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Brittle deformation vs. surface processes




Surface processes promote strain localization

w— () [Thieulot et al. 2014]
-

Emax

e What are the underlying physics?

e WWhat controls the sensitivity of a tectonic system
to surface processes?

e How efficient do surface processes need to be to impact
long-term tectonic evolution?

e Can we find evidence for such modulation in real landscapes?



Half-grabens as natural laboratories

High degree of strain localization sustained over offsets
as large as = 10 km. Relief generally £ 1-2 km.
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Half-grabens as natural laboratories

Flexure, strain localization, topography build-up
& surficial mass redistribution over = 10s of km.
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Coupled tectonic & surface evolution models

Tectonic evolution model:

e Numerical simulations conducted with the SiStER code:
Simple Stokes solver with Exotic Rheologies [Olive et al., 2016 GJI].
Available at github.com/jaolive/SiStER

e Solving conservation of mass, momentum and energy in a visco-elasto-
plastic upper continental crust under extension. Faults can localize
spontaneously when the Mohr-Coulomb criterion is met.
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Coupled tectonic & surface evolution models

Surface evolution model (upper boundary condition):

Step 1: erode material Step 2: deposit material flat
S in corresponding watershed
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Surface processes promote strain localization

total horizontal extension = 22 km
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E,, =0.015 mm.yr', E_ /slip rate = 0.0005

» | @
2 ~
© 3
e

S S
& S

O N

O Q
o —_
= S

@ S

o E,,=15mm.yr', E  /sliprate =5.3

O

S




Surface processes promote strain localization

Surface processes further enhance fault life span
in thinner / weaker faulted layers for a given erosion / slip rate.

infinite life span: [1]
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Energy balance in tectonic systems

Consider a block at height z; on an inclined plane.
How much energy does it take to move it to height z, ?

Define the block’s mechanical energy:

AE,, = AEy + AE,,

X




Energy balance in tectonic systems

Consider a block at height z; on an inclined plane.
How much energy does it take to move it to height z, ?

Change in mechanical energy: AE,, = Z Wdissipative forces

Change in potential energy: AE, = Wtriction + Wexternal

EXTERNAL
PUSH



Energy balance in tectonic systems

Consider a block at height z; on an inclined plane.
How much energy does it take to move it to height z, ?

Wexternal = AE p Whiction




Energy balance in tectonic systems

Force balance in the brittle upper crust (continuum):

div (0‘) +p8 =0

z=0 traction-free surface

far-field
forces

90 traction T

DUCTILE DOMAIN £~

viscous tractions



Energy balance in tectonic systems

Force balance in the brittle upper crust (weak form):

diV(O‘)+pg:Q »/(diV(O')+pg)-QdQ:O
— S o — S

z=0 traction-free surface

far-field
forces

90 traction T

DUCTILE DOMAIN £~

viscous tractions



Energy balance in tectonic systems

Work balance in the brittle upper crust:

/ Z-QdS+/pg-QdQ:/O':V(U) d()
0Q Q -

z=0 traction-free surface

far-field
forces

90 traction T

DUCTILE DOMAIN £~

viscous tractions



Energy balance in tectonic systems

Work balance in the brittle upper crust:

/ Z-QdS+/pg-QdQ:/O':V(U) d()
0Q Q -

EXTERNAL WORK GRAVITY WORK - INTERNAL WORK

z=0 traction-free surface

far-field
forces

90 traction T

DUCTILE DOMAIN £~

viscous tractions



Energy balance in tectonic systems

Work balance in the brittle upper crust:
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EXTERNAL WORK - INTERNAL WORK
DISSIPATION DISSIPATION
BY LOCALIZED BY DISTRIBUTED
DEFORMATION DEFORMATION
(faults) (flexure, folding,

viscous creep...)



Energy balance in tectonic systems

Work balance in the brittle upper crust:
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Energy balance in tectonic systems

Work balance in the brittle upper crust:

/ Z-QdS+/pg-QdQ:/O':V(U) dQ
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- INTERNAL WORK
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* F.,; changes with increasing extension / shortening (/).

e Do systems evolve to minimize F,,; ?
e A stable configuration can be maintained until Fexr > FerEAk



A simple force balance model for fault life span

FORCE REQUIRED

TO KEEP A FAULT ACTIVE FORCE REQUIRED TO...

OVERCOME THE FRICTIONAL
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+

FLEX THE FOOTWALL
AND HANGING WALL BLOCKS
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/ / / / /
/ / / / /
! / / / /
/ / / / /
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[Olive et al. 2014]




A simple force balance model for fault life span

FORCE REQUIRED
TO KEEP A FAULT ACTIVE

force (102 N.m™)
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A simple force balance model for fault life span

FORCE REQUIRED
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How “efficient” can surface processes be?

What constitutes a reasonable middle ground between
unhindered topographic growth and total leveling?

What do we need from a landscape evolution model?

e Capture the first-order physics, time and length scales
of surficial mass redistribution.

e Allow some degree of benchmarking against real
landscapes (e.g., calibrating coefficients, reproducing
key morphological features...).



How is surficial mass redistributed ?

Lemhi Range, ID
MT

Topographic ID
relief = 1 km

1 km

Structural

relief = 4 km
[Anders et al., 1993]

2 km
Google Earth

FAMOLIS POTATOES > 8



How is surficial mass redistributed ?




Coupled tectonic & surface evolution models

Landscape evolution model:

e Deposition law: Instantaneous infilling of subsiding areas.
e Erosion law: Stream power incision and hillslope diffusion.

0 _
or

U- KA™S" + DV?z
!

Stream power incision:
e erodibility (K)

e drainage area (A)

e |ocal slope (S)

Tectonic uplift

[Anderson, 1994; Howard, 1994; Braun and Willett, 2013]
Numerical implementation by S. Castelltort & B. Kaus, available at www.topomod.eu



Coupled tectonic & surface evolution models




Calibrating stream power incision parameters
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[Willett et al., 2014] [Perron & Royden, 2013]



Calibrating stream power incision parameters

1
x-analysis: 9% _ U— KA™S" oz _(_U_}
Ot steady state Ox KAm
integrate
upstream
Z X U m
/ dz = / (W) dx
upstream <b Xb
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divide in drainage area
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n O n
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[Willett et al., 2014] [Perron & Royden, 2013] X



Calibrating stream power incision parameters

Y-analysis:

Slope of x-plot contains relative information on uplift vs. erodibility:.
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Calibrating stream power incision parameters

Y-analysis:

northing (m)
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TopoToolbox suite available at topotoolbox.wordpress.com

[Schwanghart & Scherler, 2014]
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Calibrating stream power incision parameters

e Assumes steady state.
e Only valid within
| stream power
framework.
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Realistic crustal strength profiles

Combining laboratory and field constraints:
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Elastic-brittle:

L=0.6

C =30 MPa
Strain-weakening of cohesion

Visco-elastic:

Wet quartzite flow law
[Ranalli, 1995]

Middle crustal stresses

inferred from paleopiezometry
in the Whipple Mountains MCC.
[Behr & Platt, 2011]

Imposed extension
rate: 1 mm/yr



Half-graben growth with reasonable strength & SPs

° K — 10'7 yr'l total extension = 0.52 km

e No sedimentation

Half-graben
to graben after
3 km Of extension. 40 50»\} 20 -
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Half-graben growth with reasonable strength & SPs

° K — 10'7 yr'l total extension = 9.4 km

e Sedimentation

Half-graben £ o Q
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Half-graben growth with reasonable strength & SPs

o K = 10'6 yr'l total extension = 12 km

e Sedimentation

Stable half-graben. = ~
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Stabilizing half-grabens with surface processes

Quickly reaching topographic steady state keeps half-grabens stable.
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Half-graben lifespan and topographic steady state

Rapidly attained topographic steady state allowing half-graben
offsets > 5 km ?
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Half-graben lifespan and topographic steady state

Stable vs. unstable half-grabens in the Albertine Rift (West-EAR)?

elevation above base level (km)

3.5

3.0}
2.5+
2.0}
1.5¢
1.0+

0.5¢

0 - | I I I I I I I
O 20 40 60 80 100 120 140 160 180 200

A form of tectonic inheritance
through surface processes?

e Rwenzori horst (EAR) e

e Lake Edward half-graben (EAR) ,ﬁ"( RO -
o Lemhi half-graben (B&R) % e

e Wassuk half-graben (B&R) Q e

e Sandia half-graben (RGR) o

I L S

X (km)

., Rwenzori
“Mountains

Nyamwamba Bwamba
fault fault
0 10 20
[ T I
i kilometers .
major fault / gneissic basement 71



Recap: relevant time and length scales

Is a tectonic system sensitive to topographic growth?

Recall Fexr = Fint + FGrav increases with increasing deformation,
and a system is stable until Fexr > Fereak

Topographic sensitivity: | F 0
EXT A \OQO O\oQ
(0FGRAV) ................. C F

Ol BREAK

St =

oF ../ dl increasing
> displacement (l)

OFINT
Ol

Primarily controlled by the integrated strength of the crust:

weaker crust » St >>0 Increased sensitivity




Recap: relevant time and length scales

If a tectonic system is sensitive to topographic evolution ( Sy >> 0 )
How much influence do surface processes have on localization?

|:EXT
A Foren /J~/\K’\/§
IF gr/ 0| Increasing Uf a, A
—> displacement (1) < >
Internal time scale for fault stability Time to topographic steady state
Localizing efficiency
Lsp = TBREAK | TTss = Preak / (L)

Controlled by strength and intensity of mass redistribution:
e weaker crust

e slower tectonic rates - Lgp >>1
e greater erodibility and fast deposition enhanced localization




So, what do we need from coupled models?

Capture the time / length scales of surficial mass redistribution:

e time to topographic steady state, rates of topography build-up
e “height & width” of topographic steady state
e reproduce key morphological features?

Have limited sensitivity m g e A B SR

to grid resolution: 1

Use parameterizations that can be benchmarked
against real landscapes & processes:
e fluvial incision

e hillslope diffusion

e glacial erosion

e sediment transport & deposition







Conclusions

e How do surface processes affect normal fault evolution?

By alleviating the energy cost of topography build-up. Preliminary
simulations further suggest importance of reaching topographic
steady state in stabilizing major fault systems.

e A signature of surface processes in rift architecture?

Fluvial incision & hillslope diffusion acting at “reasonable” rates
(i.e., consistent with observed half-graben morphologies) could be
a key ingredient to stabilize half-graben structures

over large amounts of extension (1-10 km).

e Novel research questions

Specific effects of sediment deposition? of glacial erosion
(threshold effects)? Of climatic & lithological variability?
Tectonic inheritance through erodibility gradients?



Conclusions

Surface processes enabling rapid topographic
steady state (over ~3 km of fault offset)

at a moderate relief (~1-2 km)
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Inefficient surface processes
due to fast tectonic uplift,

or unerodable lithologies ?
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Conclusions

e Fluvial incision & hillslope diffusion acting at “reasonable” rates
(i.e., consistent with observed half-graben morphologies) could be
a key ingredient to stabilize half-graben structures over large
amounts of extension (1-10 km), as seen in the Basin & Range.

e Future efforts to investigate:
e the specific effect of sediment deposition relative to erosion
e the specific effect of glacial erosion, and climate variability
e the potential delocalizing effect of a strong lower crust
e the interactions between distant faults

~ half-graben #2
—_— _

\/

half-graben #1

WX G|

‘ s, I
! ‘ ‘\
- :



