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Testbed to Improve Models of Environmental Processes
on the U.S. Atlantic and Gulf of Mexico Coasts
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Map of Mean Bottom Dissolved Oxygen -- Summer 2005
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e Large regions of Chesapeake Bay are
impacted by hypoxia/anoxia.

. Over $ 3.5 billion was spent on nutrient
controls in Chesapeake Bay between
1985-1996 (Butt & Brown, 2000)

e Assessing success/failure of reductions in
nutrient loading requires understanding
of the physical processes that contribute

. to the inter-annual variability.
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From Chesapeake Bay Program newsletter: http://ian.umces.edu/pdfs/do_letter.pdf



Extensive hypoxia and anoxia
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Figure 2: This conceptual diagram illustrates the factors that affect dissolved oxygen in Chesapeake Bay.



Regional Ocean Modeling System (ROMS)

Model forcing

Realistic tidal and sub-tidal elevation
at ocean boundary

Realistic surface fluxes fromm NCEP
(heating and winds)

Observed river discharge for all
tributaries.

Temperature and salinity at ocean
boundary from World Ocean Atlas.
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Oxygen Model

Oxygen is introduced as an
additional model tracer.

Oxygen consumption (respiration)
is constant in time, with depth-

dependent vertical distribution.

No oxygen consumption outside
of estuarine portion of model

No oxygen production.
Open boundaries = saturation

Surface flux using wind speed
dependent piston velocity
following Marino and Howarth,
1993.

No negative oxygen concentration
and no super-saturation.

Model assumes biology is constant so that the
role of physical processes can be isolated!

Depth-dependent Respiration Formulation
0

5t

=10+

-15+

depth (m)

20+

25+

-30 ' :
-1.5 -1 -0.5 0

g0, /m°/day

Surface Oxygen Flux using Piston Velocity:
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Seasonal and Inter-Annual Variability in Hypoxic
Volume (from CBP data 1984-2009)
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Variability of Physical Forcing
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What is relative importance of different physical forcing in controlling seasonal
and inter-annual variability of hypoxia in Chesapeake Bay?



Comparison with Bottom DO at Chesapeake Bay

Program Stations

CBP 4.3

CBP 3.2

2005

2005

2004

o
—
- 11'0\”..'“[' _
8
M “ll“l“
[o) =S,
S S
m o S
O Ers=s===o
+ — e
|N4'l" "
—— &)
=D
=550
= O
———
=
(S ) —)
=
Sa——
O
— S
—_—, _ .
N O o © <
~— —

2006

2006

2003

CBP 7.2

CBP 5.3

2005

2004

15

2005

2004

2006

2006

2003



39.5

39

38.5

38

3750

37

Comparison with Chesapeake Bay Program Data

Bottom Dissolved Oxygen Concentration (mg/L)

July 19-21, 2004

=77 -76.5 -76 -75.5

August 9-11, 2004

9
39.5
8
7
39
16
38.5
L 15
f - da
38
L 43
3750
37

=77 -76.5 -76 -75.5



In addition to seasonal cycle, model captures some of the inter-annual variability

Hypoxic Volume (< 1 mg/L )
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Model predicts roughly 50% more hypoxia in 2004 than in 2005,
solely due to physical variability.
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River Discharge Monthly Climatology

Susquehanna River at Conowingo Dam (1967-2010)
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Importance of Seasonal Variations in River Flow

Hypoxic Volume (< 1 mg/L)
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Sensitivity to River Discharge
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Order of magnitude change in river discharge leads to less than 10%
change in integrated hypoxic volume.
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Monthly climatology at Thomas Point Light (1986-2009)
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Importance of Seasonal Variations in Temperature
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To simulate realistic variability in temperature forcing, model was run
changing the air temperature by + one standard deviation based on monthly
climatology for air temperature.

Thomas Point Light Water Bay-averaged Water Temp
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Sensitivity to Temperature

Hypoxic Volume (< 1 mg/L)
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Increase in surface heating results in greater than 20% change in
integrated hypoxic volume.
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Wind Forcing

Wind Climatology from Thomas Point Light (1986-2010)
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Importance of Seasonal Variations in Wind

Hypoxic Volume (< 1 mg/L)
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To simulate realistic variability in wind forcing, May-August wind magnitudes
were increased/decreased by 15%.

Average Monthly Wind Speed from Model Mid-Bay location

8 I I I I

I -15%
7+ [ base |
B - 15%

m/s




Sensitivity to Wind Speed
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Sensitivity to Summer Wind Direction
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Sensitivity to Summer Wind Direction

Hypoxic Volume (< 1 mg/L)
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Changes in wind direction can change the hypoxic volume by a
factor of 2
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Hypoxic Volume < 1 mg/L (km3)
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15-year Simulations (1991-2005)
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Analysis of 15-year Simulation of Hypoxic Volume (1991-2005)

Hypoxic Volume (<1mg/L)
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Bi-monthly Averages

Model

Model with no biologic variability shows significant inter-annual variability
Observations have greater variability than model

Model under predicts in early summer and slightly over predicts in late summer



Does variation in physical forcing explain observed inter-annual
variability in hypoxic volume?

6l r=0.32
p=0.25

Not in a statistically significant way!

Annual Mean Hypoxic Volume (Modeled)

Annual Mean Hypoxic Volume (Observed)



Next Steps: Simplified Load-Dependent Respiration Rate

Monthly-averaged Respiration
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Preliminary Results with Load-Dependent

Constant Resp. Rate
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3)
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5)
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Conclusions

A relatively simple model with no biological variability can reasonably account for
the seasonal cycle of hypoxia in Chesapeake Bay.

Wind speed and direction are the two most important physical variables
controlling hypoxia in the Bay.

Model results are largely insensitive to variations in river discharge, when the role
of nutrient delivery is not accounted for.

Changes in air temperature and the associated changes in water temperature via
sensible heat flux can have a measurable influence on the overall hypoxic volume.
A 15-year model simulation with constant respiration rate produces significant
inter-annual variability in hypoxic volume, by largely fails to reproduce the
observed variability.

Model residuals are significantly correlated with the integrated Nitrogen loading
demonstrating the importance of biological processes in controlling inter-annual
variability

Preliminary attempts to include the effects of nutrient loading though a load-
dependent respiration formulation show promise for capturing observed inter-
annual variability.



