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Classifying land surfaces

Emulating expensive physics

Using ensembles

Identifying extreme events

What's coming next?

Tracking spatial patterns

What is machine learning?
Machine learning (ML) is a set of statistical and 

computational techniques that use patterns in data 

to complete tasks without explicit instructions.

What should I know now?
The Earth is a complex, nonlinear system, and machine learning is the state of the art 

of complex systems modeling and prediction.

In the last few years, new streams of satellite and simulation data have made more ML 

techniques feasible for Earth science, and new advances in interpretable ML and 

model-data integration have made ML more compatible with Earth science models.

Right now, new applications need new Earth/ML expertise. That's you.

Most models are uncertain. This uncertainty can often be reduced with multi-

model ensembles, and ensemble predictions are a good problem for ML.

● At any given point in time, one of the ensemble members makes a better 

prediction than the others. Identifying this member is a tracking and classification 

problem that can be solved with online algorithsm; see [4]. 

● Ensembles are expensive, but random forests may make it possible to get great 

results from an ensemble of mostly cheap, low resolution models; see [5].

Many geoscientific trends can be visualized as videos. These include topographic 

evolution, sea ice, surface temperatures, and vegetation patterns.

● New video prediction techniques, such as [8], may make it possible to predict the 

evolution of image-like patterns directly from data.

ML may change the way that scientific modeling is done. From a ML standpoint, 

learning from an existing model has many advantages: modelers can generate new 

training and test data on-demand, and the new ML model inherits some community 

trust from the old one. New research is working to develop the use of ML in models.

●  New maps from neural networks to ODEs and vice versa [15, 16]

●  Neural networks are able to pre-emptively detect instabilities [17] and sources of 

uncertainty [18,19] in physics models, and to help with model optimization [20].

New ML models for climate will be most successful if they are closely integrated into 

existing scientific models. This has been emphasized, again and again, by authors 

who have laid future paths for artificial intelligence within Earth science New models 

need to leverage existing knowledge to make good predictions withlimited data. In 

ten years, we will have more satellite data and more interpretable ML. For now, 

however, ML models must be creatively designed towork within existing models. The 

best of these models are likely to be built by close-knit teams includingboth climate 

and computational scientists.

Identifying extreme events within weather, climate and other data sets is a 

classification problem, with a twist: extreme events are, by definition, rare.

● Deep neural networks [9] and other machine learning techniques [10] have been 

used to track cyclones, weather fronts, tropical storms, and tornadoes.

With the growth of satellite imagery and other satellite datasets, tracking changes 

and processes on the surface of the Earth is increasingly an image recognition 

problem.

● Many machine learning techniques are great for classifying land use, including 

vegetation, crop cover, and dust sources, from satellite imagery; see [11,12,13].

● [14] proposes to create a new dataset of environmental imagery, called 

EnviroNet, to accelerate ML development for environmental science. If you have 

images you need to classify, the author is looking for test problems.

Many successful Earth science models, such as cloud-resolving atmospheric models, 

are too expensive to run within large, coupled models, or large multi-model 

experiments.

●  Recent work has shown that deep and convolutional neural networks can 

emulate many physics models (e.g. [1,2]).

trains+tests

●  The resulting neural networks have different cost-accuracy trade-offs than the 

original models, and are often easier to parallelize or run on GPUs.

●  Neural networks provide a framework that works for both data-generated and 

physics-based model components, and may make it possible to build physics-based 

models that learn select parameters continuously from data; see [3].

Down-scaling

High-resolution results are great, but high-resolution models are expensive.

●  Many machine learning techniques have been extensively used for down-scaling 

weather and climate data for local use; see for example [6].

 ●  New developments in `image super-resolution', e.g. [7], are likely to enable new 

down-scaling methods based on image recognition techniques.

Making better Earth system models with machine learning
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See more atThanksReferences
www.climatechange.ai
(Tackling climate change with ML' paper

release planned for early June)

[1] P Gentine et al. Could Machine Learning Break the Convection 
Parameterization Deadlock?. GRL, 2018. 
[2] S Rasp et al. Deep learning to represent subgrid processes in climate 
models. PNAS, 2018. 
[3] M Reichstein et al. Deep learning and process understanding for data-
driven Earth system science. Nature, 2019. 
[4] C Monteleoni et al. Tracking climate models. Statistical Analysis and Data 
Mining, 2011. 
[5] G Anderson and D Lucas. Machine Learning Predictions of a Multiresolution 
Climate Model Ensemble. GRL, 2018.  

[6] W Li et al. Evaluation of ML algorithms in spatial downscal-ing of MODIS 
land surface temperature. 2019. 
[7] Ledig et al. Photo-realistic single image super-resolution using a generative 
adversarial network. arXiv:1609.04802, 2016.
[8] M Mathieu et al. Deep multi-scale video prediction beyond mean square 
error. arXiv, 2016. 
[9] Y Liu et al. Application of deep convolutional neural networks for detecting 
extreme weather in climate datasets. arXiv, 2016. 
[10] V Lakshmanan and Travis Smith. An objective method of evaluating and 
devising storm-tracking algorithms. Weather and Forecasting, 2010. 
[11] D J Lary, et al. Machine learning in geosciences and remote sensing. 
Geoscience Frontiers, 2015. 
[12] N Kussul et al. Deep learning classification of land cover and crop types 
using remote sensing data. 2017.

[13] D J Lary. Artificial Intelligence in Geoscience and Remote Sensing. 2009
[14] S K Mukkavilli. EnviroNet: ImageNet for environment, 2019.
[15] M Raissi and G E Karniadakis. Hidden physics models: machine learning 
of nonlinear partial differential equations. J. Computational Physics, 2018. 
[16] R T Q Chen et al. Neural ordinary differential equations. NIPS, 2018. 
[17] M Jiang et al. A supervised learning framework for arbitrary 
Lagrangian-Eulerian simulations. ICMLA, 2016. 
[18] J Ling and J Templeton. Evaluation of machine learning algorithms for 
prediction of regions of high Reynolds averaged Navier Stokes uncertainty. 
Physics of Fluids, 2015. 
[19] B Lakshminarayanan et al. Simple and scalable predictive uncertainty 
estimation using deep ensembles. NIPS, 2017. 
[20] J Thiagarajan et al. Bootstrapping parameter space exploration for fast 
tuning, 2018.

David Rolnick, Priya Donti, S. Karthik Mukkavilli, 

Ben Kravitz, Andrew Ross, John David Gagne II, 

Ghaleb Abdulla, Goodwin Gibbons

Input Prediction
model

Input Predictionneural network

{SST, u, v, rh...}

video prediction

t0 t1


