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Outline

Intro: turbidite systems
DNS of 2D lock-exchange problem

Inversion: Surrogate Management Framework

BowoN P

. Inversion results



Turbidity currents

The Goleta slide, a few miles from UCSB campus
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Credits: Brian Romans, “Clastic Detritus” blog



Turbidite systems

Ancient sediment deposits from turbidity currents
form layered rock on the ocean floor.
Hydrocarbon reservoirs may form within these layers.

Amalgamated channels
Amalgamated sheets

Layered sheets

from Booth et al. 2000,
Deep-water reservoirs of the world,
Auger field, Gulf of Mexico



Turbidite modeling via flow inversion

Geological predictions of reservoir topography are mainly
based on a few exploration wells (very expensive).

Our concept:
Reconstruct full deposit from CFD simulation of the

original turbidity currents.

Task:
ldentify suitable initial conditions, such that the

simulated deposit matches measurements at control
points (= exploration wells).
> |terative optimization




Direct numerical simulation

Governing equations: Navier-Stokes in Boussinesq approximation
( > dilute suspension, mass fraction of particles < 10%):
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Deposition model

Sediment particles are allowed to settle through the bottom
boundary, where they are recorded as deposit.
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Deposit height in the continuum model:
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Test problem for inversion

Simple academic test problem:
2D lock exchange configuration

with 3 different grain sizes in suspension

sediment
suspension

clear water

Parameters:

e H, W: lock dimensions

e |nitial loading of each grain species
e Settling velocities (i.e. grain sizes)
e Reynolds number



Reference case simulation

deposit height

lock dimensions: W=0.4, H=0.6,

initial concentrations: c1=0.5 ¢=0.25, ¢3=0.25
settling velocities: v1=0.001, v,=0.005, v3=0.01
Reynolds number: Re=2000

coarse grain, LA 0.01

0.02 — medium grain, v_=0.05

— fine grain, V.S 0.001

0 1 2 3 4 5 6 V4 8 9
streamwise distance

Code developed by M. Nasr-Azadani and B. Hall at UCSB
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Reference case simulation

Retain the final deposit in only five points:
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Reference case simulation

Retain the final deposit in only five points:

0.025

0.02

deposit height
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Reference case simulation

Retain the final deposit in only five points:
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streamwise distance

How can we reconstruct the initial run conditions from this information?



Optimization problem

Objective: Vary initial conditions of DNS in order to minimize
“error” of the final deposit in our control points.

Cost function: sum of L,-norms  J = J1 + Jo + J3
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Optimization problem

Objective: Vary initial conditions of DNS in order to minimize
“error” of the final deposit in our control points.

Cost function: sum of L,-norms

Vary 5 free parameters:
lock width W, lock height H,
initial concentrations c1, ¢, c; of three sediment species

Method: Surrogate Management Framework
(Booker et al. 1999, Marsden et al. 2007)
for gradient-free optimization.
Proven efficiency for numerically expensive problems.




Surrogate management framework

Alternate two algorithms:

search: explores the parameter space globally, predicts minima due
to a Kriging interpolation function (cost function “surrogate”).

poll: probes the true cost function in the vicinity of the current best
candidate, confirms local minimum.

lterate “search” while successful, then invoke “poll”, then switch
back to “search” ... until converged!



Surrogate management framework

Example with only 2 free parameters:
lock width W, lock height H

1. Generate several configurations 1
as initial guesses
(Latin Hypercube Sampling).
Run simulations, 06

evaluate cost function. H
04

0.8

2. Construct a Kriging interpolation 0o

of the cost function.




Surrogate management framework

Example with only 2 free parameters:
lock width W, lock height H

3. Find global minimum 1
of interpolation function,
run new simulation with
these parameters. 0.6

0.8

0.4

0.2




Surrogate management framework

Example with only 2 free parameters:
lock width W, lock height H

3. Find global minimum 1

of interpolation function,
run new simulation with
these parameters. 0.6

0.8

4. Construct new interpolation. -

0.2
Repeat, repeat, repeat...

0.2

0.4

0.6

0.8




Surrogate management framework

Example with only 2 free parameters:
lock width W, lock height H

Algorithm converges to true i

solution after 8 “search” steps.
0.8

Lucky circumstance! 0.6

Kriging could converge to a nearby H
point instead, or become -
ill-conditioned.

0.2
Therefore: “poll” routine.
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Surrogate management framework

POLL algorithm:

evaluate cost function on N+1
mesh neighbors of the current
best parameter setting. 3

The polling directions must form

a positive spanning basis.

If improved point is found:
new “search” step,

otherwise:
assume we have found the

global minimum.

2D: 8 neighbor points
5D: 242 neighbor points



Inversion of the 5-parameter problem

e start with 50 initial guesses,
build initial Kriging interpolation of cost function

e run five new simulations in parallel at each search step:
- up to 3 minima as predicted by surrogate,
- unexplored regions of parameter space (Cox & John 1997)

e run six new simulations in parallel at each poll step:
estimate most promising polling directions by rescaling the
deposit profile of current best candidate



Results for the 5-parameter problem

Full convergence after four steps! (three “search”, one “poll”)

best random guess
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Results for the 5-parameter problem

Super-efficient algorithm? Pure luck? Exhaustive initial sampling?
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Results for the 5-parameter problem

Start with reduced set of 25 initial points:

lowest cost function value

0.015

0.01r

0.0051

e search

e poll

Algorithm converged!

number of optimization steps




Results for the 5-parameter problem

Reference deposit profiles:
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Results for the 5-parameter problem

Best initial random guess:
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Results for the 5-parameter problem

Final result with 50 initial points: perfect matching

deposit height

streamwise distance
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Results for the 5-parameter problem

Final result with 25 initial points:
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Conclusions

e Formulation of the inverse problem (cost function based
on few control points, optimization via SMF algorithm)
leads to successful reconstruction of full deposit profiles
within acceptable accuracy.

e Efficiency of “search” step depends on well-behaved
Kriging interpolation. In both settings attempted here,
the surrogate degenerates after few optimization steps.

e “Poll” algorithm provides no guarantee of convergence to
exact minimum.

e Thorough initial sampling of the parameter space seems to
be a good idea.



Outlook

e Field-scale simulations (3D, very high Reynolds number):
implement RANS model

e Test inversion procedure with many successive turbidity
currents (problem: resuspension)



