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Parallel Landscape Evolution Models 
for Coupling to Large Scale Tectonics 
(Intro to Quagmire algorithm)



Inspiration

River systems in the largest collision zone are clearly out of equilibrium with the long-wavelength 
topography of the region. They carry information about the history of the deformation. The 
eroded material is deposited in marine sediments after long-range transport
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Tectonic models

We can build sophisticated models of the tectonic deformation. We can also build sophisticated 
models of river formation and sediment transport. Coupled models are a work in progress. The 
challenges in building general models of river processes are interesting with some similarities to 
localisation problems in continuum mechanics. 
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Tectonic Models
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Modelling challenges & approaches

There are 2 different “regimes” where modelling challenges arise —  

Models which attempt to match the pattern of rifting and 
forward model stratigraphy as an observable constraint on the 
modelling. 

We use the Basin Genesis Hub python / numpy based code 
pyBadlands coupled to our tectonic forward modelling code 
Underworld for this work (Beucher & Salles). 
(https://github.com/badlands-model/pyBadlands). 

Models which focus on very large tectonic length and 
timescales and consider the generic, coupled surface / 
tectonics problem. 

This problem poses interesting challenges in algorithms for 
parallel computation in models where there is likely to be 
significant lateral deformation and catchment changes. 

We have an algorithm that copes with this problem and will 
release the Quagmire code which implements this



Downstream flow calculations 1.x dimensions

Downstream aggregation terms (integrals over everything  
upstream of a given point can be regarded as a tree structure  
with directions pointing downhill.  
Very well behaved (non cyclic etc) if only steepest descent. 

Or they can be viewed as independent paths which converge as they track through the 
landscape. 
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A(s) = α (ξ )
upstream
∫

AN = α i
i=a…N
∑



In a flat, stable landscape, more subtle signals may be recorded: 
a few metres shift in topography on a long wavelength can alter the 
path of river systems.  

Modelling challenges: evaporation, interaction with groundwater systems.

Rivers in a flat landscape 



Characteristics of the surface evolution problem

Myriad contributions to the rate of change of surface 
height at many different scales. 

Some can be characterised as local such as diffusion-
like terms to describe slope evolution and these tend 
to be “easy” numerically. 

Other terms include “non-local” transport 
dependencies … in cartoon form: 

The non-local terms account for the fact that 
information ‘only’ propagates downstream.   

Total river runoff 

Sediment carried past any point (accumulated load)  

Erosion terms are strongly localising with all obvious 
numerical caveats. Deposition terms have the 
opposite property. 
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Slope

Capacity

Erosion efficiency

Sediment in Flight

Dh
Dt

= ∇ κ (h)∇h( )− KAm ∇z n + !htectonic



Decomposition and Data Structures for Surface (forward) Modelling 

Flow of information 8 ➛ 5 ➛ 8 ➛ 6 ➛ 5 ➛ 4 ➛ 7 ➛ 8 ➛ 9 ➛ 6 ➛ 5 ➛ 2 ➛ 1 ➛ 4 ➛ 7 ➛ 8 … 
Although this is a contrived example, cyclic dependencies are always possible 
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These terms are simple to calculate if we can 
explicitly construct the graph (tree) which represents 
the connectivity. 

We can do the same thing with a matrix D which 
operates to move information one node downhill.

Adjacency Matrix Approach
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Adjacency Matrix Approach

The matrix D which operates to move  
information one node downhill. D2 moves 
information downhill by 2 increments and so on … 

(N is the length of the longest chain) 

Parallelism is straightforward …  
implementation via recursion is  
also straightforward …
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f + c + d + a + b + e

g + f + c + d + a + b + e
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VERY SPARSE MATRIX

NOT A SPARSE MATRIX

A = (I + D + D2 + D3 +…+DN )α
A = DNα

AN
* = DNα = DAN−1

*

AN = AN−1 + AN
*

AN = AN−1 + DAN−1
*



Equivalence

The two representations are entirely equivalent and produce identical results node by node for a 
given discretisation. Use whatever works !
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Domain decomposition

If we include shadow regions, then the local triangulation is identical to a subset of the global 
triangle set and the matrix Dd is identical to a sub-block of the global D.  From this point on, the 
distributed matrix problem is well understood (i.e. there are libraries such as PETSc to do 
everything “automatically” !)
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Example

Decomposition is automatic and fixed regardless of catchment size / shape



Matrix approach … other tools we can use 

Upstream propagation — we can compute information in the upstream direction using  

 
though, of course, this is not a one to one mapping any more. We can use this to find catchments 
for a given outflow of the domain.  

Multiple flow pathways can also be accommodated 

D1 is sparse, D2 is just as sparse (more sparse in a channel), w is a diagonal weight matrix either to 
weight the flow by gradient or to switch D2 on / off e.g. for flat areas.  

DN is pretty much a dense matrix.   

DT still runs information upstream but does not uniquely 
define a catchment any more.
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U = DT

D = w1D1 + w2D2 +…



Mesh sensitivity

The multiple-pathway approach helps in situations where triangulation influences structure - for 
example when a flat or smooth area is modelled. 
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Real landscapes

Another challenge (similar to mesh sensitivity) is the discretisation error and measurement error. If 
a system is sensitive to a few metres change, then the landscape models needs to account for or 
ignore vegetation and buildings, can be thrown by the fact that river channels are full of water, 
and needs to consider what to do with a lake / swamp / dam or other build up of water in the flow 
pathway. 



Fill-the-swamp algorithm

Identify catchments for any internal drainages, and then find the boundary points. The lowest 
boundary saddle point should be the spill for this catchment. This requires some parallel 
coordination as different processors identify different spills.  

This can be a light-touch algorithm and may get stuck before finding a boundary outflow - fair 
enough as multiple craters can end up under one large swamp.  

It helps to have a local patch-fill preprocessing step and repeat while searching for saddle points. 

Horribly cratered landscape Horribly cratered landscape + lakes



Tilted eggbox

Or adding syrup to a waffle … 
Or making ice in ice-cube trays … 



Processed Landscape

Swamp filling algorithm finds: 1) a large number of point fills that are meshing-related, and 2) a fill 
of the river channel and flood plain that directs flow along a connected path.



Processed Landscape

Flow paths found this way are generally not unique - a more useful way to analyse this is to think 
of the ensemble of paths that can be found with small perturbations to the landscape. This seems 
to find flood plains, old drainages etc. Also roads, forest clearings, reservoirs etc !! 



Raw surface



Flood-filled Landscape



Quagmire

Quagmire is a toolkit for exploring the interplay between large-scale dynamic models 
and surface process modification of the topography. 

python based but using PETSc / petsc4py to make it fast and ‘trivially’ parallel  

DMPlex and DMDA (for triangulation v. pixels) 

provides classes for meshing based on stripy  
  ( based on TRIPACK / STRIPACK / SRFPACK / SSRFPACK ) 

object oriented - parallel implementation largely “hidden” 

operators for downstream transport and upstream integration 

operators for flood-filling 

Matrix form 

Graph form (not scalable / not parallel) 

Pit filling, swamp flooding, stream power computation supplied 

Live documentation in the form of jupyter notebooks
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Quagmire — the philosophy

Goal: provide a grab bag of efficiently-implemented, python classes that people can quickly use 
to implement their favourite LEM (or just use some pieces in a python workflow).  

 Let the science questions dictate what the codes do and not the other way around  

 Let anyone in the community define their version of the problem and support their choices  

 Open source, open community  

 Leverage PETSc and other open-source tools  

 Easy interoperability with python codes such as Underworld 

 Available through pip / spack for easy installation 

Quagmire is not a shrink wrapped LEM code that does anything very much other than showing a 
few examples. It’s a typical python project that provides a way to do some things reasonably well.  

Open source, so it may just end up as a template for other people to take and improve.  



Try out Quagmire

docker: lmoresi/docker-quagmire:2018.1.1 

for a limited time only … http://43.240.97.160:8080 

github: https://github.com/University-of-Melbourne-Geodynamics/quagmire 





Underworld Material point method

Fixed mesh with moving “particles” 

Regular Eulerian mesh for  
momentum equation (efficient solvers) 

Lagrangian reference frame for: 

Compositional tracking 

Stress-history tensor 

Plastic strain history (scalar / tensor) 

Finite element formulation  

robust, versatile 

very simple to go back and forth between  
particle and mesh representation
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Lagrangian mesh & information transport

Pseudo free-surface approach —  

surface tracking points hover above / below the flat free-slip boundary 

vertical loads applied to account for positive / negative topography (cf. isostasy !) 

lateral deformation from the deformation of basement
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Upper surface of lithosphere model


