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Photo courtesy of Mike Hambrey, Taylor Glacier, Antarctica, 1987
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Simulations by Cooper Elsworth; see Elsworth and Suckale, 2016 
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Conclusions for Modeling

1. Multiphase interactions at the granular scale can trigger a shift in the 
system-scale dynamics.

2. Multiphase flows are profoundly nonlinear and are prone to both 
positive and negative feedback loops.

3. Data plays multiple roles from validation to model testing and shedding 
light on model limitations.



Ramifications for sea-level rise adaptation planning



Ramifications for sea-level rise adaptation planning



From Rising Seas in California, Working group of the California Ocean Protection Council Science Advisory Team, 2017  

Global 
mean sea 

level

Relative sea 
level in San 
Francisco

Bay



From Rising Seas in California, Working group of the California Ocean Protection Council Science Advisory Team, 2017  

Global 
mean sea 

level

Relative sea 
level in San 
Francisco

Bay Possible 
scenarios



Structure Value and Use Aggregate For Regional 
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Coastal Flood Maps Depth-Damage Curves
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Who will be affected disproportionally?

K-means clustering analysis by Ifeoma Anyansi



Thank you

Uncertainty is an uncomfortable position, but certainty is an absurd one. 
– Voltaire

@



How to describe 
this population?

A high % of the 
population has rent that 

is greater than 30% of 
their income

Housing Vulnerable 

Not Housing Vulnerable 

65% have rental strain 

40% have rental strain



What is clustering?

• The process of grouping similar data together. 

• The goal is that neighborhoods within a cluster are 
similar to one another. 

• Block Group size =~ 1500 People 

Examples: 

Land Use: Identifying groups of houses that 
have similar house values, type, and location

Vulnerability: Identifying neighborhoods that 
have similar vulnerabilities 

ex. Low-income, % disabled
What is the spatial distribution of vulnerability?



8 Variables for
Clustering Analysis

• % Unemployment
• No Vehicle
• Education
• Disabled
• Rent over 30% income
• Per Capita Income
• % Black
• % Hispanic 4 CLUSTERS



4 Different Vulnerability Clusters for Bay Area

Low Income
• Per Capita Income
• % Unemployed

1
Minority

• % Black, 
• % Hispanic
• % Didn’t Graduate     

Highschool
• %Unemployed

2
Renters

• % Number of Rental 
Units With Rent > 30% 
of Income

3
Low Mobility

• % Disabled
• % No Vehicles

4

Socioeconomically 
Vulnerable

Economically 
Vulnerable

Housing Vulnerable Mobility Vulnerable
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