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Data by Eric Rignot, NASA Jet Propulsion Laboratory; Figure by Cooper Elsworth
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Photos courtesy Kurt Cuffey
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Photo courtesy of Mike Hambrey, Taylor Glacier, Antarctica,
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Tgrav = PgH sin(a) = 11k Pa

Thase = 3 — Dk Pa

Collaborative work with Thibaut Perol, John Platt, and Jim Rice; see Suckale et al., 2014
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Tgrav = PgH sin(a) = 11k Pa
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Collaborative work with Thibaut Perol, John Platt, and Jim Rice; see Suckale et al., 2014
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Collaborative work with Thibaut Perol, John Platt, and Jim Rice; see Suckale et al., 2014
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Collaborative work with Thibaut Perol, John Platt, and Jim Rice; see Suckale et al., 2014
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Collaborative work with Thibaut Perol, John Platt, and Jim Rice; see Suckale et al., 2014
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Collaborative work with Thibaut Perol, John Platt, and Jim Rice; see Suckale et al., 2014
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Collaborative work with Thibaut Perol, John Platt, and Jim Rice; see Suckale et al., 2014
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Figure by Cooper Elsworth, Data from Ted Scambos, NSIDC
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Simulations by Cooper Elsworth; see Elsworth and Suckale, 2016
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Generalized model by Cooper Elsworth; see Elsworth and Suckale, 2016 free boundary
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Generalized model by Cooper Elsworth; see Elsworth and Suckale, 2016
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Water Film

Arterial Channels

Distributed Cavities

Figure by Cooper Elsworth
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Simulations by Cooper Elsworth; see Elsworth and Suckale, 2016
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Granular scale lce sheet scale
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Granular scale lce stream scale lce sheet scale
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Simulations by Alejandro Cabrales and Indraneel Kasmalkar; Collaboration with Anders Damsgaard and Liran Goren
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Conclusions for Modeling

1. Multiphase interactions at the granular scale can trigger a shift in the
system-scale dynamics.

2. Multiphase flows are profoundly nonlinear and are prone to both
positive and negative feedback loops.

3. Data plays multiple roles from validation to model testing and shedding
light on model limitations.
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Ramifications for sea-level rise adaptation planning
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Ramifications for sea-level rise adaptation planning
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Global
mean sea
level

Relative sea
level in San
Francisco
Bay

From Rising Seas in California, Working group of the California Ocean Protection Council Science Advisory Team, 2017
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Coastal Flood Maps Structure Value and Use Depth-Damage Curves Aggregate For Regional
Damage
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Who will be affected disproportionally?
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K-means clustering analysis by Ifeoma Anyansi
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Thank you

Uncertainty is an uncomfortable position, but certainty is an absurd one.
— Voltaire
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How to describe
this population?

A high % of the
population has rent that
is greater than 30% of
their income

% Number of Renters whose Rent is > 30% of Income
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Housing Vulnerable Blockgroup Statistics

. '] Housing Vulnerable

65% have rental strain

.| Not Housing Vulnerable

40% have rental strain

Housing Vulnerable Not Housing Vulnerable
Vulnerablity with Respect to Housing



What is clustering?

* The process of grouping similar data together. Night-time Violent Crime Incidents San Francisco

* The goal is that neighborhoods within a cluster are
similar to one another.

* Block Group size =~ 1500 People

Examples:

Land Use: Identifying groups of houses that
have similar house values, type, and location

Vulnerability: Identifying neighborhoods that

have similar vulnerabilities | > What is the spatial distribution of vulnerability?
ex. Low-income, % disabled
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8 Variables for
Clustering Analysis

Given a set of records, organize
the records into clusters
* % Unemployment

. o \
* No Vehicle - '_, /.\\
e Education | /\ \'

ncome / ‘
d Disabled ’. ® \./—/ A cluster is a subset
\./ Q of records .which

 Rent over 30% income are similar

. Age
* Per Capita Income t
* % Black

4 CLUSTERS

* % Hispanic
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4 Different Vulnerability Clusters for Bay Area

Economically Socioeconomically

Housing Vulnerable Mobility Vulnerable
Vulnerable Vulnerable

-

Low Income Minority Renters Low Mobility
e Per Capita Income * % Black, * % Number of Rental * % Disabled
* % Unemployed * % Hispanic Units With Rent > 30% ¢ % No Vehicles
e % Didn’t Graduate of Income
Highschool

e %Unemployed
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