 divide between autogenic si
shredding vs. preservation it
the stratigraphic record
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enic Processes & Allogenic Forcings
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nic Processes: Allogenic Forcings:
 internal to a sediment routing system. Can be Changes in boundary conditions (think sea-level, cli
. or cyclic in nature. Occur when boundary tectonic environment), which influence a sediment

s are constant or dynamic system



“Shredding”: Jerolmack & Paola, 2010
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yort Shredder vs. Depositional Shredder

Transport Shredder

Sediment still in flux and available
for deposition, not yet stored in

the immobile substrate!




yort Shredder vs. Depositional Shredder

Transport Shredder Depositional Shredder
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Straub & Esposito, 2013

Short term cut and fill until surface
is transferred to depth that is no

SEdiment Sti" il‘l ﬂUX and available |onger susceptib'e to surface
for deposition, not yet stored in processes, driven by long term
the immobile substrate! accumulation associated with

generation of accommodation space



| Sea-Level Change
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* Influence of RSL on morphodynamics
resulting stratigraphy of deltaic systen
well known.




1g Deltas on a Delta

servations: guide development of

ne evolution models and provide benchmarks
3D numerical models of surface processes

ir relationship to stratigraphy

o these because:

y evolve fast

y are small enough to compressively monitor
plete transport system

can independently control individual

ables
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Also: In the last 10-15 yrs

experiments have highlighted

stochasticity in sediment routil
systems and the need to treat

problems in surface processes
stratigraphy with a statistical/

probabilistic approach.



Field Systems: The real thing
at field scale: Hard to observe
surface processes & generation of
stratigraphy over these time scales.

Istems: Can observe
processes & generation of
phy over “long” time

ull Physics in operation.
de: scaling problems.

C—>

Numerical Systems: car
surface processes & generation
stratigraphy over long time scal
Generally no scaling problems. |
side: user has to specify their ch
important physics.



enic Experimental Setup
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enic transgressions and regressions
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ng time scales and strength of autogenics in alluvial basins
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ng time scales and strength of autogenics in alluvial basins
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ng time scales and strength of autogenics in alluvial basins
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tant non-dimensional #’s for RSL cycle shredding

Cycle Magnitude
R ¢ Range of relative
RSL

H* _ sea level cycle
HC € Maximum depth of
system channels
Cycle Period

T Period of relative
T* RS € sea level cycle

TC <€— Time scale of

compensation

If ET] n
%
A
NIIRVARY
TRSL

If 7" >> 1, signal retention

If H << 1 & T << 1, signal prone to shredding



riments share same background
avel rise rate, water and
1ent feed rates, and sediment
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riments share same background
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1ent feed rates, and sediment
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riments share same background
avel rise rate, water and
1ent feed rates, and sediment
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