
www.sci.monash.edu

Louis Moresi, Ben Mather, Romain Beucher …
�1

Parallel Landscape Evolution Models
for Coupling to Large Scale Tectonics
(Intro to Quagmire algorithm)

Inspiration

River systems in the largest collision zone are clearly out of equilibrium with the long-wavelength
topography of the region. They carry information about the history of the deformation. The
eroded material is deposited in marine sediments after long-range transport

�2

Tectonic models

We can build sophisticated models of the tectonic deformation. We can also build sophisticated
models of river formation and sediment transport. Coupled models are a work in progress. The
challenges in building general models of river processes are interesting with some similarities to
localisation problems in continuum mechanics.

�3

Tectonic Models

�4

Modelling challenges & approaches

There are 2 different “regimes” where modelling challenges arise —

Models which attempt to match the pattern of rifting and
forward model stratigraphy as an observable constraint on the
modelling.

We use the Basin Genesis Hub python / numpy based code
pyBadlands coupled to our tectonic forward modelling code
Underworld for this work (Beucher & Salles).
(https://github.com/badlands-model/pyBadlands).

Models which focus on very large tectonic length and
timescales and consider the generic, coupled surface /
tectonics problem.

This problem poses interesting challenges in algorithms for
parallel computation in models where there is likely to be
significant lateral deformation and catchment changes.

We have an algorithm that copes with this problem and will
release the Quagmire code which implements this

Downstream flow calculations 1.x dimensions

Downstream aggregation terms (integrals over everything  
upstream of a given point can be regarded as a tree structure  
with directions pointing downhill.  
Very well behaved (non cyclic etc) if only steepest descent.

Or they can be viewed as independent paths which converge as they track through the
landscape.

�6

A(s) = α (ξ)
upstream
∫

AN = α i
i=a…N
∑

In a flat, stable landscape, more subtle signals may be recorded:
a few metres shift in topography on a long wavelength can alter the
path of river systems.

Modelling challenges: evaporation, interaction with groundwater systems.

Rivers in a flat landscape

Characteristics of the surface evolution problem

Myriad contributions to the rate of change of surface
height at many different scales.

Some can be characterised as local such as diffusion-
like terms to describe slope evolution and these tend
to be “easy” numerically.

Other terms include “non-local” transport
dependencies … in cartoon form:

The non-local terms account for the fact that
information ‘only’ propagates downstream.

Total river runoff

Sediment carried past any point (accumulated load)  

Erosion terms are strongly localising with all obvious
numerical caveats. Deposition terms have the
opposite property.

�8

Slope

Capacity

Erosion efficiency

Sediment in Flight

Dh
Dt

= ∇ κ (h)∇h()− KAm ∇z n + !htectonic

Decomposition and Data Structures for Surface (forward) Modelling

Flow of information 8 ➛ 5 ➛ 8 ➛ 6 ➛ 5 ➛ 4 ➛ 7 ➛ 8 ➛ 9 ➛ 6 ➛ 5 ➛ 2 ➛ 1 ➛ 4 ➛ 7 ➛ 8 …
Although this is a contrived example, cyclic dependencies are always possible

�9

1 2 3

4 5 6

7 8 9

These terms are simple to calculate if we can
explicitly construct the graph (tree) which represents
the connectivity.

We can do the same thing with a matrix D which
operates to move information one node downhill.

Adjacency Matrix Approach

�10

a + b
e

c + d

f

0

0

0

a + b + e

c + d

0

0

0
0 0

VERY SPARSE MATRIX

A(s) = α
upstream
∫ (ξ)dΩ→ Ag = α i

i=0...g
∑

Ag =α g +α f + α i
i=a,b,c
∑ + α i

i=d ,e
∑

0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 0 1 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

a
b
c
d
e
f
g

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

=

0
0
a + b
e
0
c + d
f

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

Adjacency Matrix Approach

The matrix D which operates to move  
information one node downhill. D2 moves
information downhill by 2 increments and so on …

(N is the length of the longest chain)

Parallelism is straightforward …
implementation via recursion is
also straightforward …

�11

f + c + d + a + b + e

g + f + c + d + a + b + e

a

b

c + a + b
d + e e

VERY SPARSE MATRIX

NOT A SPARSE MATRIX

A = (I + D + D2 + D3 +…+DN)α
A = DNα

AN
* = DNα = DAN−1

*

AN = AN−1 + AN
*

AN = AN−1 + DAN−1
*

Equivalence

The two representations are entirely equivalent and produce identical results node by node for a
given discretisation. Use whatever works !

�12

Flat

Flat

Steep

Domain decomposition

If we include shadow regions, then the local triangulation is identical to a subset of the global
triangle set and the matrix Dd is identical to a sub-block of the global D. From this point on, the
distributed matrix problem is well understood (i.e. there are libraries such as PETSc to do
everything “automatically” !)

�13

Example

Decomposition is automatic and fixed regardless of catchment size / shape

Matrix approach … other tools we can use

Upstream propagation — we can compute information in the upstream direction using

 
though, of course, this is not a one to one mapping any more. We can use this to find catchments
for a given outflow of the domain.

Multiple flow pathways can also be accommodated

D1 is sparse, D2 is just as sparse (more sparse in a channel), w is a diagonal weight matrix either to
weight the flow by gradient or to switch D2 on / off e.g. for flat areas.

DN is pretty much a dense matrix.

DT still runs information upstream but does not uniquely
define a catchment any more.

�15

U = DT

D = w1D1 + w2D2 +…

Mesh sensitivity

The multiple-pathway approach helps in situations where triangulation influences structure - for
example when a flat or smooth area is modelled.

�16

Real landscapes

Another challenge (similar to mesh sensitivity) is the discretisation error and measurement error. If
a system is sensitive to a few metres change, then the landscape models needs to account for or
ignore vegetation and buildings, can be thrown by the fact that river channels are full of water,
and needs to consider what to do with a lake / swamp / dam or other build up of water in the flow
pathway.

Fill-the-swamp algorithm

Identify catchments for any internal drainages, and then find the boundary points. The lowest
boundary saddle point should be the spill for this catchment. This requires some parallel
coordination as different processors identify different spills.

This can be a light-touch algorithm and may get stuck before finding a boundary outflow - fair
enough as multiple craters can end up under one large swamp.

It helps to have a local patch-fill preprocessing step and repeat while searching for saddle points.

Horribly cratered landscape Horribly cratered landscape + lakes

Tilted eggbox

Or adding syrup to a waffle …
Or making ice in ice-cube trays …

Processed Landscape

Swamp filling algorithm finds: 1) a large number of point fills that are meshing-related, and 2) a fill
of the river channel and flood plain that directs flow along a connected path.

Processed Landscape

Flow paths found this way are generally not unique - a more useful way to analyse this is to think
of the ensemble of paths that can be found with small perturbations to the landscape. This seems
to find flood plains, old drainages etc. Also roads, forest clearings, reservoirs etc !!

Raw surface

Flood-filled Landscape

Quagmire

Quagmire is a toolkit for exploring the interplay between large-scale dynamic models
and surface process modification of the topography.

python based but using PETSc / petsc4py to make it fast and ‘trivially’ parallel

DMPlex and DMDA (for triangulation v. pixels)

provides classes for meshing based on stripy  
 (based on TRIPACK / STRIPACK / SRFPACK / SSRFPACK)

object oriented - parallel implementation largely “hidden”

operators for downstream transport and upstream integration

operators for flood-filling

Matrix form

Graph form (not scalable / not parallel)

Pit filling, swamp flooding, stream power computation supplied

Live documentation in the form of jupyter notebooks

�24

Quagmire — the philosophy

Goal: provide a grab bag of efficiently-implemented, python classes that people can quickly use
to implement their favourite LEM (or just use some pieces in a python workflow).

 Let the science questions dictate what the codes do and not the other way around  

 Let anyone in the community define their version of the problem and support their choices  

 Open source, open community  

 Leverage PETSc and other open-source tools  

 Easy interoperability with python codes such as Underworld 

 Available through pip / spack for easy installation

Quagmire is not a shrink wrapped LEM code that does anything very much other than showing a
few examples. It’s a typical python project that provides a way to do some things reasonably well.

Open source, so it may just end up as a template for other people to take and improve.  

Try out Quagmire

docker: lmoresi/docker-quagmire:2018.1.1

for a limited time only … http://43.240.97.160:8080

github: https://github.com/University-of-Melbourne-Geodynamics/quagmire

Underworld Material point method

Fixed mesh with moving “particles”

Regular Eulerian mesh for  
momentum equation (efficient solvers)

Lagrangian reference frame for:

Compositional tracking

Stress-history tensor

Plastic strain history (scalar / tensor)

Finite element formulation

robust, versatile

very simple to go back and forth between  
particle and mesh representation

�28

Strain

St
re

ss

A
B

C

D
Shear band material

Viscoelastic

Material not destined to be in
shear band

Lagrangian mesh & information transport

Pseudo free-surface approach —

surface tracking points hover above / below the flat free-slip boundary

vertical loads applied to account for positive / negative topography (cf. isostasy !)

lateral deformation from the deformation of basement

�29

Upper surface of lithosphere model

