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Course outline 1 

•  Lectures by Irina Overeem:  

•  Introduction and overview 
•  Deterministic and geometric models 
•  Sedimentary process models I 
•  Sedimentary process models II 

• Uncertainty in modeling 
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Outline 

•  Example of probability  model 
•  Natural variability & non-uniqueness 
•  Sensitivity tests 
•  Visualizing Uncertainty 
•  Inverse experiments  
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Lo¨tschberg base tunnel, Switzerland 

•  Scheduled to be completed 
in 2012 

•  35 km long 

•  Crossing the entire the 
Lo¨tschberg massif  

•  Problem: Triassic evaporite 
rocks 



Empirical Variogram model 
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•  Which data to use for constraining which part of the model? 
•  Do the modeling results accurately mimic the data (“reality”)? 
•  Should the model be improved? 
•  Are there any other (equally plausible) geological scenarios 

that could account for the observations? 

•  We cannot answer any of the above questions without knowing 
how to measure the discrepancy between data and modeling 
results, and interpret this discrepancy in probabilistic terms 

•  We cannot define a meaningful measure without knowledge of 
the “natural variability” (probability distribution of realisations 
under a given scenario)   

Natural variability and non-uniqueness 



Scaled-down physical models 

Assumption: scale invariance of major geomorphological features 
(channels, lobes) and their responses to external forcing (baselevel 
changes, sediment supply) 

This permits the investigation of natural variability through experiments 
(multiple realisations) 

Delta / 
Shelf 

Fluvial 
valley 



 Model Specifications 

Initial topography Sea-level curve  

Discharge and sediment input rate constant 
(experiments by Van Heijst, 2001) 

Three snapshots: 

t = 900, 1200, 1500 min 
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Natural variability: replicate experiments 

T1 T2 T3 

T1 T2 T3 
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Squared difference topo grids 

T1 T2 T3 

T1 T2 T3 

Time 

R
ealisations 
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Forecasting / Hindcasting /Predictability? 

•  Sensitivity to initial conditions (topography) 
•  Presence of positive feedbacks (incision) 

•  Other possibilities: complex response, negative feedbacks, 
insensitivity to external influences 

•  Dependent on when and where you look within a complex system 
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Sensitivity tests 

•  Run multiple scenarios with ranges of plausible input 
parameters. 

•  In the case of stochastic static models the plausible 
input parameters, e.g. W, D, L of sediment bodies, are 
sampled from variograms. 

•  In case of proces models, plausible input parameters 
can be ranges in the boundary conditions or in the 
model parameters (e.g. in the equations). 
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Visualizing uncertainty by using 
sensitivity tests 

•  Variability and as such uncertainty in SEDFLUX output is 
represented via multiple realizations. We propose to associate 
sensitivity experiments to a predicted ‘base-case’ value. In that 
way the stratigraphic variability caused by ranges in the 
boundary conditions is evident for later users. 

•  Two main attributes are being used to quantify variability:  
•  TH= deposited thickness and GSD = predicted grain size.  

•  We use the mean and standard deviation of both attributes to 
visualize the ranges in the predictions. 



Visualizing Grainsize Variability 

For any pseudo-well the 
grain size with depth is 
determined, and attached 
to this prediction the 
range of the grain size 
prediction over the 
sensitivity tests. 

Depth zones of high 
uncertainty in the 
predicted core are 
typically related to strong 
jumps in the grain size 
prediction. 

Facies shift 
causes a 
strong jump in 
GSD High uncertainty zone 

associated with variation 
 of predicted jump in GSD 



Visualizing Thickness Variability 

For any sensitivity test the 
deposited thickness versus 
water depth is determined 
(shown in the upper plot). 

Attached to the base case 
prediction (red line) the range 
of the thickness prediction 
over the sensitivity tests is 
then evident. This can be 
quantified by attaching the 
associated standard 
deviations over the different 
sensitivity tests to the model 
prediction (lower plot). 



Visualizing X-sectional grainsize variability 
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This example collapses 
a series of 6 SedFlux 
sensitivity experiments 
of one of the tunable 
parameters of the 2D-
model (BW= basinwidth 
over which the sediment 
is spread out). 

The standard deviation 
of the predicted 
grainsize with depth 
over the  experiments 
has been determined 
and plotted with 
distance. Red color 
reflects low uncertainty 
(high coherence 
between the different 
experiments) and yellow 
and blue color reflects 
locally high uncertainty.  



Visualizing “facies probability”maps 

Probabilistic output 
of 250 simulations 
showing change of 
occurrence of three 
grain-size classes: 

•  sandy deposits 
•  silty deposits 
•  clayey deposits  

high  
chance 

low 
chance 

After Hoogendoorn,  
Overeem and Storms 
 (in prep. 2006) 
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Inverse Modeling 

•  Simplest case: linear inverse problems 
•  A linear inverse problem can be described by: 

•  d= G(m) 
•     

•  where G is a linear operator describing the explicit 
relationship between data and model parameters, and is a 
representation of the physical system.  

In an inverse problem model values need to be 
obtained the values from the observed data.  
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Inverse techniques to reduce 
uncertainty by constraining to data 

Stochastic, static models are 
constrained to well data  
Example: Petrel realization 

Process-response models can 
also be constrained to well data  
Example: BARSIM 

Data courtesy G.J.Weltje, Delft University of Technology 
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Inversion: automated reconstruction of geological 
scenarios from shallow-marine stratigraphy 

•  Inversion scheme (Weltje & Geel, 2004): result of many 
experiments 

•  Forward model: BARSIM  
•  Unknowns: sea-level and sediment-supply scenarios 
•  Parameterisation: sine functions 

•  SL: amplitude, wavelength, phase angle 
•  SS: amplitude, wavelength, phase angle, mean 

•  The “truth” : an arbitrary piece of stratigraphy, generated by 
random sampling from seven probability distributions    

Data courtesy G.J.Weltje, Delft University of Technology 
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Our goal: minimization of an 
objective function 

•  An Objective Function (OF) measures the ‘distance’ 
between a realisation and the conditioning data 

•  Best fit corresponds to lowest value of OF  
•  Zero value of OF indicates perfect fit: 

•  Series of fully 
conditioned 
realisations  

•  (OF = 0)  

Data courtesy G.J.Weltje, Delft University of Technology 
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1. Quantify stratigraphy and data-model 
divergence: String matching of permeability logs 

The discrepancy between a candidate solution (realization) and the data is 
expressed as the sum of Levenshtein distances of three permeability logs. 

Stratigraphic data: permeability logs 

 (info on GSD + porosity) 

Objective function: Levenshtein distance 

 (string matching) 
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2. Use a Genetic Algorithm as goal seeker:  
 a global “Darwinian” optimizer 

Each candidate solution (individual) is 
represented by a string of seven numbers in 
binary format (a chromosome) 

Its fate is determined by its fitness value 
(proportional inversely to Levenshtein 
distance between candidate solution and 
data) 

Fitness values gradually increase in 
successive generations, because preference 
is given to the fittest individuals  
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Conclusions from inversion experiments 

•  Typical seven-parameter inversion requires about 50.000 model 
runs ! 

•  Consumes a lot of computer power 

•  Works well within confines of “toy-model” world: few local 
minima, sucessful search for truth  

•  Automated reconstruction of geological scenarios seems feasible, 
given sufficient computer power (fast computers & models) and 
statistically meaningful measures of data-model divergence 
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Conclusions and discussion 

•  Validation of models in earth sciences is virtually 
impossible, inherent natural variability is a problem. 

•  Uncertainty in models can be quantified by making 
multiple realizations or by defining a base-case and 
associating a measure for the uncertainty. 

•  ‘Probability maps of facies occurence’ generated by 
multiple realizations are a powerfull way of conveying the 
uncertainty. 

•  In the end, inverse experiments are the way to go! 


