
Ice Sheet System Model 2017 (4.12)
User Guide

Authors:

Mathieu Morlighem1

Hélène Seroussi2

Éric Larour2

Nicole Schlegel2

Chris Borstad2

Basile de Fleurian1

Surendra Adhikari2

Johannes Bondzio3

1University of California, Irvine, Department of Earth System Science, Croul Hall, Irvine, CA
92697-3100, USA

2 Jet Propulsion Laboratory - Caltech, 4800 Oak Grove Drive, Pasadena, CA 91109 USA
3 Alfred Wegener Institute, Bremerhaven, Germany

May 19, 2017

Contents

1 Download 14

1.1 Introduction . 14

1.1.1 Binaries . 14

1.1.2 Source Code . 14

1.1.3 Become an ISSM developer ! . 14

1.1.4 License . 15

1.2 Binaries . 15

1.3 Source installation of ISSM on UN*X systems . 15

1.3.1 Environment variables . 15

1.3.2 macOS . 16

1.3.3 External packages installation . 16

1.3.4 ISSM compilation . 17

1.4 Source installation of ISSM on Windows (under developement) 18

1.4.1 Win10 . 18

1.4.2 Development Environment . 18

1.4.2.1 Installing MATLAB . 18

1.4.2.2 Cygwin . 19

1.4.3 Visual Studio . 19

1.4.4 Building ISSM . 20

1.4.4.1 Downloading ISSM . 20

1.4.4.2 Checking Your Build Environment . 21

1.4.4.3 Installing External Packages . 21

1.4.4.4 Building ISSM . 21

1.4.5 How to Setup a Cron Job . 22

1.5 Source installation of ISSM with AD capability (under developement) 22

1.5.1 External packages installation . 22

1.5.2 ISSM compilation . 23

2

CONTENTS 3

2 Getting started 24

2.1 Loading ISSM tools . 24

2.1.1 MATLAB . 24

2.1.2 Python . 24

2.1.3 Developers . 25

2.2 Model class . 25

2.2.1 MATLAB’s model object . 25

2.2.2 Saving/loading a model . 26

2.3 Square ice shelf tutorial . 27

3 Tutorials 28

3.1 Dataset download . 28

3.2 Mesh adaptation . 28

3.2.1 Goals . 28

3.2.2 Squaremesh . 29

3.2.2.1 Usage . 29

3.2.2.2 Example . 29

3.2.3 Roundmesh . 30

3.2.3.1 Usage . 30

3.2.3.2 Example . 30

3.2.4 Triangle . 30

3.2.4.1 Usage . 31

3.2.5 Bamg . 31

3.2.5.1 Usage . 32

3.2.5.2 Uniform mesh . 32

3.2.5.3 Non-Uniform mesh . 33

3.2.5.4 Mesh adaptation . 33

3.2.5.5 Mesh refinement in a specific region . 38

3.2.5.6 Another example . 41

3.3 Inverse method . 41

3.3.1 Goals . 41

3.3.2 Introduction . 41

3.3.3 Hands on 1 (ice rigidity, B) . 42

3.3.3.1 Setp 1: Generating Observations . 42

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CONTENTS 4

3.3.3.2 Step 2: Initial guess and initial velocity 43

3.3.3.3 Step 3: inverting for B . 43

3.3.3.4 Step 4: Adding regularization . 44

3.3.4 Hands on 2 (friction) . 45

3.3.4.1 Changes to step 1 . 45

3.3.4.2 Solutions to step 1 . 46

3.3.4.3 Changes to step 2 . 47

3.3.4.4 Changes to step 3 . 48

3.3.4.5 Solutions to step 3 . 49

3.3.4.6 Changing the cost function . 49

3.3.4.7 Solutions to step 3b . 50

3.3.4.8 Adding regularization . 51

3.3.4.9 Solutions to step 3c . 51

3.4 ISMIP test . 52

3.4.1 Goals . 52

3.4.2 Introduction / How To . 52

3.4.3 Test A . 52

3.4.4 Simulation File Layout and Organization . 53

3.4.5 Mesh . 53

3.4.6 Parameterization . 55

3.4.7 Extrusion . 56

3.4.8 Flow Equation . 57

3.4.9 Boundary Conditions . 57

3.4.10 Solve Model . 58

3.4.11 Test F . 59

3.4.12 Actual Work and Results . 59

3.5 Modeling Pine Island Glacier . 60

3.5.1 Goals . 60

3.5.2 Introduction . 61

3.5.3 Setting-up domain outline . 61

3.5.4 Mesh . 62

3.5.5 Mask . 64

3.5.6 Parameterization . 65

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CONTENTS 5

3.5.7 Inversion of basal friction . 65

3.5.8 Plot results . 66

3.5.9 Higher Order (HO) Ice Flow Model . 67

3.5.10 Solutions for step 6 . 68

3.6 Pine Island Glacier, melting experiment . 69

3.6.1 Goals . 69

3.6.2 Evolution over 10 years . 69

3.6.3 Increased basal melting rate . 70

3.6.4 Retreat of ice front position . 71

3.6.5 Change in surface mass balance . 72

3.6.6 Evolution of the ice volume above floatation . 74

3.7 Uncertainty quantification (requires Dakota) . 75

3.7.1 Goals . 75

3.7.2 Introduction . 75

3.7.3 Flux Gates . 77

3.7.4 Loading Cross-Over Errors . 78

3.7.5 Sampling Analysis . 78

3.7.6 Sensitivity Analysis . 80

3.7.7 Plot Results . 81

3.7.8 Additional Exercises . 82

3.8 Jakobshavn Isbræ . 82

3.8.1 Goals . 82

3.8.2 Introduction . 83

3.8.2.1 Download . 83

3.8.3 runme file . 83

3.8.4 Step 1: Mesh generation . 83

3.8.5 Step 2: Model parameterization . 84

3.8.6 Step 3: Control method . 84

3.8.7 Step 4: Display results . 85

3.9 Modeling the Greenland ice sheet . 86

3.9.1 Goals . 86

3.9.2 Introduction . 86

3.9.3 Mesh . 87

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CONTENTS 6

3.9.4 Parameterization . 88

3.9.5 Stress Balance . 90

3.9.6 Transient . 90

3.9.7 Exercise . 92

3.9.8 Additional Exercises . 95

3.10 Modeling the Greenland ice sheet using IceBridge data 96

3.10.1 Goals . 96

3.10.2 Introduction . 96

3.10.3 Mesh . 96

3.10.4 Parameterization . 98

3.10.5 Stress Balance . 102

3.10.6 Transient . 103

3.10.7 Results . 105

4 Capabilities 106

4.1 Mesh generation . 106

4.1.1 ARGUS file format . 106

4.1.2 triangle . 106

4.1.3 Bamg . 107

4.1.3.1 Domain . 107

4.1.3.2 hmin/hmax . 107

4.1.3.3 hVertices . 107

4.1.3.4 field/err . 107

4.1.3.5 gradation . 108

4.1.3.6 anisomax . 108

4.1.4 Extrusion (3D) . 108

4.2 Stress balance . 109

4.2.1 Physical basis . 109

4.2.1.1 Conservation of linear momentum . 109

4.2.1.2 Conservation of angular momentum . 109

4.2.1.3 Ice constitutive equations . 109

4.2.1.4 Full-Stokes (FS) field equations . 110

4.2.1.5 Higher-Order (HO) field equations . 110

4.2.1.6 Shelfy-Stream Approximation (SSA) field equations 110

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CONTENTS 7

4.2.1.7 Boundary conditions . 111

4.2.2 Model parameters . 111

4.2.3 Running a simulation . 112

4.3 Mass transport / Free surface . 112

4.3.1 Physical basis . 112

4.3.1.1 Conservation of mass . 112

4.3.1.2 Boundary conditions . 113

4.3.1.3 Numerical implementation . 113

4.3.2 Model parameters . 113

4.3.3 Running a simulation . 114

4.4 Thermal Model . 114

4.4.1 Physical basis . 114

4.4.1.1 Thermal state . 114

4.4.1.2 Boundary conditions . 114

4.4.1.3 Numerical implementation . 115

4.4.2 Model parameters . 115

4.4.3 Running a simulation . 116

4.5 Dual continuum Hydrology model . 116

4.5.1 Physical basis . 116

4.5.1.1 Water Distribution . 116

4.5.1.2 Specificities of the IDS . 117

4.5.1.3 Specificities of the EDS . 117

4.5.2 Transfer equation . 117

4.5.2.1 Boundary conditions . 117

4.5.3 Model parameters . 118

4.5.3.1 General parameters . 118

4.5.3.2 IDS parameters . 118

4.5.3.3 EDS parameters . 118

4.5.4 Running a simulation . 119

4.6 Shreve’s Hydrology model . 119

4.6.1 Physical basis . 119

4.6.1.1 Water column . 119

4.6.1.2 Numerical implementation . 120

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CONTENTS 8

4.6.2 Model parameters . 120

4.6.3 Running a simulation . 120

4.7 Damage mechanics . 120

4.7.1 Physical basis . 120

4.7.1.1 Inferring damage from remote sensing data 121

4.7.1.2 Inverting for damage directly . 121

4.7.1.3 Post-processing to determine damage 121

4.7.2 Damage Evolution (Under Construction) . 122

4.8 Transient (time dependent projection) . 122

4.8.1 Physical basis . 122

4.8.1.1 Transient solution . 122

4.8.2 Model parameters . 122

4.8.2.1 Time stepping . 123

4.8.3 Forcing a transient . 123

4.8.4 Running a simulation . 124

4.9 Grounding Lines . 124

4.9.1 Physical basis . 124

4.9.1.1 Hydrostatic equilibrium . 124

4.9.1.2 Contact mechanics . 125

4.9.2 Model parameters . 125

4.9.3 Running a simulation . 125

4.10 Glacial Isostatic Adjusment (GIA) . 125

4.10.1 Physical basis . 125

4.10.2 Vertical surface displacement . 126

4.10.3 Numerical implementation . 128

4.10.4 Model parameters . 128

4.10.5 ISSM Configuration . 128

4.10.6 Running a simulation . 128

5 Parameterization of physical processes 129

5.1 Positive Degree Day (PDD) . 129

5.1.1 Physical basis . 129

5.1.1.1 Positive degree day method . 129

5.1.1.2 Temperature and precipitation forcing (Under development) 130

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CONTENTS 9

5.1.2 Model parameters . 130

5.1.3 Running a simulation . 131

5.2 Other surface mass balance models (SMB) . 131

5.2.1 SMB (default) . 131

5.2.2 SMB components . 131

5.2.3 SMB melt components . 132

5.2.4 SMB gradients method . 132

5.3 Basal friction . 132

5.3.1 Default Friction law . 132

5.3.2 Weertman Friction law . 133

5.3.3 Thin water layer friction law . 134

6 Cluster/Cloud computing 135

6.1 Cluster computing . 135

6.1.1 Setting up the environment to use the parallel mode 135

6.1.2 password-less SSH login . 135

6.1.2.1 Step 1: simplifying the way you ssh . 135

6.1.2.2 Step 2: creating an SSH public/private key 136

6.1.2.3 Step 3: SSH passthrough . 136

6.1.3 Tunneling . 136

6.2 Cloud computing . 137

6.3 Introduction . 137

6.4 Installation . 137

6.5 Configuration . 137

6.5.1 StarCluster configuration file for ISSM . 137

6.6 Running ISSM with StarCluster . 139

7 Advanced features 140

7.1 Inverse methods . 140

7.1.1 Introduction . 140

7.1.2 Cost functions . 140

7.1.2.1 Absolute misfit . 140

7.1.2.2 Relative misfit . 140

7.1.2.3 Logarithmic misfit . 141

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CONTENTS 10

7.1.2.4 Thickness misfit . 141

7.1.2.5 Drag gradient . 141

7.1.2.6 Thickness gradient . 141

7.1.3 Model parameters . 141

7.1.4 Minimization algorithms . 142

7.1.4.1 Brent search minimizers . 142

7.1.4.2 Toolkit for Advanced Optimization (TAO) 142

7.1.4.3 M1QN3 . 143

7.1.5 Running an inversion . 143

7.2 Rifts . 143

7.2.1 Rifts creation . 143

7.2.2 Rift tip refining . 144

7.2.3 Rifts in parameter file . 144

7.2.4 Solving for rifts . 144

7.2.5 Rifts plotting . 144

7.2.6 Rifts when using Yams mesh adaptation . 145

7.2.7 Adding rifts to an existing mesh . 145

7.3 Quantifications of Margins and Uncertainties with Dakota 146

7.3.1 Physical basis . 146

7.3.1.1 Mesh Partitioning . 146

7.3.1.2 Sensitivity . 146

7.3.1.3 Sampling . 147

7.3.2 Model parameters . 147

7.3.3 Building the CHACO and DAKOTA packages 148

7.3.4 Partitioning a Mesh . 148

7.3.5 Setting up the QMU . 148

7.3.5.1 For sensitivity . 148

7.3.5.2 For sampling . 149

7.3.5.3 Other simple default settings for both sampling and sensitivity 149

7.3.6 Setting your QMU variables . 149

7.3.7 Setting your diagnostics . 149

7.3.8 Running a simulation . 150

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CONTENTS 11

8 Plotting 151

8.1 MATLAB plots . 151

8.1.1 plotmodel . 151

8.1.2 Options . 152

8.1.2.1 axis . 152

8.1.2.2 view . 152

8.1.2.3 xlim, ylim, zlim . 152

8.1.2.4 caxis . 152

8.1.2.5 colorbar . 153

8.1.2.6 colormap . 153

8.1.2.7 log . 153

8.1.2.8 contourlevels . 154

8.1.2.9 contourticks . 154

8.1.2.10 contouronly . 155

8.1.2.11 streamlines . 155

8.1.2.12 edgecolor . 155

8.1.2.13 expdisp . 156

8.1.2.14 expstyle . 156

8.1.2.15 mask . 156

8.1.2.16 northarrow . 156

8.1.2.17 scaleruler . 157

8.1.2.18 title . 157

8.1.2.19 fontsize . 157

8.1.2.20 fontweight . 157

8.1.2.21 xlabel, ylabel . 157

8.1.3 Special plots . 157

8.1.3.1 basaldrag . 157

8.1.3.2 BC . 158

8.1.3.3 driving_stress . 158

8.1.3.4 elementnumbering . 159

8.1.3.5 elements_type . 159

8.1.3.6 vertexnumbering . 160

8.1.3.7 highlightelements . 160

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CONTENTS 12

8.1.3.8 highlightgrids . 161

8.1.3.9 icefront . 161

8.1.3.10 mesh . 162

8.1.4 Quiver plot . 162

8.1.4.1 ColorLevels . 162

8.1.4.2 Scaling . 163

8.1.4.3 Autoscale . 163

8.1.4.4 Density . 164

8.1.5 Cross section . 164

8.1.5.1 Resolution . 165

8.1.5.2 Show section . 165

9 Miscellaneous Tools 166

9.0.1 Mesh . 166

9.0.2 Model parameterization . 166

9.0.3 Mask . 166

9.0.4 Interpolation . 167

9.0.5 ARGUS files . 167

9.0.6 Results analysis . 167

10 FAQ 168

10.0.1 Compilation troubleshooting . 168

10.0.2 Using ISSM . 168

10.0.3 Other . 168

10.1 PETSc 3.2 . 168

10.1.1 Error message in configure.log, when compiling downloaded PLAPACK: 168

10.1.2 Running conftest on Pleiades . 169

10.2 PETSc 3.1 . 170

10.2.1 Error message in configure.log, when compiling downloaded PLAPACK: 170

10.2.2 Running conftest on Pleiades . 171

10.2.3 Error message when compiling ISSM: _intel_fast_memcpy 171

10.3 PETSc 2.3.2 . 172

10.3.1 Error message in configure.log, when compiling downloaded MUMPS: 172

10.3.2 Error message in configure.log, when compiling downloaded PLAPACK: 172

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CONTENTS 13

10.4 ISSM configuration and compilation . 173

10.4.1 MPICH2 linking error . 173

10.4.2 configure: error: Couldn’t find mex... check your installation of matlab 173

10.4.3 MATLAB MEX compile error . 174

10.4.4 X11 Library not found . 174

10.4.5 *** No rule to make target . 174

10.4.6 Error message when compiling, with unresolved symbols in Petsc 175

10.4.7 Linkage Error for drand48 and srand48 specifications in Windows 175

10.5 MATLAB’s interface . 175

10.5.1 MATLAB complains about __gfortran_transfer_array_write symbol 175

10.5.1.1 Option 1 (preferred) . 176

10.5.1.2 Option 2 (requires admin priviledges) 176

10.5.2 MATLAB complains GLIBCXX libraries . 176

10.5.3 MATLAB complains about intel_fast_memm symbol 177

10.6 Debugging with valgrind . 178

10.7 MPICH error messages . 179

10.8 svn tricks . 179

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

Chapter 1

Download

1.1 Introduction

1.1.1 Binaries

The easiest way to install ISSM is to download the pre-compiled binaries. No need to compile the
code, just open the compressed file.

1.1.2 Source Code

If you would like to install ISSM from source, you will need to download the source code first. The
source code of ISSM (see License below) is available from an SVN repository. In order to fetch a version
of the code, users will need to install SVN on their machine (It is usually installed by default on most
platforms). Once SVN has been installed, ISSM can be downloaded by the following command:

$ svn --username anon --password anon checkout http://issm.ess.uci.edu/svn/issm/issm/trunk

This command will download the lastest version of ISSM from the repository, onto the current local
directory. Users are free to choose whichever location they want.

If you downloaded the source code, you need to compile and install ISSM. Compilation of the ISSM
source code is theoretically possible on any platform. It has been succesfully carried out on Linux
(RedHat and ubuntu), Windows (9 and 10) and macOS (snow-leopard, Lion, Mountain Lion, Mav-
ericks, Yosemite and El Capitan). Here are some instructions to compile and install ISSM from the
source code:

• Linux/Mac

• Windows (under developement)

• Installation with AD capability (under developement)

Compilation is a more involved process, which is not recommended for beginners or casual users.

1.1.3 Become an ISSM developer !

anon users have read-only access. Users willing to actively participate in the development of ISSM can
contact us.

14

http://issm.jpl.nasa.gov/download/binaries/
http://subversion.tigris.org/
http://subversion.tigris.org/
http://subversion.tigris.org/
http://issm.jpl.nasa.gov/download/unix
http://issm.jpl.nasa.gov/download/windows
http://issm.jpl.nasa.gov/download/autodiff
mailto:issm@jpl.nasa.gov

CHAPTER 1. DOWNLOAD 15

1.1.4 License

Copyright (c) 2002-2017, California Institute of Technology.
All rights reserved. Based on Government Sponsored Research under contracts NAS7-1407 and/or
NAS7-03001.

Redistribution and use in source and binary forms, with or without modification, are permitted pro-
vided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of the California Institute of Technology (Caltech), its operating division the
Jet Propulsion Laboratory (JPL), the National Aeronautics and Space Administration (NASA),
nor the names of its contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-
ULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE CALIFORNIA INSTITUTE
OF TECHNOLOGY BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EX-
EMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABIL-
ITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.2 Binaries

The binaries can be downloaded on the ISSM website.

This is the easiest way to install ISSM. No need to compile the code, just open the compressed file
and ISSM is installed!

You will then need to open MATLAB and add ISSM tools to MATLAB’s path.

1.3 Source installation of ISSM on UN*X systems

1.3.1 Environment variables

The compilation of ISSM requires several environment variables. Add the following lines in your shell
environment script:

• ~/.bashrc (or ~/.bash_profile on Mac)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://issm.jpl.nasa.gov/download/
http://issm.jpl.nasa.gov/documentation/addpath/

CHAPTER 1. DOWNLOAD 16

#ISSM
export ISSM_DIR=ISSMPATH
source $ISSM_DIR/etc/environment.sh

• ~/.cshrc

#ISSM
setenv ISSM_DIR ISSMPATH
source $ISSM_DIR/etc/environment.csh

Where ISSMPATH is the path of ISSM main directory (ex: /home/user1/svn/issm/trunk).

1.3.2 macOS

In order to install ISSM on macOS, your system must have Xcode, which can be installed from the
Mac App Store. You also need the Command Line Tools, which can be installed using

xcode-select --install

Unfortunately Xcode doesn’t contain a Fortran compiler, which is required for some packages of PETSc.
Therefore you will have to install one. GFortran Binaries are available on the GCCWiki at the following
address: http://gcc.gnu.org/wiki/GFortranBinaries

1.3.3 External packages installation

All ISSM external packages are located in the directory externalpackages of the trunk. Several
packages may be installed depending on what users want to do. At least the following packages must
be installed:

• autotools

• mpich (to be installed first, recommended version: 3.0)

• cmake

• petsc (after mpich and cmake, recommended version: 3.6)

• m1qn3

• triangle

To run ISSM with a Python interface, the following packages must also be installed:

• python (recommended version: 2.7)

• nose

• blas

• lapack

• git

• numpy

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://developer.apple.com/xcode/
http://developer.apple.com/xcode/
http://www.mcs.anl.gov/petsc/
http://gcc.gnu.org/wiki/HomePage
http://gcc.gnu.org/wiki/GFortranBinaries

CHAPTER 1. DOWNLOAD 17

• cython

• scipy

• hdf5

• netcdf

• netcdf-python

For each library, different installation scripts may exist depending on the version to be installed and
the machine operating system. Users should use the installation script that is the closest to their
environment. For example:

$ cd $ISSM_DIR/externalpackages/mpich
$./install-3.0-macosx64.sh

There is no guarantee the compilation will work on all systems. Some tweaking of the installation script
may be involved. Especially, the configuration part of the install. (See compilation troubleshooting)

Note: after the installation of each package, one should source the environment:

$ source $ISSM_DIR/etc/environment.sh

1.3.4 ISSM compilation

ISSM relies on autotools to make source-code packages portable to many Unix-like systems. The last
step consists in generating the Makefiles needed to compile ISSM. First, ISSM must be reconfigured:

$ cd $ISSM_DIR
$ autoreconf -ivf

ISSM can then be configured. Here is an example of configuration script for a macOS machine with the
matlab interface (you will need to change the path to MATLAB.We are using /Applications/MATLAB_R2015b.app/
as an example).

./configure \
--prefix=$ISSM_DIR \
--with-matlab-dir="/Applications/MATLAB_R2015b.app/" \
--with-triangle-dir="$ISSM_DIR/externalpackages/triangle/install" \
--with-mpi-include="$ISSM_DIR/externalpackages/mpich/install/include" \
--with-mpi-libflags="-L$ISSM_DIR/externalpackages/mpich/install/lib/ -lmpich" \
--with-petsc-dir="$ISSM_DIR/externalpackages/petsc/install" \
--with-metis-dir="$ISSM_DIR/externalpackages/petsc/install" \
--with-blas-lapack-dir="$ISSM_DIR/externalpackages/petsc/install" \
--with-scalapack-dir="$ISSM_DIR/externalpackages/petsc/install/" \
--with-mumps-dir="$ISSM_DIR/externalpackages/petsc/install/" \
--with-m1qn3-dir="$ISSM_DIR/externalpackages/m1qn3/install" \
--with-numthreads=2

If you get the following error: ld: library not found for -lflapack, remove the line --with-blas-lapack-dir
(generally on macOS).

For the python interface, it should look like:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://issm.jpl.nasa.gov/documentation/faq/

CHAPTER 1. DOWNLOAD 18

./configure \
--prefix="$ISSM_DIR" \
--with-triangle-dir="$ISSM_DIR/externalpackages/triangle/install" \
--with-python-dir="$ISSM_DIR/externalpackages/python/install" \
--with-python-numpy-dir="$ISSM_DIR/externalpackages/python/install/lib/python2.7/site-packages/numpy/core/include/numpy" \
--with-mpi-include="$ISSM_DIR/externalpackages/mpich/install/include" \
--with-mpi-libflags="-L$ISSM_DIR/externalpackages/mpich/install/lib -lpmpich -lmpich -lmpl" \
--with-petsc-dir="$ISSM_DIR/externalpackages/petsc/install" \
--with-scalapack-dir="$ISSM_DIR/externalpackages/petsc/install/" \
--with-mumps-dir="$ISSM_DIR/externalpackages/petsc/install/" \
--with-metis-dir="$ISSM_DIR/externalpackages/petsc/install/" \
--with-m1qn3-dir="$ISSM_DIR/externalpackages/m1qn3/install" \
--with-numthreads=2

The configuration file should be called configure.sh and placed in $ISSM_DIR. For most platforms,
you might need to make some adjustments to the configuration options mentioned above.

If the configuration went without any error, ISSM can now be compiled:

$ cd $ISSM_DIR
$ make
$ make install

ISSM installation is done!

1.4 Source installation of ISSM on Windows (under develope-
ment)

1.4.1 Win10

Be sure to use an account name that does not have spaces in it, as this could be an issue with Cygwin.

1.4.2 Development Environment

Before you can begin to build ISSM you will need to configure your development environment. This
will require you install the following:

1. MATLAB

2. Cygwin

3. Visual Studio

1.4.2.1 Installing MATLAB

Installing MATLAB is fairly straightforward. However, it can be beneficial to install in a directory
chain that contains no spaces.

Keep in mind that you can use older versions of MATLAB, but we have only tested using R2015a and
R2016a.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 1. DOWNLOAD 19

1.4.2.2 Cygwin

You will need Cygwin installed on your Windows platform to manage the compilation. Cygwin emu-
lates unix behaviour on windows machines. The compilation will still be carried out by the windows
SDK compiler, but the environment driving the compilation will be the unix-like Cygwin. When you
download Cygwin, make sure that you install it in the C:\Cygwin directory.

You will find the Cygwin setup executable on the www.cygwin.com webpage. Here is a link to it:
http://cygwin.com/setup. Download this file to C:\Cygwin and be sure to reuse it when you want to
update your current Cygwin installation. Do not download setup.exe twice!

You will need the following packages downloaded to carry out the compilation of ISSM successfully, so
be sure to include them in your Cygwin install:

• subversion

• vim (or any other editor)

• patch

• make: The GNU version of the ’make’ utility

• python: Python language interpreter

• unzip

Don’t worry if you forget any packages, as you can always close Cygwin and run the installer again if
you find that you need to install other packages.

1.4.3 Visual Studio

Technically, you should be able to compile ISSM with any compiler set. However, MATLAB only
officially supports Microsoft’s compilers. As such, you will need to install Microsoft’s Visual Studio in
order to continue through this guide.

Most versions of Visual Studio will probably work, but we recommend installing the newest community
version, which can be found here: https://www.visualstudio.com/. As of June 2016, the version is
14.0 a.k.a Community 2015.

Keep in mind that Visual Studio is a integrated development environment (IDE) that is used to develop
for various environments and in different languages. As such, the default installation will not suffice.

You need to make sure that you select C++ as a language and the Windows 10 Software Development
Kit (SDK).

Follow Figure 1 if you need help selecting the Visual Studio optional packages:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://cygwin.com/setup.exe
https://www.visualstudio.com/

CHAPTER 1. DOWNLOAD 20

Figure 1.1: Figure 1

1.4.4 Building ISSM

1.4.4.1 Downloading ISSM

Download issm into your Cygwin home directory (note: this is different from your Windows home
directory).

In Cygwin, run the following commands:

mkdir issm && cd issm
svn co --username anon --password anon http://issm.ess.uci.edu/svn/issm/issm/trunk

Once finished, it is now time to set important environment variables. You can do this by setting and
exporting the environment variables at the Cygwin command line, or by modifying your ’.bashrc’,
or whatever appropriate shell you are using. (Note: if you export from the command line, then you
will have to do this every time you start a new session). In either case, the following lines should be
executed or added to your specific rc file:

export ISSM_DIR="$HOME/issm/trunk"
export MATLAB_DIR=’/cygdrive/c/Program\ Files\ \(x86\)/MATLAB/R2016a’

The above lines assume that you have installed and downloaded both MATLAB and ISSM into the
default locations detailed earlier. If you have deviated from these instructions then simply modify the
paths to their appropriate locations.

Finally, you need to source two scripts. This can be accomplished by executing the following commands:

source $ISSM_DIR/etc/environment.sh
source $ISSM_DIR/externalpackages/windows/configs/sdk10.0-win64.sh

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 1. DOWNLOAD 21

Again, this assumes that you have installed everything in the default locations. If you did not, then
you will have to modify ’sdk10.0-win64.sh’ to reflect the different directories.

1.4.4.2 Checking Your Build Environment

Before trying to compile the externalpackages, you need to be sure that the Microsoft Visual Studio
compiler ’cl.exe’ is working. To make sure, create a simple hello world example:

hello.cpp

#include <iostream>
int main(){
std::cout << "Hello World!\n";
return 0;
}

Try to compile it by doing: cl hello.cpp

If this does not work, do not go any further! Unfortunately, this is a complicated build as compared
to other platforms, so any number of things can go wrong. Make sure the following things are correct:

1. Your environment variables are set correctly.

2. You sourced the two scripts in the right order.

3. Cygwin, MATLAB, Visual Studio are installed in the default directories of you modified the
appropriate variables/scripts to reflect these differences

4. Visual Studio was installed with C++ support and with SDK 10.0.10240

If everything is correct, but you sill cannot get the hello world example to work, then please contact
us on our forum or by email and we’ll be happy to help!

1.4.4.3 Installing External Packages

Now you can start installing the following external packages. This is done by changing directory into
the appropriate directory within ’externalpackages’ and running the appropriate scripts.

• For autotools, use install-win.sh

• For Petsc, use install-3.6-win10.sh

• For metis, use install-4.0-win10.sh

• For triangle, use install-win10.sh

1.4.4.4 Building ISSM

Once these externalpackages have been compiled, you can prepare the build system:

$ cd $ISSM_DIR
$ autoreconf -ivf

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 1. DOWNLOAD 22

ISSM can then be configured. Here is an example of configuration script for windows 10:

./configure --prefix=$ISSM_DIR \
--with-vendor=MSVC-Win64 \
--with-cxxoptflags=’’ \

--disable-static \
--enable-standalone-libraries \
--with-fortran=no \
--without-Gia \
--without-kriging \
--without-kml \
--with-matlab-dir=$MATLAB_DIR \
--with-triangle-dir="$ISSM_DIR/externalpackages/triangle/install" \
--with-petsc-dir="$ISSM_DIR/externalpackages/petsc/install" \
--with-metis-dir=$ISSM_DIR/externalpackages/metis/install \
--with-blas-lapack-dir=$ISSM_DIR/externalpackages/petsc/install/lib/ \
--with-mpi-libdir="$ISSM_DIR/externalpackages/petsc/install/lib" \
--with-mpi-libflags="-Wl,libpetsc.lib" \
--with-mpi-include="$ISSM_DIR/externalpackages/petsc/install/include/petsc/mpiuni"

The configuration file must be placed in $ISSM_DIR and named configure.sh.

Finally, you can configure, make and make install:

./configure.sh
make
make install

That should complete the installation!

1.4.5 How to Setup a Cron Job

Download exim and cron from cygwin setup. Run exim-config (don’t forget to launch your cygwin
terminal as Administrator). If asked for a daemon name, type ntsec. Also, if cron complains about
sendmail, symlink /usr/lib/sendmail to /usr/sbin/sendmail. Then link /usr/sbin/sendmail to
/usr/bin/exim. Alternatively, if you have an smtp server, you can download and configure ssmtp.
Run ssmtp-config as Administrator and link /usr/sbin/sendmail to /usr/bin/ssmtp. After the
email has been configured, run cron-config as Administrator.

1.5 Source installation of ISSM with AD capability (under de-
velopement)

Automatic Differentiation is only supported for Linux and Mac. Please follow the steps of a regular
installation first and make sure it is working before adding AD.

1.5.1 External packages installation

The following additional external packages need to be installed:

• adjoinablempi

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://issm.jpl.nasa.gov/download/unix
http://issm.jpl.nasa.gov/download/unix

CHAPTER 1. DOWNLOAD 23

• adolc

Note: after the installation of each package, one should source the environment:

$ source $ISSM_DIR/etc/environment.sh

1.5.2 ISSM compilation

The configuration script of ISSM needs to include the following additional options:

--with-adolc-dir=$ISSM_DIR/externalpackages/adolc/install \
--with-ampi-dir=$ISSM_DIR/externalpackages/adjoinablempi/install \

As of today, AD is not supported with PETSc, but you will need some of PETSc’s packages to solve
linear systems so you should take out the --with-petsc-dir line of the configuration script but keep
the other PETSc related lines such as MUMPS or scalapack. You will also need to deactivate the
kriging capability of ISSM with the --without-kriging option. Here is an example of configuration
script:

./configure \
--disable-static \
--without-kriging \
--without-kml \
--without-Gia \
--prefix=$ISSM_DIR \
--with-matlab-dir="/Applications/MATLAB_R2015b.app/" \
--with-triangle-dir="$ISSM_DIR/externalpackages/triangle/install" \
--with-mpi-include="$ISSM_DIR/externalpackages/mpich/install/include" \
--with-mpi-libflags="-L$ISSM_DIR/externalpackages/mpich/install/lib/ -lmpich" \
--with-metis-dir="$ISSM_DIR/externalpackages/petsc/install" \
--with-blas-lapack-dir="$ISSM_DIR/externalpackages/petsc/install" \
--with-scalapack-dir="$ISSM_DIR/externalpackages/petsc/install/" \
--with-mumps-dir="$ISSM_DIR/externalpackages/petsc/install/" \
--with-adolc-dir=$ISSM_DIR/externalpackages/adolc/install \
--with-ampi-dir=$ISSM_DIR/externalpackages/adjoinablempi/install \
--with-numthreads=2

You can now reconfigure and recompile ISSM, it is now fully adjoinable.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

Chapter 2

Getting started

2.1 Loading ISSM tools

By default MATLAB and Python cannot locate ISSM functions. Therefore you must execute the
addpath command within MATLAB to change the so-called matlabpath appropriately (and sys.path.append
in Python).

2.1.1 MATLAB

Assuming that ISSM is installed in /usr/local/issm/trunk, you should do:

addpath /usr/local/issm/trunk/bin/ /usr/local/issm/trunk/lib/

You can verify that ISSM works by executing

issmversion

You should get a message similar to this:

Ice Sheet System Model (ISSM) Version 4.4
(website: http://issm.jpl.nasa.gov contact:issm@jpl.nasa.gov)

Build date: Wed Sep 18 14:00:06 PDT 2013
Copyright (c) 2009-2013 California Institute of Technology

to get started type: issmdoc

Normally, you will have to enter the addpath command every time MATLAB is started. This can be
avoided if the addpath command is added to an alias:

alias matlab=’matlab -r "addpath $ISSM_DIR/bin $ISSM_DIR/lib"’

2.1.2 Python

In Python, you can add ISSM’s function to the current path with the following command:

24

CHAPTER 2. GETTING STARTED 25

import sys
sys.path.append(’/usr/local/issm/trunk/bin/’)
sys.path.append(’/usr/local/issm/trunk/lib/’)

You can verify that ISSM works by executing

from issmversion import issmversion

You should get a message similar to this:

Ice Sheet System Model (ISSM) Version 4.4
(website: http://issm.jpl.nasa.gov contact:issm@jpl.nasa.gov)

Build date: Wed Sep 18 14:00:06 PDT 2013
Copyright (c) 2009-2013 California Institute of Technology

2.1.3 Developers

Developers use the MATLAB and Python scripts in $ISSM_DIR/src/m instead of $ISSM_DIR/bin. The
path needs to be different.

In MATLAB:

addpath /usr/local/issm/trunk/src/m/dev
devpath;

or,

matlab -nodesktop -nosplash -r "addpath $ISSM_DIR/src/m/dev; devpath;"

In Python:

export PYTHONSTARTUP=$ISSM_DIR/src/m/dev/devpath.py

or for IPython users:

ipython -i $ISSM_DIR/src/m/dev/devpath.py

In the configuration script, the following option should be added to prevent MATLAB and Python
scripts from being added to $ISSM_DIR/bin

--enable-development

2.2 Model class

2.2.1 MATLAB’s model object

All the data belonging to a model (geometry, node coordinates, results, etc.) is held in the same
MATLAB/Python object model. To create a new model, one can type the following command in
MATLAB’s Command window:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 2. GETTING STARTED 26

>> md=model;

This will create a new model named "md" whose class is "model". The information contained in the
model "md" are grouped by class, that contain fields related to a particular aspect of the model (e.g.
mesh, material properties, friction, stressbalance solution, results of the runs, etc.) When one creates
a new model, all these fields are empty or NaN (not a number), but "md" is ready to be used as a
model. The list of these classes is displayed when typing:

>> md
md =

mesh : [1x1 mesh] -- mesh properties
mask : [1x1 mask] -- defines grounded and floating elements

geometry : [1x1 geometry] -- surface elevation, bedrock topography, ice thicknes...
constants : [1x1 constants] -- physical constants

surfaceforcings : [1x1 surfaceforcings] -- surface forcings
basalforcings : [1x1 basalforcings] -- bed forcings

materials : [1x1 materials] -- material properties
friction : [1x1 friction] -- basal friction/drag properties

flowequation : [1x1 flowequation] -- flow equations
timestepping : [1x1 timestepping] -- time stepping for transient models

initialization : [1x1 initialization] -- initial guess/state
rifts : [1x1 rifts] -- rifts properties
debug : [1x1 debug] -- debugging tools (valgrind, gprof)

verbose : [1x1 verbose] -- verbosity level in solve
settings : [1x1 settings] -- settings properties

solver : [1x1 solver] -- PETSc options for each solution
cluster : [1x1 none] -- cluster parameters (number of cpus...)

balancethickness : [1x1 balancethickness] -- parameters for balancethickness solution
stressbalance : [1x1 stressbalance] -- parameters for stressbalance solution
groundingline : [1x1 groundingline] -- parameters for groundingline solution

hydrology : [1x1 hydrology] -- parameters for hydrology solution
masstransport : [1x1 masstransport] -- parameters for masstransport solution

thermal : [1x1 thermal] -- parameters for thermal solution
steadystate : [1x1 steadystate] -- parameters for steadystate solution

transient : [1x1 transient] -- parameters for transient solution
autodiff : [1x1 autodiff] -- automatic differenciation parameters

flaim : [1x1 flaim] -- flaim parameters
inversion : [1x1 inversion] -- parameters for inverse methods

qmu : [1x1 qmu] -- dakota properties
results : [1x1 struct] -- model results

radaroverlay : [1x1 radaroverlay] -- radar image for plot overlay
miscellaneous : [1x1 miscellaneous] -- miscellaneous fields

2.2.2 Saving/loading a model

One can save the model with all its fields so that the saved file contains all the information in the
model, type the following command:

>> save squaremodel md

This will create a file squaremodel.mat made from the model md. To load this file, type:

>> loadmodel squaremodel

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 2. GETTING STARTED 27

the loaded model will be named md.

2.3 Square ice shelf tutorial

This is an example of velocity computation in steady state for a square ice shelf. First thing, go to the
trunk/ and launch MATLAB. Then go to examples/SquareIceshelf/:

$ cd $ISSM_DIR
$ matlab
>> cd examples/SquareIceShelf/

Then, at the MATLAB prompt, you can create an empty model structure by typing:

>> md=model;

Create a mesh of the domain outline with a resolution of 50,000 meters:

>> md=triangle(md,’DomainOutline.exp’,50000);

Define the glacier system as an ice shelf (no island):

>> md=setmask(md,’all’,’’);

Parameterize the model with the file Square.par:

>> md=parameterize(md,’Square.par’);

Define all elements as SSA:

>> md=setflowequation(md,’SSA’,’all’);

Compute the velocity field of the ice shelf:

>> md=solve(md,StressbalanceSolutionEnum);

Visualize the velocity:

>> plotmodel(md,’data’,md.results.StressbalanceSolution.Vel);

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

Chapter 3

Tutorials

3.1 Dataset download

To run the tutorials, you will need to download the following datasets and put them in trunk/examples/Data:

• Square ice shelf dataset

• SeaRISE Antarctica v0.75

• SeaRISE Greenland dev1.2

• MEaSUREs Antarctic velocities

• Pine Island ice thickness cross overs (dakota)

• Jason Box’s SMB data

• Jakobshavn Isbrae bed map (we only need Jakobshavn_2008_2011_Composite_XYZGrid.txt)

3.2 Mesh adaptation

3.2.1 Goals

In this tutorial, we show how to use the different meshers of ISSM:

• Learn how to use the different meshers of ISSM:

– squaremesh for square domains (ISMIP)

– roundmesh for round domain (EISMINT)

– triangle (from J. Shewchuk)

– bamg (adapted from F. Hecht)

• Use anisotropic mesh adaptation to optimize the mesh resolution spatially

Go to trunk/examples/Mesh/ to do this tutorial.

28

http://issm.jpl.nasa.gov/files/workshop2014/SquareShelf.nc
http://websrv.cs.umt.edu/isis/images/c/cc/Antarctica_5km_withshelves_v0.75.nc
http://websrv.cs.umt.edu/isis/images/e/e9/Greenland_5km_dev1.2.nc
https://issm.ess.uci.edu/files/tutorials/Antarctica_ice_velocity.nc
http://issm.jpl.nasa.gov/files/workshop2014/CrossOvers2009.mat
http://issm.jpl.nasa.gov/files/examples/Box_Greenland_SMB_monthly_1840-2012_5km_cal_ver20141007.nc
https://data.cresis.ku.edu/data/grids/old_versions/Jakobshavn_2008_2011_Composite.zip

CHAPTER 3. TUTORIALS 29

3.2.2 Squaremesh

squaremesh generates structured uniform meshes for rectangular domains.

3.2.2.1 Usage

>> md=model;
>> md=squaremesh(md,100,200,15,25);

squaremesh takes the following arguments:

1. model

2. x-length (meters)

3. y-length (meters)

4. number of nodes along the x axis

5. number of nodes along the y axis

3.2.2.2 Example

The previous command creates the mesh shown below:

>> plotmodel(md,’data’,’mesh’);

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 30

3.2.3 Roundmesh

roundmesh generates unstructured uniform meshes for circular domains.

3.2.3.1 Usage

>> md=roundmesh(model,100,10);

roundmesh takes the following arguments:

1. model

2. radius (meters)

3. element size (meters)

3.2.3.2 Example

The previous command creates the mesh shown below:

>> plotmodel(md,’data’,’mesh’);

3.2.4 Triangle

triangle is a very fast algorithm for mesh generation. Developed by J Shewchuk, it generates un-
structured triangular meshes.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://www.cs.cmu.edu/~quake/triangle.html

CHAPTER 3. TUTORIALS 31

3.2.4.1 Usage

>> md=triangle(model,’Square.exp’,.2);

triangle takes the following arguments:

1. model

2. ARGUS file of the domain outline (.exp extension, see here for more details)

3. average element size (meters)

The previous command creates the following mesh:

>> plotmodel(md,’data’,’mesh’);

You can change the resolution from 0.2 to 0.05 to get a higher resolution.

3.2.5 Bamg

BAMG stands for Bidimensional Anisotropic Mesh Generator. It has been developed by Frederic Hecht,
and was released in 2006 after more than 10 years of development. It is now part of FreeFEM++.
The algorithm that is available on ISSM is inspired from this original software but has been entirely
rewritten.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://issm.jpl.nasa.gov/documentation/mesh/
http://www.ann.jussieu.fr/hecht/
http://www.freefem.org/ff++/

CHAPTER 3. TUTORIALS 32

3.2.5.1 Usage

>> md=bamg(model,...);

bamg takes as it’s first argument a model, and then pairs of options

1. model

2. pairs of options (type help bamg to get a full list of options)

3.2.5.2 Uniform mesh

To create a non-uniform mesh, use the following options:

1. ’domain’ followed by the domain name

2. ’hmax’ followed by the size (meters) of each triangle

>> md=bamg(model,’domain’,’Square.exp’,’hmax’,.05);

The previous command will create the following mesh (use plotmodel(md,’data’,’mesh’) to visualize
the mesh):

Note that the nodes are not as randomly distributed as triangle. The strength of BAMG is not for
uniform meshes but for automatic mesh adaptation based on a metric.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 33

3.2.5.3 Non-Uniform mesh

To create a non-uniform mesh, use the following options:

1. ’domain’ followed by the domain name

2. ’hvertices’ followed by the element size for each vertex of the domain outline

In our example, Square.exp has 4 vertices. If we want a resolution of 0.2, except in the vicinity of the
third node, we use the following commands:

>> md=model;
>> hvertices=[0.2;0.2;0.005;0.2];
>> md=bamg(md,’domain’,’Square.exp’,’hvertices’,hvertices);

Use the plotmodel(md,’data’,’mesh’) command to visualize the newly defined mesh:

3.2.5.4 Mesh adaptation

We can use observations to generate a mesh that is adapted to the solution we are trying to model.
Given a solution field, bamg will calculate a metric based on the field’s Hessian matrix (second deriva-
tive) to generate an anisotropic mesh that minimize the interpolation error (assuming that linear finite
elements are used).

For a first example, we are going to use the observations given by the function shock.m. It generates
a discontinuity that requires the mesh to be highly refined along a circle.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 34

First, we generate a simple uniform mesh. We interpolate the observations on the vertices of this mesh:

>> md=bamg(model,’domain’,’Square.exp’,’hmax’,.05);
>> vel=shock(md.mesh.x,md.mesh.y);
>> plotmodel(md,’data’,vel,’edgecolor’,’w’);

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 35

With a simple uniform mesh, the discontinuity is not captured. It is best to start with a finer mesh,
which captures the discontinuity rather well, and interpolate the observations on this finer mesh to
adapt the mesh anisotropically.

>> md=bamg(model,’domain’,’Square.exp’,’hmax’,.005);
>> vel=shock(md.mesh.x,md.mesh.y);

Now, we call bamg a second time to adapt the mesh according the vel. We do not reinitialize md
and call bamg again without specifying the ’domain’, as a first mesh already exists in the model. We
provide the following options:

1. ’field’ followed by vel, the field we want to adapt the mesh to

2. ’err’ the allowed interpolation error (Here, the field must be captured within 0.05)

3. ’hmin’ minimum edge length

4. ’hmax’ maximum edge length

>> md=bamg(md,’field’,vel,’err’,0.05,’hmin’,0.005,’hmax’,0.3);
>> vel=shock(md.mesh.x,md.mesh.y);
>> plotmodel(md,’data’,vel,’edgecolor’,’w’);

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 36

You can change the option ’err’ to 0.03, to see the effect of ’err’. The ratio between two consecutive
edges can be controled by the option ’gradation’.

>> md=bamg(model,’domain’,’Square.exp’,’hmax’,.005);
>> vel=shock(md.mesh.x,md.mesh.y);
>> md=bamg(md,’field’,vel,’err’,0.03,’hmin’,0.005,’hmax’,0.3,’gradation’,3);
>> vel=shock(md.mesh.x,md.mesh.y);
>> plotmodel(md,’data’,vel,’edgecolor’,’w’);

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 37

We can also force the triangles to be equilateral by using the ’anisomax’ option, which specifies the
maximum level of anisotry (between 0 and 1, 1 being fully isotropic).

>> md=bamg(model,’domain’,’Square.exp’,’hmax’,.005);
>> vel=shock(md.mesh.x,md.mesh.y);
>> md=bamg(md,’field’,vel,’err’,0.03,’hmin’,0.005,’hmax’,0.3,’gradation’,1.3,’anisomax’,1);
>> vel=shock(md.mesh.x,md.mesh.y);
>> plotmodel(md,’data’,vel,’edgecolor’,’w’);

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 38

You can also try to refine a mesh using the function circles.m, which is provided in the same directory.

3.2.5.5 Mesh refinement in a specific region

It is sometimes necessary to specify a mesh resolution for an area of interest. We will use the same
example as before. The first step consists of creating an ARGUS file that defines the region where we
want to refine the mesh.

We first plot vel and we call the function exptool to create a file refinement.exp that defines this
region. Select add a contour (closed). Draw a contour over a given region, hit enter when you are
done, and then select quit. You should now see the refinement.exp file in the current directory.

>> plotmodel(md,’data’,vel,’edgecolor’,’w’);
>> exptool(’refinement.exp’)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 39

Now, we are going to create a vector that specifies, for each vertex of the existing mesh, the resolution
of the adapted mesh. We use NaN for the vertices we do not want to change. So in this example, this
will be a vector of NaN, except for the vertices in refinement.exp, where we want a resolution of 0.02:

>> h=NaN*ones(md.mesh.numberofvertices,1);
>> in=ContourToNodes(md.mesh.x,md.mesh.y,’refinement.exp’,1);
>> h(find(in))=0.02;
>> plotmodel(md,’data’,in,’edgecolor’,’w’);

You will see that all the vertices that are in refinement.exp have a value of 1 (they are inside the
contour), and the others are 0.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 40

Now, we call bamg a third time, with the specified resolution for the vertices that are in refinement.exp:

>> vel=shock(md.mesh.x,md.mesh.y);
>> md=bamg(md,’field’,vel,’err’,0.03,’hmin’,0.005,’hmax’,0.3,’hVertices’,h);
>> vel=shock(md.mesh.x,md.mesh.y);
>> plotmodel(md,’data’,vel,’edgecolor’,’w’);

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 41

3.2.5.6 Another example

If you would like to try another example, you can use the function cricles.m instead of shock.m. It
is also a 1x1 square but with a pattern that inclused five circles.

3.3 Inverse method

3.3.1 Goals

• Learn how to use the model to invert for ice rigidity (B) and basal friction from surface velocities

• Being able to choose the right cost functions, with the right weights

• Understand the limitations of inversions

3.3.2 Introduction

Several model input parameters, such as the ice rigidity B (md.materials.rheology_B) and basal
fricion α (md.friction.coefficient), are difficult to measure remotely and are critical controls on
ice dynamics.

To get a good guess of what these parameters are, we use inversions. Inversions consist in inferring
unknown parameters using additional observations. Here, we use surface velocities to infer our unknown
input parameters, by minimizing the misfit between the observed and modeled velocities. For example,
our cost function could be:

J (v) =

∫
S

1

2

((
vx − vobs

x

)2
+
(
vy − vobs

y

)2)
dS (3.1)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 42

And so we would optimize our unknown model input to minimize the cost function J .

Inversions where first introduced to glaciology by MacAyeal [1993] for an SSA model, and extended
since to 3d models for other model parameters.

To illustrate this method, we are going to perform a twin experiment. We give ourselves a rigidity
field (B) and use the modeled velocities as synthetic observation in a second run, where we start from
another initial rigidity field, and see if we can recover the rigidity field that was used to generate the
observations.

3.3.3 Hands on 1 (ice rigidity, B)

3.3.3.1 Setp 1: Generating Observations

First, go to trunk/examples/Inversion/ and start MATLAB. We will start by creating a new model
and generate our synthetic observations. Open the runme.m and ensure that step=1 at the top of the
file. Execute this first step:

>> runme

You will see on the left our prescribed rigidity, B, and to the right the calculated velocities. We choose
a pattern with 2 distinct values for B for the upper left region, and stiffer ice for the lower right, with
a sharp transition.

In the next step, we our going to change the rigidity to something uniform, use our previously calculated

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 43

velocities (from step 1) as abservations, and see if we can recover that initial pattern that was used to
generate the observations.

3.3.3.2 Step 2: Initial guess and initial velocity

We now change the rigidity, B, and make it uniform. The results of the previous step are taken as
observations (but we will only use them in step 3). Open runme.m and set step=2. Save the file and
execute step 2 in MATLAB as above.

We now see that the left panel is constant, and the velocity is symetrical. This is our initial guess for
B and our initial modeled velocity. In the next step, we are going to tune B, so that the modeled
velocity is as close as possible to the velocity of step 1.

3.3.3.3 Step 3: inverting for B

We perform here the inversion of B. Open runme.m and set the step as step=3.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 44

The general pattern is right (stiffer ice in the lower right), but it is noisy. Inverse problems are ill-
posed: a solution might not exist, might not be unique, and might not depend continuously on input
data. One of the consequences is that the inferred pattern for B is not smooth, and these wiggles
or not physical. Adding regularization that penalizes wiggles in the control parameter stabilizes the
inversion.

3.3.3.4 Step 4: Adding regularization

Here, we would like to add a term of regularzation to our cost function:

J (B) =

∫
S

w1
1

2

((
vx − vobs

x

)2
+
(
vy − vobs

y

)2)
dS +

∫
b

w2
1

2
‖∇B‖2db (3.2)

The second term, known as Tikhonov regularization, penalizes strong gradients in B. Since the in-
version tries to minimize our cost function J , the optimization algorithm will try to also reduce the
second term.

w1 and w2 are the weights associated to each component of the cost function. To have more regular-
ization, one should increase w2 (or decrease w1), and vice versa.

Set step=4 in the runme.m file and execute it. Your results should now look like this:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 45

We successfully reconstructed the pattern of ice rigidity, but we could not capture the sharp transition
between high and low rigidity because of the regularization that we had to introduce to stabilize the
inversion.

3.3.4 Hands on 2 (friction)

We would like to do the same twin experiment here, but invert for basal friction of a grounded glacier.
Here, you are going to make modifications to the runme.m script.

3.3.4.1 Changes to step 1

1. The mask is now all grounded

2. Increase bed (md.geometry.base) and surface elevation (md.geometry.surface) by 100 meters

3. B (md.materials.rheology_B) is now uniform = 1.8x108

4. Friction coefficient: 50, and 10 for 600,000<x<400,000

5. change the plotmodel command and plot md.friction.coefficient instead, between 0 and
100.

After running step 1 again, you should get the following figure.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 46

If you don’t, then double check your changes before looking at the solutions below. We are modeling
here a glacier flowing over a region where there is a lot of sliding. We want to see if the inversion can
reconstruct this region of low friction.

3.3.4.2 Solutions to step 1

%Generate observations
md = model;
md = triangle(md,’DomainOutline.exp’,100000);

%CHANGES START
md = setmask(md,’’,’’);
%CHANGES END

md = parameterize(md,’Square.par’);

%CHANGES START
md.geometry.base=md.geometry.base+100;
md.geometry.surface=md.geometry.surface+100;
md.materials.rheology_B(:)=1.8e8;
md.friction.coefficient(:)=50;
pos=find(md.mesh.x>400e3 & md.mesh.x<600e3);
md.friction.coefficient(pos)=10;
%CHANGES END

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 47

md = setflowequation(md,’SSA’,’all’);
md.cluster = generic(’np’,2);
md = solve(md,StressbalanceSolutionEnum());

%CHANGES START
plotmodel(md,’axis#all’,’tight’,’data’,md.friction.coefficient,’caxis’,[0 100],’title’,’"True" coef’,...

’data’,md.results.StressbalanceSolution.Vel,’title’,’"observed velocities"’)
%CHANGES END

save model1 md

3.3.4.3 Changes to step 2

For step 2, we now want to set our new first guess for the basal friction to a uniform value.

1. set the friction (md.friction.coefficient) to a uniform value of 50

2. change the plotmodel command and plot md.friction.coefficient instead, between 0 and
100.

After running step 2, you should get the following figure:

if you don’t... double check your changes. As you can see, the velocity does not show any fast flowing
ice stream in the center of the domain, as expected since the friction is uniform.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 48

3.3.4.4 Changes to step 3

We now want to invert for basal friction and see if we can reconstruct the zone of sliding. We need to
change what we are inverting for, and change the optimization parameters:

• We now invert for ’FrictionCoefficient’

• Do we keep the same cost function? yes for now...

• We want the parameter to be between 1 and 100

After running step 3, you should get the following figure:

if you don’t, the solutions are below. As you can see, we get more sliding close to the front, but the rest
of the domain is unchanged. And that’s because when we look at the velocity (right), it does capture
the fast spot close to the front, so in terms of cost function, the inversion did a great job in matching
the observation. But if we look at the log of the velocity (we are adding one to avoid log(0)):

plotmodel(md,’data’,md.inversion.vel_obs+1,’data’,md.results.StressbalanceSolution.Vel+1,’log#all’,10,’caxis#all’,[1
400])

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 49

we clearly see the zone of fast sliding in the observations but not in the results from the inversion.
So we need to change the cost function to add this information, we not only want the square of the
difference between modeled and observed velocities to be minimized, we also want their logs to be
minimized.

3.3.4.5 Solutions to step 3

...
md.inversion.control_parameters = {’FrictionCoefficient’};
...
md.inversion.min_parameters = 1*ones(md.mesh.numberofvertices,1);
md.inversion.max_parameters = 100*ones(md.mesh.numberofvertices,1);
...

3.3.4.6 Changing the cost function

We want the cost function to include an additional term:

J (v) =

∫
S

w1
1

2

((
vx − vobs

x

)2
+
(
vy − vobs

y

)2)
dS +

∫
S

w2

(
log
(
‖v‖+ ε

‖vobs‖+ ε

))2

dS (3.3)

This page lists all the cost function available. We want here the cost function to include the absolute
and relative misfits. Typing in MATLAB md.inversion will give you the numbers associated to these
cost function: [101,103]. We also need to determine the weights associated to each cost function: w1

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://issm.jpl.nasa.gov/documentation/inversions/

CHAPTER 3. TUTORIALS 50

and w2. As a rule of thumb, it is generally preferable if the two components have the same order of
magnitude at the end of the optimization. You can try with w1 = w2 = 1 and run the inversion, look
at their contribution at the end of the inversion and increase (or decrease) w1. You need to change
the following in step 3:

1. We now want the cost functions 101 and 103

2. the coefficients applied to each component of the cost functions has 2 columns (since there are 2
components)

3. We want to increase w1 to 3000

You should get the following results:

The solutions are below if you don’t have the same figure. We now successfully reconstructed the zone
of sliding! But again, the pattern is a little bit noisy, and we are going to add regularization.

3.3.4.7 Solutions to step 3b

md.inversion.cost_functions = [101 103];
md.inversion.cost_functions_coefficients = ones(md.mesh.numberofvertices,2);
md.inversion.cost_functions_coefficients(:,1)=3000;
md.inversion.cost_functions_coefficients(:,2)=1;

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 51

3.3.4.8 Adding regularization

We want the cost function to include a regularization term:

J =

∫
S

w1
1

2

((
vx − vobs

x

)2
+
(
vy − vobs

y

)2)
dS +

∫
S

w2

(
log
(
‖v‖+ ε

‖vobs‖+ ε

))2

dS +

∫
B

w3
1

2
‖∇α‖2dB

(3.4)
You need to change the following in step 3:

1. We now want the cost functions 101, 103 and 501

2. the coefficients applied to each component of the cost functions has 3 columns (since there are 3
components)

3. We want to set w3 to 0.01

You should get the following results:

The zone of sliding is captured and the inferred friction is smooth!

3.3.4.9 Solutions to step 3c

md.inversion.cost_functions = [101 103 501];
md.inversion.cost_functions_coefficients = ones(md.mesh.numberofvertices,3);

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 52

md.inversion.cost_functions_coefficients(:,1)=3000;
md.inversion.cost_functions_coefficients(:,2)=1;
md.inversion.cost_functions_coefficients(:,3)=0.01;

3.4 ISMIP test

3.4.1 Goals

• Test the ISSM skills that you have gained so far

• Create ISSM models by Following the given keyword instructions

• Run tests from the Ice Sheet Model Intercomparison Project (ISMIP - Tests A and F)

Go to trunk/examples/ISMIP/ to do this tutorial.

3.4.2 Introduction / How To

The runme.m file and *par files give a layout of the simulation that has to be modified.

• Each code line that has to be typed in is preceded by \%->. Type the appropriate code below
this symbol.

• Keywords introduced by # should be typed in MATLAB to get more information, if necessary

• The runme.m and *.par files each have a corresponding Cheaty* file that should be referenced
if stuck.

3.4.3 Test A

In Test A, we will generate a Square ice sheet flowing over a bumpy bed:

• Sinusoidal bedrock

• Ice frozen on the bed

• Periodic boundary conditions

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 53

3.4.4 Simulation File Layout and Organization

The simulation file runme.m is organized into different steps, each with the same structure:

• Model loading

• Performing an action

• Model saving

The step specifier steps is defined at the top of the runme.m file.

3.4.5 Mesh

In place of loading a preceding model we initialize one. The action here is the generation of a mesh. To
do this initialize md as a new model (#help model) and generate a squaremesh (#help squaremesh)
with the following parameters. Afterward, plot the mesh and save the model.

• Mesh size: 80,000 meters

• Nodes in each direction: 20

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 54

Load the preceding step (#help loadmodel). Path is given by the organizer with the name of the
given step. Set the mask (#help setmask). Note that all MISMIP nodes are grounded. Plot the
given mask (md.mask) to locate the field. Save the model.

• Mesh size: 80,000 meters

• Nodes in each direction: 20

• All grounded: default

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 55

3.4.6 Parameterization

Load the preceding step. Next parameterize the model (#help parameterize). You will need to fill-
up the parameter file (given by the name ParamFile variable). Save the given model. It is important
to note that the values are not important as we are dealing with a no-sliding flux. The values will be
overridden by the basal boundary conditions. Take care of the size of the parameters.

• Mesh size: 80,000 meters

• Nodes in each direction:20

• All grounded: default

• Ice-flow parameter: B=6.8067 x 10^7 Pa s^1/n

• Glen’s exponent: n=3

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 56

3.4.7 Extrusion

Load Parameterization model. The action here is to extrude the preceding mesh. Next vertically
extrude the preceding mesh (#help extrude) with only 5 layers exponent 1. Plot the 3D geometry
and save the model.

• Mesh size: 80,000 meters

• Nodes in each direction: 20

• All grounded: default

• Ice-flow paramter: B=6.8067 x 10^7 Pa s^1/n

• Glen’s exponent: n=3

• 5 layer extrusion

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 57

3.4.8 Flow Equation

Load the Extrusionmodel and set the approximation for the flow computation (#help setflowequation).
We will be using the Higher Order Model (HO). Save the model.

• Mesh size: 80,000 meters

• Nodes in each direction: 20

• All grounded: default

• Ice-flow parameter: B=6.8067 x 10^7 Pa s^1/n

• Glen’s exponent: n=3

• 5 layers extrusion

• Flow model: HO

3.4.9 Boundary Conditions

Load the SetFlow model. Dirichlet boundary condition are known as SPC’s, where ice is frozen to the
base with no velocity. SPC’s are initialized at NaN one value per vertex. Extract the nodenumbers
at the base (#md.mesh.vertexonbase) and set the sliding to zero on the bed (Vx and Vy). Periodic
boundaries have to be fixed on the sides. Create tabs with the side of the domain for x, and create maxX
(#help find). This command give subsets of matrices based on boolean operations. Now create minX.
For y, max X and min X should be excluded. Now create min Y. Set the node that should be paired
together (#md.stressbalance.vertex_pairing). If we are dealing with IsmipF the solution is in
masstransport. Save the given model. (#md.masstransport.vertex_pairing=md.stressbalance.vertex_pairing).

• Mesh size: 80,000 meters

• Nodes in each direction: 20

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 58

• All grounded: default

• Ice-flow parameter: B=6.8067 x 10^6 Pa s^1/n

• Glen’s exponent: n=3

• 5 layer extrusion

• Flow model: HO

3.4.10 Solve Model

Load the BoundaryConditionsmodel. Set the cluster (#md.cluster) with generic parameters (#help generic).
Set only the name and number of processes. Set which control message you want to see (#help verbose.)
Solve (#help solve). We are solving a StressBalance. Save the model, and plot the surface velocities.

• Mesh size: 80,000 meters

• Nodes in each direction: 20

• All grounded: default

• Ice-flow parameter: B=6.8067 x 10^7 Pa s^1/n

• Glen’s exponent: n=3

• 5 layers extrusion

• Flow model: HO

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 59

3.4.11 Test F

Square ice sheet flowing over a bump.

• Gaussian bumped bedrock

• Ice frozen or sliding on the bed

• Periodic boundary conditions

• Transient model until steady-state

3.4.12 Actual Work and Results

Load the preceding model under the path given by the organizer with the name of the given step. Set
the cluster with generic parameters. Set only the name and number of the process. Set which control
message you want to see. Set the transient model to ignore the thermal model (#md.transient).
Define the timestepping scheme. Everything here should be provided in years (#md.timestepping).
Give the length of the time step (4 years). Give the final_time (20*4 years time_steps). Now
solve, we are solving for TransientSolution. Lastly plot the surface velocities. *Note: if using the
cheatsheet file make sure you change line 8 to say "CheatyIsmipF.par". Here is the upper surface
velocity:

Side view:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 60

Top view:

3.5 Modeling Pine Island Glacier

3.5.1 Goals

• Model Pine Island Glacier

• Follow an example of how to create a mesh and set up the floating ice shelf of a real-world glacier

• Use observational data to parameterize the model

• Learn how to use inversions to infer basal friction and plot the results

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 61

3.5.2 Introduction

In this example, the main goal is to parameterize and model a real glacier. In order to build an
operational simulation of Pine Island Glacier, we will follow these steps:

• Define the model region

• Create a mesh

• Apply masks

• Parameterize the model

• Invert friction coefficient

• Plot results

• Run higher-order simulation

Files needed for this tutorial can be found in trunk/examples/Pig/. The runme.m file contains the
structure of the simulation, while the .par file includes most parameters needed for the model set-up.
The .exp files are shape files that define geometric boundaries of the simulation.

Observed datasets needed for the parameterization also need to be downloaded.

3.5.3 Setting-up domain outline

We first draw the domain outline of Pine Island Glacier based on observed velocity map. First, run
PigRegion.m in MATLAB. It produces a figure with the observed velocities:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

https://issm.jpl.nasa.gov/documentation/tutorials/datasets/

CHAPTER 3. TUTORIALS 62

You can then use the exptool to draw the model domain:

>> exptool(’PigDomain.exp’)

Note: if you have not downloaded the datasets, you will get the following error:

Could not open ../Data/Antarctica_ice_velocity.nc."

If this occurs, go into the Data directory and run the script to download the datasets. You will not be
able to proceed until you do so.

This example shows you how to create your own model boundary, but for the rest of the tutorial, we
will be using the provided domain outline, which is ModelDomain.bkp. Change this file into an .exp
file to will erase your contour:

>>!mv ModelDomain.bkp ModelDomain.exp

3.5.4 Mesh

The first step is to create the mesh of the model domain.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

https://issm.jpl.nasa.gov/documentation/tutorials/datasets/

CHAPTER 3. TUTORIALS 63

In the runme.m file, the mesh is generated in a multi-step process. Open the runme.m file and make
sure that the variable step, at the top of the file, is set to step=1. In the code, you will see that in
step 1 the following actions are implemented:

• a uniform mesh is created

• the mesh is then refined using anisotropic mesh refinement. We use the surface velocity as a
metric

• Set the mesh parameters

• Plot the model and load the velocities from http://nsidc.org/data/nsidc-0484.html

• Get the necessary data to build up the velocity grid

• Get velocities (note: You can use ncdisp(’file’) to see an ncdump)

• Interpolate the velocities onto a coarse mesh. Adapt the mesh to minimize error in velocity
interpolation

• Plot the mesh

• Save the model

Execute the runme.m file to perform step 1. You should see the following figure:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 64

3.5.5 Mask

The second step of the runme.m creates the masks required to specify where there is ice in the domain,
and where the ice is grounded.

First, we specify where the ice is grounded and floating in the domain:

• The field md.mask.groundedice_levelset contains this information

– Ice is grounded if md.mask.groundedice_levelset is positive

– Ice is floating if md.mask.groundedice_levelset is negative

– The grounding line lies where md.mask.groundedice_levelset equals zero

Then we specify where ice is present:

• The field md.mask.ice_levelset contains this information

– Ice is present if md.mask.ice_levelset is negative

– There is no ice if md.mask.ice_levelset is positiive

– The ice front lies where md.mask.ice_levelset equals zero

Open runme.m and set step=2. Now, execute the runme.m file to run step 2.

After executing step 2, you should see the following figure that represents the mask:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 65

3.5.6 Parameterization

Parameterization of models is usually done through a different file (Pig.par). Parameters which are
unlikely to change for a given set of experiments are set there to lighten the runme.m file. In this
example we use SeaRISE data to parameterize the following model fields:

• Geometry

• Initialization parameters

• Material parameters

• Forcings

• Friction coefficient

• Boundary conditions

Some parameters are adjusted in runme.m, as they are likely to be changed during the simulation. This
is the case for the stress balance equation that is set-up using setflowequation

Now, change the runme.m file as before, and run step 3 to perform the Parameterization.

3.5.7 Inversion of basal friction

The friction coefficient is inferred from the surface velocity using the following friction law:

τb = −β2Nr‖vb‖s−1vb (3.5)

• τb : Basal drag

• N : Effective pressure

• vb: Basal velocity (equal surface in SSA approximation)

• r: Exponent (equals q/p of the parameter file)

• s: Exponent (equals 1/p of the parameter file)

The procedure for the inversion is as follows:

• Velocity is computed from the SSA approximation

• Misfit of the cost function is computed

• Friction coefficient is modified following the gradient of the cost function

All the parameters that can be adjusted for the inversion are in md.inversion.

Run step 4 and look at the results, they should be similat to the figure below:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 66

3.5.8 Plot results

Plotting ability are mainly based on plotmodel for simple graphs. However, you can also use or create
your own routines.

Change the step to 5 and run the simulation; it should create the following figure:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 67

3.5.9 Higher Order (HO) Ice Flow Model

The last step of this tutorial is to run a forward model of Pine Island Glacier with the Higher-Order
stress balance approximation.

The following steps need to be performed in step 7 of the runme.m file:

• Load the previous step

– Model to load is Control_drag

• Disable the inversion process

– Change iscontrol to zero the inversion flag (md.inversion)

• Extrude the mesh

– help extrude

– Keep the number of layers low to avoid long computational time

• Change the stress balance approximation

– Use the function setflowequation

• Solve

– We are still solving for a StressBalanceSolution

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 68

• Save the model as in the preceding steps

If you need help, the solution is provided below.

Step 7 provides a comparison of the shelfy-stream and higher-order approximations. The following
figure should be created if you run step 7:

3.5.10 Solutions for step 6

if step==6
md = loadmodel(’./Models/PIG_Control_drag’);
md.inversion.iscontrol=0;

disp(’ Extruding mesh’)
number_of_layers=3;
md=extrude(md,number_of_layers,1);

disp(’ Using HO Ice Flow Model’)
md=setflowequation(md, ’HO’, ’all’);

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 69

md=solve(md,StressbalanceSolutionEnum);

save ./Models/PIG_ModelHO md;
end

3.6 Pine Island Glacier, melting experiment

3.6.1 Goals

This example is adapted from the results presented in Seroussi et al. [2014b]. We model the impact of
different external forcings on the dynamic evolution of Pine Island Glacier. The main objectives are
to:

• Run transient simulations (10 years) of a real glacier

• Change external forcings

• Compare the impact of changes on glacier dynamics and volume

Files needed to run this tutorial are located in trunk/examples/PigSensitivity/. This tutorial relies
on the Pine Island tutorial, so make sure to complete it first.

3.6.2 Evolution over 10 years

We first run a simulation of Pine Island Glacier over a 10 year period, starting from the Pig tutorial.

In the runme.m file, several parameters are adjusted before running the transient model. Open runme.m
and make sure that the variable step, at the top of the file, is set to step=1. In the code, you will see
that in step 1 the following actions are implemented:

• Load model from the Pig tutorial

• Apply some basal melting rate

– On grounded ice: md.basalforcings.groundedice_melting_rate

– On floating ice: md.basalforcings.floatingice_melting_rate

• Specify time step length and run duration in md.timestepping

• Disable inverse method in md.inversion.iscontrol = 0

• Indicate what components of the transient to activate

– md.transient.ismasstransport

– md.transient.isstressbalance

– md.transient.isthermal

– md.transient.isgroundingline

– md.transient.ismovingfront

• Request additional outputs

• Solve transient solution

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://issm.jpl.nasa.gov/documentation/tutorials/pig/

CHAPTER 3. TUTORIALS 70

Execute runme to perform step 1. The following figure shows the evolution of the ice velocity and
grounding line positions at the beginning and at the end of the simulation.

3.6.3 Increased basal melting rate

In this second step, we increase the basal melting rate under the floating portion of the domain from
25 to 60 m/yr. The other parameters remain the same as in the previous step.

Open runme.m and change the step at the top of the file to step=2, then run the simulation. The
following figure shows the evolution of ice velocity and grounding line evolution for the increased
melting scenario:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 71

3.6.4 Retreat of ice front position

In this third step, we would like to test the sensitivity of Pig to calving events and retreat the position
of the ice front. We first need to create a new contour of the region to be removed from the domain.
Use exptool to create a new RetreatFront.exp contour that include the portion of floating ice that
should calve off.

Then extract the domain from the initial model, exluding the RetreatFront.exp area using the
extrude routine.

>> md2=modelextract(md,~RetreatFront.exp)md2=modelextract(md,~RetreatFront.exp)

As this operation changes the model domain, some parameters and boundary conditions have the be
adjusted or redefined.

The boundary conditions are reset with SetMarineIceSheetBC and the model can then be solved.

Open runme.m and change the step at the top of the file to step=3, then run the simulation. The
following figure shows the evolution of ice velocity and grounding line evolution with the new ice front:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 72

3.6.5 Change in surface mass balance

In this last step, we change the surface mass balance, while the other parameters remain similar to the
previous simulations.

Open runme.m and implement the changes needed to investigate the impact of the surface mass balance,
similar to what was done with the other external forcings in the previous steps. These changes are:

• Load model from the Pig tutorial

• Change the surface mass balance

• Verify the ocean-induced melting rate

– On grounded ice: md.basalforcings.groundedice_melting_rate

– On floating ice: md.basalforcings.floatingice_melting_rate

• Specify time step length and run duration in md.timestepping

• Disable inverse method in md.inversion.iscontrol

• Indicate what components of the transient to activate

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 73

– md.transient.ismasstransport

– md.transient.isstressbalance

– md.transient.isthermal

– md.transient.isgroundingline

– md.transient.ismovingfront

• Request additional outputs

• Solve transient solution

Don’t forget to change step at the top of the runme.m.

Below is the solution to make this change:

if step==4
%Load model
md = loadmodel(’./Models/PIG_Transient’);

%Change external forcing basal melting rate and surface mass balance)
md.basalforcings.groundedice_melting_rate=zeros(md.mesh.numberofvertices,1);
md.basalforcings.floatingice_melting_rate=25*ones(md.mesh.numberofvertices,1);
md.smb.mass_balance=2*md.smb.mass_balance;

%Define time steps and time span of the simulation
md.timestepping.time_step=0.1;
md.timestepping.final_time=10;

%Request additional outputs
md.transient.requested_outputs={’default’,’IceVolume’,’IceVolumeAboveFloatation’};

%Solve
md=solve(md,TransientSolutionEnum);

%Save model
save ./Models/PIG_SMB md;
end

Here is an example of velocity change and grounding line evolution when the surface mass balance is
doubled:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 74

3.6.6 Evolution of the ice volume above floatation

In the previous steps, we investigated the impact of changes in external forcings on ice flow dynam-
ics (grounding line evolution and glacier acceleration). We can also see how these changes impact
the glacier volume and its contribution to sea level rise. To do so, we use the additional output
IceVolumeAboveFloatation requested in the transient simulation. The following figure shows the
evolution of the volume (in Gt/yr) above floatation for the four scenarios performed previously.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 75

3.7 Uncertainty quantification (requires Dakota)

3.7.1 Goals

• Use ISSM to assess how errors in model inputs propagate through a 2D SSA steady state ice
flow model

• Use ISSM to assess how ice flow model diagnostics (e.g. velocity, mass flux, volume) can be
affected by perturbations to input in other parts of the model domain

• Become familiar with the uncertainty quantification (DAKOTA-based) tools available in ISSM

Go to trunk/examples/UncertaintyQuantification/ to do this tutorial.

3.7.2 Introduction

This experiment will use the model of Pine Island Glacier that was saved in the previous PIG tutorial.
It aims to use the ISSM-DAKOTA integrated model system to (1) quantify the uncertainties of model
output in response to errors in model input and (2) quantify sensitivities of model output to spatial
perturbations in model input.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 76

• Our model inputs: ice thickness, ice rigidity, and basal friction.

• Our model outputs: mass flux at 13 flux gates across PIG.

Our Uncertainty Quantification (UQ) methods are based on the Design Analysis Kit for Optimization
and Terascale Applications (DAKOTA) software [Eldred et al., 2008], which is embedded in ISSM.
The following diagram illustrates the relationship between ISSM and DAKOTA. The ISSM mesh must
be partitioned (i.e. vertices can be grouped together so that DAKOTA varies them together - this is
helpful when you want to vary equal areas over the unstructured mesh). To partition the mesh, you
can do so linearly (one partition per vertex), or you can use an external package software like Chaco to
weight vertices and create the partitions you desire. DAKOTA is resposible for varying the provided
inputs in the user-defined way (uniform, normal, etc.) for each mesh partition and then launching an
ISSM run with the perturbed forcing. DAKOTA is also responsible for creating statistics for output,
which are also user defined. Output diagnostics include ice mass flux through defined gates and scalar
output (e.g. Ice Volume, Total SMB, etc.).

Tutorial steps to be taken:

• Begin by loading results from the examples/Pig tutorial (the end of basal friction inversion)

• Load ice thickness cross-over errors from IceBridge 2009 WAIS campaign

• Run sampling analysis using ice thickness cross-over and mass flux diagnostics

• Run sensitivity analysis using ice thickness, ice rigidity, and basal friction as inputs and mass
flux diagnostics

• Plot results: partition, sampling, and sensitivities

Samping Analysis: Quantify the uncertainties of model output (diagnostics like mass flux, Ice Volume,
Max Velocity) in response to errors in model input. The figure below illustrates an example of Sampling
errors in ice thickness. The result for each gate, is a histogram of Mass Flux (one value per each model
run, or sample). Below is the resulting histogram for mass flux gate 2.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 77

Sensitivity Analysis: Quantify sensitivities of model output to small spatial perturbations in model
input. The figure below illustrates how this is accomplished. One by one, partition input is changed
by a small percentage, and a model run is launched. For this specific run, changes in model diagnostics
(output) are assessed by DAKOTA. This is done for each partition, such that the number of model
runs is equal to the number of mesh partitions. In the end, every diagnostic is associated with a
sensitivity value at every partition. In this way, we can make a map of sensitivities for each diagnostic.
Sensitivities can also be ranked, for each diangistic, in importance. One such example of DAKOTA
output is the ’importance factor’, or sensitivities scaled by error margins [Larour et al., 2012b, a],
illustrated below as UQ sensitivity analysis output for mass flux gate 2.

For maniscript examples of these studies, see Larour et al. [2012b, a]; Schlegel et al. [2013, 2015].

3.7.3 Flux Gates

Flux gates are ARGUS (*.exp) files found in ./MassFluxes. The gates are positioned across PIG at
the inset of tributary glaciers.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 78

Mass fluxes will be computed in (Gt/yr) for all of these gates (using the depth-average ice velocity, ice
thickness, and ice density)

Run step 1 of the runme.m to plot the gates overlayed over the PIG surface velocities.

3.7.4 Loading Cross-Over Errors

For ice thickness errors we will use McCords cross-over errors from CReSIS. First you will load errors.
Some of these errors are too large, too small, or need to be interpolated onto a larger domain (you
will filter these out). Load cross overs ’../Data/CrossOvers2009.mat’. Interpolate cross over errors
over our mesh vertices. Avoid NaN values. Filter out unrealistic error ranges. Avoid large unrealistic
values. Transform into absolute errors and setup a minimum error everywhere.

Run Step 2 in the runme.m to load the crossover errors.

3.7.5 Sampling Analysis

In order to accomplish the sampling step, we must first partition the mesh into equal area partitions.
We’ll start with 50. You can try and play with the package for partitioning (’chaco’ or ’linear’), the
number of partitions, and weighting (’on’ or ’off’).

• See lines 69-73 in the runme.m file

• Run step 3

To plot the corresponding partition over a plot of the mesh:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 79

• See lines 243-253, Step 5.

Note that after using Chaco, your partitions may look different from those illustrated here, because
there is a randomness to the Chaco algorithm, and results differ on different computer systems.

Second, we must define our UQ input. Here, we will sample ice thickness (H), so we must define errors
on each partition for H with a corresponding PDF (Probability Density Function). Here we calculate
the crossover errors on each partition. In this example, we will sample a normal error distribution
around every partition. To do so, we need to specify to DAKOTA that we want a normal sampling,
and we must provide the standard deviation of error at every partition. Because crossover errors
represent the full range of thickness errors, we assume this represents a 6-sigma normally distributed
spread. Therefore, we set the standard deviation equal to the crossover error at a particular location,
divided by 6:

• See lines 75-81

Third, we must set up the desired diagnostics, or output responses. In this case, we choose ice mass
flux at 13 flux gates around the domain:

• See lines 83-109

For all responses, we specify a string identifier and the desired output confidence intervals. We also
need to specify an *.exp file to define each flux gate, and directory where to find the latter.

• See lines 111-125

Finally, we need to designate a sampling strategy. Options include ’nond_samp’ for sampling or
’nond_l’ for local reliability method/sensitivity analysis, following DAKOTA guidelines. Because

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 80

this step is a sampling exercise, we choose ’nond_samp’. We set the number of samples (30 for now)
and also choose which sampling algorithm (e.g. ’lhs’ or ’random’) DAKOTA will use.

In addition, we setup persistent parameters, this includes parallel concurrency, verbosity, and data
backup.

• See lines 134-139

We also have to tighten the solver tolerance (in order to avoid spurious sensitivities to develop) before
solving.

• See lines 141

Because the ISSM-DAKATA framework now runs in parallel, our implementation requires that DAKOTA
runs with a master/slave configuration. This means that at least 2 cpu’s are needed to run the UQ,
such that:

md.cluster.np=md.qmu.params.processors_per_evaluation*N

where N is an integer which represents the number of parallel DAKOTA threads that will run at once.
In this example, we run with 4 processors. One DAKOTA thread will run on 3 processors (slave),
while 1 processor (always) serves as the master.

• See lines 152-153

Don’t forget to deactivate inversion (iscontrol=0), and to activate UQ run (isdakota=1).

• See lines 156

Note that results will be in md.results.dakota and md.qmu.results.

To initiate the UQ sampling, run step 3 in the runme.m file.

3.7.6 Sensitivity Analysis

Next we quantify importance factors (sensitivities scaled by error margins) for model inputs: ice
thickness (H), basal friction (α), and ice rigidity (B). We specify a 5% error margin on all inputs.
For partitions, we choose 10 partitions, and setup for model diagnostics is the same as for sampling
analysis.

• To add model inputs, and specify a 5% purterbation range:

– See lines 175-179

• To specify new sensitivity method, tell DAKOTA to use local reliability or ’nond_l’:

– See lines 213-215

We specify the same parallel cpu configuration, and we solve the same way as in step 3. Note this
time, we turn DAKOTA verbosity on as an example.

• See lines 228-238

Run step 4 to launch the sensitivity runs.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 81

3.7.7 Plot Results

Plot Sampling Results: In order to plot the results, we extract the results for one of the mass flux gates,
and display a histogram of the sampling results for that particular gate. ISSM has a plotting function
for this, ’plot_hist_norm’. Note that ISSM mass flux results are in mass flux in m3 water equiv/s.
Here we convert to Gt/yr before we plot. Remember that your results may look different because
of the randomness that is introduced into the partitions and algorithms; results may be different on
different computer systems.

• runme.m step 6 will plot the relative frequency histogram for mass flux gate 1.

• See lines 254-272

Plot Sensitivity Results:

• To retrieve sensitivities for each model input:

– See lines 285-287

• To plot sensitivities:

– See lines 289-296

• To retrieve importance factors for each model input:

– See lines 299-301

• To plot the importance factors:

– See lines 303-310

• Run step 7, this step will result in two images. The first is the sensitivities (S), and the second
in the importance factors (If, sensitivities scaled by input errors).

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 82

3.7.8 Additional Exercises

• Add diagnostic IceVolume or MaxVelocity

• Sample with a uniform distribution (See help uniform_uncertain)

• Sample additional variables (i.e. friction coefficient, ice rheology)

• Try qmu on a different solution type

• Change number of partitions. Note: for sensitivity this could take a while!

3.8 Jakobshavn Isbræ

3.8.1 Goals

• Construct a 2-dimensional model of Jakobshavn-Isbrae, West Greenland

• Follow a simple tutorial exercise: create and parametrize an ISSM model

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 83

• Use ISSM to invert for a basal friction parameter on a real-world domain

Change into trunk/examples/Jakobshavn/ to do this tutorial.

3.8.2 Introduction

In this tutorial, we construct a 2-dimensional model of Jakobshavn-Isbrae, West Greenland, and use
it to invert for the basal friction parameter.

3.8.2.1 Download

For this tutorial, we will use a dataset from the SeaRISE Initiative: Greenland_5km_v1.2.nc. This
data should be saved in the examples/Data directory (see dataset download).

3.8.3 runme file

The runme.m file in trunk/examples/Jakobshavn/ is a list of commands to be run in sequence at the
MATLAB command prompt. The tutorial is decomposed into 4 steps:

1. Mesh generation (anisotropic adaptation)

2. Model parameterization (using the SeaRISE dataset)

3. Launch of the inversion for basal friction

4. Plotting of the results

We will follow these steps one by one by changing the selected step at the top in runme.m.

3.8.4 Step 1: Mesh generation

Open runme.m and make sure that the first step is activated:

steps = [1];

In the first step, we create a triangle mesh with 2,000 meter resolution using the domain outline file
Domain.exp. We then interpolate the observed velocity data onto the newly-created mesh. We use
these observations to refine the mesh accordingly using bamg. In regions of fast flow we apply 1,200 m
resolution, and in slow flowing areas we increase the resolution to up to 15 km:

md=bamg(md,’hmin’,1200,’hmax’,15000,’field’,vel,’err’,5);

Go to trunk/ and launch MATLAB and then go to examples/Jakobshavn/.

$ cd $ISSM_DIR
$ matlab
>> cd examples/Jakobshavn/

Then execute the first step:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://websrv.cs.umt.edu/isis/index.php/SeaRISE_Assessment
https://issm.jpl.nasa.gov/documentation/tutorials/datasets/

CHAPTER 3. TUTORIALS 84

>> runme
Step 1: Mesh creation

Anisotropic mesh adaptation
WARNING: mesh present but no geometry found. Reconstructing...

new number of triangles = 3017

3.8.5 Step 2: Model parameterization

In this step parameterize the model. We set for example the geometry and ice material parameters.
We use the setmask command to define grounded and floating areas. All ice is considered grounded
for now. Type help setmask to display documentation on how to use this command. The model
is then parameterized using the Jks.par file. We soften the glacier’s shear margins by reducing the
model’s ice hardness, B, in the area outlined by WeakB.exp to a factor 0.3.

Open runme.m and make sure that the second step is activated: steps = [2];

>> runme
Step 2: Parameterization

Loading SeaRISE data from NetCDF
Interpolating thicknesses
Interpolating bedrock topography
Constructing surface elevation
Interpolating velocities
Interpolating temperatures
Interpolating surface mass balance
Construct basal friction parameters
Construct ice rheological properties
Set other boundary conditions

boundary conditions for stressbalance model: spc set as observed velocities
no surfaceforcings.precipitation specified: values set as zero
no basalforcings.melting_rate specified: values set as zero
no balancethickness.thickening_rate specified: values set as zero

3.8.6 Step 3: Control method

In the parameterization step, we applied a uniform friction coefficient of 30. Here, we use the basal
friction coefficient as a control so that the modelled surface velocities match the observed ones. The
mismatch between observation and modelled surface velocities is quantified by the value of a cost
function. The type of cost function determines to a large degree the result of the inversion process.
Different cost functions are available, type md.inversion to see a list of available cost functions:

Available cost functions:
101: SurfaceAbsVelMisfit
102: SurfaceRelVelMisfit
103: SurfaceLogVelMisfit
104: SurfaceLogVxVyMisfit
105: SurfaceAverageVelMisfit
201: ThicknessAbsMisfit
501: DragCoefficientAbsGradient
502: RheologyBbarAbsGradient
503: ThicknessAbsGradient

Inverting for basal drag, we can use the cost functions that start with a 1. The cost functions can be
combined and weighted individually:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 85

%Cost functions
md.inversion.cost_functions=[101 103];
md.inversion.cost_functions_coefficients=ones(md.mesh.numberofvertices,2);
md.inversion.cost_functions_coefficients(:,1)=40;
md.inversion.cost_functions_coefficients(:,2)=1;

Our cost function is thus the sum of “SurfaceAbsVelMisfit”, the absolute of the velocity misfit, and
“SurfaceLogVelMisfit”, the logarithm of the velocity misfit. We weigh the first cost function 40 times
more than the latter one.

Open runme.m and make sure that the third step is activated: steps = [3];

>> runme
Step 3: Control method friction

checking model consistency
marshalling file Jakobshavn.bin
uploading input file and queueing script
launching solution sequence on remote cluster
Launching solution sequence
call computational core:

preparing initial solution

control method step 1/20
....

3.8.7 Step 4: Display results

Here, we display the results. Open runme.m and make sure that step number 4 is activated. Your
results should look like this:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 86

3.9 Modeling the Greenland ice sheet

3.9.1 Goals

• Learn how to set up a coarse continental-scale Greenland model

• Follow an example to initialize a continental domain, with a given ARGUS (*.exp) file and to
parameterize with the SeaRISE netcdf dataset

• Become familiar with how to set up and force transient input in ISSM

• Plot results of forward simulation experiments

Go to trunk/examples/Greenland/ to do this tutorial.

3.9.2 Introduction

In this tutorial, you will learn how to set up a continental Greenland model using the SeaRISE ice
sheet model input dataset [Nowicki et al., 2013]. In addition, you will gain experience in interpolation
of datasets on to your continental ice sheet mesh and in setting up a transient forcing in ISSM. Finally,
you will run a transient solution, resulting in a forward historical simulation of the Greenland Ice Sheet.
Note that the model we set up here is coarse and is not recommended for use in a publication. A good

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 87

use for this example it is use it as a starting point to learn how to use ISSM. You may wish to improve
the model provided here by increasing the resolution of the ice sheet domain outline, increasing the
mesh resolution, and choosing your own/improved datasets for model parameterization.

Tutorial steps to be taken:

• Mesh Greenland with given *.exp file

• Adapt mesh using SeaRISE velocity data

• Parameterize (similar to the PIG model), except that all domain boundaries are on the ice front
and do not have to be constrained

• Stress Balance: run inverse method to control drag

• Transient: Run a 20-year forward run

– Use an appropriate time step for your resolution

– Force SeaRISE surface mass balance for 10 years

– For the next 10 years, simulate a warming scenario: decrease the surface mass balance
linearly, reaching a decrease of 1.0 m/y by year 20

• Plot transient results

• Run an example exercise, forcing your Greenland model with historical SMB through time

3.9.3 Mesh

In Step 1, we create a mesh using the triangle method (lines 10-11). This creates a new model named
md and meshes the model domain, defined by an outline file ’DomainOutline.exp’, at a resolution of
20,000 meters. Next, we adapt the mesh based on SeaRISE velocities, where the minimum resolution
will be 5 km in locations where the velocity gradient is large and 40 km where the velocity gradient is
small. The velicity data we will use resides in ’../Data/Greenland_5km_dev1.2.nc’ (line 5). Step 1
consists of the following steps:

• Fill the variable vel with the interpolated velocities (Hint: you need x and y velocities plus ncfile
x and y coordinates)

• Mesh adapt your Greenland model (bamg)

– Use variable vel

– Set hmax=400000 and hmin=5000

• Convert x, y coordinates to lat/long and then save your model to a file

Review the code used to create a continental Greenland mesh (lines 8-30) in the readme.m file. After
creating the mesh and saving the model, the code uses plotmodel to plot a mesh visualization.

Execute step 1 in the runme.m file. After doing so, you should see the figure below:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 88

3.9.4 Parameterization

Call the setmask function with empty arguments, to denote that all ice is grounded. Then parameterize
your mesh with file Greenland.par. Next, set your flow equation to SSA for all. Read through the
parameter file ./Greenland.par, which is similar to your PIG .par file, but for Greenland. Here,
we are parameterizing a full continental domain, so all points along the domain boundary will be
considered ice front. As a result, these boundaries do not need to be constrained, therefore the single
point constraints variables will all be set to NaN.

Run step 2. This will save your parameterized model. Now, plot the new model thickness and velocity.
For example:

>> plotmodel(md,’data’,md.geometry.thickness)

>> plotmodel(md,’data’,md.initialization.vel,’caxis’,[1e-1 1e4],’log’,10)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 89

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 90

3.9.5 Stress Balance

Use control methods to inversely solve for Greenland FrictionCoefficient (Step 3, lines 44-81). Note:
Remember that md.inversion can be called for help!

• Set three different cost functions

– Absolute value of surface velocity

– Log of surface velocity

– Drag coefficient gradient

• Set cost functions coefficients to 350, 0.6, and 2*10^-6

• Set gradient scaling to 50

• Specify max inversion parameter = 200, min inversion parameter = 1

• Solve a 30-step Stress Balance model in 2D, SSA

• Copy result Friction Coefficient to model (md) value

• Save your model

Review step 3 in the runme.m to verify that the parameters have been set properly. Run step 3 in the
runme.m to perform the steps above.

3.9.6 Transient

You are now ready to run a transient! In Step 4, we will simulate a simple constant warming trend
over Greeland by forcing a temporal decrease in md.smb.mass_balance.

Specify a transient forcing by adding a time value to the end (in the end+1 position) of the column of
forcing variable values. For example, let SMB be the initial values of surface mass balance. To impose
the forcing such that before time 10, surface mass balance is set to the column vector smb, and after
time 20, it is set to smb-1 we use the following code:

• >> md.smb.mass_balance = [smb smb-1]

>> md.smb.mass_balance = [md.smb.mass_balance; ...
[10 20]]

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 91

By default, ISSM will linearly interpolate surface mass balance between time 10 and time 20 in this
example. Prior to first and after last imposed time, forcing values remain constant. In order to turn
interpolation off (i.e. use a step function), you would set md.timestepping.interp_forcings=0. If
this values is set to 0, then your surface mass balance will change at the specified time, and will remain
constant until a new value (column vector with time in the last row) is specified.

Steps to set up your transient:

• Set control md.inversion.iscontrol back to 0

• Interpolate surface mass balance from SeaRISE dataset, converting from water to ice equivalent

• Impose SeaRISE surface mass balance for 10 years then linearly decrease to 1 m/yr by year 20

• Set time step to 0.2 and output frequency to 1 (every time step will be output in results)

• Ask your model to save IceVolume, TotalSmb, and SmbMassBalance transient output

• Solve a 20 year Transient in 2D, SSA

• Save your model

• Review lines 83-112 in runme.m

In Step 5, we give you an example of how to plot the transient results (lines 114-145). To see how the
transient results are stored in your model, type md.results.TransientSolution.

Now, run steps 4 and 5 to launch your transient and plot results.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 92

3.9.7 Exercise

Now, let’s run our transient with historical mass balance! Use Jason Box’s surface mass balance (SMB)
time series as forcing [Box et al., 2013; Box , 2013; Box and Colgan, 2013].1

First, format the SMB provided. In Step 6 of the runme.m file, we extract the SMB timeseries from
the netcdf file, and create a timeseries plot (lines 147-175). Execute step 6. This will result in the
figure below:

In Step 7, we will relax the model towards equilibrium with the mean SMB forcing. An example
of a 20 year relaxation to the time series mean is shown in runme.m, step 7. Run step 7, which

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 93

will assign the mean SMB to md.smb.mass_balance and run a transient model for 20 years, with a
timestep of 0.2 years, saving the results every timestep. Step 7 will save the results in the Model
"Greenland.HistoricTransient."

To plot the relaxed version of the model that you just created, change step 5 to load the model
"Greenland.HistoricTransient" rather than "Greenland.Transient," and run step 5 again.

To reach equilibrium, the model should run on the order of 1000 years. Since, 1000 years might take
quite a long time to run on a personal computer, you may want to try running for 200 years instead.

To accomplish this extended relaxation, alter step 7 to run for the extended time period (200 years in-
stead of 20 years). In the last line of this step, save your model as ./Models/Greenland.HistoricTransient_200yr
instead of ./Models/Greenland.HistoricTransient, to avoid overwriting the old model. Then, run
step 7 again. This run of 200 years will take longer than your orginal 20 year run.

When you are done with step 7, complete step 8 on your own as an exercise. Fill in the required code
to plot the results in step 8. Follow the comments, write the code to load the historic transient model,
and create line plots of relaxation run (use Step 5 as a reference). Then, save surface mass balance
by looping through 200 years (i.e. 1000 steps). Plot the surface mass balance time series in the first
subplot. Title this plot "Mean Surface Mass Balance".

Next, save velocity by looping through 1000 steps. Plot velocity time series in a second subplot. Title
this plot "Mean Velocity".

Lastly, save Ice Volume by looping through 1000 steps. Plot volume time series in a third subplot.
Title this plot "Ice Volume" and add an x label of "years". The resulting plot should look like this:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 94

In Step 9, we will use the 200 year relaxed ice sheet as a starting condition for a historic transient run.
To do so we need to save the 200 year resulting geometry and velocities into the model state. To load
your past results see lines 254-259.

Next, we load the Box time series saved earlier in mat file, smbbox.mat, and then (lines 261-300):

• Interpolate every month of Box SMB onto the ISSM grid: insert a column for each month

• Add a final row indicating that the value should be set in the middle of each month

• Solve at a monthly time step and save monthly results

Run step 9, which will excute your historical transient forward simulation, monthly from 2003-2012.

Then, run step 10 to plot a time series of total surface mass balance, max velocity, and ice volume.
See Lines 305-329.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 95

1 The year 1840-2012 Greenland near surface air temperature (T) and land ice SMB reconstruction after Box
[2013] is calibrated to RACMO2 output [van Meijgaard et al., 2008; Ettema et al., 2009; van den Broeke et al.,
2009; van Angelen et al., 2011]. The calibration for T and SMB components is based on the 53 year overlap
period 1960-2012. The calibration for snow accumulation rate is shorter because ice core data availability drops
after 1999. Calibration is made using linear regression coefficients for 5 km grid cells that match the average
of the reconstruction to RACMO2.

The RACMO2 data are resampled and reprojected from the native 0.1 deg (∼10 km) grid to a 5 km grid
better resolving areas where sharp gradients occur, especially near the ice margin where mass fluxes are largest.
Several refinements are made to the Box [2013] temperature (T) and SMB reconstruction. Multiple station
records now contribute to the near surface air temperature for each given year, month and grid cell in the
domain while in Box [2013], data from the single highest correlating station yielded the reconstructed value.
The estimation of values is made for a domain that includes land, sea, and ice. Box [2013] reconstructed T
over only ice. A physically-based meltwater retention scheme [Pfeffer et al., 1990, 1991] replaces the simpler
approach used by Box [2013]. The RACMO2 data have a higher native resolution of 11 km as compared to
the 24 km Polar MM5 data used by Box [2013] for air temperatures. The revised surface mass balance data
end two years later in year 2012. The annual accumulation rates from ice cores are dispersed into a monthly
temporal resolution by weighting the monthly fraction of the annual total for each grid cell in the domain
evaluated using a 1960-2012 RACMO2 data.

3.9.8 Additional Exercises

• Increase SMB instead of decrease over time

• Create an instantaneous step in SMB forcing at 10 years instead of a steady change over time

• Create a more advanced SMB forcing, like cyclic steps or a curve

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 96

• Force SMB to change only in certain areas of the ice sheet

• Add more melt in the ablation zone, but more snow in the upper elevations

• Force another field transiently (e.g. friction coefficient)

• Run the Box time series yearly or for a longer subset of time. This could take a while!

3.10 Modeling the Greenland ice sheet using IceBridge data

3.10.1 Goals

• Follow an example of how to improve a coarse Greenland model by adding higher resolution Operation
Icebridge (OIB) data

• Learn how to use the ISSM meshing tools to refine the Jakobshavn Isbræ (JI) basin

• Learn how to insert higher resolution bedrock and surface elevation data from the OIB campaign into
the model within the JI basin

Go to trunk/examples/IceBridge/ to do this tutorial.

3.10.2 Introduction

Tutorial steps to be taken:

• Refine the Greenland mesh using given JI outline.

• Parameterize the model, and include the high-resolution OIB bedrock and surface data.

• Plot the ice base and surface data.

• Stress Balance: run 2 inverse method runs to solve for control drag (20 steps recommended).

• Transient: launch 20 year runs, with coarse and refined bedrock and surface elevation data.

• Plot the transient results.

3.10.3 Mesh

We modify the experiment from the Greenland SeaRISE tutorial, and improve from there. Run the first step
in runme.m file to mesh the Greenland domain (similar to the previous tutorial), and plot the model. Note
that the code in step 1 is interrupted after making the default mesh. Plot the model:

>> plotmodel (md,’data’,’mesh’);

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 97

Now, we want to refine the mesh in JI area. An outline of this area Jak_outline.exp can be found in the
current directory. Use the exptool command to view this outline:

>> exptool(’Jak_outline.exp’);

Next, we modify the bamg command by imposing a 3 km resolution within the JI area using hmaxVertices.
Note that, to implement the changes noted above you must deactivate the first occurance of the bamg command
in step 1, as well as the return command. Do this by commenting out these lines, and running step 1 again.
Plot the results.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 98

Use Matlab’s zoom tool in the figure to make a close-up of the JI domain.

3.10.4 Parameterization

We want to include high-resolution bedrock and surface elevation data acquired in the OIB mission. The data
is accessible at: http://data.cresis.ku.edu/data/grids/Jakobshavn_2008_2011_Composite_XYZGrid.txt
Save the file in the ../Data/ directory.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 99

To do this, the bedrock data is read, transformed into a usable grid, and interpolated to the mesh in the
parameter file Greenland.par:

%Reading IceBridge data for Jakobshavn
disp(’ reading IceBridge Jakobshavn bedrock’);
fid = fopen(’../Data/Jakobshavn_2008_2011_Composite_XYZGrid.txt’);
titles = fgets(fid);
data = fscanf(fid,’%g,%g,%g,%g,%g’,[5 266400])’;
fclose(fid);

[xi,yi]= ll2xy(md.mesh.lat,md.mesh.long,+1,45,70);
bed = flipud(reshape(data(:,5),[360 740])); bed(find(bed&=& -9999))=NaN;
bedy = flipud(reshape(data(:,1),[360 740]));
bedx = flipud(reshape(data(:,2),[360 740]));

%Insert Icebridge bed and recalculate thickness
bed_jks=InterpFromGridToMesh(bedx(1,:)’,bedy(:,1),bed,xi,yi,NaN);
in=ContourToMesh(md.mesh.elements,md.mesh.x,md.mesh.y,\ldots

’Jak_grounded.exp’,’node’,1);
bed_jks(~in)=NaN;
pos=find(~isnan(bed_jks));
md.geometry.base(pos)=bed_jks(pos);

Modify the Greenland.par file such that the surface elevation data is also included for the JI area.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 100

Solution:

%Reading IceBridge data for Jakobshavn
disp(’ reading IceBridge Jakobshavn bedrock’);
fid = fopen(’../Data/Jakobshavn_2008_2011_Composite_XYZGrid.txt’);
titles = fgets(fid);
data = fscanf(fid,’%g,%g,%g,%g,%g’,[5 266400])’;
fclose(fid);

[xi,yi]= ll2xy(md.mesh.lat,md.mesh.long,+1,45,70);
bed = flipud(reshape(data(:,5),[360 740])); bed(find(bed&=& -9999))=NaN;
surf = flipud(reshape(data(:,4),[360 740])); surf(find(surf&=& -9999))=NaN;
bedy = flipud(reshape(data(:,1),[360 740]));
bedx = flipud(reshape(data(:,2),[360 740]));

%Insert Icebridge bed and recalculate thickness
bed_jks=InterpFromGridToMesh(bedx(1,:)’,bedy(:,1),bed,xi,yi,NaN);
surf_jks=InterpFromGridToMesh(bedx(1,:)’,bedy(:,1),surf,xi,yi,NaN);
in=ContourToMesh(md.mesh.elements,md.mesh.x,md.mesh.y,\ldots

’Jak_grounded.exp’,’node’,1);
bed_jks(~in)=NaN;
surf_jks(~in)=NaN;
pos=find(~isnan(bed_jks));
md.geometry.base(pos)=bed_jks(pos);
md.geometry.surface(pos)=surf_jks(pos);
md.geometry.thickness=md.geometry.surface-md.geometry.base;

Next, let’s plot the surface elevation, the ice thickness, and base:

Figure 3.1: plotmodel(md,’data’,md.geometry.surface)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 101

Figure 3.2: plotmodel(md,’data’,md.geometry.thickness)

Figure 3.3: plotmodel(md,’data’,md.geometry.base)

To plot the difference in the ice base topography between SeaRISE and OIB datasets do (1) modify the parame-
terization step in your runme.m file by commenting out all the above lines which insert the OIB data, and change
the name the model is saved under from Greenland.Parameterization2 to Greenland.Parameterization and
run step 2 again. A difference in the fields can be plotted using:

>> md2=loadmodel(’Models/Greenland.Parameterization2’)

>> md=loadmodel(’Models/Greenland.Parameterization’)

>> plotmodel(md,’data’,md2.geometry.base-md.geometry.base)

Zoom to the JI basin for better visibility.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 102

3.10.5 Stress Balance

We now use inverse control methods to solve for Greenland friction coefficient. The velocity map below contains
some gaps. Exclude the gaps from the inversion by creating a new *.exp file that outlines all the gaps in velocity
data using the exptool:

>> exptool(’data_gaps.exp’)

Exclude these data gaps in the inversion by giving them zero weight during the inversion process:

in=ContourToMesh(md.mesh.elements,md.mesh.x,md.mesh.y, ’data_gaps.exp’,’node’,1);
md.inversion.cost_functions_coefficients(find(in),1)=0.0;
md.inversion.cost_functions_coefficients(find(in),2)=0.0;

Launch the stressbalance simulation, and plot velocity and basal friction coefficient. A logarithmic plot scale
reveals more highlights of the velocity field structure:

>> plotmodel(md,’data’,md.results.StressbalanceSolution.Vel,’log’,10,’caxis’,[0.5 5000]);
>> plotmodel(md,’data’,md.results.StressbalanceSolution.FrictionCoefficient);

They should look like this:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 103

Even at this coarse resolution we can identify the high friction values inland and lower values towards the
coast, which may be related to the basal thermal regime of the ice sheet.

3.10.6 Transient

Finally, do a transient run (step 4) for 20 years, and decrease the surface mass balance linearly by 1 m w.e./yr
over the last 10 years (ncdata=’../Data/Greenland_5km_dev1.2.nc’;).

%Set surface mass balance
x1 = ncread(ncdata,’x1’);
y1 = ncread(ncdata,’y1’);
smb = ncread(ncdata,’smb’);
smb = InterpFromGridToMesh(x1,y1,smb’,md.mesh.x,md.mesh.y,0)*1000/md.materials.rho_ice;
smb = [smb smb smb-1.0];
md.smb.mass_balance = [smb;1 10 20];

Your results will be located in md.results.TransientSolution. Plot your results using step 5. First, plot the
initial plan view of velocity, surface mass balance, thickness, and surface. They should look like this:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 104

You can plot time series of surface mass balance, mean velocity and ice volume:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 3. TUTORIALS 105

3.10.7 Results

Well done! Here are some suggestions on what to explore further:

• How would you make a plot of time series of results from the SeaRISE and IceBridge experiments?

• How would you make a plot of the difference between final and initial ice thickness?

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

Chapter 4

Capabilities

4.1 Mesh generation

4.1.1 ARGUS file format

To mesh the domain, one needs a file containing all the coordinates of the domain outline in an ARGUS format.
These files have a *.exp extension. Here is an example of such a file for a square glacier:

Name:DomainOutline
Icon:0
Points Count Value
5 1.000000
X pos Y pos
0 0
1000000 0
1000000 1000000
0 1000000
0 0

The ARGUS format is used extensively by ISSM. One can use exptool to generate and manage ARGUS files.

4.1.2 triangle

triangle is a wrapper of triangle developed by Jonathan Shewchuk [Shewchuk , 1996]. It generates unstructured
isotropic meshes:

>> md=triangle(md,’DomainOutline.exp’,5000);

The first argument is the model you are working on, the second argument is the file from ARGUS containing
the domain outline, and the last argument is the density of the mesh (the mean distance between two nodes).
To see what the mesh looks like, one can type:

>> plotmodel(md,’data’,’mesh’);

106

http://www.argusint.com/
http://www.argusint.com/
http://www.cs.cmu.edu/~quake/triangle.html
http://www.cs.berkeley.edu/~jrs/

CHAPTER 4. CAPABILITIES 107

Figure 4.1: Mesh

ISSM includes a mesh adaptation capability embedded in the code, inspired by BAMG developed by Frederic
Hecht [Hecht , 2006], and YAMS developped by Pascal Frey [Frey , 2001].

4.1.3 Bamg

4.1.3.1 Domain

To mesh the domain, you need a file containing all the coordinates of the domain outline in an ARGUS format.
Assuming that this file is DomainOutline.exp

>> md=bamg(md,’DomainOutline.exp’);

4.1.3.2 hmin/hmax

The minimum and maximum edge lengths can be specified by ’hmin’ and ’hmax’ options:

>> md=bamg(md,’DomainOutline.exp’,’hmax’,1000);

4.1.3.3 hVertices

One can specified the edge length of domain outline vertices. NaN is used if not required.

>> h=[1000 100 100 100];
>> md=bamg(md,’DomainOutline.exp’,’hmax’,1000,’hVertices’,h);

4.1.3.4 field/err

The option ’field’ can be used with the option ’err’ to generate a mesh adapted to the field given as input
for the error given as input:

>> md=bamg(md,’field’,md.inversion.vel_obs,’err’,1.5);

Several fields can also be used:

>> md=bamg(md,’field’,[md.inversion.vel_obs md.geometry.thickness],’err’,[1.5 20]);

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://www.ann.jussieu.fr/~hecht/ftp/bamg/bamg.pdf
http://www.ann.jussieu.fr/~hecht/
http://www.ann.jussieu.fr/~hecht/
http://www.ann.jussieu.fr/~frey/software.html
http://www.ann.jussieu.fr/~frey

CHAPTER 4. CAPABILITIES 108

4.1.3.5 gradation

The ratio of the lengths of two adjacent edges is controlled by the option ’gradation’:

>> md=bamg(md,’field’,md.inversion.vel_obs,’err’,1.5,’gradation’,3);

4.1.3.6 anisomax

The factor of anisotropy (ratio between the lengths of two edges belonging to the same triangle) can be changed
by the option ’aniso’. A factor of anisotropy equal to 1 will result in an isotropic mesh generation.

>> md=bamg(md,’field’,md.vel_obs,’err’,1.5,’anisomax’,1);

4.1.4 Extrusion (3D)

One can extrude the mesh, in order to use a 3 dimensional model (Pattyn’s higher order model and Full Stokes
model). This step is not mandatory. If the user wants to keep a 2D model, skip this section. To extrude the
mesh, type the following command:

>> md=extrude(md,8,3);

The first argument is the model, as usual. The second argument is the number of horizontal layers. A high
number of layers gives a better precision for the simulations but creates more elements, which requires a longer
computational time. Usually a number between 7 and 10 is a good balance. The third argument is called the
extrusion exponent. Interesting things are usually happening near the bedrock and therefore users might want
to refine the lower layers more than the upper ones. An extrusion exponent of 1 will create a mesh with layers
equally distributed vertically. The higher the extrusion exponent, the more refined the base. An extrusion
exponent of 3 or 4 is generally enough.

Figure 4.2: Extruded mesh

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 109

4.2 Stress balance

4.2.1 Physical basis

4.2.1.1 Conservation of linear momentum

The conservation of momentum reads:
ρ
Dv

Dt
= ∇ · σ + ρb (4.1)

where:

• ρ is the ice density
• v is the velocity vector
• σ is the Cauchy stress tensor
• b is a body force

Now if we assume that:

• The ice motion is a Stokes flow (acceleration negligible)
• The only body force is due to gravity (Coriolis effect negligible)

The equation of momentum conservation is reduced to:

∇ · σ + ρg = 0 (4.2)

4.2.1.2 Conservation of angular momentum

For a non-polar material body, the balance of angular momentum imposes the stress tensor to be symmetrical:

σ = σT (4.3)

4.2.1.3 Ice constitutive equations

Ice is treated as a purely viscous incompressible material Cuffey and Paterson [2010]. Its constitutive equation
therefore only involves the deviatoric stress and the strain rate tensor:

σ′ = 2µε̇ (4.4)

where:

• σ′ is the deviatoric stress tensor (σ′ = σ + pI)
• µ is the ice effective viscosity
• ε̇ is the strain rate tensor

Ice is a non-Newtonian fluid, its viscosity follows the generalized Glen’s flow law Glen [1955]:

µ =
B

2 ε̇
n−1
n

e

(4.5)

where:

• B is the ice hardness or rigidity
• n is Glen’s flow law exponent, generally taken as equal to 3
• ε̇e is the effective strain rate

The effective strain rate is defined as:

ε̇e =

√
1

2

∑
i,j

ε̇2
ij =

1√
2
‖ε̇‖F (4.6)

where ‖ · ‖F is the Frobenius norm.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 110

4.2.1.4 Full-Stokes (FS) field equations

Without any further approximation, the previous system of equations are called the Full-Stokes model.

4.2.1.5 Higher-Order (HO) field equations

We make two assumptions:

1. Bridging effects are neglected

2. Horizontal gradient of vertical velocities are neglected compared to vertical gradients of horizontal ve-
locities

With these two assumptions, the Full-Stokes equations are reduced to a system of 2 equations with 2 unknowns
Blatter [1995]; Pattyn [2003]:

∇ · (2µε̇HO1) = ρg
∂s

∂x

∇ · (2µε̇HO2) = ρg
∂s

∂y

(4.7)

With

ε̇HO1 =

2
∂vx
∂x

+
∂vy
∂y

1

2

(
∂vx
∂y

+
∂vy
∂x

)
1

2

∂vx
∂z

ε̇HO2 =

1

2

(
∂vx
∂y

+
∂vy
∂x

)
∂vx
∂x

+ 2
∂vy
∂y

1

2

∂vy
∂z

(4.8)

4.2.1.6 Shelfy-Stream Approximation (SSA) field equations

We make the following assumption:

1. Vertical shear is negligible

With this assumption, we have a system of 2 equations with 2 unknowns in the horizontal plane [Morland ,
1987; MacAyeal , 1989]:

∇ · (2µ̄Hε̇SSA1)− α2vx = ρgH
∂s

∂x

∇ · (2µ̄Hε̇SSA2)− α2vy = ρgH
∂s

∂y

(4.9)

With

ε̇SSA1 =

2
∂vx
∂x

+
∂vy
∂y

1

2

(
∂vx
∂y

+
∂vy
∂x

)
 ε̇SSA2 =

1

2

(
∂vx
∂y

+
∂vy
∂x

)
∂vx
∂x

+ 2
∂vy
∂y

 (4.10)

where:

• µ̄ is the depth-averaged viscosity

• H is the ice thickness

• α is the basal friction coefficient

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 111

4.2.1.7 Boundary conditions

At the surface of the ice sheet, Γs, we assume a stress-free boundary condition. A viscous friction law is applied
at the base of the ice sheet, Γb, and water pressure is applied at the ice/water interface Γw. For FS, these
boundary conditions are:

σ · n = 0 on Γs(
σ · n · n + α2v

)
‖ = 0 on Γb

v · n = 0 on Γb

σ · n = ρwgzn on Γw

(4.11)

where

• n is the outward-pointing unit normal vector

• ρw is the water density

• z is the vertical coordinate with respect to sea level

For HO, these boundary conditions become:

ε̇HO1 · n = 0 ε̇HO2 · n = 0 on Γs

2µ ε̇HO1 · n = −α2vx 2µ ε̇HO2 · n = −α2vy on Γb

2µ ε̇HO1 · n = fwnx 2µ ε̇HO2 · n = fwny on Γw

(4.12)

where fw = ρg (s− z) + ρwgmin (z, 0).

For SSA, these boundary conditions are:

ε̇SSA1 · n = 0 ε̇SSA2 · n = 0 on Γs (4.13)

2µ ε̇SSA1 · n =
(

1
2
ρgH2 − 1

2
ρwgb

2
)
nx

2µ ε̇SSA2 · n =
(

1
2
ρgH2 − 1

2
ρwgb

2
)
ny

on Γw (4.14)

4.2.2 Model parameters

The parameters relevant to the stress balance solution can be displayed by typing:

>> md.stressbalance

• md.stressbalance.restol: mechanical equilibrium residue convergence criterion

• md.stressbalance.reltol: velocity relative convergence criterion, (NaN if not applied)

• md.stressbalance.abstol: velocity absolute convergence criterion, (NaN if not applied)

• md.stressbalance.maxiter: maximum number of nonlinear iterations (default is 100)

• md.stressbalance.viscosity_overshoot: over-shooting constant defined as:

µnew = µnew + α
(
µnew − µold

)
(4.15)

• md.stressbalance.spcvx: x-axis velocity constraint (NaN means no constraint)

• md.stressbalance.spcvy: y-axis velocity constraint (NaN means no constraint)

• md.stressbalance.spcvz: z-axis velocity constraint (NaN means no constraint)

• md.stressbalance.rift_penalty_threshold: threshold for instability of mechanical constraints

• md.stressbalance.rift_penalty_lock: number of iterations before rift penalties are locked

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 112

• md.stressbalance.penalty_factor: offset used by penalties:

κ = 10penalty_factor max
i,j
|Kij | (4.16)

• md.stressbalance.vertex_pairing: pairs of vertices that are penalized
• md.stressbalance.shelf_dampening: use dampening for floating ice ? Only for Stokes model
• md.stressbalance.referential: local referential
• md.stressbalance.requested_outputs: additional outputs requested

The solution will also use the following model fields:

• md.flowequations: FS, HO or SSA
• md.materials: material parameters
• md.initialization.vx: x component of velocity (used as an initial guess)
• md.initialization.vy: y component of velocity (used as an initial guess)
• md.initialization.vz: y component of velocity (used as an initial guess)

4.2.3 Running a simulation

To run a simulation, use the following command:

>> md=solve(md,StressbalanceSolutionEnum);

The first argument is the model, the second is the nature of the simulation one wants to run.

4.3 Mass transport / Free surface

4.3.1 Physical basis

4.3.1.1 Conservation of mass

The mass transport equation is derived from the depth-integrated form of the mass conservation equation and
reads:

∂H

∂t
= −∇ · (Hv̄) + Ṁs − Ṁb (4.17)

where

• v̄ is the depth-averaged velocity vector
• H is the ice thickness
• Ṁs is the surface accumulation (in m/yr of ice equivalent, positive for accumulation)
• Ṁb is the basal melting (in m/yr of ice equivalent, positive for melting)

For full-Stokes models, free surface equations are solved for the upper surface and the base of floating ice:

∂s

∂t
+ vx (s)

∂s

∂x
+ vy (s)

∂s

∂y
− vz (s) = Ṁs (4.18)

and
∂b

∂t
+ vx (b)

∂b

∂x
+ vy (b)

∂b

∂y
− vz (b) = Ṁb (4.19)

where

• s is the elevation of the ice upper surface
• b is the elevation of the floating ice lower surface
• (vx (s) , vy (s) , vz (s)) are the ice velocity components at the upper surface s
• (vx (b) , vy (b) , vz (b)) are the ice velocity components at the base b

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 113

4.3.1.2 Boundary conditions

Ice thickness is imposed at the inflow boundary:

H = Hobs on Γ− (4.20)

For free surfaces models, both b and s are constrained at the inflow boundary.

4.3.1.3 Numerical implementation

Mass transport is solved using finite elements in space, and implicit finite difference in time. To stabilize the
equation, artificial diffusion might be added to the left hand side:

∂H

∂t
+∇ · (Hv̄) +∇ (D∇H) = Ṁs − Ṁb (4.21)

where D is the artificial diffusivity. We take

D =
h

2

 |vx| 0

0 |vy|

 (4.22)

4.3.2 Model parameters

The parameters relevant to the mass transport solution can be displayed by typing:

>> md.masstransport

• md.masstransport.spcthickness: thickness constraints (NaN means no constraint)

• md.masstransport.hydrostatic_adjustment: adjustment of ice shelves upper and lower surfaces: ’Incremental’
or ’Absolute’

• md.masstransport.stabilization: 0: no stabilization, 1: Artificial diffusivity 3: Discontinuous Galerkin
(experimental)

• md.masstransport.penalty_factor: offset used by penalties

κ = 10penalty_offset max
i,j
|Kij | (4.23)

• md.masstransport.vertex_pairing: pairs of vertices that are penalized (for periodic boundary condi-
tions only)

The solution will also use the following model fields:

• md.surfaceforcings.ablation_rate: surface ablation rate (in meters)

• md.surfaceforcings.mass_balance: surface mass balance (in meters)

• md.initialization.vx: x component of velocity

• md.initialization.vy: y component of velocity

• md.basalforcings.groundedice_melting_rate: basal melting rate applied on grounded ice (positive if
melting)

• md.basalforcings.floatingice_melting_rate: basal melting rate applied on floating ice (positive if
melting)

• md.surfaceforcings.mass_balance: surface mass balance (in meters/year ice equivalent)

• md.timestepping.time_step: length of time steps (in years)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 114

4.3.3 Running a simulation

To run a simulation, use the following command:

>> md=solve(md,MasstransportSolutionEnum);

The first argument is the model, the second is the nature of the simulation one wants to run. This will compute
one time step of the mass transport equation; use the transient solution for multiple time steps.

4.4 Thermal Model

4.4.1 Physical basis

4.4.1.1 Thermal state

The heat transport equation is derived from the balance equation of internal energy E combined with Fourier’s
law of heat transfer and reads:

ρ

(
∂E

∂t
+ v · ∇E

)
= −∇ (κ(E)∇E) + Tr (σ · ε̇) (4.24)

where radiative sources have been neglected, and

• v is the velocity vector

• ε̇ is the strain rate tensor

• E is the internal energy density

• κ is the specific heat conductivity, which can depend on the heat density

• σ is the Cauchy stress tensor.

For constant heat conductivity and heat capacity ci, the previous equation reduces to

ρci

(
∂T

∂t
+ v · ∇T

)
= −ciκ∆T + Tr (σ · ε̇) (4.25)

4.4.1.2 Boundary conditions

Dirichlet boundary conditions can be applied at the ice surface:

T (z = s) = Ts, (4.26)

and Neumann boundary conditions at the ice base:

q(z = b) = −κ(E)∇E = qgeo (4.27)

where

• s is the elevation of the ice upper surface

• b is the elevation of the floating ice lower surface

When using the enthalpy formulation, the basal boundary condition scheme from Aschwanden et al. [2012],
figure 5 is used instead of the previous equation.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://issm.jpl.nasa.gov/documentation/transient

CHAPTER 4. CAPABILITIES 115

4.4.1.3 Numerical implementation

The heat equation is solved using linear finite elements in space, and semi-implicit finite difference in time (time
stepping should therefore satisfy the CFL condition). To stabilize the equation, we either add an isotropic
artificial diffusion to the left hand side:

ρ

(
∂E

∂t
+ v · ∇E

)
+∇ (κ(E)∇E) +∇ (D∇E) = Tr (σ · ε̇) (4.28)

where D is the artificial diffusivity. We take

D =
h

2

|vx| 0 0

0 |vy| 0

0 0 |vz|

 (4.29)

or rely on the Streamline upwind/Petrov-Galerkin formulation (SUPG) from Franca et al. [2006].

4.4.2 Model parameters

The parameters relevant to the heat equation solution can be displayed by typing:

>> md.thermal

• md.thermal.spctemperature: temperature constraints (NaN means no constraint)

• md.thermal.stabilization: type of stabilization (0: no stabilization; 1: artificial diffusion; 2: Streamline-
Upwind Petrov-Galerkin)

• md.thermal.maxiter: maximum number of iterations for thermal solver

• md.thermal.penalty_lock: stabilize unstable thermal constraints that keep zigzagging after n iteration
(default is 0, no stabilization)

• md.thermal.penalty_threshold: threshold to declare convergence of thermal solution (default is 0)

• md.thermal.penalty_factor: offset used by penalties(default is 3):

κ = 10penalty_factor max
i,j
|Kij | (4.30)

• md.thermal.isenthalpy: are we using the enthalpy formulation (Aschwanden et al., 2012)? (0: no, 1:
yes)

• md.thermal.isdynamicbasalspc: are we allowing changing basal boundary conditions for transient runs?

• md.thermal.requested_outputs: specify further requested outputs here.

The solution will also use the following model fields:

• md.initialization.temperature: temperature field (in K)

• md.initialization.waterfraction: water fraction in ice (between 0 and 1)

• md.basalforcings.geothermalflux: geothermal heat flux (in W/m2)

• md.basalforcings.meltingrate: basal melting rate (in m/yr w.e.)

• md.timestepping.time_step: length of time steps (in yrs)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 116

4.4.3 Running a simulation

To run a simulation solving only the thermal state, use the following command:

>> md=solve(md,ThermalSolutionEnum);

This will compute one time step of the thermal equation; use the transient solutionfor multiple time steps.
To run a simulation solving both the thermal and stressbalance state in a coupled fashion, use the following
command:

>> md=solve(md,SteadystateSolutionEnum);

The first argument is the model, the second is the nature of the simulation one wants to run.

4.5 Dual continuum Hydrology model

4.5.1 Physical basis

Using the dual continuum porous equivalent approach, the inefficient and efficient drainage components are
both modeled as sediment layers with the use of a specific activation scheme for the efficient drainage system.
This approach defines in a continuous manner the location where the efficient drainage system is most likely
to develop.

4.5.1.1 Water Distribution

The model consist of two analyses, one for the Inefficient Drainage System (IDS) and the other for the Efficient
Drainage System(EDS). Each compute the water head by using a vertically integrated diffusion equation based
on Darcy’s law. The two are coupled through a transfer term, which is implicitly computed at the same time
as the water head. In the following equation, the index j (subscript or superscript) may either refer to the IDS
(j = i) or to the EDS (j = e).

Sj
∂hj
∂t
−∇ · (Tj ∇hj) = Qj . (4.31)

where:

• Sj is the storage coefficient of porous media [SU]

• hj is the water head of the porous media [m]

• Tj is the transmissivity of porous media [m2 s−1]

• Qj is the water input [ms−1]

Storage coefficient and transmissivities are the descriptive parameters of the porous layers. They are defined
as:

Tj = ejKj (4.32)
and

Sj = ρwωjgej

[
βw −

α

ωj

]
, (4.33)

where

• ej is the thickness of the considered layer [m]

• Kj is the permeability of the porous media [ms−1]

• ρw is the density of fresh water [kgm−3]

• ωj is the porosity of the media [SU]

• g is the gravitational acceleration [ms−2]

• βw is the compressibility of water [Pa−1]

• α is the compressibility of the solid phase of the porous media [Pa−1]

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://issm.jpl.nasa.gov/documentation/transient

CHAPTER 4. CAPABILITIES 117

4.5.1.2 Specificities of the IDS

The main specificity of the IDS is that it allows us to set up a maximum limit for the water head. This is dealt
with by a penalization method from which the residual is kept, in order to be re-injected into the EDS.

The source term for the IDS is the sum of three possible sources:

• surfacic input given by the melting at the base of the glacier [m]

• local input at a given point representing moulin input [m−3 s−1]

• input due to the transfer between the two layers which is dealt with in an implicit matter (See Layer
Transfer)

4.5.1.3 Specificities of the EDS

The model could be run without introducing this layer. In this case, it is possible that the model does not
conserve the mass of water, depending on the setting of the upper limit for the IDS. If the layer is used, it
is usually not active on the whole domain. The initial activation process is driven by the water head in the
IDS and then by the water head in the EDS. More information about the activation process can be found
in de Fleurian et al. [2014]. Improvements from the version presented in de Fleurian et al. [2014] include a
varying thickness for the EDS layer, which allows us to close back the EDS when the water volume becomes
too low and can be evacuated by the IDS only. The thickness evolution is defined as follows:

∂ee
∂t

= g
ρweeKe

ρiceLice
(∇he)2 − 2

[
N

Bn

]n
(4.34)

where:

• ρice is the density of the ice [kgm−3]

• Lice is the latent heat of fusion for the ice [J kg−1]

• N is the effective pressure [Pa]

• B is the ice hardness or rigidity [Pa s1/n]

• n is Glen’s flow law exponent, generally taken as equal to 3 [SU]

4.5.2 Transfer equation

The transfer between the two layers is based on the water head difference in the two systems. The transfer
term Qt is as follows:

Qt = ϕ(hi − he). (4.35)

where:

• ϕ is the leakage time from one layer to the other [s−1]

The leakage time ϕ is a characteristic time needed for the water to pass from one drainage system to the other.
This corresponds to the crossing of a less permeable layer inbetween the inefficient and efficient layers.

4.5.2.1 Boundary conditions

The natural boundary condition is a no flow condition, which is what is kept on the upstream model boundaries.
The water head is then fixed at the snouts of glaciers.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 118

4.5.3 Model parameters

The parameters relevant to the hydrology solution can be displayed by typing:

>> md.hydrology

These parameters are of three different types

4.5.3.1 General parameters

• md.hydrology.water_compressibility: compressibility of water [Pa−1]

• md.hydrology.isefficientlayer: do we use an efficient drainage system (1: true; 0: false)
• md.hydrology.penalty_factor: exponent of the value used in the penalization method (dimensionless)
• md.hydrology.penalty_lock: stabilize unstable constraints that keep zigzagging after n iteration (de-

fault is 0, no stabilization)
• md.hydrology.rel_tol: tolerance of the nonlinear iteration for the transfer between layers (dimension-

less)
• md.hydrology.max_iter: maximum number of nonlinear iteration
• md.hydrology.sedimentlimit_flag: what kind of upper limit is applied for the inefficient layer

– 0: no limit
– 1: user defined: sedimentlimit
– 2: hydrostatic pressure
– 3: normal stress

• md.hydrology.transfer_flag: what kind of transfer method is applied between the layers

– 0: no transfer
– 1: constant leakage factor: leakage_factor

• md.hydrology.leakage_factor: user defined leakage factor [m]
• md.hydrology.basal_moulin_input: water flux at a given point [m3 s-1]

4.5.3.2 IDS parameters

Also called sediment layer

• md.hydrology.spcsediment_head: sediment water head constraints (NaN means no constraint) (m above
MSL)

• md.hydrology.sediment_compressibility: sediment compressibility [Pa−1]

• md.hydrology.sediment_porosity: sediment (dimensionless)
• md.hydrology.sediment_thickness: sediment thickness [m]

• md.hydrology.sediment_transmitivity: sediment transmitivity [m2/s]

4.5.3.3 EDS parameters

Also called EPL layer (Equivalent Porous Layer)

• md.hydrology.spcepl_head: epl water head constraints (NaN means no constraint) [m above MSL]
• md.hydrology.mask_eplactive_node: active (1) or not (0) EPL
• md.hydrology.epl_compressibility: epl compressibility [Pa−1]

• md.hydrology.epl_porosity: epl [dimensionless]
• md.hydrology.epl_initial_thickness: epl initial thickness [m]

• md.hydrology.epl_max_thickness: epl maximal thickness [m]

• md.hydrology.epl_conductivity: epl conductivity [m2/s]

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 119

4.5.4 Running a simulation

To run a transient simulation, use the following command:

>> md=solve(md,TransientSolutionEnum);

The first argument is the model, the second is the nature of the simulation one wants to run. The default for
the transient simulation does not include the resolution of the hydrological model. One should introduce the
following lines in the run launchers to enable the hydrology:

• For a standalone hydrology model

>> md.transient=deactivateall(md.transient);
>> md.transient.ishydrology=1;

• To add the hydrology to a transient simulation

>> md.transient.ishydrology=1;

Running a steady state simulation, is done with the following command:

>> md=solve(md,HydrologySolutionEnum);

4.6 Shreve’s Hydrology model

4.6.1 Physical basis

This model is the one described in Le Brocq et al. [2009]. Here we present only the main equations.

4.6.1.1 Water column

The model applied here is the most simplistic form of the water-film model, as described by the Weertman
theory [Weertman, 1957]. The model solves for the thickness w of the water-film as follows:

∂w

∂t
= S −∇ · uww (4.36)

where:

• S is the source term [ms−1]

• uw is the water velocity vector [ms−1]

The water velocity vector uw is a depth-averaged two dimensional horizontal vector, which is computed using
a theoretical treatment of laminar flow between two parallel plates:

uw =
w2

12µ
∇φ (4.37)

• φ is the hydraulic potential [Pa]

• µ is the water viscosity [Pa s]

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 120

In this model, the hydraulic potential φ is defined following the Shreve approximation [Shreve, 1972], which
hypothesizes a null effective pressure. Assuming this null effective pressure gives the hydraulic potential
gradient as follows:

∇φ = ρiceg∇s+ (ρw − ρice) g∇h (4.38)

where

• ρice is the density of the ice [kgm−3]

• ρw is the density of fresh water [kgm−3]

• s is the surface elevation [m]

• g is the gravitational acceleration [ms−2]

• h is the bedrock elevation [m]

4.6.1.2 Numerical implementation

To stabilize the equation, artificial diffusion might be added to the left hand side:

∂w

∂t
+∇ (D∇w) = S −∇ · uww (4.39)

where D is the artificial diffusivity. We take

D =
h

2

 |vx| 0

0 |vy|

 (4.40)

4.6.2 Model parameters

The parameters relevant to the water column solution can be displayed by typing:

>> md.hydrology

• md.hydrology.spcwatercolumn: water thickness constraints (NaN means no constraint) [m]

• md.hydrology.stabilization: artificial diffusivity (default is 1).

4.6.3 Running a simulation

To run a simulation, use the following command:

>> md=solve(md,HydrologySolutionEnum);

4.7 Damage mechanics

4.7.1 Physical basis

Damage is a state variable introduced to account for the influence of fractures on ice flow, while maintaining
a continuum representation of the ice domain. For purely viscous ice flow modeling, damage is linked to flow
enhancement–specifically the increase in strain rate–due to a fracture or a multitude of fractures in the ice.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 121

4.7.1.1 Inferring damage from remote sensing data

Remote sensing data can be used to calculate damage from the static stress balance in the ice. At present, this
is only implemented in two dimensions for the SSA approximations to ice flow. Damage can be inferred in one
of two ways:

• Inverting for damage directly

• Inverting for ice rigidity B and then post-processing to determine damage (and optionally backstress)

4.7.1.2 Inverting for damage directly

For the SSA equations, the damage-dependent ice viscosity (µ) is:

µ =
(1−D)B

2ε̇
n−1
n

e

(4.41)

where:

• D is damage

• B is the ice rigidity

• ε̇e is the effective strain rate

• n is the flow law exponent

Damage can be calculated using an inverse control method in the same manner as an inversion for the ice
rigidity B. Simply specify the following field in md.inversion:

• md.inversion.control_parameters=[’DamageDbar’] (Python)

• md.inversion.control_parameters={’DamageDbar’} (MATLAB)

The remainder of the inversion procedure is described on the Inverse Methods page. This was the procedure
followed by Borstad et al. [2012] in determining the damage for the Larsen B ice shelf prior to its collapse (see
the ISSM Publications List for a link to the paper).

4.7.1.3 Post-processing to determine damage

Damage can also be calculated from the results of an inverse method solution for ice rigidity B. This procedure
uses the analytical solution for the strain rate of a damaged ice shelf, derived by Borstad et al. [2013]:

ε̇xx = θ

[
1/2ρi (1− ρi/ρw) gH − σb

(1−D)B

]n
(4.42)

where:

• ε̇xx is the longitudinal strain rate

• θ accounts for the lateral and shear strain rate terms

• ρi and ρw are the densities of ice and seawater, respectively

• g is gravitational acceleration

• H is the ice thickness

• σb is the backstress resisting the flow

• D is the damage

• B is the ice rigidity

• n is the flow law exponent

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

https://issm.jpl.nasa.gov/documentation/inversions/
https://issm.jpl.nasa.gov/publications/

CHAPTER 4. CAPABILITIES 122

To determine damage, an inverse control method solution for ice rigidity B is first carried out. The initial guess
B◦ for the control method (contained in md.materials.rheology_B!) is assumed to be based on a temperature
parameterization, given a reasonable estimate of the depth-averaged temperature of the ice. Damage is then
calculated in locations where the inverse solution for B is less than the ice rigidity appropriate for the local
temperature of the ice. A post-processing function carries out this calculation directly:

>> md=damagefrominversion(md);

Additionally, the scalar backstress can be calculated from the inversion results:

>> md=backstressfrominversion(md);

This procedure for calculating damage and backstress was used in Borstad et al. [2013] for the Larsen C ice
shelf (see the ISSM Publications List for a link to the paper).

4.7.2 Damage Evolution (Under Construction)

A differential equation describing damage evolution in time–both the advection of damage with ice flow as well
as the evolution of damage as the stress state changes–is being implemented in ISSM. Check back for updates.

4.8 Transient (time dependent projection)

4.8.1 Physical basis

4.8.1.1 Transient solution

The transient solution is a combination of all the other solutions and modules that allow us to run a model
forward in time (between a start time and a final time) using finite differences in time. At each time step of
the simulation the following steps are performed in the order noted below:

• thermal solution

• hydrology solution

• stressbalance solution

• damage evolution model

• masstransport solution

• grounding line migration (and geometry update)

• gia solution

Not all solutions have to be included in the transient runs, and each of these functionalities can be activated
or deactivated prior to launching the simulation.

4.8.2 Model parameters

The parameters relevant to the transient solution can be displayed by typing:

>> md.transient

• md.transient.ismasstransport: indicates whether a masstransport solution is used in the transient

• md.transient.isstressbalance: indicates whether a stressbalance solution is used in the transient

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

https://issm.jpl.nasa.gov/publications/
http://issm.jpl.nasa.gov/documentation/thermal
http://issm.jpl.nasa.gov/documentation/hydrology
http://issm.jpl.nasa.gov/documentation/stressbalance
http://issm.jpl.nasa.gov/documentation/damage
http://issm.jpl.nasa.gov/documentation/masstransport
http://issm.jpl.nasa.gov/documentation/groundingline
http://issm.jpl.nasa.gov/documentation/gia

CHAPTER 4. CAPABILITIES 123

• md.transient.isthermal: indicates whether a thermal solution is used in the transient

• md.transient.isgroundingline: indicates whether a grounding line migration is used in the transient

• md.transient.isgia: indicates whether a postglacial solution is used in the transient

• md.transient.isdamageevolution: indicates whether damage evolution is used in the transient

• md.transient.islevelset: level set, not implemented yet

• md.transient.ishydrology: indicates whether a hydrology solution is used in the transient

• md.transient.requested_outputs: list of additional outputs requested

The solution will also use fiels from the following classes for each of the solution used:

• md.masstransport: for parameters related to the masstransport solution

• md.stressbalance: for parameters related to the stressbalance solution

• md.thermal: for parameters related to the thermal solution

• md.groundingline: for parameters related to grounding line migration

• md.gia: for parameters related to the postglacial solution

• md.damage: for parameters related to damage evolution

• md.hydrology: for parameters related to the hydrology solution

• md.initialization: for initial values of model fields (velocity, temperature, ...)

• md.timestepping: for parameters related to time stepping (initial time, final time, length of time steps,
...)

4.8.2.1 Time stepping

Each solution requested is computed at each time step. The time step has either a fixed duration (specified
by the user before the simulation is launched) or a varying duration based on the CFL (CourantâĂŞFriedrich-
sâĂŞLewy) condition (necessary condition for the stability of certain partial differential equations).

The parameters relevant to the time stepping can be displayed by typing:

>> md.timestepping

• md.timestepping.start_time: simulation starting time (year)

• md.timestepping.final_start: final time to stop the simulation (year)

• md.timestepping.time_step: length of time steps (year)

• md.timestepping.time_adapt: to indicate if the CFL condition is used to define time step ?

• md.timestepping.cfl_coefficient: coefficient applied to cfl condition

• md.timestepping.interp_forcings: interpolate in time between requested forcing values ? (0 or 1)

4.8.3 Forcing a transient

To specify a transient forcing, the user must add a time value to the end (i.e. in the end+1 position) of the
variable to be forced. This means that a transient forcing will no longer be a single column of length n. Instead,
it will be a matrix (or a series of columns), and each column will be of length n+1.

For example, let smb be values of surface mass balance. Below, we impose smb at year 10 and then impose a
decrease of 1 m/yr in surface mass balance everywhere at year 20.

>> md.surfaceforcings.mass_balance = [smb smb-1];
>> md.surfaceforcings.mass_balance = [md.surfaceforcings.mass_balance; [10 20]];

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 124

Prior to first and after last imposed time, ISSM will impose constant surface mass balance values. In the
example above, the surface mass balance is assumed constant prior to year 10, and again after year 20. Forcing
values will be equal to smb prior to year 10 and smb-1 after year 20.

Between years 10 and 20, ISSM will treat all forcings according to the value set in the time stepping parameter
interp_forcings.

By default, md.timestepping.interp_forcings = 1. This means that between the user-imposed times, forc-
ings are linearly interpolated. For the example above, the model will linearly increase surface mass balance
from smb to smb-1 between years 10 and 20.

The user must set md.timestepping.interp_forcings = 0 to turn this feature off and impose a step-wise
forcing. When interp_forcings = 0, the forcing value will change only at the times designated by the user.
After the last user-specified time, the forcing will remain constant. In the example above, the surface mass
balance will be equal to smb up until time 20. At time 20, the surface mass balance will be changed to smb-1,
and will remain at these values until the end of the simulation.

4.8.4 Running a simulation

To run a simulation, use the following command:

>> md=solve(md,TransientSolutionEnum);

The first argument to solve is the model, the second is the nature of the simulation one wants to run.

4.9 Grounding Lines

4.9.1 Physical basis

4.9.1.1 Hydrostatic equilibrium

The position of the grounding line is determined by a floatation criterion: ice is floating if its thickness, H, is
equal or lower than the floating height Hf defined as:

Hf = −ρw
ρi
r, r < 0 (4.43)

where ρi is the ice density, ρw the ocean density and r the bedrock elevation (negative if below sea level).
Grounding line is therefore located where H = Hf :

H > Hf ice is grounded
H = Hf grounding line position
H < Hf ice is floating

(4.44)

Each element of the mesh is either grounded or floating: floatation criterion is determined on each vertex of the
triangle and if at least one vertex of the triangle is floating, the element is considered floating and no friction
is applied. Otherwise, if the three vertices are grounded, the element is considered grounded. We refer to this
type of grounding line migration as ’SoftMigration’.

Sub-element parameterization can also be used to track the position of the grounding line within an element
and improve accuracy of the results. The floating condition is a 2D field and the grounding line position
is determined by the line where H = Hf , so it is located anywhere within an element. Some elements are
therefore partly grounded and partly floating. Two different schemes of sub-element parameterizations have
been implemented.

In the first case, the basal friction coefficient C is reduced to match the amount of grounded ice in the element
as proposed by Pattyn et al. [2006] and Gladstone et al. [2010] but for a 2D element:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 125

Cg = C
Ag
A

(4.45)

where Cg is the applied basal friction coefficient for the element partially grounded, Ag is the area of grounded
ice of this element and A is the total area of the element. We refer to this type of grounding line parameterization
as ’SubelementMigration’.

In the second case, the basal friction computed for partly grounded elements is integrated only on the part
of the element that is grounded. This can be done simply by changing the integration area from the initial
element to the grounded part of the element, over which the basal friction is unchanged. We refer to this type
of grounding line parameterization as ’SubelementMigration2’.

The sub-element parameterizations are described in details in Seroussi et al. [2014a].

4.9.1.2 Contact mechanics

Grounding line migration can be advantageously based on contact mechanics when solving the stress balance
equations with a full-Stokes models [Nowicki and Wingham, 2008; Durand et al., 2009].

This capability is currently under development.

4.9.2 Model parameters

The parameters relevant to the grounding line migration can be displayed by typing:

>> md.groundingline

• md.groundingline.migration: type of grounding line migration: ’SoftMigration’,’AgressiveMigration’,’SubelementMigration’,’SubelementMigration2’
or ’None’

4.9.3 Running a simulation

To compute grounding line migration, the transient solution must be used and all solutions except the grounding
line migration must be deactivated (see Transient solution):

>> md=solve(md,TransientSolutionEnum);

The first argument to solve is the model, the second is the nature of the simulation one wants to run.

4.10 Glacial Isostatic Adjusment (GIA)

4.10.1 Physical basis

The ISSM/GIA model assumes that the ice sheet rests on top of the solid Earth, which is considered to
be a simple two-layered incompressible continuum with upper elastic lithosphere floating on the viscoelastic
(Maxwell material) mantle half-space. Coordinate transformations allow simple axisymmetric solutions for
the deformation of pre-stressed solid Earth (subject to a normal surface traction of ice/ocean) to retrieve
semi-analytical solutions of vertical displacement at the lithosphere surface.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://issm.jpl.nasa.gov/documentation/transient

CHAPTER 4. CAPABILITIES 126

4.10.2 Vertical surface displacement

Vertical displacement at the lithosphere surface (i.e., ice/ocean-bedrock interface), w(r, t), is the most relevant
field variable for GIA assessment. For brevity, hereinafter, this is referred to as the GIA solution. Semi-
analytical GIA solution is given by Ivins and James [1999]:

w(r, t) =

∫ ∞
0

k

[
4µe1α

2kµe1 + ρ1g
Q̂0(k, t)J1(kα)

]
J0(kr) dk, (4.46)

where:

• r is the radial distance from the centre of the cylindrical disc load

• t is the evaluation time

• k is the Hankel transform variable of r (or wavenumber)

• α is the radius of the cylindrical disc load

• µe1 is the shear modulus of elasticity of lithosphere

• ρ1 is the lithosphere density

• g is the vertical component of the gravity vector

• Jv(kr) is the v-th order Bessel function of the first kind

• Q̂0(k, t) accounts for the integrated influence of ice loading history (cf. Figure 1) at the evaluation time
t. (Note that f̂v(k) is the v-th order Hankel transform of function f(r).)

Figure 4.3: Schematic of evolution of piecewise continuous load height, h0, with J linear segments
(from Ivins and James [1999]). For j-th segment, we can compute mj and bj (cf. Eqs. 3–4) based
on the ice load at time tj−1 and tj . At tj , for example, ice load at the lithosphere surface is given by
ρ0gh0j , where ρ0 is the ice density.

Assuming tJ−1 < t ≤ tJ , the term Q̂0(k, t) can be written as follows

Q̂0(k, t) =

J∑
j=1

jQ̂0(k, t). (4.47)

For j ≤ (J − 1),

jQ̂0(k, t) =

2∑
p=1

{
mjξp
γ2
p

[
(γptj − 1) eγp(tj−t) − (γptj−1 − 1) eγp(tj−1−t)

]
+
bjξp
γp

[
eγp(tj−t) − eγp(tj−1−t)

]}
,

(4.48)
and for j = J (i.e. the last load segment),

jQ̂0(k, t) =

2∑
p=1

{
mjξp
γ2
p

[
(γpt− 1)− (γptj−1 − 1) eγp(tj−1−t)

]
+
bjξp
γp

[
1− eγp(tj−1−t)

]}
+

(
c2 +

1

4kµe1

)
(mjt+ bj) ,

(4.49)
where:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 127

• mj is the slope of the linear j-th load segment

• bj is the y-intercept of the linear j-th load segment

• γp is the inverse decay time

• ξp is the amplitude factor

For p = 1, 2, the inverse decay times are given by

γp =
d1 ±

√
d2

1 − 4d0

2
, (4.50)

and the amplitude factors by

ξp =
(−1)p

(γ2 − γ1)
[(−c2γp + c1) γp − c0] . (4.51)

Parameters appearing in Eqs. (5) and (6) are defined as follows

c0 =
h1

µe2τ
2
m

c′0, c1 =
h1

µe2τm
c′1, c2 =

h1

µe2
c′2, d0 =

1

τ2
m

d′0 and d1 =
1

τm
d′1, (4.52)

where:

• h1 is the lithosphere thickness

• τm = η/µe2 is the Maxwell relaxation time

• η is the effective viscosity of mantle

• µe2 is the shear modulus of elasticity of mantle

• parameters with primes, e.g. c′0, are dimensionless (listed in Table 1)

with the following dimensionless parameters:

• d′2 = b′0 + b′1 + b′2 + b′3 + b′4 + b′5 + b′6 + b′7

• d′1 = [b′2 + b′3 + b′4 + 2 (b′5 + b′6 + b′7)] /d′2

• d′0 = (b′5 + b′6 + b′7) /d′2

• c′2 = (a′0 + a′1 + a′2 + a′3) /d′2

• c′1 = [a′1 + 2 (a′2 + a′3)] /d′2

• c′0 = (a′2 + a′3) /d′2

where:

• a′0 = −2k′
{

1 + e2k′ [1 + 2k′ (1 + k′)]
}

• a′1 = 4k′Reµ −R−ρ
{

1 + e2k′ [1 + 2k′ (1 + k′)]
}

• a′2 = −2k′
(
Reµ
)2 [

1− e2k′ − 2k′ e2k′ (1 + k′)
]

• a′3 = ReµR
−
ρ

[
1− e2k′ (1 + 2k′)

]
• b′0 = 4(k′)2Reµ

[
1 + e4k′ + 2 e2k′

(
1 + 2(k′)2

)]
• b′1 = −2k′R1

ρ

(
1− e4k′ + 4k′ e2k′

)
• b′2 = −8(k′)2

(
Reµ
)2 (

1− e4k′
)

• b′3 = 2k′Reµ

[
R+
ρ

(
1 + e4k′

)
+ 2R−ρ e2k′

(
1 + 2(k′)2

)]
• b′4 = −R1

ρR
−
ρ

(
1− e4k′ + 4k′ e2k′

)
• b′5 = 4(k′)2

(
Reµ
)3 [(

1− e2k′
)2

− 4(k′)2e2k′
]

• b′6 = −2k′
(
Reµ
)2
R2
ρ

(
1− e4k′ − 4k′ e2k′

)
UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 4. CAPABILITIES 128

• b′7 = ReµR
1
ρR
−
ρ

(
1− e2k′

)2

The following set of non-dimensionlized parameters are defined, as needed to express dimensionless terms listed
in Table 2

k′ = kh1, R
e
µ =

µe1
µe2
, R1

ρ =
gh1ρ1

µe2
, R2

ρ =
gh1ρ2

µe2
, R+

ρ =
gh1 (ρ2 + ρ1)

µe2
, R−ρ =

gh1 (ρ2 − ρ1)

µe2
, (4.53)

where:

• ρ2 is the mantle density

4.10.3 Numerical implementation

In the Cartesian frame of ISSM, we treat the size of ice load as the property of mesh element and compute the
GIA solution at each node of the element [Adhikari et al., 2014]. Individual 2-D (xy-plane) mesh elements are
defined as the equivalence of footprint (i.e., projection onto the xy-plane) of cylindrical disc loads, ensuring
that the corresponding element and disc both share the same origin and plan-form area. The height of ice load
is then assigned to each element such that the average normal tractional force on the corresponding area of
bedrock is conserved. At each node within the domain, the final GIA solutions are computed by integrating
the solutions due to individual disc loads, defined as the property of mesh elements.

4.10.4 Model parameters

The parameters relevant to the GIA solution can be displayed by typing:

>> md.gia

• md.gia.mantle_viscosity: mantle viscosity (in Pa s)
• md.gia.lithosphere_thickness: lithosphere thickness (in km)
• md.gia.cross_section_shape: shape of the cylindrical disc load; 1: square-edged (default) 2: elliptical

The solution will also use the following model fields:

• md.materials.lithosphere_shear_modulus: shear modulus of lithosphere (in Pa)
• md.materials.lithosphere_density: lithosphere density (in g/cm3)
• md.materials.mantle_shear_modulus: shear modulus of mantle (in Pa)
• md.materials.mantle_density: mantle density (in g/cm3)
• md.timestepping.start_time: GIA evaluation time t (in yr)
• md.timestepping.final_time: tJ(> t) in Figure 1 (in yr).
• md.geometry.thickness: ice loading history in the J × 2 matrix form; the j-th row, for example, should

be defined as [h0j , tj] (cf. Figure 1).

4.10.5 ISSM Configuration

To activate the GIA model, add the following in the configuration script and compile ISSM:

--with-math77-dir="$ISSM_DIR/externalpackages/math77/install"

4.10.6 Running a simulation

To run a simulation, use the following command:

>> md=solve(md,GiaSolutionEnum);

The first argument is the model, the second is the nature of the simulation one wants to run.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

Chapter 5

Parameterization of physical processes

5.1 Positive Degree Day (PDD)

5.1.1 Physical basis

5.1.1.1 Positive degree day method

A standard positive degree day (PDD) method is used to compute the surface masse balance (ice ablation and
accumulation) from the temperature and precipitation fields. The hourly temperatures are assumed to have a
normal distribution, of standard deviation σPDD = 5.5 ◦C, around the monthly mean (Tm). The number of
days for which the temperature is above 0 ◦C in a year is computed as follows:

PDD =
1

σPDD
√

2π

∫ 1year

0

∫ Tm+2.5σPDD

0 ◦C
Texp

[
−(T − Tm)2

2σ2
PDD

]
dT dt (5.1)

The amount of snow and ice that melts is assumed to be proportional to the number of positive degree days.
Snow is melted first and the remaining positive degree days are used to melt ice. A dependence to the mean
June/July/August temperature (Tjja) is added to get the ablation rate factor for snow (γsnow) and ice (γice):

γice =

17.22 mm/PDD Tjja ≤ −1 ◦C,

0.0067× (10-Tjja)3 + 8.3 mm/PDD −1 ◦C < Tjja < 10 ◦C,

8.3 mm/PDD 10 ◦C ≤ Tjja
and

γsnow =

2.65 mm/PDD Tjja ≤ −1 ◦C,

0.15× Tjja+ 2.8 mm/PDD −1 ◦C < Tjja < 10 ◦C,

4.3 mm/PDD 10 ◦C ≤ Tjja

(5.2)

A fraction of the melted snow is refrozen. The amount of superimposed ice for a year is:

superimposed ice =

{
min[Pr + M, 2.2× (Ps - M) - d× ci /L×min(Tsurf , 0 ◦C)] M < Ps ,
min[Pr + M, d × ci /L×min(Tsurf , ◦C)] M > Ps

(5.3)

where:

• Pr is the rainfall in a year

• Ps is the snow fall in a year

• M is the snow melt in a year

• 2.2 is the capillarity factor

• d is the active thermodynamic layer (set to 1 m)

129

CHAPTER 5. PARAMETERIZATION OF PHYSICAL PROCESSES 130

• ci is the ice specific heat capacity (152.5 + 7.122T Jkg−1K−1)

• L is the latent heat fusion (3.35 × 105 Jkg−1)

• Tsurf is the surface temperature

A normal distribution of the hourly temperature is also assumed to compute the amount of snow accumulation
from the precipitation. A lower standard deviation σRS = σPDD − 0.5 is assumed in that case to take into
account the smaller temperature variability during cloudy days. Precipitation is considered to be snow when
the temperature is below 0 ◦C.

accumulation
precipitation

=
ρi

ρwσRS
√

2π

∫ 1year

0

∫ 0 ◦C

Tm−2.5σRS

exp

[
−(T − Tm)2

2σ2
RS

]
dTdt (5.4)

5.1.1.2 Temperature and precipitation forcing (Under development)

If precipitations come from another elevation than the surface elevation of the ice, it can be adjusted to take
into account the elevation desertification effect.

If the forcing temperatures are provided for a constant altitude, a lapse rate of 6.5◦/km is used to adjust them
to the surface elevation of each step.

5.1.2 Model parameters

The parameters relevant to the positive degree day and δ18O parameterization methods can be displayed by
typing: The lapse rate is computed as an weighted mean of the present day (rlaps) and LGM (rlapslgm) lapse
rate as

rtlaps = TdiffT ime ∗ rlapslgm+ (1.− TdiffT ime) ∗ rlaps (5.5)

where TdiffTime is the time interpolation parameter (Tdiff) at the integration time.

The surface temperature (Tsurf) is the yearly average temperature computed from the monthly temperature
tstar. tstar is computed as the present day temperature plus the temperature difference, tdiffh, between LGM
and present day.

tstar = tdiffh+ TemperaturesPresentday[imonth]− rtlaps×max st, sealev × 0.001; (5.6)

st is the difference between the surface elevation and the elevation from temperature source

st = (s− s0t)/1000 (5.7)

and tdiffh is the weighted mean between the present day and lgm temperature

tdiffh = TdiffT ime× (TemperaturesLgm[imonth]− TemperaturesPresentday[imonth]) (5.8)

>> md.surfaceforcings

• isdelta18o: is temperature and precipitation delta18o parametrization activated (0 or 1, default is 0)

• desfac: desertification elevation factor (between 0 and 1, default is 0.5) (m)

• s0p: should be set to elevation from precipitation source (between 0 and a few 1000s m, default is 0)
(m)

• s0t: should be set to elevation from temperature source (between 0 and a few 1000s m, default is 0) [m]

• rlaps: present day lapse rate (degree/km)

• rlapslgm: LGM lapse rate (degree/km)

• Pfac: time interpolation parameter for precipitation, 1D (year)

• Tdiff: time interpolation parameter for temperature, 1D (year)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 5. PARAMETERIZATION OF PHYSICAL PROCESSES 131

• sealev: sea level (m)
• monthlytemperatures: monthly surface temperatures (K), required if pdd is activated and delta18o not

activated
• precipitation: surface precipitation (m/yr water eq)
• temperatures_presentday: monthly present day surface temperatures (K), required if pdd is activated

and delta18o activated
• temperatures_lgm: monthly LGM surface temperatures (K), required if pdd is activated and delta18o

activated
• precipitations_presentday: monthly surface precipitation (m/yr water eq), required if pdd is activated

and delta18o activated
• delta18o: delta18o, required if pdd is activated and delta18o activated
• delta18o_surface: surface elevation of the delta18o site, required if pdd is activated and delta18o

activated

5.1.3 Running a simulation

To turn this module on in a simulation, use the following command:

>> md.surfaceforcings=SMBpdd();

5.2 Other surface mass balance models (SMB)

5.2.1 SMB (default)

The default surface mass balance model applies the surface mass balance that’s provided by the model without
any modifications. This model can be selected by typing:

>> md.surfaceforcings = SMB();

One can display the following fields by typing:

>> md.surfaceforcings

• md.surfaceforcings.mass_balance: surface mass balance (in m/yr ice equivalent)

5.2.2 SMB components

The SMBcomponents model computes surface mass balance using the component parameters provided. The
components expected are: accumulation, runoff, and evaporation. All components are typically expected to
be given as positive values. In the model computation of surface mass balance, runoff and evaporation are
considered as mass lost and accumulation is considered as mass gain.

The components model can be selected by typing:

>> md.surfaceforcings = SMBcomponents();

One can display the following fields by typing:

>> md.surfaceforcings

• surface forcings parameters (SMB=accumulation-runoff-evaporation):
• md.surfaceforcings.accumulation: accumulated snow [m/yr ice eq]
• md.surfaceforcings.runoff : amount of ice melt lost from the ice column [m/yr ice eq]
• md.surfaceforcings.evaporation : amount of ice lost to evaporative processes [m/yr ice eq]

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 5. PARAMETERIZATION OF PHYSICAL PROCESSES 132

5.2.3 SMB melt components

Like the SMBcomponents model, the SMBmeltcomponents model computes surface mass balance using the
component parameters provided by the user. The components expected are: accumulation, evaporation, melt,
and refreeze. All components are typically expected to be given as positive values. In the model computation
of surface mass balance, melt and evaporation are considered as mass lost while accumulation and refreeze are
considered as mass gain.

The melt components model can be selected by typing:

>> md.surfaceforcings = SMBmeltcomponents();

>> md.surfaceforcings

• surface forcings parameters with melt (SMB=accumulation-evaporation-melt+refreeze):
• md.surfaceforcings.accumulation: accumulated snow [m/yr ice eq]
• md.surfaceforcings.evaporation : amount of ice lost to evaporative processes [m/yr ice eq]
• md.surfaceforcings.melt : amount of ice melt in ice column [m/yr ice eq]
• md.surfaceforcings.refreeze : amount of ice melt refrozen in ice column [m/yr ice eq]

5.2.4 SMB gradients method

This surface mass balance model is based on the mass balance gradients method described in Helsen et al.
[2012]. To activate this method, the user must provide a climatology and a reference ice surface profile. The
method will evolve the surface mass balance forcing through time, according to deviations of ice surface height.
Required parameters include, at each vertex: (1) a reference surface mass balance field; (2) a reference ice
elevation at each vertex; (3) a pre-determined slope of the linear regression between positive surface mass
balance and ice surface height; and (4) a pre-determined slope of the linear regression between negative surface
mass balance and ice surface height. Surface mass balance values are expected in units of millimeters of water
equivalent per year and elevations are expected in meters.

The gradients model can be selected by typing:

>> md.surfaceforcings = SMBgradients();

>> md.surfaceforcings

• md.surfaceforcings.href : reference elevation from which deviation is used to calculate SMB adjust-
ment in smb gradients method [m]

• md.surfaceforcings.smbref: reference smb from which deviation is calculated in smb gradients method
[mm/yr water equiv]

• md.surfaceforcings.b_pos : slope of hs - smb regression line for accumulation regime required if smb
gradients is activated

• md.surfaceforcings.b_neg : slope of hs - smb regression line for ablation regime required if smb
gradients is activated

5.3 Basal friction

5.3.1 Default Friction law

The default friction law is defined as [Paterson, 1994] (p 151):

vb ∝ N−qτpb (5.9)

where:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 5. PARAMETERIZATION OF PHYSICAL PROCESSES 133

• vb is the basal velocity magnitude

• τb is the basal stress magnitude

• N is the effective pressure

• p and q are friction law exponents

In ISSM, this friction law is implemented in terms of basal stress:

τb = −k2Nr‖vb‖s−1vb (5.10)

where:

• k is a friction coefficient (variable in space)

• r and s are friction law exponents:

r = q/p s = 1/p (5.11)

This friction law can be selected as follows:

>> md.friction = friction();

One can display the following fields by typing:

>> md.friction

• md.friction.coefficient: friction coefficient

• md.friction.p: p exponent

• md.friction.q: q exponent

5.3.2 Weertman Friction law

A Weertman friction law is currently under development. The Weertman friction law reads:

vb = Cτmb (5.12)

• C is a friction coefficient (variable in space)

• m is a friction law exponent

In ISSM, this friction law is implemented in terms of basal stress:

τb = C−1/m‖vb‖1/m−1vb (5.13)

This friction law can be selected as follows:

>> md.friction = frictionweertman();

One can display the following fields by typing:

>> md.friction

• md.friction.C: friction coefficient

• md.friction.m: m exponent

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 5. PARAMETERIZATION OF PHYSICAL PROCESSES 134

5.3.3 Thin water layer friction law

The thin water layer friction law is similar to the default friction law except that the effective pressure includes
a specified layer of water at the bed:

N = g (ρiH + ρw (b− w)) (5.14)

when the bedrock is below sea level, and:

N = g (ρiH − ρww) (5.15)

when the bedrock is above sea level, with:

• N the effective pressure

• ρi the ice density

• ρw the water density

• H and b ice thickness and bed elevation

• w the water thickness at the ice base

This friction law can be selected as follows:

>> md.friction = frictionwaterlayer();

One can display all these fields by typing:

>> md.friction

• md.friction.coefficient: friction coefficient

• md.friction.p: p exponent

• md.friction.q: q exponent

• md.friction.water_layer: thin water layer thickness (meters)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

Chapter 6

Cluster/Cloud computing

6.1 Cluster computing

ISSM can be run in parallel on clusters or on multi-core computers. This subsection shows how to use this
capability.

6.1.1 Setting up the environment to use the parallel mode

We assume users have correctly setup ISSM. Every cluster is different and one might need to create a new
cluster file in $ISSM_DIR/src/m/classes/clusters/. In most cases, the generic cluster can be used:

>> md.cluster=generic(’name’,machine_name);

For a local machine, the command oshostname() can be used:

>> md.cluster=generic(’name’,oshostname());

Many parameters, such as the number of processors, are fields of md.cluster. Once those parameters are
setup, the solution sequences are called the same way:

md=solve(md,StressbalanceSolutionEnum);

6.1.2 password-less SSH login

In order to facilitate use of clusters that might be protected by passwords, or to avoid having to input password
for each run, one can either set-up a public key authentication or a tunnel between the local host and the cluster.

6.1.2.1 Step 1: simplifying the way you ssh

It is useful to simplify the way you log into your cluster. For example, if your username is myusername and the
complete cluster name is mycluster.ess.uci.edu, you need to log in using this ssh command:

$ssh myusername@mycluster.ess.uci.edu

This can be simplified by adding the following lines to ~/.ssh/config:

135

CHAPTER 6. CLUSTER/CLOUD COMPUTING 136

Host mycluster mycluster.ess.uci.edu
HostName mycluster.ess.uci.edu
User myusername

Now, to log into the cluster, you only need to type:

$ssh mycluster

you will obviously need to adapt these lines to your own user name and cluster name.

6.1.2.2 Step 2: creating an SSH public/private key

You need to have a SSH public/private key pair. You can check whether the following file exists ~/.ssh/id_rsa.pub.
If you do have a public key, you can skip this step and go to the next step. If you do not, you can create a SSH
public/private key pair by typing the following command and following the prompts (no passphrase necessary):

$your_localhost% ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/Users/username/.ssh/id_rsa):RETURN
Enter passphrase (empty for no passphrase):RETURN
Enter same passphrase again:RETURN
Your identification has been saved in /Users/username/.ssh/id_rsa.
Your public key has been saved in /Users/username/.ssh/id_rsa.pub.

Two files were created: your private key /Users/username/.ssh/id_rsa, and the public key /Users/username/.ssh/id_rsa.pub.
The private key is read-only and only for you, it is used to decrypt all correspondence encrypted with the public
key.

6.1.2.3 Step 3: SSH passthrough

The contents of your RSA public key need to be copied to ~/.ssh/authorized_keys on the system you wish
to SSH to without being prompted for a password:

$your_localhost%scp ~/.ssh/id_rsa.pub username@your_remotehost:~

Now on your remote host, copy the content of id_rsa.pub:

$your_remotehost%cat ~/id_rsa.pub >> ~/.ssh/authorized_keys
$your_remotehost%rm ~/id_rsa.pub

6.1.3 Tunneling

Another possibility is to establish an SSH tunnel between the local host and the cluster. Open a terminal, and
connect to the cluster using ssh, by typing:

$ ssh -L 1025:localhost:22 login@cluster

The port that will be tunneled is the port 1025. To be able to use the tunnel, you will have to change the
port setting in the md.cluster.port from 0 to 1025. Once this is done, solutions can be solved the exact same
way.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 6. CLUSTER/CLOUD COMPUTING 137

6.2 Cloud computing

ISSM can be deployed on the EC2 Amazon Cloud servers. Images have been created to run ISSM, which
greatly improves the ease of use/installation provided users have an Amazon account.

6.3 Introduction

We rely on the Amazon Elastic Compute Cloud solution (EC2) to run ISSM on the amazon cloud. We provide
everything required in the externalpackages directory and this documentation to run ISSM, provided an
Amazon EC2 account has already been setup by the user. EC2 is the backbone for our cloud computing,
however, it does not provide facilities to deploy an MPI cluster on an instance of the cloud. To deploy such
a cluster, we rely on the third party software, StarCluster. This library is a suite of python scripts which
communicate with the EC2 servers, and automatically setup a cluster, given a configuration file, using the EC2
account of the user. Once the cluster is spun-up, it can be used to carry out computations using the ISSM
framework. To facilitate the install of ISSM we provide images (AMI), which can be loaded directly and hence
avoiding the need for extensive installation/compilation. Such images are now private, but could potentially
be made available to the ISSM community of users in the near-future.

6.4 Installation

We assume here that you have setup an EC2 account, and that you have the following: the AWS access key
id, and the AWS secret access key. Nothing else is needed on the EC2 side.

You need to also install StarCluster. First, be sure that you have successfully installed python from the ISSM
externalpackages directory, otherwise, you will get permission issues upon install of the StarCluster package.
Then just run the install.sh script in the StarCluster external package of issm/trunk. This should install
all the scripts necessary to run StarCluster successfully.

6.5 Configuration

StarCluster needs a configuration file, which will be used to store information proper to your EC2 account,
and templates for the clusters you will be spinning up. This file is well described on the StarCluster website,
found here: StarCluster user manual. For ease of use, we have created an ISSM StarCluster configuration file
that you will find in the issm-jpl/proj-group/CloudComputing directory. In order to use this configuration
file, you should create an alias in your local settings:

alias st=’starcluster -c $PATH_TO_CONFIG_FILE ’

For the ISSM team, the StarCluster configuration file should be replaced by: issm-jpl/proj-group/CloudComputing/starcluster.config

6.5.1 StarCluster configuration file for ISSM

Here are some of the sections of the starcluster.config file, which we explain within the framework of the
ISSM runs:

[aws info]
AWS_ACCESS_KEY_ID = put_you_aws_access_key_id_here
AWS_SECRET_ACCESS_KEY = put_your_aws_secrate_access_key_here
AWS_USER_ID = put_your_ec2_acount_loging_here
AWS_REGION_NAME = us-east-1
AWS_REGION_HOST = ec2.us-east-1.amazonaws.com

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://aws.amazon.com/ec2/
http://aws.amazon.com/customerapps/2824
http://star.mit.edu/cluster/docs/0.93.3/manual/index.html#StarCluster-user-manual

CHAPTER 6. CLUSTER/CLOUD COMPUTING 138

This section holds your settings for the AWS account. You need to provide your access key id and secret access
key, along with the user id for the account. The region name and region hosts determine on which region of
the Amazon EC2 cloud you will be running your cluster. Beware, some of the most powerful machines are
not always available in all regions. Typically, the us-east-1 has the best instance types, the cc2.8xlarge
machine. This is what we will rely on here.

[key issm-jpl]
KEY_LOCATION=~/.ssh/issm-jpl.rsa

This section specifies the locations where the ssh key for the EC2 account is located. Before you can start
using the EC2 account with StarCluster, StarCluster needs to create this key. Run the following command to
do so:

st createkey issm --outputfile=issm.rsa

Once the key is created, move it to the KEY_LOCATION specified in the section above. Here, we would move
issm.rsa to the ssh directory in your home. If the key has already been created and you don’t have it, just
download it from your EC2 account console or, request it from someone who owns the account and can send
you the rsa key. Do not attempt to destroy the key by running st removekey issm.rsa, as this will also
deactivate all the other users that were using this key.

[cluster issm-jpl]
KEYNAME = issm-jpl
CLUSTER_SIZE = 1
CLUSTER_USER = username
CLUSTER_SHELL = bash
NODE_IMAGE_ID = ami-59106030 root
NODE_INSTANCE_TYPE = cc2.8xlarge
PLUGINS = createusers-jpl, mpich2
#SPOT_BID = 0.27

[plugin createusers-jpl]
setup_class = starcluster.plugins.users.CreateUsers
usernames = username
download_keys = True

[plugin mpich2]
SETUP_CLASS = starcluster.plugins.mpich2.MPICH2Setup

These sections really describe your cluster settings. CLUSTER_SIZE is the number of instances that will be
launched for the cluster. A special EC2 cluster group will be created, ensuring the all the instances of your
cluster have the best connectivity. The user of the cluster will have a corresponding user name created.

The NODE_INSTANCE_TYPE can be found here: EC2 instance types. The most powerful one for the purpose
of running ISSM is the cc2.8xlarge, which can be found on the us-east1 region.

The NODE_IMAGE_ID is the image (residing on the EC2 servers) from which the instances will be created.
This image is a template for the cluster you will be launching. Here, we use ISSM images that have been
created specifically. Please ask the ISSM team for an image if you don’t want to create one from scratch.

SPOT_BID is a setting that you can activate to make a spot request at a certain price. The EC2 cloud will
provide you instances once the spot price goes below your requested price. This is a way to run low-cost
solutions using the market driven EC2 prices.

The plugin sections ensure that the usernames are created and mpich2 is run as the backbone of the MPI
cluster.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://aws.amazon.com/ec2/instance-types/#selecting-instance-types

CHAPTER 6. CLUSTER/CLOUD COMPUTING 139

6.6 Running ISSM with StarCluster

In order to run ISSM on the EC2 cloud, you will need to create an instance of your cluster, by running the
following:

st start -c issm-jpl issm1

This will spin-up an issm-jpl type cluster, named issm1. Once the cluster is created, you can log into it by
doing the following:

st sshmaster issm1 -u username

You can run ISSM locally, or better, rely on the @cloud cluster class already implemented in ISSM. The only
thing to do to run on the issm1 cluster is to activate the @cloud class in ISSM using the ’issm1’ name:

md.cluster=cloud(’name’,’issm1’,’np’,num_cpus_requested);

Upon a call to solve, ISSM will be launched on the issm1 cloud instance.

If you wish to receive an e-mail when the run is complete, a .sge_request file must be created in the home
directory of the issm-jpl image (either locally on the instance after it is started or before the image itself is
created). The .sge_request file should look like this:

-M your_email_address@your_domain.com
-m e

Once you are done running on the cluster, terminate the cluster by doing:

st terminate issm1

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

Chapter 7

Advanced features

7.1 Inverse methods

7.1.1 Introduction

Inversions are used to constrain poorly known model parameters such as basal friction. The method consists
of finding a set of model inputs that minimizes the cost function J that measures the misfit between model
and observations. For example, inverse methods are used to infer the basal friction k:

τb = −k2Nr‖v‖s−1vb (7.1)

and/or the depth-averaged ice hardness, B, in Glen’s flow law:

µ =
B

2

(
ε̇

1− 1
n

e

) (7.2)

This section explains how to launch an inverse method and how optimization parameters must be tuned.

7.1.2 Cost functions

7.1.2.1 Absolute misfit

This is the classic way of calculating a misfit between a modeled and observed velocity field:

J (v) =

∫
S

1

2

((
vx − vobsx

)2

+
(
vy − vobsy

)2
)
dS (7.3)

Where:

• vx is the x component of the glacier modeled velocity
• vy is the y component of the glacier modeled velocity
• vxobs is the x component of the glacier observed velocity
• vyobs is the y component of the glacier observed velocity

7.1.2.2 Relative misfit

The relative misfit is defined as follows:

J (v) =

∫
S

1

2

((
vx − vobsx

)2
(vobsx + ε)2 +

(
vy − vobsy

)2(
vobsy + ε

)2
)
dS (7.4)

Where:

140

CHAPTER 7. ADVANCED FEATURES 141

• ε is a minimum velocity used to avoid the observed velocity being equal to zero.

7.1.2.3 Logarithmic misfit

J (v) =

∫
S

(
log
(
‖v‖+ ε

‖vobs‖+ ε

))2

dS (7.5)

Where:

• v is the glacier modeled velocity magnitude

• vobs is the glacier observed velocity magnitude

• ε is a minimum velocity used to avoid the observed velocity being equal to zero.

7.1.2.4 Thickness misfit

J (H) =

∫
Ω

1

2

(
H −Hobs

)2

dΩ (7.6)

Where:

• H is the ice thickness

• Hobs is the measured ice thickness

7.1.2.5 Drag gradient

J (k) =

∫
B

γ
1

2
‖∇k‖2dB (7.7)

Where:

• γ is a Tikhonov regularization parameter

7.1.2.6 Thickness gradient

J (k) =

∫
Ω

γ
1

2
‖∇H‖2dΩ (7.8)

Where:

• γ is a Tikhonov regularization parameter

7.1.3 Model parameters

The parameters relevant to the stress balance solution can be displayed by typing:

>> md.inversion

• md.inversion.iscontrol: 1 if inversion is activated, 0 for a forward run (default)

• md.inversion.incomplete_adjoint: 1 linear viscosity, 0 non-linear viscosity

• md.inversion.control_parameters: parameters that is inferred (ex: {’FrictionCoefficient’} or
{’MaterialsRheologyBbar’}

• md.inversion.cost_functions: list of individual cost functions that are summed to calculate the final
cost function J to be minimized (ex: [101,501])

• md.inversion.cost_functions_coefficients: weight of each individual cost function previously de-
fined for each vertex (more/no weight can be put on certain regions)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 7. ADVANCED FEATURES 142

• md.inversion.min_parameters: minimum value for the inferred parameter
• md.inversion.max_parameters: maximum value for the inferred parameter
• md.inversion.vx_obs: x component of the surface velocity
• md.inversion.vy_obs: y component of the surface velocity
• md.inversion.vel_obs: surface velocity magnitude
• md.inversion.thickness_obs: measured ice thickness

7.1.4 Minimization algorithms

Depending on the class of md.inversion, several optimization algorithm are available:

• Brent search algorithm (md.inversion=inversion(), the default)
• Toolkit for Advanced Optimization (TAO) (md.inversion=taoinversion())
• M1QN3 algorithm (md.inversion=m1qn3inversion())

Each minimizer has its own optimization parameters described below.

7.1.4.1 Brent search minimizers

• md.inversion.nsteps: number of optimization searches (gradient evaluations)
• md.inversion.maxiter_per_step: maximum iterations during each optimization step
• md.inversion.step_threshold: decrease threshold for next step (default is 30%)
• md.inversion.gradient_scaling: scaling factor on gradient direction during optimization, for each

optimization step

α ∈ [0, gradient_scaling] pnew = pold − α ∇pJ /‖∇pJ ‖ (7.9)

7.1.4.2 Toolkit for Advanced Optimization (TAO)

ISSM has an interface to the Toolkit for Advanced Optimization (TAO) [Munson et al., 2012]. Here is a list of
the relevant parameters:

• md.inversion.maxsteps: maximum number of iterations (gradient computation)
• md.inversion.maxiter: maximum number of Function evaluation (forward run)
• md.inversion.algorithm: inimization algorithm. ex: ’tao_blmvm’, ’tao_cg’, ’tao_lmvm’
• md.inversion.fatol: cost function absolute convergence criterion (defined below)
• md.inversion.frtol: cost function relative convergence criterion (defined below)
• md.inversion.gatol: gradient absolute convergence criterion (defined below)
• md.inversion.grtol: gradient relative convergence criterion (defined below)
• md.inversion.gttol: gradient relative convergence criterion 2 (defined below)

with the following convergence criteria:

f(X)− f(X∗) < εfatol
|f(X)− f(X∗| / |f(X∗)| < εfrtol
‖g(X)‖ < εgatol
‖g(X)‖/ |f(X)| < εgrtol
‖g(X)‖/‖g(X0)‖ < εgttol

(7.10)

where:

• f(X) is the cost function at X
• g(X) is the cost function gradient with respect to X
• X∗ is the estimated "true" minimum
• X0 is the initial guess

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 7. ADVANCED FEATURES 143

7.1.4.3 M1QN3

ISSM has an interface to M1QN3 (Inria) [Gilbert and Lemaréchal , 1989]. This interface was largely based on
Nardi et al. [2009]. Here is a list of the relevant parameters:

• md.inversion.maxsteps: maximum number of iterations (gradient computation)
• md.inversion.maxiter: maximum number of Function evaluation (forward run)
• md.inversion.dxmin: convergence criterion: two points less than dxmin from eachother (sup-norm) are

considered identical
• md.inversion.gttol: gradient relative convergence criterion 2 (defined below)

7.1.5 Running an inversion

To launch an inversion, run a stress balance solution with md.inversion.iscontrol=1:

>> md=solve(md,StressbalanceSolutionEnum);

7.2 Rifts

ISSM allows for the simulation of rifts. This section explains how to create a model that includes rifts, and
how to control their behavior.

7.2.1 Rifts creation

Rifts can be included right between the phase where the mesh is created, and the phase where the geography
is setup. Rifts that should be included in the model must be present in an ARGUS type file. Each rift should
be represented by an open loop set of points. Infinite numbers of rifts can be included, provided they do
not intersect with the domain outline, or any other rift. This point is particularly important as there are no
checks on intersections at the meshing phase. For example, a file including two straight rifts could look like,
Rifts.exp:

Name:Rift1
Icon:0
Points Count Value
2 1.000000
X pos Y pos
0 0
50000 0

Name:Rift2
Icon:0
Points Count Value
2 1.000000
X pos Y pos
0 10000
50000 10000

this file includes two horizontal rifts of 50 km long, separated by 10 km. In order to create a model with these
rifts, one would do:

>> md=model;
>> md=triangle(md,’DomainOutline.exp’,’Rifts.exp’,4000);
>> md=meshprocessrifts(md);
>> md=setmask(md,’Iceshelves.exp’,’Islands.exp’);
>> etc ...

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 7. ADVANCED FEATURES 144

The rest of the process is similar. This will create a rifts structure in the model md. The rifts structure
holds as many members as there are rifts in Rifts.exp. The key fields in the rifts structure are the fill and
friction. Fill can be either 1 (for water), 2 (for air) and 3 (for ice). Fill determines the pressure on each flank
of the rifts that is being applied. Friction is a coefficient between the shear stress exerted on the rift flanks and
the differential tangential velocity between both flanks.

7.2.2 Rift tip refining

Rifts in a mesh will not modify the type of meshing occurring during the mesh phase. To impact the mesh,
one can use the riftstiprefine.m routine. This routine will ensure that the rift tips are correctly refined, to
take into account the tip stress singularity. Use of this routine is as follows:

>> md=model;
>> md=triangle(md,’DomainOutline.exp’,’Rifts.exp’,4001);
>> md=rifttipsrefine(md,2000,30000);
>> md=meshprocessrifts(md);
>> md=setmask(md,’Iceshelves.exp’,’Islands.exp’);
>> etc ...

the first argument is the model, the second argument the tip area resolution, and the third is the size of the
circle around the tips where mesh refinement should occur.

7.2.3 Rifts in parameter file

The structure of rifts can be modified in any parameter file. We do not advise touching anything except the
fill and friction for each one of the rifts in the structure. For example, inclusion of the following lines in the
parameter file should be enough:

>> for i=1:md.numrifts,
>> md.rifts.riftstruct(i).fill=WaterEnum() %include water in the rifts
>> md.rifts.riftstruct(i).friction=10^11 %friction parameter sigma=10^11*dv_t
>> end

Of course, different frictions and fill could be applied, according to the physics being captured.

7.2.4 Solving for rifts

Rifts are only allowed when using MacAyeal type elements, in 2d meshes. For now, 3d meshes are not supported.
Nothing is needed to take rifts into account in the solve phase. A simple:

>> md=solve(md,StressbalanceSolutionEnum);

will suffice. Bear in mind that rifts are handled using penalty methods to ensure that penetration of rift flanks
does not occur. This can be very computationally expensive, as penalty methods tend to lead to zigzagging
of contact. A stable set of constraints strategy has been implemented, which should guarantee convergence,
but can be slow. Users should also try to minimize zigzagging by refining the mesh where needed. In case
zigzagging becomes too intense, locking of the zigzagging penalties will occur, which ensures convergence, but
which can lead to bad results in a physical sense. Detecting penalty locking should give users an idea on where
to refine the mesh.

7.2.5 Rifts plotting

Rifts can be plotted using the following special plots:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 7. ADVANCED FEATURES 145

>> plotmodel(md,’data’,’rifts’,’data’,’riftpenetration’,’data’,’riftvel’,’data’,’riftrelvel’);

these three plots will give users a view of which parts of the rifts are opening, closing, at which relative speed,
etc ...

7.2.6 Rifts when using Yams mesh adaptation

Rifts can be used in conjunction with the Yams mesh adaptation routine, by adding the Rifts.exp file defining
rift contours to the ’riftoutline’ option of yams. For example:

>>md=yams(md,’domainoutline’,’DomainOutline.exp’,’riftoutline’,’Rifts.exp’,’velocities’,’vel.mat’);

7.2.7 Adding rifts to an existing mesh

In case users want to use an existing mesh, rifts can still be added on. The format for the rifts file is in this
case slightly different:

Name:ContourAroundRift1
Icon:0
Points Count Value
5 1
X pos Y pos
-100 -100
50100 -100
50100 +100
-100 +100
-100 -100

Name:Rift1
Icon:0
Points Count Value
2 500
X pos Y pos
0 0
50000 0

Name:ContourAroundRift2
Icon:0
Points Count Value
5 1
X pos Y pos
-100 900
50100 900
50100 1100
-100 1100
-100 900

Name:Rift2
Icon:0
Points Count Value
2 1000
X pos Y pos
0 10000
50000 10000

The format is made of pairs of rift contours with the corresponding rift profile. The rift contour is a closed
contour that envelopes the rift. The rift that follows needs to be completely included in it. The rift density

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 7. ADVANCED FEATURES 146

(here, 500 and 1000 respectively) is very important, as it will decide the density of the mesh around the rift.
Do not specify 1, as this will try to include a rift in the mesh with a 1 m mesh density, which will probably
result in a memory exhaustion problem for the local machine running ISSM.

7.3 Quantifications of Margins and Uncertainties with Dakota

7.3.1 Physical basis

The methods for Quantification of Margins and Uncertainties (QMU) are based on the Design Analysis Kit for
Optimization and Terascale Applications (DAKOTA) software [Eldred et al., 2008], which is embedded within
ISSM [Larour et al., 2012a, b]. Available DAKOTA analyses include sensitivity and sampling analyses, which
we respectfully rely on to: 1) understand the sensitivity of model diagnostics to local variations in model fields
and 2) identify how variations in model fields impact uncertainty in model diagnostics. Diagnostics of interest
include ice volume, maximum velocity, and mass flux across user-specified profiles.

7.3.1.1 Mesh Partitioning

QMU analyses are carried out on partitions of the model domain. Each partition consists of a collection of
vertices. The ISSM partitioner is versatile. For example, the partitioner can assign one vertex for each partition
(linear partitioning); the same number of vertices per partition (un-weighted partitioning); or it can weight
partitions by a specified amount (equal-area by default - to remove area-specific dependencies). Advanced
partitioning is accomplished using the CHACO Software for Partitioning Graphs [Hendrickson and Leland ,
1995], prior to setting up the model parameters for QMU analysis.

7.3.1.2 Sensitivity

Sensitivity, or local reliability, analysis computes the local derivative of diagnostics with respect to model
inputs. It is used to assess the spatial distribution of this derivative, for the purpose of spatially ranking the
influence of various inputs.

Given a response r that is a function of multiple variables xi in a local reliability analysis Coleman and Steele
[1999], we have:

r = r(x1, x2, ..., xn) (7.11)

where the sensitivities are defined as:
θi =

δr

δxi
(7.12)

If each of the variables is independent, the error propagation equation defines the variance of r as:

σ2
r =

n∑
i=1

θ2
i σ

2
i (7.13)

where σi is the standard deviation of xi and σr is the standard deviation of r.

Importance factors for each xi are determined by dividing the error propagation equation by σr2. Note that
the mean of the response is taken to be the response for the nominal value of each variable xi.

Sensitivities are computed from the function evaluations using finite differences. The finite difference step size
is user-defined by a parameter in the ISSM model. This analysis imposes the finite-difference step size as a
small perturbation to xi. The resulting sensitivities quantify how the location of errors impact a specified
model diagnostic (r).

First, DAKOTA calls one ISSM model solve for an un-perturbed control simulation. Then, for every xi, ISSM
perturbs each partition one at a time, and calls an ISSM solve for each. At every partition, p, a resulting
sensitivity, θi(p) is assigned. Each θi (defined above) is dependent on how much the outcome diverges from

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 7. ADVANCED FEATURES 147

the control run. The result is a spatial mapping of sensitivities and importance factors of r for every xi. For
Transient solves, sensitivities are determined only at the completion of a forward run.

Method inputs: σi for each xi at every partition and the finite difference step

Method outputs: sensitivities (θi) and importance factors for each xi at every partition

7.3.1.3 Sampling

Sampling analysis quantifies how input errors propagate through a model to impact a specified diagnostic, r.
It a Monte-Carlo-style method that relies upon repeated execution (samples) of the same model, where input
variables are perturbed by different amounts at each partition for each individual run. Resulting statistics
(mean, standard deviations, cumulative distribution functions) are calculated after the specified number of
samples are run.

For a particular sample, every xi is perturbed by a different amount at each partition. Input values are
perturbed randomly, per partition, within a prescribed range (described by a statistical distribution, e.g.
normal or uniform). Once the variables are perturbed, the ISSM model solve is called.

Distributions: A normal distribution for a particular partition is fully described by an average, µi, and a
standard deviation, σi. By definition, normal distributions cluster around µi and decrease towards the tails,
in a Gaussian bell curve ranging from µi ± 3σi. A uniform distribution places greater emphasis on values
closer to the tails, where probability of occurrence is equal for any given value within a specified minimum and
maximum value.

If a user chooses so, any xi can be treated as a scaled value. In this case, the distribution definitions are given
in percentages, relative to a µi value of 1.

For example, at the beginning of a particular sample for a scaled xi, DAKOTA chooses a random percentage
perturbation Pi(p) at each partition p. The value of the random percentage will fall within the defined error
distribution, and the new value of xi for duration of this sample run is perturbed by xiPi(p). The generation
algorithm for Pi(p) is user-specified (e.g. Monte-Carlo or LHS [Swiler and Wyss, 2004]).

In the case where the user wants to sample n variables at the same time, a Pi(p) is chosen separately for
each xi before a particular sample run. Resulting statistics reflect the combined effects of the errors due to
x1, x2, ..., xn.

For Transient simulations, Pi(p) remains constant for the duration of a particular sample run. Note that
statistics are determined only at the completion of each forward run.

Method inputs: The number of samples to be run and for every xi, a definition of error distribution (error
ranges may vary spatially by partition)

Method outputs: For r, mean, standard deviations, and cumulative distribution functions resulting from errors
due to x1, x2, ..., xn

7.3.2 Model parameters

The parameters relevant to uncertainty quantification can be displayed by typing:

>> md.qmu

• md.qmu.isdakota: 1 to activate qmu analysis, or else 0

• md.qmu.variables: arrays of each variable class

• md.qmu.responses: arrays of each diagnostics class

• md.qmu.numberofresponses: number of responses

• md.qmu.params: array of method-independent parameters

• md.qmu.results: holder class for information from dakota result files

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 7. ADVANCED FEATURES 148

• md.qmu.partition: user provided, the partition each vertex belongs to

• md.qmu.numberofpartitions: number of partitions

• md.qmu.variabledescriptors: list of user-defined descriptors for variables

• md.qmu.responsedescriptors: list of user-defined descriptors for diagnostics

• md.qmu.method: array of dakota_method class

• md.qmu.mass_flux_profile_directory: directory for mass flux profiles

• md.qmu.mass_flux_profiles: list of mass_flux profiles

• md.qmu.mass_flux_segments: used by process_qmu_response_data to store processed profiles

• md.qmu.adjacency: adjacency matrix from connectivity table, partitioner computes it by default

• md.qmu.vertex_weight: weight for each vertex, partitioner sets it from connectivity by default

7.3.3 Building the CHACO and DAKOTA packages

In order to run DAKOTA with ISSM, you must compile and install the external package dakota. In addition,
for complex partitioning (more than one vertex per partition), you must compile and install the external
package CHACO.

In addition, your configure script should include the following:

--with-chaco-dir=$ISSM_DIR/externalpackages/chaco/install \
--with-dakota-dir=$ISSM_DIR/externalpackages/dakota/install \

More recent versions of DAKOTA also require the external package boost. If installed, it should also be added
to your configure script:

--with-boost-dir=$ISSM_DIR/externalpackages/boost/install/ \

7.3.4 Partitioning a Mesh

To partition your mesh using chaco, use the following commands:

>>md.qmu.numberofpartitions=1000; % Note: chaco can crash if too large
>>md=partitioner(md,’package’,’chaco’,’npart’,md.qmu.numberofpartitions,’weighting’,’on’);
%weighting on for weighted partitioning (equal-area by default), off for equal vertex partitioning
>>md.qmu.partition=md.qmu.partition-1; %With chaco, partition numbers must be adjusted by 1

OR, for a 1-to-1 mapping of vertices to partitions:

>>md.qmu.numberofpartitions=md.mesh.number_of_vertices;
>>md=partitioner(md,’package’,’linear’);

7.3.5 Setting up the QMU

7.3.5.1 For sensitivity

>>md.qmu.method=dakota_method(’nond_l’);

This sets the method to local reliability (sensitivity). Other sensitivity settings:

>>md.qmu.params.fd_gradient_step_size=’0.1’; %finite difference step size, 0.001 by
default

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 7. ADVANCED FEATURES 149

7.3.5.2 For sampling

>>md.qmu.method=dakota_method(’nond_samp’);
>>md.qmu.method(end)=...
dmeth_params_set(md.qmu.method(end),’seed’,1234,’samples’,500,’sample_type’,’lhs’);

Where ’seed’ is used for reproducibility of results and ’samples’ is the number of samples requested. Other
sampling settings:

>>md.qmu.params.tabular_graphics_data=true; %Output all the information needed to create
histograms of results

7.3.5.3 Other simple default settings for both sampling and sensitivity

>>md.qmu.params.evaluation_concurrency=1;
>>md.qmu.params.analysis_driver=’’;
>>md.qmu.params.analysis_components=’’;
>>md.qmu.params.direct=true;

7.3.6 Setting your QMU variables

Example: Here, the input of interest is md.friction.coefficient, scaled, with error defined as a normal distribution
with a mean of 1 and a standard deviation of 10%.

>>md.qmu.variables.drag_coefficient=normal_uncertain(’scaled_FrictionCoefficient’,1,0.1);

This sets the standard deviation to a constant value at every partition. After it is initialized as above, the
standard deviation can be set manually, so that it varies spatially by partition:

md.qmu.variables.drag_coefficient.stddev=uncertainty_on_partition;

See also:

>>help normal_uncertain
>>help uniform_uncertain
>>help AreaAverageOntoPartition

7.3.7 Setting your diagnostics

Example: Here, diagnostics of interest are (1) maximum velocity and (2) mass flux through two different gates.
Mass flux gates are defined by the ARGUS files ’../Exp/MassFlux1.exp’ and ’../Exp/MassFlux2.exp’.

%responses
md.qmu.responses.MaxVel=response_function(’MaxVel’,[],[0.01 0.25 0.5 0.75 0.99]);
md.qmu.responses.MassFlux1=response_function(’indexed_MassFlux_1’,[],[0.01 0.25 0.5 0.75 0.99]);
md.qmu.responses.MassFlux2=response_function(’indexed_MassFlux_2’,[],[0.01 0.25 0.5 0.75 0.99]);

%mass flux profiles
md.qmu.mass_flux_profiles={’../Exp/MassFlux1.exp’,’../Exp/MassFlux2.exp’};
md.qmu.mass_flux_profile_directory=pwd;

For more options see:

>>help response_function

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 7. ADVANCED FEATURES 150

7.3.8 Running a simulation

Note: You must set your stress balance tolerance to 10−5 or smaller in order to avoid the accumulation of
numerical residuals between consecutive samples.

>>md.stressbalance.restol=10^-5;

To initiate the analysis of choice, use the following commands:

>> md.qmu.isdakota=1;
>> md=solve(md,MasstransportSolutionEnum);

The first argument is the model, the second is the nature of the simulation one wants to run.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

Chapter 8

Plotting

8.1 MATLAB plots

8.1.1 plotmodel

plotmodel takes the model md as first argument and then an even number of options (as in the function
setelementstype, or solve). To plot a given field, use the option ’data’ followed by the field one wants to
plot. For the thickness:

>> plotmodel(md,’data’,md.geometry.thickness)

You can plot several fields at the same time but you have to add the argument ’data’ before each field you
want to plot:

>> plotmodel(md,’data’,md.geometry.thickness,’data’,’mesh’,’data’,[1:md.mesh.numberofelements])

This can work for any field of length md.mesh.numberofelements or md.mesh.numberofvertices.

151

CHAPTER 8. PLOTTING 152

8.1.2 Options

Options in plotmodel come as pairs: the option name must be followed by its value. For example, if one wants
to remove the color bar, the option name is ’colorbar’ and the value 0:

>> plotmodel(md,’data’,md.initialization.vel,’colorbar’,0)

any options (except ’data’) can be followed by ’#i’ where i is the subplot number, or ’#all’ if applied to
all plots. Example:

>> plotmodel(md,’data’,md.initialization.vel,’data’,’mesh’,’view#2’,3,’colorbar#all’,’on’,’axis#1’,’off equal’)

8.1.2.1 axis

Same as as standard axis MATLAB option

>> plotmodel(md,’data’,md.vel,’axis’,’tight’)

8.1.2.2 view

Same as as standard view MATLAB option

>> plotmodel(md,’data’,md.vel,’view’,2)

8.1.2.3 xlim, ylim, zlim

Same as as standard xlim MATLAB option

>> plotmodel(md,’data’,md.vel,’xlim’,[10^5 2*10^5])

8.1.2.4 caxis

Same as as standard caxis matlab option (control the extreme values of the colorbar).

>> plotmodel(md,’data’,md.vel,’caxis’,[0 1000])

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://www.mathworks.com/help/techdoc/ref/axis.html
http://www.mathworks.com/help/techdoc/ref/view.html
http://www.mathworks.com/help/techdoc/ref/xlim.html
http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/ref/caxis.html

CHAPTER 8. PLOTTING 153

8.1.2.5 colorbar

This option is used to control the colorbar display: ’on’ or ’off’.

>> plotmodel(md,’data’,md.vel,’colorbar’,’off’)

8.1.2.6 colormap

Same as as standard colormap matlab option (control the extreme values of the colorbar).

>> plotmodel(md,’data’,md.vel,’colormap’,’hsv’)

8.1.2.7 log

To get a logarithmic colorbar, use the ’log’ option followed by 10 for a decimal logarithm.

>> plotmodel(md,’data’,md.vel,’log’,10)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://www.mathworks.com/access/helpdesk/help/techdoc/index.html?/access/helpdesk/help/techdoc/ref/colormap.html

CHAPTER 8. PLOTTING 154

8.1.2.8 contourlevels

Contours of equi-value can be added to the plot by using the ’contourlevels’ option. The number of
contours can be chosen by using the ’contourlevels’ options. The user can specify a number of levels or a
cell containing the values of color changes (See examples below).

>> plotmodel(md,’data’,md.vel,’contourlevels’,3)

>> plotmodel(md,’data’,md.vel,’contourlevels’,{100,200,500,1000,2000,2500})

8.1.2.9 contourticks

If the user does not want to display the contour levels ticks, use the ’contourticks’ set as ’off’:

>> plotmodel(md,’data’,md.vel,’contourlevels’,{100,200,500,1000,2000,2500},’contourticks’,’off’)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 8. PLOTTING 155

8.1.2.10 contouronly

If the user wants to display the contours only, use the ’contouronly’ set as ’on’.

>> plotmodel(md,’data’,’vel’,’contourlevels’,{100,200,500,1000,2000,2500},’contouronly’,’on’)

8.1.2.11 streamlines

Streamlines can be displayed by using the ’streamlines’ option followed by a number of streamlines or a cell
containing the coordinates of seed points:

>> plotmodel(md,’data’,md.initialization.vel,’streamlines’,50)

>> plotmodel(md,’data’,md.initialization.vel,’streamlines’,{10^6*[-1.45 -0.27],10^6*[-1.6 0]})

Note: streamlines use the velocities that are in md.initialization. Make sure you transfer the calculated
velocities to md.initialization if you want to display the calculated streamlines.

8.1.2.12 edgecolor

The mesh can be superposed to the plot by using the ’edgecolor’ option followed by a color.

>> plotmodel(md,’data’,md.initialization.vel,’edgecolor’,’w’)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 8. PLOTTING 156

8.1.2.13 expdisp

Any ARGUS file can be displayed with the ’expdisp’ option followed by the name of the ARGUS file.

>> plotmodel(md,’data’,md.initialization.vel,’expdisp’,’Iceshelves.exp’)

8.1.2.14 expstyle

The style of the ARGUS profile can be controlled with the ’expstyle’ option, followed by the desired line
style. Here is an example for a yellow dotted line:

>> plotmodel(md,’data’,md.initialization.vel,’expdisp’,’Iceshelves.exp’,’expstyle’,’--y’)

8.1.2.15 mask

If one does not want to display the value of the field on a mask only, use the ’mask’ option followed by a vector
that holds 0 for the vertices whose values are hidden:

>> plotmodel(md,’data’,md.initialization.vel,’mask’,md.mask.groundedice_levelset<0)

8.1.2.16 northarrow

An arrow pointing North can be added with the ’northarrow’ option followed by ’on’. The shape and position
of the arrow can be controlled by using [x0 y0 length [ratio [width]]] instead of ’on’.

>> plotmodel(md,’data’,md.initialization.vel,’northarrow’,’on’)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 8. PLOTTING 157

8.1.2.17 scaleruler

A scale ruler can be added. As for the North arrow, the default display is done by ’on’ but the shape and
position of the scale ruler can be controlled by [x0 y0 length width numberofticks] where (x0,y0) are the
coordinates of the lower left corner.

>> plotmodel(md,’data’,md.initialization.vel,’scaleruler’,’on’)

8.1.2.18 title

Same as as standard title MATLAB option

>> plotmodel(md,’data’,md.vel,’title’,’Ice velocity [m/yr]’)

8.1.2.19 fontsize

Same as as standard fontsize MATLAB option

>> plotmodel(md,’data’,md.vel,’title’,’Ice velocity [m/yr]’,’fontsize’,8)

8.1.2.20 fontweight

Same as as standard fontweight MATLAB option

>> plotmodel(md,’data’,md.vel,’title’,’Ice velocity [m/yr]’,’fontweight’,’b’)

8.1.2.21 xlabel, ylabel

Same as as standard xlabel MATLAB option

>> plotmodel(md,’data’,md.vel,’xlabel’,’x axis [m]’)

8.1.3 Special plots

8.1.3.1 basaldrag

The special plot ’basal_drag’ displays the norm of the basal drag friction in kPa following formula:

τb = −k2Nr‖v‖s−1vb (8.1)

Basal drag relies on the velocity provided in md.initialization. The x and y components of the basal drag
can be displayed with the ’basal_dragx’ or ’basal_dragy’ special plots:

>> plotmodel(md,’data’,’basal_drag’)

>> plotmodel(md,’data’,’basal_dragx’)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://www.mathworks.com/help/techdoc/ref/title.html
http://www.mathworks.com/help/techdoc/ref/text_props.html
http://www.mathworks.com/help/techdoc/ref/text_props.html
http://www.mathworks.com/help/techdoc/ref/xlabel.html

CHAPTER 8. PLOTTING 158

Figure 8.1: Basal friction norm and Basal friction x-component

8.1.3.2 BC

The special plot ’BC’ displays all boundary conditions (Newmann and Dirichlet) for 2d and 3d meshes.

>> plotmodel(md,’data’,’BC’)

8.1.3.3 driving_stress

The special plot ’driving_stress’ displays the basal drag friction in kPa following formula:

τd = ρgH ∇s (8.2)

>> plotmodel(md,’data’,’driving_stress’)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 8. PLOTTING 159

8.1.3.4 elementnumbering

In the debugging process, it is often very useful to display all the elements next to their numbers. This is what
the special plot ’elementnumbering’ does:

>> plotmodel(md,’data’,’elementnumbering’)

A given list of elements can be highlighted with te ’highlight’ option:

>> plotmodel(md,’data’,’elementnumbering’,’highlight’,[3 4 5 6 7])

8.1.3.5 elements_type

The special plot ’elements_type’ displays the elements with a specific color for each formulation.

>> plotmodel(md,’data’,’elements_type’)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 8. PLOTTING 160

8.1.3.6 vertexnumbering

In the debugging process, it is often very useful to display all the vertices next to their numbers. This is what
the special plot ’vertexnumbering’ does:

>> plotmodel(md,’data’,’vertexnumbering’)

A given list of vertices can be highlighted with the ’highlight’ option:

>> plotmodel(md,’data’,’vertexnumbering’,’highlight’,[2 5 7 12])

8.1.3.7 highlightelements

The special plot ’highlightelements’ is very similar to the plot ’elementnumbering’. It is another possiblity
to highlight one or several grids, but without indicating the number of all the elements. It is way faster for
large models.

>> plotmodel(md,’data’,’highlightelements’,’highlight’,5)

>> plotmodel(md,’data’,’highlightelements’,’highlight’,[5 12])

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 8. PLOTTING 161

8.1.3.8 highlightgrids

The special plot ’highlightgrids’ is very similar to ’gridnumbering’. It is another possibility to highlight
grids without indicating all the grids numbers. It is way faster for big models.

>> plotmodel(md,’data’,’highlightgrids’,’highlight’,[12 20])

>> plotmodel(md,’data’,’highlightgrids’,’highlight’,[12 16 26])

8.1.3.9 icefront

The special plot ’icefront’ displays the neumann boundary conditions, ie all the segments on ice front and
the normal to these segments, for a 2d or 3d mesh.

>> plotmodel(md,’data’,’icefront’)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 8. PLOTTING 162

8.1.3.10 mesh

The special plot ’mesh’ displays the mesh of 2d or 3d model.

>> plotmodel(md,’data’,’mesh’)

8.1.4 Quiver plot

For 2d or 3d fields, a generic color plot cannot be used (except component by component). The ’data’ used
by the function plotmodel must be a matrix of 2 or 3 columns. For example:

>> plotmodel(md,’data’,[md.vx md.vy])

8.1.4.1 ColorLevels

The number of colors can be chosen by using the ’colorlevels’ options. The user can specify a number of
levels or a cell containing the values of color changes (See examples below).

>> plotmodel(md,’data’,[md.vx md.vy],’colorlevels’,3)

>> plotmodel(md,’data’,[md.vx md.vy],’colorlevels’,100)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 8. PLOTTING 163

>> plotmodel(md,’data’,[md.vx md.vy],’colorlevels’,{100,200,500,1000,2000,2500})

8.1.4.2 Scaling

The arrows length can be modified with the ’scaling’ options. The default value is 0.4. A higher scaling
value will result in longer arrows.

>> plotmodel(md,’data’,[md.vx md.vy],’scaling’,1)

>> plotmodel(md,’data’,[md.vx md.vy],’scaling’,0.1)

8.1.4.3 Autoscale

If the user wants all the arrows to have the same length, use the option ’autoscale’ set as ’off’.

>> plotmodel(md,’data’,[md.vx md.vy],’autoscale’,’off’)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 8. PLOTTING 164

8.1.4.4 Density

The number of arrows can be reduced with the option ’density’. If the density is set as 3, only one arrow
out of 3 will be displayed. This option is very useful when the mesh is very refined.

>> plotmodel(md,’data’,[md.vx md.vy],’density’,3)

8.1.5 Cross section

The section plot can be used to display the value of a field on a given track. The option ’sectionvalue’ must
be followed by the name of an ARGUS file which contained the coordinates of the points describing the profile
(this file can be generated by exptool.m). The resulting plot will be a curve in 2d and a colored surface in 3d
(See example below).

>> plotmodel(md,’data’,md.vel,’expdisp’,’track.exp’)

>> plotmodel(md,’data’,md.vel,’sectionvalue’,’track.exp’)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 8. PLOTTING 165

Figure 8.2: Section plot for 2D (left) and 3d (right) models

8.1.5.1 Resolution

The horizontal and vertical (in 3d) resolution can be specified by the ’resolution’ option. It must be a list
with the horizontal resolution followed by the vertical resolution (in meters). When not specified, the default
resolution is displayed.

>> plotmodel(md,’data’,md.vel,’sectionvalue’,’track.exp’,’resolution’,[2*10^4 0])

>> plotmodel(md,’data’,md.vel,’sectionvalue’,’track.exp’,’resolution’,[10^3 0])

8.1.5.2 Show section

The profile used to create the section plot can be also plotted with the ’showsection’ option.

>> plotmodel(md,’data’,md.vel,’showsection’,’on’)

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

Chapter 9

Miscellaneous Tools

Several tools are available to help the user analyze the results and set up the models. These tools are just
briefly mentioned below. Interested user can learn how to use these tools by typing help function_name in
the MATLAB prompt for any of the following functions.

9.0.1 Mesh

• triangle generate a mesh from a domain outline
• bamg anisotropic mesh generation and adaptation
• yams anisotropic mesh adaptation
• meshexprefine refine a region of a mesh
• meshprocessrift process mesh when rifts are present
• MeshQuality compute mesh quality
• rifttiprefine refine mesh near rift tips

9.0.2 Model parameterization

• extrude vertically extrude a model
• setmask establish boundaries between grounded and floating ice
• modelextract extract the model over a subdomain
• parameterize model general parameterization
• setflowequation set stressbalance elements type
• solversettoasm set PETSc solver to ASM
• solversettomumps set PETSc solver to MUMPS
• solversettosor set PETSc solver to SOR
• SetIceSheetBC set ice sheet boundary conditions
• SetIceShelfBC set ice shelf boundary conditions
• SetMarineIceSheetBC set marine ice sheet boundary conditions

9.0.3 Mask

• contourenvelope create a list of segments enveloping an ARGUS contour
• ContourToMesh get elements and/or nodes inside an ARGUS contour
• GetAreas compute the area of each element
• xy2ll convert lat/lon to (x,y)
• ll2xy convert (x,y) to lat/lon
• utm2ll convert UTM to lat/lon

166

CHAPTER 9. MISCELLANEOUS TOOLS 167

9.0.4 Interpolation

• InterpFromGridToMesh interpolation from a grid to a list of (x,y)

• InterpFromMeshToGrid interpolation from a 2d mesh to a grid

• InterpFromMeshToMesh2d interpolation from a 2d mesh to a list of (x,y)

9.0.5 ARGUS files

• expcoarsen coarsen or refine the resolution a contour

• exptool create and manage ARGUS files

• expread read an ARGUS file

• expwrite write an ARGUS file

9.0.6 Results analysis

• averaging data averaging over a mesh

• basalstress compute the basal stress

• contourmassbalance compute the mass balance of a contour

• DepthAverage depth averaging of a 3d field

• drivingstress compute the driving stress

• flowlines compute the coordinates of one or several flowlines

• paterson compute B from a temperature

• project2d project a 3d field on a layer

• project3d extrude a 2d field on every layer

• SectionValues compute the value of a field on a section or line

• thicknessevolution compute dh/dt

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

Chapter 10

FAQ

Here are a list of frequently asked questions:

10.0.1 Compilation troubleshooting

The installation of some external packages may require some tweaking depending on your platform. If you
have compilation or configuration issues, try one of the following links:

• External Packages installation

– PETSc 3.2
– PETSc 3.1
– PETSc 2.3.2

• ISSM configuration and compilation
• Python related issues

– Python 2.7
– Python 3.2

10.0.2 Using ISSM

We list here the questions related to the use of ISSM: the interface, error messages, etc.

• MATLAB’s interface
• Debugging with valgrind
• MPICH error messages

10.0.3 Other

• svn tricks

10.1 PETSc 3.2

10.1.1 Error message in configure.log, when compiling downloaded PLA-
PACK:

icc -I... /home1/...//externalpackages/petsc/src/linux-gnu-ia64-intel.py/include/PLA_Misc.h(29):

168

http://issm.jpl.nasa.gov/documentation/faq/petsc32/
http://issm.jpl.nasa.gov/documentation/faq/petsc31/
http://issm.jpl.nasa.gov/documentation/faq/petsc232/
http://issm.jpl.nasa.gov/documentation/faq/issm/
http://issm.jpl.nasa.gov/documentation/faq/python27/
http://issm.jpl.nasa.gov/documentation/faq/python32/
http://issm.jpl.nasa.gov/documentation/faq/matlab/
http://issm.jpl.nasa.gov/documentation/faq/debugging/
http://issm.jpl.nasa.gov/documentation/faq/mpich2/
http://issm.jpl.nasa.gov/documentation/faq/svn/

CHAPTER 10. FAQ 169

error: "MPI_COMPLEX" has already been declared in the current scope
MPI_Datatype MPI_COMPLEX;

^

icc -I... /home1/...//externalpackages/petsc/src/linux-gnu-ia64-intel.py/include/PLA_Misc.h(36):
error: "MPI_COMPLEX" has already been declared in the current scope
MPI_Datatype MPI_DOUBLE_COMPLEX;

^

The only solution for now is to edit $ISSM_DIR/externalpackages/petsc/src/linux-gnu-ia64-intel.py/include/PLA_Misc.h
and comment the lines:

//#ifndef MPI_COMPLEX
// #if MANUFACTURE != SGI && ! (MANUFACTURE == CRAY && MACHINE_TYPE == CRAYPVP)
// MPI_Datatype MPI_COMPLEX;
// #define PLA_MPI_COMPLEX TRUE
// #endif
//#endif
//
//#ifndef MPI_DOUBLE_COMPLEX
// #if MANUFACTURE != SGI && ! (MANUFACTURE == CRAY && MACHINE_TYPE == CRAYPVP)
// MPI_Datatype MPI_DOUBLE_COMPLEX;
// #define PLA_MPI_DOUBLE_COMPLEX TRUE
// #endif
//#endif

Then, recompile the PLAPACK package:

cd $ISSM_DIR/externalpackages/petsc/src/externalpackages/PLAPACKR32-hg
make all

and relaunch the PETSc’s installation without downloading PLAPACK, but instead specifying the location of
the compiled PLAPACK package in the $PETSC_DIR/externalpackages/ directory:

--with-plapack-dir=$ISSM_DIR/externalpackages/petsc/src/$ISSM_ARCH

10.1.2 Running conftest on Pleiades

At the end of Petsc configuration, the following message appear:

===
Since your compute nodes require use of a batch system or mpiexec you must:
1) Submit ./conftest-linux-gnu-ia64-intel.py to 1 processor of your batch system or system you
are cross-compiling for; this will generate the file reconfigure.py
2) Run ./reconfigure-linux-gnu-ia64-intel.py.py (to complete the configure process).
===

The easiest way to do that is to create a file: script.queue with the following content:

#PBS -S /bin/bash
#PBS -q debug
#PBS -l select=1:ncpus=1:model=har
#PBS -l walltime=200
#PBS -W group_list=s1010
#PBS -m e
. /usr/share/modules/init/bash

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 10. FAQ 170

module load comp-intel/11.1.046
module load mpi/mpt.1.25
module load math/intel_mkl_64_10.0.011
export PATH="$PATH:."
export MPI_GROUP_MAX=64
mpiexec -np 1 ./conftest-linux-gnu-ia64-intel.py

Then submit the job

qsub script.queue

Once the job is completed, check the file ./reconfigure-linux-gnu-ia64-intel.py.py and continue the
installation.

10.2 PETSc 3.1

10.2.1 Error message in configure.log, when compiling downloaded PLA-
PACK:

icc -I... /home1/...//externalpackages/petsc/src/linux-gnu-ia64-intel.py/include/PLA_Misc.h(29):
error: "MPI_COMPLEX" has already been declared in the current scope
MPI_Datatype MPI_COMPLEX;

^

icc -I... /home1/...//externalpackages/petsc/src/linux-gnu-ia64-intel.py/include/PLA_Misc.h(36):
error: "MPI_COMPLEX" has already been declared in the current scope
MPI_Datatype MPI_DOUBLE_COMPLEX;

^

The only solution for now is to edit $ISSM_DIR/externalpackages/petsc/src/linux-gnu-ia64-intel.py/include/PLA_Misc.h
and comment the lines:

//#ifndef MPI_COMPLEX
// #if MANUFACTURE != SGI && ! (MANUFACTURE == CRAY && MACHINE_TYPE == CRAYPVP)
// MPI_Datatype MPI_COMPLEX;
// #define PLA_MPI_COMPLEX TRUE
// #endif
//#endif
//
//#ifndef MPI_DOUBLE_COMPLEX
// #if MANUFACTURE != SGI && ! (MANUFACTURE == CRAY && MACHINE_TYPE == CRAYPVP)
// MPI_Datatype MPI_DOUBLE_COMPLEX;
// #define PLA_MPI_DOUBLE_COMPLEX TRUE
// #endif
//#endif

Then, recompile the PLAPACK package:

cd $ISSM_DIR/externalpackages/petsc/src/externalpackages/PLAPACKR32-hg
make all

and relaunch the PETSc’s installation without downloading PLAPACK, but instead specifying the location of
the compiled PLAPACK package in the $PETSC_DIR/externalpackages/ directory:

--with-plapack-dir=$ISSM_DIR/externalpackages/petsc/src/$ISSM_ARCH

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 10. FAQ 171

10.2.2 Running conftest on Pleiades

At the end of Petsc configuration, the following message appear:

===
Since your compute nodes require use of a batch system or mpiexec you must:
1) Submit ./conftest to 1 processor of your batch system or system you are
cross-compiling for; this will generate the file reconfigure.py
2) Run ./reconfigure.py (to complete the configure process).
===

The easiest way to do that is to create a file: script.queue with the following content:

#PBS -S /bin/bash
#PBS -q debug
#PBS -l select=1:ncpus=1:model=har
#PBS -l walltime=200
#PBS -W group_list=s1010
#PBS -m e
. /usr/share/modules/init/bash
module load comp-intel/11.1.046
module load mpi/mpt.1.25
module load math/intel_mkl_64_10.0.011
export PATH="$PATH:."
export MPI_GROUP_MAX=64
mpiexec -np 1 ./conftest

Once the job is completed, check the file reconfigure.py and continue the installation.

10.2.3 Error message when compiling ISSM: _intel_fast_memcpy

if icpc -DHAVE_CONFIG_H -I".deps/libpISSM_a-BamgGeom.Tpo"; exit 1; fi
/home1/.../externalpackages/petsc/install/include/petscsys.h(1775):
error: identifier "_intel_fast_memcpy" is undefined
_intel_fast_memcpy((char*)(a),(char*)(b),n);
^

/home1/.../externalpackages/petsc/install/include/petscsys.h(1824):
error: identifier "_intel_fast_memset" is undefined
_intel_fast_memset((char*)a,0,n);
^

This is due to a problem in some versions of the Intel compilers. Comment all lines related to PETSC_HAVE__INTEL_FAST*
in $ISSM_DIR/externalpackages/petsc/install/include/petscconf.h:

//#ifndef PETSC_HAVE__INTEL_FAST_MEMSET
//#define PETSC_HAVE__INTEL_FAST_MEMSET 1
//#endif

#ifndef PETSC_HAVE_TIME
#define PETSC_HAVE_TIME 1
#endif

//#ifndef PETSC_HAVE__INTEL_FAST_MEMCPY
//#define PETSC_HAVE__INTEL_FAST_MEMCPY 1
//#endif

This should fix ISSM’s compilation.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 10. FAQ 172

10.3 PETSc 2.3.2

10.3.1 Error message in configure.log, when compiling downloaded MUMPS:

gfortran -arch x86_64 -m64 ... -WF,-Dpord -I. -I../include -c dmumps_bloc2.F
ar: creating archive libpord.a
cc1: error: unrecognized command line option "-WF,-Dpord"
make[1]: *** [dmumps_bloc2.o] Error 1
make: *** [double] Error 2

The only solution for now is to go into the $PETSC_DIR/externalpackages/MUMPS_*/Makefile.inc and com-
ment the line:

#ORDERINGSF = -WF,-Dpord

Then, recompile the MUMPS package (don’t forget to clean first: make clean, make all), and relaunch the
Petsc installation without downloading MUMPS, but instead specifying the location of the compiled MUMPS
package in the $PETSC_DIR/externalpackages/ directory.

10.3.2 Error message in configure.log, when compiling downloaded PLA-
PACK:

icc -I... /home1/...//externalpackages/petsc/src/linux-gnu-ia64-intel.py/include/PLA_Misc.h(29):
error: "MPI_COMPLEX" has already been declared in the current scope
MPI_Datatype MPI_COMPLEX;

^

icc -I... /home1/...//externalpackages/petsc/src/linux-gnu-ia64-intel.py/include/PLA_Misc.h(36):
error: "MPI_COMPLEX" has already been declared in the current scope
MPI_Datatype MPI_DOUBLE_COMPLEX;

^

The only solution for now is to edit $ISSM_DIR/externalpackages/petsc/src/linux-gnu-ia64-intel.py/include/PLA_Misc.h
and comment the lines:

//#ifndef MPI_COMPLEX
// #if MANUFACTURE != SGI && ! (MANUFACTURE == CRAY && MACHINE_TYPE == CRAYPVP)
// MPI_Datatype MPI_COMPLEX;
// #define PLA_MPI_COMPLEX TRUE
// #endif
//#endif
//
//#ifndef MPI_DOUBLE_COMPLEX
// #if MANUFACTURE != SGI && ! (MANUFACTURE == CRAY && MACHINE_TYPE == CRAYPVP)
// MPI_Datatype MPI_DOUBLE_COMPLEX;
// #define PLA_MPI_DOUBLE_COMPLEX TRUE
// #endif
//#endif

Then, recompile the PLAPACK package:

cd $ISSM_DIR/externalpackages/petsc/src/externalpackages/PLAPACKR32-hg
make all

and relaunch the PETSc’s installation without downloading PLAPACK, but instead specifying the location of
the compiled PLAPACK package in the $PETSC_DIR/externalpackages/ directory:

--with-plapack-dir=$ISSM_DIR/externalpackages/petsc/src/$ISSM_ARCH

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 10. FAQ 173

10.4 ISSM configuration and compilation

10.4.1 MPICH2 linking error

/trunk/externalpackages/mpich2/install/lib//libmpich.a(init.o):
In function ‘MPI_Init’:
init.c:(.text+0x48): undefined reference to ‘MPL_env2str’
init.c:(.text+0x93): undefined reference to ‘MPL_env2bool’

This error message indicates that you are using mpich2 version higher than 1.3, and that -lmpl is missing in
--with-mpi-lib=. Edit your ISSM configuration script (configure.sh) and change the corresponding line to:

--with-mpi-lib="-L$ISSM_DIR/externalpackages/mpich2/install/lib/ -lmpich -lmpl"

10.4.2 configure: error: Couldn’t find mex... check your installation of
matlab

This error message typically happens on Macs, because MATLAB does not support XCode7.0. MATLAB
provides a patch available here.

If this fix does not work, you can do the following maneuver manually. In MATLAB, open the xml file that
specifies where the SDK is located:

edit ([matlabroot ’/bin/maci64/mexopts/clang++_maci64.xml’])

Toward the bottom, you will see a line that look like this, referencing "10.10":

<dirExists name="$$/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.10.sdk" />

Copy and paste this line (immediately after the first) and change the second one to "10.11", like this:

<dirExists name="$$/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.10.sdk" />
<dirExists name="$$/Platforms/MacOSX.platform/Developer/SDKs/MacOSX10.11.sdk" />

Do this against for another instance in this file, both must be modified. This should allow you to link against
the OS X 10.11 SDK, but please be aware that this is configuration that has not been validated by MathWorks.

If you want to check that mex is now working, you can try to compile the following file:

#include <mex.h>
void mexFunction(int nlhs, mxArray* plhs[], int nrhs, const mxArray* prhs[]){}

Let’s call this file conftest.cpp. You can compile it using:

mex conftest.cpp

If it fails, your mex compiler is still not working, please contact MATLAB support and send them this file.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://www.mathworks.com/matlabcentral/answers/246507#answer_194526

CHAPTER 10. FAQ 174

10.4.3 MATLAB MEX compile error

In file included from /Applications/MATLAB_R2013a.app/extern/include/mex.h:58:
In file included from /Applications/MATLAB_R2013a.app/extern/include/matrix.h:294:
/Applications/MATLAB_R2013a.app/extern/include/tmwtypes.h:819:9: error: unknown type name ’char16_t’
typedef char16_t CHAR16_T;

This happens after an upgrade of XCode, which also upgraded the C/C++ compiler, which MATLAB is not
aware of. Add the following line to $ISSM_DIR/configure.sh

export CXXFLAGS=" -std=c++11"

Reconfigure and recompile.

10.4.4 X11 Library not found

g++: /usr/lib64/libX11.so: No such file or directory

This error message indicates that your X11 library is not located in /usr/lib64/libX11.so, which is the
location that was provided in the ISSM configuration script (configure.sh). You need to find where this
library is located and change the path in the configuration script:

--with-graphics-lib="/usr/lib/x86_64-linux-gnu/libX11.so"

10.4.5 *** No rule to make target

If you get the following error message:

make[3]: *** No rule to make target ‘objects/Gauss/GaussTria.cpp’, needed by
‘libISSMCore_a-GaussTria.o’. Stop.
make[2]: *** [all-recursive] Error 1
make[1]: *** [all-recursive] Error 1
make: *** [all] Error 2

This is because you just updated ISSM and you need to clean the trunk:

$ cd $ISSM_DIR
$ make distclean

and then you will need to reconfigure:

$ cd $ISSM_DIR
$./scripts/automakererun.sh

ISSM can then be configured for the given OS. Several scripts exist to configure ISSM, they are all located in
$ISSM_DIR/configs. Users should use the configuration script that is the closest to their environment. The
configuration file must be copied in $ISSM_DIR and executed:

$./configure.sh
$ make
$ make install

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

CHAPTER 10. FAQ 175

10.4.6 Error message when compiling, with unresolved symbols in Petsc

The issue may lie with the externalpackage petsc, which you should compile with shared libraries enabled.
Otherwise, at run time, on some platforms, python will not be able to resolve the Petsc symbols using statically
compiled petscs libraries.

10.4.7 Linkage Error for drand48 and srand48 specifications in Windows

c:\issmuci\trunk-jpl\externalpackages\petsc\install\include\petscfix.h(12) : error
C2732: linkage specification contradicts earlier specification for ’drand48’
c:\issmuci\trunk-jpl\externalpackages\petsc\install\include\petscfix.h(12) : see declaration
of ’drand48’
c:\issmuci\trunk-jpl\externalpackages\petsc\install\include\petscfix.h(13) : error C2732:
linkage specification contradicts earlier specification for ’srand48’
c:\issmuci\trunk-jpl\externalpackages\petsc\install\include\petscfix.h(13) : see
declaration of ’srand48’

This error message indicates that petsc is not linking properly with your issm due to a C-specific definition in a
header file. The petsc header file needs to be patched. Open $ISSM_DIR/externalpackages/petsc/install/include/petscfix.h,
and edit the file by commenting out lines 10 and 14 like so:

10 //extern "C" {
11 int getdomainname(char *, int);
12 double drand48();
13 void srand48(long);
14 //}

10.5 MATLAB’s interface

MATLAB does not recognize any ISSM command

>> md=model;
??? Undefined function or variable ’model’.

This error message shows that ISSM tools have not been loaded by MATLAB. See this page for more info.

10.5.1 MATLAB complains about __gfortran_transfer_array_write sym-
bol

In some cases, MATLAB complains about missing symbols in mex modules. That is due to the fact that
MATLAB uses its own libraries that are not the ones you compiled the mex modules with. For example, you
might have the following error message:

Invalid MEX-file ’/Users/rtwalker/ISSM/trunk/lib/TriMesh.mexmaci64’:
dlopen(/Users/rtwalker/ISSM/trunk/lib/TriMesh.mexmaci64, 6): Symbol not found:
__gfortran_transfer_array_write

This problem has been reported on macs. There are two ways to fix this problem:

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://issm.jpl.nasa.gov/documentation/addpath/

CHAPTER 10. FAQ 176

10.5.1.1 Option 1 (preferred)

1. Locate where your gfortran library is (for example: /usr/local/gfortran/lib/).

2. copy MATLAB’s .matlab7rc.sh in your home directory. For example:

cp /Applications/MATLAB_R2014b.app/bin/.matlab7rc.sh ~/

3. open ~/.matlab7rc.sh with your favorite editor, you will see a "case" with different architecture:
glnx86|glnxa64 for linux, mac|maci|maci64 for mac and * for other architectures (windows etc). Go to
the case that corresponds to your machine’s architecture

4. uncomment the following line:

LDPATH_PREFIX=’$MATLAB/sys/opengl/lib/$ARCH’

and change the path to reflect where your libgfortran.so is located (step 1). For example:

LDPATH_PREFIX=’/usr/local/gfortran/lib/’

Restart matlab and it should now work.

10.5.1.2 Option 2 (requires admin priviledges)

The second fix consists of replacing MATLAB’s library with the one that are on your system, but you will
need to have admin priviledges.

We show here the steps for the following MATLAB path: /Applications/MATLAB_R2013a.app/ and libgfortran
path: /usr/local/gfortran/lib/.

Before changing the libraries, make a backup:

cd /Applications/MATLAB_R2013a.app/sys/os/maci64/
mkdir OLD
mv libgfortran.* OLD

Then subsitute these libraries by the current ones used by gfortran (copy or symlink)

ln -s /usr/local/gfortran/lib/libgfortran.dylib .
ln -s /usr/local/gfortran/lib/libgfortran.3.dylib .

Contact us if the problem is not fixed.

10.5.2 MATLAB complains GLIBCXX libraries

In some cases, MATLAB complains about its own libraries. That is due to the fact that MATLAB uses its
own libraries that might not be the ones you compiled the mex modules with. For example, you might have
the following error message:

libstdc++.so.6: version ‘GLIBCXX_3.4.9’ not found

We found a fix on an Ubuntu forum that we copied here. The idea is to replace MATLAB’s library with the
one that was used to compile the mex modules, but you will need to have admin priviledges.

We show here the steps for the following MATLAB path: /usr/local/matlab80/ and gcc libraries in: /usr/lib.

Before changing the libraries, make a backup:

cd /usr/local/matlab80/sys/os/glnxa64
mkdir OLD
mv libstdc++.so* OLD/
mv libgcc_s.so* OLD/

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

mailto:issm@jpl.nasa.gov
http://ubuntuforums.org/showthread.php?t=808045

CHAPTER 10. FAQ 177

Then subsitute the last two by the current ones used by gcc (copy or symlink):

ln -s /usr/lib/libstd* .
ln -s /lib/libgcc_s.so* .

10.5.3 MATLAB complains about intel_fast_memm symbol

If you compile mex modules with intel compilers, MATLAB might complain about missing symbols. That is
due to the fact that MATLAB uses its own libirc.so library that are not the ones you compiled the mex
modules with. For example, you might have the following error message:

Invalid MEX-file ’/users/username/test/issm/install/lib/IssmConfig.mexa64’:
/users/username/test/issm/src/externalpackages/petsc/install/lib/libmetis.so: undefined symbol:
_intel_fast_memmove

Here is how you can fix this problem:

1. Locate where your libirc.so library is (for example: /opt/share/intel/composer_xe_2013_sp1.3.174/compiler/lib/intel64/).

2. copy MATLAB’s .matlab7rc.sh in your home directory. For example:

cp /nasa/mw/2013b/bin/.matlab7rc.sh ~/

3. open ~/.matlab7rc.sh with your favorite editor, you will see a "case" with different architecture:
glnx86|glnxa64 for linux, mac|maci|maci64 for mac and * for other architectures (windows etc). Go to
the case that corresponds to your machine’s architecture

4. uncomment the following line:

LDPATH_PREFIX=’$MATLAB/sys/opengl/lib/$ARCH’

and change the path to reflect where your libgfortran.so is located (step 1). For example:

LDPATH_PREFIX=’/opt/share/intel/composer_xe_2013_sp1.3.174/compiler/lib/intel64/’

Restart matlab and it should now work.

Contact us if the problem is not fixed.

MATLAB crashes unexpectedly

There are many causes that might make MATLAB crash. A possible cause is that PETSc is conflicting
with java (this happens on some linux machines). The workaround is to use MATLAB in command line by
deactivating the gui:

matlab -nojvm

Why can’t I see what I am typing in the terminal after I exit MATLAB

This is a bug of MATLAB when running with -nojvm or -nodesktop flags under bash. The solution proposed by
MathWorks consists of reseting the terminal after MATLAB exits by running reset command in the terminal
window:

reset

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

mailto:issm@jpl.nasa.gov
http://www.mathworks.com/support/solutions/en/data/1-CFTJX8/index.html?product=ML
http://www.mathworks.com/support/solutions/en/data/1-CFTJX8/index.html?product=ML

CHAPTER 10. FAQ 178

The following message appears when I launch MATLAB:

Warning: Executing startup failed in matlabrc.
This indicates a potentially serious problem in your MATLAB setup,
which should be resolved as soon as possible. Error detected was:
MATLAB:m_illegal_reserved_keyword_usage
Error: File: trunk/src/m/classes/qmu/normal_uncertain.m Line: 38
Column: 5
Illegal use of reserved keyword "end".
> In matlabrc at 220

This message indicates that your MATLAB version is too old (less than 7.6), and does not support MATLAB’s
new Class-Definition syntax. In this case, contact us, and we will help you convert all ISSM’s MATLAB classes
to the older syntax.

10.6 Debugging with valgrind

How to debug a crash in issm.exe?

If there is crash during the solve phase, we strongly advise to use valgrind. Install valgrind in the directory
$ISSM_DIR/externalpackages/valgrind. valgrind is embedded in ISSM and can detect segmentation faults
as well as memory leaks. Set the model debugging field to 1 and use only one cpu:

md.debug.valgrind=1;
md.cluster.np=1;

Launch the solution sequence and read the ’errlog’ file.

How to debug a matlab crash?

If there is a crash that is not in issm.exe (sometimes shown as by PETSc’s error manager), one should also
use valgrind. Use the following command:

matlab -nojvm -nosplash -r "your matlab commands" -D"valgrind \
--error-limit=no --tool=memcheck -v --log-file=valgrind.log"

Valgrind’s output file valgrind.log should help (look for Invalid read and Invalid write).

How to debug a python crash?

If there is a crash that is not in issm.exe (sometimes shown as by PETSc’s error manager), one should also
use valgrind. Use the following command:

valgrind --error-limit=no --tool=memcheck -v --log-file=valgrind.log \
python -E -tt ./yourpythonscript.py

Valgrind’s output file valgrind.log should help (look for Invalid read and Invalid write).

Note: if line numbers are not displayed for mac users, add the following option --dsymutil=yes

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

http://www.mathworks.com/help/matlab/matlab_oop/compatibility-with-previous-versions-.html
mailto:issm@jpl.nasa.gov
http://valgrind.org
http://valgrind.org
http://valgrind.org

CHAPTER 10. FAQ 179

10.7 MPICH error messages

The following message appears in the errlog file when launching my job in
parallel:

mpdrun_wilkes.jpl.nasa.gov: cannot connect to local mpd (/tmp/mpd2.console_name);
possible causes:
1. no mpd is running on this host
2. an mpd is running but was started without a "console" (-n option)
~
~

This message means that the MPI (Message Passing Interface) server, called mpd, is not running. Therefore,
no parallel jobs can run on the cluster. To solve this issue, just type, at the command prompt on the server
side (if for example your cluster has 8 cpus):

mpd --ncpus=8 &

This will launch the MPI server to manage 8 cpus on the cluster.

10.8 svn tricks

How do I control the list of files that are ignored by svn?

Go to the directory you are interested in and use the following command:

svn propedit svn:ignore .

You will get a list of all ignored files. You can modify this list and then commit.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

Bibliography

Adhikari, S., E. Ivins, E. Larour, H. Seroussi, M. Morlighem, and S. Nowicki, Future antarctic bed topography
and its implications for ice sheet dynamic, Solid Earth, 5 (1), 569–584, doi:{10.5194/se-5-569-2014}, 2014.

Aschwanden, A., E. Bueler, C. Khroulev, and H. Blatter, An enthalpy formulation for glaciers and ice sheets,
J. Glaciol., 58 (209), 441–457, doi:10.3189/2012JoG11J088, 2012.

Blatter, H., Velocity and stress-fields in grounded glaciers: A simple algorithm for including deviatoric stress
gradients, J. Glaciol., 41 (138), 333–344, 1995.

Borstad, C. P., A. Khazendar, E. Larour, M. Morlighem, E. Rignot, M. P. Schodlok, and H. Seroussi, A damage
mechanics assessment of the Larsen B ice shelf prior to collapse: Toward a physically-based calving law,
Geophys. Res. Lett., 39 (L18502), 1–5, doi:10.1029/2012GL053317, 2012.

Borstad, C. P., E. Rignot, J. Mouginot, and M. P. Schodlok, Creep deformation and buttressing capacity of
damaged ice shelves: theory and application to Larsen C ice shelf, Cryosphere, 7, 1931–1947, doi:10.5194/
tc-7-1931-2013, 2013.

Box, J. E., Greenland Ice Sheet Mass Balance Reconstruction. Part II: Surface Mass Balance (1840-2010), J.
Clim., 26 (18), 6974–6989, doi:10.1175/JCLI-D-12-00518.1, 2013.

Box, J. E., and W. Colgan, Greenland Ice Sheet Mass Balance Reconstruction. Part III: Marine Ice Loss and
Total Mass Balance (1840-2010), J. Clim., 26 (18), 6990–7002, doi:{10.1175/JCLI-D-12-00546.1}, 2013.

Box, J. E., et al., Greenland Ice Sheet Mass Balance Reconstruction. Part I: Net Snow Accumulation (1600-
2009), J. Clim., 26 (11), 3919–3934, doi:{10.1175/JCLI-D-12-00373.1}, 2013.

Coleman, W., and J. Steele, Experimentation and Uncertainties Analysis for Engineers, John Wiler, 1999.

Cuffey, K., and W. S. B. Paterson, The Physics of Glaciers, 4th Edition, Elsevier, Oxford, 2010.

de Fleurian, B., O. Gagliardini, T. Zwinger, G. Durand, E. Le Meur, D. Mair, and P. Råback, A double con-
tinuum hydrological model for glacier applications, Cryosphere, 8 (1), 137–153, doi:10.5194/tc-8-137-2014,
2014.

Durand, G., O. Gagliardini, T. Zwinger, E. Le Meur, and R. Hindmarsh, Full Stokes modeling of marine ice
sheets: influence of the grid size, Ann. Glaciol., 50 (52), 109–114, 2009.

Eldred, M. S., et al., DAKOTA, a Multilevel Parallel Object-Oriented Framework for Design Optimization,
Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis, Version 4.2 User’s Manual,
Technical Report SAND 2006-6337, Tech. rep., Sandia National Laboratories, PO Box 5800, Albuquerque,
NM 87185, 2008.

Ettema, J., M. R. van den Broeke, E. van Meijgaard, W. J. van de Berg, J. L. Bamber, J. E. Box, and R. C.
Bales, Higher surface mass balance of the Greenland Ice Sheet revealed by high-resolution climate modeling,
Geophys. Res. Lett., 36, 1–5, doi:10.1029/2009GL038110., 2009.

Franca, L., G. Hauke, and A. Masud, Revisiting stabilized finite element methods for the advective-diffusive
equation, Comput. Methods Appl. Mech. Engrg., 195 (13-16), 1560–1572, doi:10.1016/j.cma.2005.05.028,
2006.

Frey, P. J., Yams, a fully automatic adaptive isotropic surface remeshing procedure, Tech. Rep. RT-0252,
INRIA, Rocquencourt, 2001.

180

BIBLIOGRAPHY 181

Gilbert, J. C., and C. Lemaréchal, Some numerical experiments with variable-storage quasi-Newton algorithms,
Math. Program., 45 (1-3), 407–435, doi:10.1007/BF01589113, 1989.

Gladstone, R. M., V. Lee, A. Vieli, and A. J. Payne, Grounding line migration in an adaptive mesh ice sheet
model, J. Geophys. Res., 115, 1–19, doi:10.1029/2009JF001615, 2010.

Glen, J., The creep of polycrystalline ice, Proc. R. Soc. A, 228 (1175), 519–538, 1955.

Hecht, F., BAMG: Bi-dimensional anisotropic mesh generator, Tech. rep., FreeFem++, 2006.

Helsen, M. M., R. S. W. van de Wal, M. R. van den Broeke, W. J. van de Berg, and J. Oerlemans, Coupling
of climate models and ice sheet models by surface mass balance gradients: application to the Greenland Ice
Sheet, Cryosphere, 6 (2), 255–272, doi:10.5194/tc-6-255-2012, 2012.

Hendrickson, B., and R. Leland, The Chaco user’s guide, version 2.0, Technical Report SAND-95-2344, Tech.
rep., Sandia National Laboratories, Albuquerque, NM 87185-1110, 1995.

Ivins, E. R., and T. S. James, Simple models for late Holocene and present-day Patagonian glacier fluctuations
and predictions of a geodetically detectable isostatic response, Geophys. J. Int., 138 (3), 601–624, doi:10.
1046/j.1365-246x.1999.00899.x, 1999.

Larour, E., M. Morlighem, H. Seroussi, J. Schiermeier, and E. Rignot, Ice flow sensitivity to geothermal
heat flux of Pine Island Glacier, Antarctica, J. Geophys. Res. - Earth Surface, 117 (F04023), 1–12, doi:
{10.1029/2012JF002371}, 2012a.

Larour, E., J. Schiermeier, E. Rignot, H. Seroussi, M. Morlighem, and J. Paden, Sensitivity Analysis of
Pine Island Glacier ice flow using ISSM and DAKOTA, J. Geophys. Res., 117, F02009, 1–16, doi:10.1029/
2011JF002146, 2012b.

Le Brocq, A., A. Payne, M. Siegert, and R. Alley, A subglacial water-flow model for west antarctica, J. Glaciol.,
55(193), 879–888, 2009.

MacAyeal, D., A tutorial on the use of control methods in ice-sheet modeling, J. Glaciol., 39 (131), 91–98,
1993.

MacAyeal, D. R., Large-scale ice flow over a viscous basal sediment: Theory and application to Ice Stream B,
Antarctica, J. Geophys. Res., 94 (B4), 4071–4087, 1989.

Morland, L., Unconfined ice shelf flow, Proceedings of Workshop on the Dynamics of the West Antarctic Ice
Sheet, University of Utrecht, May 1985. Published by Reidel, ed. C.J. van der Veen and J. Oerlemans, 99–116,
1987.

Munson, T., J. Sarich, S. Wild, S. Benson, and L. C. McInnes, TAO 2.0 Users Manual, Technical Memo-
randum ANL/MCS-TM-322, Mathematics and Computer Science Division, Argonne National Laboratory,
http://www.mcs.anl.gov/tao, 2012.

Nardi, L., C. Sorror, F. Badran, and S. Thiria, YAO: A Software for Variational Data Assimilation Using
Numerical Models, in LNCS 5593, Computational Science and Its Applications - ICCSA 2009, edited by
O. Gervasi, D. Taniar, B. Murgante, A. Laganà, Y. Mun, and M. L. Gavrilova, pp. 621–636, Springer-Verlag,
2009.

Nowicki, S., et al., Insights into spatial sensitivities of ice mass response to environmental change from the
SeaRISE ice sheet modeling project II: Greenland, J. Geophys. Res., 118, 1–20, doi:10.1002/jgrf.20076, 2013.

Nowicki, S. M. J., and D. J. Wingham, Conditions for a steady ice sheet-ice shelf junction, Earth Planet. Sci.
Lett., 265 (1-2), 246–255, 2008.

Paterson, W., The Physics of Glaciers, 3rd ed., Pergamon Press, Oxford, London, New York, 1994.

Pattyn, F., A new three-dimensional higher-order thermomechanical ice sheet model: Basic sensitivity, ice
stream development, and ice flow across subglacial lakes, J. Geophys. Res., 108 (B8), 1–15, doi:10.1029/
2002JB002329, 2003.

Pattyn, F., A. Huyghe, S. De Brabander, and B. De Smedt, Role of transition zones in marine ice sheet
dynamics, J. Geophys. Res. - Earth Surface, 111 (F2), 1–10, doi:10.1029/2005JF000394, 2006.

Pfeffer, W., T. Illangasekare, and M. Meier, Analysis and modeling of melt-water refreezing in dry snow, J.
Glaciol., 36 (123), 238–246, 1990.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

BIBLIOGRAPHY 182

Pfeffer, W., M. Meier, and T. Illangasekare, Retention of Greenland Runoff by Refreezing: Implications for Pro-
jected Future Sea-Level Rise, J. Geophys. Res. - Oceans, 96 (C12), 22,117–22,124, doi:10.1029/91JC02502,
1991.

Schlegel, N.-J., E. Larour, H. Seroussi, M. Morlighem, and J. E. Box, Decadal-scale sensitivity of Northeast
Greenland ice flow to errors in surface mass balance using ISSM, J. Geophys. Res. - Earth Surface, 118,
1–14, doi:10.1002/jgrf.20062, 2013.

Schlegel, N.-J., E. Larour, H. Seroussi, M. Morlighem, and J. E. Box, Ice discharge uncertainties in Northeast
Greenland from boundary conditions and climate forcing of an ice flow model, J. Geophys. Res. - Earth
Surface, 120 (1), 29–54, 2015.

Seroussi, H., M. Morlighem, E. Larour, E. Rignot, and A. Khazendar, Hydrostatic grounding line parameteri-
zation in ice sheet models, Cryosphere, 8 (6), 2075–2087, doi:10.5194/tc-8-2075-2014, 2014a.

Seroussi, H., M. Morlighem, E. Rignot, J. Mouginot, E. Larour, M. P. Schodlok, and A. Khazendar, Sensitivity
of the dynamics of Pine Island Glacier, West Antarctica, to climate forcing for the next 50 years, Cryosphere,
8 (5), 1699–1710, doi:10.5194/tc-8-1699-2014, 2014b.

Shewchuk, J. R., Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator, in Applied
Computational Geometry: Towards Geometric Engineering, Lecture Notes in Computer Science, vol. 1148,
edited by M. C. Lin and D. Manocha, pp. 203–222, Springer-Verlag, from the First ACM Workshop on
Applied Computational Geometry, 1996.

Shreve, R. L., Movement of water in glaciers, J. Glaciol., 11 (62), 205–214, 1972.

Swiler, L. P., and G. D. Wyss, A User’s Guide to Sandia’s Latin Hypercube Sampling Software: LHS UNIX
Library/Standalone Version, Technical Report SAND2004-2439, Tech. rep., Sandia National Laboratories,
PO Box 5800, Albuquerque, NM 87185-0847, 2004.

van Angelen, J. H., M. R. van den Broeke, and W. J. van de Berg, Momentum budget of the atmospheric
boundary layer over the Greenland ice sheet and its surrounding seas, J. Geophys. Res. - Atmospheres, 116,
1–14, doi:10.1029/2010JD015485, 2011.

van den Broeke, M., J. Bamber, J. Ettema, E. Rignot, E. Schrama, W. J. van de Berg, E. van Meijgaard,
I. Velicogna, and B. Wouters, Partitioning Recent Greenland Mass Loss, Science, 326 (5955), 984–986, doi:
10.1126/science.1178176, 2009.

van Meijgaard, E., L. H. van Ulft, W. J. Van de Berg, F. C. Bosvelt, B. J. J. M. Van den Hurk, G. Lenderink,
and A. P. Siebesma, The knmi regional atmospheric model racmo version 2.1, technical report 302, Tech.
rep., KNMI, De Bilt, The Netherlands, 2008.

Weertman, J., On the sliding of glaciers, J. Glaciol., 3, 33–38, 1957.

UCIrvine - Jet Propulsion Laboratory ISSM Documentation May 19, 2017

	Download
	Introduction
	Binaries
	Source Code
	Become an ISSM developer !
	License

	Binaries
	Source installation of ISSM on UN*X systems
	Environment variables
	macOS
	External packages installation
	ISSM compilation

	Source installation of ISSM on Windows (under developement)
	Win10
	Development Environment
	Installing MATLAB
	Cygwin

	Visual Studio
	Building ISSM
	Downloading ISSM
	Checking Your Build Environment
	Installing External Packages
	Building ISSM

	How to Setup a Cron Job

	Source installation of ISSM with AD capability (under developement)
	External packages installation
	ISSM compilation

	Getting started
	Loading ISSM tools
	MATLAB
	Python
	Developers

	Model class
	MATLAB's model object
	Saving/loading a model

	Square ice shelf tutorial

	Tutorials
	Dataset download
	Mesh adaptation
	Goals
	Squaremesh
	Usage
	Example

	Roundmesh
	Usage
	Example

	Triangle
	Usage

	Bamg
	Usage
	Uniform mesh
	Non-Uniform mesh
	Mesh adaptation
	Mesh refinement in a specific region
	Another example

	Inverse method
	Goals
	Introduction
	Hands on 1 (ice rigidity, B)
	Setp 1: Generating Observations
	Step 2: Initial guess and initial velocity
	Step 3: inverting for B
	Step 4: Adding regularization

	Hands on 2 (friction)
	Changes to step 1
	Solutions to step 1
	Changes to step 2
	Changes to step 3
	Solutions to step 3
	Changing the cost function
	Solutions to step 3b
	Adding regularization
	Solutions to step 3c

	ISMIP test
	Goals
	Introduction / How To
	Test A
	Simulation File Layout and Organization
	Mesh
	Parameterization
	Extrusion
	Flow Equation
	Boundary Conditions
	Solve Model
	Test F
	Actual Work and Results

	Modeling Pine Island Glacier
	Goals
	Introduction
	Setting-up domain outline
	Mesh
	Mask
	Parameterization
	Inversion of basal friction
	Plot results
	Higher Order (HO) Ice Flow Model
	Solutions for step 6

	Pine Island Glacier, melting experiment
	Goals
	Evolution over 10 years
	Increased basal melting rate
	Retreat of ice front position
	Change in surface mass balance
	Evolution of the ice volume above floatation

	Uncertainty quantification (requires Dakota)
	Goals
	Introduction
	Flux Gates
	Loading Cross-Over Errors
	Sampling Analysis
	Sensitivity Analysis
	Plot Results
	Additional Exercises

	Jakobshavn Isbræ
	Goals
	Introduction
	Download

	runme file
	Step 1: Mesh generation
	Step 2: Model parameterization
	Step 3: Control method
	Step 4: Display results

	Modeling the Greenland ice sheet
	Goals
	Introduction
	Mesh
	Parameterization
	Stress Balance
	Transient
	Exercise
	Additional Exercises

	Modeling the Greenland ice sheet using IceBridge data
	Goals
	Introduction
	Mesh
	Parameterization
	Stress Balance
	Transient
	Results

	Capabilities
	Mesh generation
	ARGUS file format
	triangle
	Bamg
	Domain
	hmin/hmax
	hVertices
	field/err
	gradation
	anisomax

	Extrusion (3D)

	Stress balance
	Physical basis
	Conservation of linear momentum
	Conservation of angular momentum
	Ice constitutive equations
	Full-Stokes (FS) field equations
	Higher-Order (HO) field equations
	Shelfy-Stream Approximation (SSA) field equations
	Boundary conditions

	Model parameters
	Running a simulation

	Mass transport / Free surface
	Physical basis
	Conservation of mass
	Boundary conditions
	Numerical implementation

	Model parameters
	Running a simulation

	Thermal Model
	Physical basis
	Thermal state
	Boundary conditions
	Numerical implementation

	Model parameters
	Running a simulation

	Dual continuum Hydrology model
	Physical basis
	Water Distribution
	Specificities of the IDS
	Specificities of the EDS

	Transfer equation
	Boundary conditions

	Model parameters
	General parameters
	IDS parameters
	EDS parameters

	Running a simulation

	Shreve's Hydrology model
	Physical basis
	Water column
	Numerical implementation

	Model parameters
	Running a simulation

	Damage mechanics
	Physical basis
	Inferring damage from remote sensing data
	Inverting for damage directly
	Post-processing to determine damage

	Damage Evolution (Under Construction)

	Transient (time dependent projection)
	Physical basis
	Transient solution

	Model parameters
	Time stepping

	Forcing a transient
	Running a simulation

	Grounding Lines
	Physical basis
	Hydrostatic equilibrium
	Contact mechanics

	Model parameters
	Running a simulation

	Glacial Isostatic Adjusment (GIA)
	Physical basis
	Vertical surface displacement
	Numerical implementation
	Model parameters
	ISSM Configuration
	Running a simulation

	Parameterization of physical processes
	Positive Degree Day (PDD)
	Physical basis
	Positive degree day method
	Temperature and precipitation forcing (Under development)

	Model parameters
	Running a simulation

	Other surface mass balance models (SMB)
	SMB (default)
	SMB components
	SMB melt components
	SMB gradients method

	Basal friction
	Default Friction law
	Weertman Friction law
	Thin water layer friction law

	Cluster/Cloud computing
	Cluster computing
	Setting up the environment to use the parallel mode
	password-less SSH login
	Step 1: simplifying the way you ssh
	Step 2: creating an SSH public/private key
	Step 3: SSH passthrough

	Tunneling

	Cloud computing
	Introduction
	Installation
	Configuration
	StarCluster configuration file for ISSM

	Running ISSM with StarCluster

	Advanced features
	Inverse methods
	Introduction
	Cost functions
	Absolute misfit
	Relative misfit
	Logarithmic misfit
	Thickness misfit
	Drag gradient
	Thickness gradient

	Model parameters
	Minimization algorithms
	Brent search minimizers
	Toolkit for Advanced Optimization (TAO)
	M1QN3

	Running an inversion

	Rifts
	Rifts creation
	Rift tip refining
	Rifts in parameter file
	Solving for rifts
	Rifts plotting
	Rifts when using Yams mesh adaptation
	Adding rifts to an existing mesh

	Quantifications of Margins and Uncertainties with Dakota
	Physical basis
	Mesh Partitioning
	Sensitivity
	Sampling

	Model parameters
	Building the CHACO and DAKOTA packages
	Partitioning a Mesh
	Setting up the QMU
	For sensitivity
	For sampling
	Other simple default settings for both sampling and sensitivity

	Setting your QMU variables
	Setting your diagnostics
	Running a simulation

	Plotting
	MATLAB plots
	plotmodel
	Options
	axis
	view
	xlim, ylim, zlim
	caxis
	colorbar
	colormap
	log
	contourlevels
	contourticks
	contouronly
	streamlines
	edgecolor
	expdisp
	expstyle
	mask
	northarrow
	scaleruler
	title
	fontsize
	fontweight
	xlabel, ylabel

	Special plots
	basaldrag
	BC
	driving_stress
	elementnumbering
	elements_type
	vertexnumbering
	highlightelements
	highlightgrids
	icefront
	mesh

	Quiver plot
	ColorLevels
	Scaling
	Autoscale
	Density

	Cross section
	Resolution
	Show section

	Miscellaneous Tools
	Mesh
	Model parameterization
	Mask
	Interpolation
	ARGUS files
	Results analysis

	FAQ
	Compilation troubleshooting
	Using ISSM
	Other

	PETSc 3.2
	Error message in configure.log, when compiling downloaded PLAPACK:
	Running conftest on Pleiades

	PETSc 3.1
	Error message in configure.log, when compiling downloaded PLAPACK:
	Running conftest on Pleiades
	Error message when compiling ISSM: _intel_fast_memcpy

	PETSc 2.3.2
	Error message in configure.log, when compiling downloaded MUMPS:
	Error message in configure.log, when compiling downloaded PLAPACK:

	ISSM configuration and compilation
	MPICH2 linking error
	configure: error: Couldn't find mex... check your installation of matlab
	MATLAB MEX compile error
	X11 Library not found
	*** No rule to make target
	Error message when compiling, with unresolved symbols in Petsc
	Linkage Error for drand48 and srand48 specifications in Windows

	MATLAB's interface
	MATLAB complains about __gfortran_transfer_array_write symbol
	Option 1 (preferred)
	Option 2 (requires admin priviledges)

	MATLAB complains GLIBCXX libraries
	MATLAB complains about intel_fast_memm symbol

	Debugging with valgrind
	MPICH error messages
	svn tricks

