Life in Landscape Evolution Models *Investigations of Climate and Tectonics as Drivers of Biological Evolution*

Nathan Lyons Tulane University

CSDMS Annual Meeting, May 20, 2020

A fundamental landscape evolution model

$$\frac{\partial z}{\partial t} = U$$

$\frac{\text{elevation}}{\text{over time}} = \frac{\text{rock}}{\text{uplift}}$

A fundamental landscape evolution model

$$\frac{\partial Z}{\partial t} = U - KA^m S^n$$

 $\frac{\text{elevation}}{\text{over time}} = \frac{\text{rock}}{\text{uplift}} - \frac{\text{stream}}{\text{incision}}$

A fundamental landscape evolution model

$$\frac{\partial z}{\partial t} = U - KA^m S^n + D\nabla^2 z$$

 $\frac{\text{elevation}}{\text{over time}} = \frac{\text{rock}}{\text{uplift}} - \frac{\text{stream}}{\text{incision}} + \frac{\text{hillslope}}{\text{diffusion}}$

example Landlab components

surface dynamics modeling toolkit

- Processes are plug & play, standardized
 components
- Landlab 2.0: Barnhart et al. 2020, Esurf

SpeciesEvolver: new component to simulate biological evolution processes (see Lyons et al. 2020, JOSS)

Operates at:

- geologic, macroevolution timescales
- landscape spatial scale

How can we use LEMs to advance understanding of biological evolution as it responds to climate and tectonics?

Global freshwater species richness

Collen et al. 2014, Global Ecol. Biogeogr.

SpeciesEvolver implemented in a landscape evolution model

elevation (m)

0 kiloyears elapsed

phylogenetic tree

SpeciesEvolver implemented in a landscape evolution model

elevation (m)

5

0 kiloyears elapsed

200

- 175

phylogenetic tree

Richness as model parameters vary

Global determinants of biodiversity across the world's mountains

Antonelli et al. 2018, Nature Geoscience

Dynamics in the processes

Dynamics in the processes

modified from Lyons et al., 2019, ESurf

Páramos plants in the Pleistocene

Paramos are tropical montane ecosystems above the upper forest line

Foreground: Coespeletia moritziana and *Hypericum laricifolium* in flower

Photo from Flantua et al. 2019, J. of Biogeog.

Piedras Blancas Páramo Sierra de La Culata National Park, Venezuela

Richness of montane species

Rahbek et al., 2019, Science

Paramos and climate change

 Received: 30 November 2018
 Revised: 8 March 2019
 Accepted: 8 April 2019

 DOI: 10.1111/jbi.13607
 Image: Search paper
 Image: Search paper

 The flickering connectivity system of the north Andean páramos
 Suzette G.A. Flantua^{1,2} Image: Accepted and Image: A

New application of SpeciesEvolver

- Paramos of the Eastern Cordillera
- Evolves by dispersal, speciation, and extinction
- Overall fitness tuned to paramo area

Prior research

Mapped extent of paramos in northern Andes over past 1 ma

Lyons and Flantua, in progress.

17

Simulated richness and Pleistocene climate fluctuations

Flantua et al. (2019)

Lisiecki & Raymo, 2005, Paleoceanography

"Nothing in biology makes sense except in the light of evolution"

- Theodosius Dobzhansky

"Very little in evolution makes sense except in the light of genetics"

- Jody Hey

Key points

Integrating genetics in LEMs will

- better represent complexity
- improve comparison between empirical & model data

LEMs support processbased research into biological evolution

illane

LEMs = Landscape evolution models

Acknowledgements

Support from the National Science Foundation and CRDF Global. Technical assistance and computational resources from CSDMS and Tulane's HPC center.

Supplemental slides

Speciation in SpeciesEvolver

- Triggered by geographic range fragmentation (allopatric speciation)
- Other speciation mechanisms and details readily configurable

