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How Does Resuspension Affect
Oxygen Dynamics?
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Previous Modeling Efforts
Hydwodynamics
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Motivation: Models are sensitive to
Parameterization of Seabed Biogeochemical Processes
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ROMS Framework
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HydroBioSed: A Coupled Model

Sediument

Tronsport
(CSTMS)

Completed for

Haidvogel et al. 2000, 2008; . Moriarty et al.
Warner et al. 2008; Fennel et al. (2017)

2013; Soetaert et al. 1996



HydroBioSed
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New model processes
include:

1. Erosion of organic matter &
storage in seabed
e Redistribution of
resuspended organic
matter

2. Fluxes of oxygen at seabed -
water interface

3. Decomposition of organic
matter and oxidation of
reduced chemical species in
seabed




1-D Model Implementation:
Rhone Delta, France
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Result #1: Resuspension Increased Flux of Oxygen Into Seabed

— Model (Moriarty et al., 2017)
@ Observations (Toussaint et al., 2014)
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Result #1: Resuspension Increased Flux of Oxygen Into Seabed
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HydroBioSed Implementation for Northern Gulf of Mexico

Hydrodynamic Set-up:
Hetland and DiMarco (2008)
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January — December 2006




Result #2: Decomposition of resuspended organic
matter increased bottom water oxygen consumption

Standard Model Run Change due to
(August 2006) Resuspension
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Result #2: Decomposition of resuspended organic
matter increased bottom water oxygen consumption
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Result #3: Redistribution of organic matter affects
patterns of oxygen depletion

Standard Model Run Change due to
(July 2006) Resuspension

Organic Matter
(mmolCm3) !

| i
0 2.5 5

Decomposition p;

Rate S
T
(mmol C m3d1) , o

0 10 20

Oxygen
(mmol 0, m3)




C@;nclusmns

~* HydroBioSed, a coupled model that accounts for o
- -*resuspenslon and depasition, as. WeJI as
biogeochemical processes, was d"éveloped and
implemented for the Rhone Delta (Moriarty et al.,
2017) and Northern Gulf of Mexico.

Resuspension increased fluxes of oxygen into the
seabed and increased bottom water oxygen
consumption.

Ongoing work: implement model for Chesapeake
Bay, and investigating the effect of resuspension on
light attenuation.
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Water Biogeochemistry + Sediment + Seabed Biogeochemistry
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Model Implementations: Northern Gulf of Mexico
(Xu et al., 2011)

Table 1
Properties of six sediment tracers in the model.

Sediment Type Tor (PA) W, (mm/s) Fraction
Mississippi Large flocs 0.11 1 50%
Small flocs 0.11 0.1 50%
Atchafalaya Large flocs 0.03 1 10%
Small flocs 0.03 0.1 90%
Sea bed Sand 0.13 10 Spatially variable,

Mud 0.11 1 see Fig. 3B




Model Implementation for the Northern Gulf of Mexico

Forcing for 2006-2007
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Rhone Delta: Resuspension increased seabed oxygen
consumption
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Rhone Delta: Decomposition of Resuspended Organic
Matter Increased Bottom Water Oxygen Consumption
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In Northern Gulf of Mexico,
seabed oxygen consumption can account for almost
all of hypoxic area
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Figure from Fennel et al. (2013)

July 2006
Area: 9428 km*
1

* Observations from summer hypoxia cruises
(e.g. see Rabalais et al., 2002)



