FEEDBACKS BETWEEN BRITTLE DEFORMATION AND SURFACE PROCESSES: INSIGHTS FROM EXTENSIONAL SETTINGS

Laboratoire de Géologie de l'Ecole Normale Supérieure / CNRS olive@geologie.ens.fr

Co-authors & Acknowledgements

1930

Brittle deformation vs. surface processes

Surface processes promote strain localization

- What are the **underlying physics**?
- What controls the **sensitivity** of a tectonic system to surface processes?
- How efficient do surface processes need to be to impact long-term tectonic evolution?
- Can we find evidence for such modulation in **real landscapes**?

Half-grabens as natural laboratories

High degree of **strain localization** sustained over offsets as large as ≈ 10 km. **Relief** generally $\leq 1-2$ km.

Surpless et al. 2002

Half-grabens as natural laboratories

Flexure, strain localization, topography build-up & surficial mass redistribution over ≈ 10s of km.

Coupled tectonic & surface evolution models

Tectonic evolution model:

- Numerical simulations conducted with the *SiStER* code: *Simple Stokes solver with Exotic Rheologies* [*Olive et al.,* 2016 GJI]. Available at github.com/jaolive/SiStER
- Solving conservation of mass, momentum and energy in a visco-elastoplastic upper continental crust under extension. Faults can localize spontaneously when the Mohr-Coulomb criterion is met.

Coupled tectonic & surface evolution models

Surface evolution model (upper boundary condition):

Surface processes promote strain localization

increasing erosion rates

Surface processes promote strain localization

Surface processes **further enhance** fault life span in **thinner / weaker** faulted layers for a given erosion / slip rate.

Consider a block at height \mathbf{z}_i on an inclined plane. How much energy does it take to move it to height \mathbf{z}_f ?

Define the block's mechanical energy:

 $\Delta E_m = \Delta E_k + \Delta E_p$

Consider a block at height \mathbf{z}_i on an inclined plane. How much energy does it take to move it to height \mathbf{z}_f ?

Consider a block at height \mathbf{z}_i on an inclined plane. How much energy does it take to move it to height \mathbf{z}_f ?

$$W_{\text{external}} = \Delta E_p - W_{\text{friction}}$$

Force balance in the brittle upper crust (continuum):

$$\underline{\operatorname{div}}\left(\underline{\sigma}\right) + \rho \underline{g} = \underline{0}$$

Force balance in the brittle upper crust (weak form):

$$\underline{\operatorname{div}}\left(\underline{\sigma}\right) + \rho \underline{g} = \underline{0} \quad \longrightarrow \quad \int_{\Omega} \left(\underline{\operatorname{div}}\left(\underline{\sigma}\right) + \rho \underline{g}\right) \cdot \underline{U} \ d\Omega = 0$$

$$\int_{\partial\Omega} \underline{T} \cdot \underline{U} \, dS + \int_{\Omega} \rho \underline{g} \cdot \underline{U} \, d\Omega = \int_{\Omega} \underline{\underline{\sigma}} : \underline{\underline{\nabla}} \left(\underline{U} \right) \, d\Omega$$

$$\int_{\partial\Omega} \underline{T} \cdot \underline{U} \, dS + \int_{\Omega} \rho \underline{g} \cdot \underline{U} \, d\Omega = \int_{\Omega} \underline{\sigma} : \underline{\nabla} \left(\underline{U} \right) \, d\Omega$$

EXTERNAL WORK GRAVITY WORK - INTERNAL WORK

$$\int_{\partial\Omega} \underline{T} \cdot \underline{U} \, dS + \int_{\Omega} \rho \underline{g} \cdot \underline{U} \, d\Omega = \int_{\Omega} \underline{\sigma} : \underline{\nabla} \left(\underline{U} \right) \, d\Omega$$

EXTERNAL WORK

$$\int GRAVITY WORK$$
- INTERNAL WORK

$$W_{EXT} = \int \underline{F}_{EXT} \cdot \underline{dl}$$

$$F_{EXT} = \frac{\partial W_{EXT}}{\partial l} = \frac{\partial E_P}{\partial l} - \frac{\partial W_{INT}}{\partial l}$$

- F_{EXT} changes with increasing extension / shortening (/).
- Do systems evolve to minimize F_{EXT} ?
- A stable configuration can be maintained until $F_{EXT} \ge F_{BREAK}$

A simple force balance model for fault life span

FORCE REQUIRED TO KEEP A FAULT ACTIVE

FORCE REQUIRED TO...

OVERCOME THE FRICTIONAL RESISTANCE ON THE FAULT

+

FLEX THE FOOTWALL AND HANGING WALL BLOCKS

SUSTAIN THE GROWTH OF TOPOGRAPHY

[*Olive et al.* 2014]

A simple force balance model for fault life span

FORCE REQUIRED TO KEEP A FAULT ACTIVE

FORCE REQUIRED TO...

OVERCOME THE FRICTIONAL RESISTANCE ON THE FAULT

÷

FLEX THE FOOTWALL AND HANGING WALL BLOCKS

SUSTAIN THE GROWTH OF TOPOGRAPHY

[Olive et al. 2014]

A simple force balance model for fault life span

FORCE REQUIRED TO KEEP A FAULT ACTIVE

FORCE REQUIRED TO...

OVERCOME THE FRICTIONAL RESISTANCE ON THE FAULT

+

FLEX THE FOOTWALL AND HANGING WALL BLOCKS

SUSTAIN THE GROWTH OF TOPOGRAPHY

[Olive et al. 2014]

How "efficient" can surface processes be?

What constitutes a reasonable middle ground between unhindered topographic growth and total leveling?

What do we need from a **landscape evolution model**?

- Capture the first-order physics, time and length scales of surficial mass redistribution.
- Allow some degree of benchmarking against real landscapes (e.g., calibrating coefficients, reproducing key morphological features...).

How is surficial mass redistributed ?

How is surficial mass redistributed ?

Coupled tectonic & surface evolution models

Landscape evolution model:

- **Deposition law**: Instantaneous infilling of subsiding areas.
- Erosion law: Stream power incision and hillslope diffusion.

[Anderson, 1994; Howard, 1994; Braun and Willett, 2013] Numerical implementation by S. Castelltort & B. Kaus, available at www.topomod.eu

Coupled tectonic & surface evolution models

[Willett et al., 2014]

[Perron & Royden, 2013]

<u>x-analysis:</u>

Slope of χ -plot contains relative information on uplift vs. erodibility.

[[]Perron & Royden, 2013]

<u>x-analysis:</u>

Range of erodibility <u>coefficients</u>: $K \approx 10^{-6} - 10^{-4} \text{ yr}^{-1}$

Limitations:

- Ignores spatial variability.
- Assumes steady state.
- Only valid within stream power framework.

Realistic crustal strength profiles

Combining laboratory and field constraints:

Half-graben growth with reasonable strength & SPs

- K = 10⁻⁷ yr⁻¹
- No sedimentation

Half-graben to **graben** after 3 km of extension.

Half-graben growth with reasonable strength & SPs

- K = 10⁻⁷ yr⁻¹
- Sedimentation

Half-graben to **graben** after 4 km of extension.

Half-graben growth with reasonable strength & SPs

- K = 10⁻⁶ yr⁻¹
- Sedimentation

Stable half-graben.

Stabilizing half-grabens with surface processes

Quickly reaching topographic steady state keeps half-grabens stable.

Half-graben lifespan and topographic steady state

Rapidly attained topographic steady state allowing half-graben offsets > 5 km ? precipitation

Half-graben lifespan and topographic steady state

Stable vs. unstable half-grabens in the Albertine Rift (West-EAR)?

A form of **tectonic inheritance** through surface processes?

Recap: relevant time and length scales

Is a tectonic system sensitive to topographic growth?

Recall $F_{EXT} = F_{INT} + F_{GRAV}$ increases with increasing deformation, and a system is stable until $F_{EXT} \ge F_{BREAK}$

Primarily controlled by the integrated strength of the crust:

weaker crust \longrightarrow $S_T >> 0$ Increased sensitivity

Recap: relevant time and length scales

If a tectonic system is sensitive to topographic evolution ($S_T >> 0$) How much influence do surface processes have on localization?

Internal time scale for fault stability

Time to topographic steady state

Localizing efficiency $L_{SP} = \tau_{BREAK} / \tau_{TSS} = \left(\frac{F_{BREAK}}{U\frac{\partial F_{EXT}}{\partial l}}\right) / \left(\frac{\alpha}{K\sqrt{A}}\right)$

Controlled by strength and intensity of mass redistribution:

- weaker crust
- slower tectonic rates
- greater erodibility and fast deposition

 $L_{SP} >> 1$ enhanced localization

So, what do we need from coupled models?

<u>Capture the time / length scales of surficial mass redistribution:</u>

- time to topographic steady state, rates of topography build-up
- "height & width" of topographic steady state
- reproduce key morphological features?

Have limited sensitivity to grid resolution:

Use parameterizations that can be benchmarked

against real landscapes & processes:

- fluvial incision
- hillslope diffusion
- glacial erosion
- sediment transport & deposition

Conclusions

• How do surface processes affect normal fault evolution?

By alleviating the energy cost of topography build-up. Preliminary simulations further suggest importance of reaching **topographic steady state** in stabilizing major fault systems.

• <u>A signature of surface processes in rift architecture?</u>

Fluvial incision & hillslope diffusion acting at "reasonable" rates (i.e., consistent with observed half-graben morphologies) could be a *key ingredient to stabilize half-graben structures* over large amounts of extension (1–10 km).

<u>Novel research questions</u>

Specific effects of sediment deposition? of glacial erosion (threshold effects)? Of climatic & lithological variability? Tectonic inheritance through erodibility gradients?

Conclusions

Surface processes enabling rapid topographic steady state (over ~3 km of fault offset) at a moderate relief (~1–2 km)

Inefficient surface processes due to fast tectonic uplift, or unerodable lithologies ?

Conclusions

- Fluvial incision & hillslope diffusion acting at "reasonable" rates (i.e., consistent with observed half-graben morphologies) could be a key ingredient to stabilize half-graben structures over large amounts of extension (1–10 km), as seen in the Basin & Range.
- Future efforts to investigate:
 - the specific effect of **sediment deposition** relative to erosion
 - the specific effect of **glacial erosion**, and climate **variability**
 - the potential delocalizing effect of a strong lower crust
 - the interactions between distant faults

