow is simulated, is the matrix of groundwater discharges
- ewater.dat -if groundwater flow is simulated, is the water table elevation
- *active.dat* -if groundwater sapping is simulated, is locations that are presently undergoing sapping erosion.
- *lava.dat* -if lava flows are simulated, whether lava has been deposited at that location
- *lactive.dat* -if lava flows are simulated, is the locations where lava flows are active
- *lage.dat* -if lava flows are simulated, is the age since the last lava was deposited at that location.
- eolian.dat -if eolian deposition is simulated, is the amount of eolian deposition or erosion

Accessory Programs (These are included in *accessory_programs.zip* :

- *extract.F* -reads *outelev.dat* and extracts a specific output record to write out in the file *lastelev.dat*
- *tosurfer.F* -like *extract.F*, but outputs an ascii ".grd" file for input into the commercial program **Surfer**.
- Fromsurfer.F just the opposite of the above.
- Tologsurfer.F makes a surfer file with a logarithmic transformation of the input file.
- *matrix_2D.F90* -makes a pseudo-random 2-D matrix to be input as initial elevations. See the program for documentation. Output file is named *matrix_2D.out*. A shaded-relief image *m3dshade.raw* is also created.
- *matrix_3D.F90* -makes a pseudo-random 3-D "cube", primarily for use as rock resistance input. See the program for documentation. Output file is named *matrix_3D.out*, and is a direct-access, unformatted file. For use as rock resistance input, rename this file to *resist.in*. See the program and *boundary_conditions.F90* for how to create and read the file.
- *Makecrater.F90* this is largely equivalent to the routine in the main marssim program, but has some extra options. It will create a specified number of impact craters randomly located and drawn from an inverse power law distribution of diameter. Mostly used to create initial conditions files for simulation runs. It can, for example, be used to superimpose craters on topography produced by the matrix_2D program.
- *Makecrater_xy.F90* Like above, but the size and location of impact craters are specified. It can, for example, be used to create a single crater to be subsequently modified by other processes.
- *Colorize_movie.F90* can be used to create combining a shaded relief images with color elevation cuing to be made into a move. See, for example the animated gif on the home page at <u>http://erode.evsc.virginia.edu</u>.